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Abstract—This paper presents the visual localization subsystem
of the ongoing EMILY project. This project aims to assist respon-
ders with establishing contact with drowning victims as quickly
as possible through the use of a 1.3-meter autonomous unmanned
surface vehicle (USV). Once victims are reached, the device
can serve as a flotation device to support them. An unmanned
aerial vehicle (UAV) provides a live video feed to responders and
aids USV’s navigation by visually estimating the USV’s position
and orientation. The movement of the UAV and the USV along
with varying lighting, distance, and perspective make the task
of estimating USV’s position and orientation challenging. We
present two implemented solutions for reliable visual localization,
the first relying on color thresholding and contour detection,
and the second using histograms, back-projection, and CamShift
algorithm. The visual localization system was validated in four
proof-of-concept field trials. Other unsuccessful methods are
discussed.

I. INTRODUCTION

The main pathway for refugees who attempt to escape
war and find asylum in Europe involves a journey across the
Mediterranean Sea. For example, the Greek island of Lesbos
is separated from Turkey by only 5.5 km.

The large majority of refugees often arrive on overloaded
boats that are in poor condition and sometimes do not have
a rudder. Many refugees drown each year after falling off the
boat, or after their boat sinks. Other boats end up on dangerous
shores with hidden currents, big waves, and sharp cliffs.

Rescue boats can guide refugees to safe shores, and individ-
ual rescuers can wait in shallow waters near the shore to assist
refugees as they disembark. However, the rescue boats cannot
get too close to the shore due to shallow water and cliffs.
At the same time, individual responders cannot get too far
from the shore. Therefore, there is approximately 100 m stripe
where refugees are on their own. Furthermore, the number of
responders is too low to help everybody.

A solution is to use an unmanned surface vehicle (USV)
to operate in otherwise unreachable areas and to assist re-
sponders. An USV called Emergency Integrated Lifesaving
Lanyard (EMILY) by Hydronalix was tested in teleoperation
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mode by Murphy et al. at Lesbos in 2016. EMILY is a robotic
flotation device that can support up to 6 people.

Teleoperation reduces the number of responders that can
assist in person. Therefore, the idea is to make EMILY
autonomous and send it to less urgent cases while responders
can help refugees who could be facing more urgent issues.

The ongoing autonomous EMILY project proposes to use
EMILY in combination with an unmanned aerial vehicle
(UAV). The UAV serves two purposes. First, it provides live
video feed to the operator who can identify the victims EMILY
should assist. Second, the UAV visually estimates EMILY’s
position and orientation to navigate EMILY to the victims.
The operator would use a tablet to circle the victims in the
live video feed from the UAV and EMILY would approach
them autonomously.

This paper presents the localization subsystem used to
determine EMILY’s position and orientation from the UAV
video feed. EMILY’s position and orientation can be used
together with the victim’s relative position to visually navigate
EMILY to reach the victims. The UAV can also use EMILY’s
position to keep it in its field of view all the time. EMILY
stops after victims are reached so that they can hold on to it
and wait for responders. EMILY is not able to move when
people are holding on to it.

II. RELATED WORK

This section describes related work on UAV tracking from
multiple perspectives. First, it introduces the idea of using
a UAV to improve the situational awareness of the USV’s
operator. Second, it discusses the problem of keeping objects
in UAV’s field of view. Third, it examines three categories
of tracking: single UAV tracking a single object, single UAV
tracking multiple objects, and multiple UAVs tracking multiple
objects. Fourth, it discusses alternative methods of localization.
Finally, it introduces two major algorithms for visual localiza-
tion.

The idea of using a UAV to support USVs or unmanned
ground vehicles is not new. UAVs were used to provide
situation awareness for the operator of USV [1]. It was pointed
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out in [2], that autonomy is needed to make the assistance
more efficient and to reduce the human-robot ratio.

The problem of keeping tracked objects in the field of
view was investigated as well. In [3] the authors proposed
an algorithm that tracks multiple ground objects and uses
dispersion to keep the optimal viewpoint. Leader following
method was proposed in [4], where the UAV keeps the leader
marked with artificial tags in its field of view and the other
robots stay close to the leader.

Three categories of tracking tasks with UAVs were found
in the literature. The first category was one UAV tracking one
target. A method to chase uncooperative moving object was
proposed in [5]. The algorithm used moving object detection
and was tested only with a fixed camera and not actual UAV.
Feng [6] presented a vision-based tracking system that can
detect a ground target using image processing. His experiment
used a static object, but he claimed the algorithm could be
easily extended to a moving object.

The second category was a single UAV tracking multiple
targets. A method to track multiple ground objects using
motion detection and providing this information to ground
robots was designed in [7]. USV tracking was used for floating
object recovery in [8]. In the work, a USV was tracked from a
UAV. Then the relative position and orientation of the USV and
target was estimated. A UAV was used to fly over large areas
to detect victims and provided their position to a USV [9].
Sometimes, there might be multiple clusters of victims. An
algorithm to estimate the probability of successful rescue for
each cluster was proposed in [10]. The problem of how to track
an object if there were possible occlusions was investigated
in [11]. Motion detection method for object tracking was
proposed in [12].

The third category was multiple UAVs tracking multiple
targets. An algorithm to keep a formation of ground robots in
the field of view of multiple UAV's was presented [13]. Ground
moving target radar was successfully used for the same task
instead of the visual sensor [14]. Most of the research used
vertical takeoff and landing platforms. However, fixed wing
platforms were investigated as well [15]. The main objective
of the study was to keep the group of ground moving targets
in the field of view of multiple fixed wing UAVs under the
restricted motion assumption. Multiple UAVs were used to
track multiple USVs and autonomous underwater vehicles as
well [16]. They cooperated on underwater oil spill localization.
The spills were detected from UAVs, and their positions were
provided to the operators for situation awareness.

Various methods can be used to determine the position
of a moving object. GPS and compass are frequently used
onboard robots to establish position and orientation, and enable
navigation. We are not considering this approach because we
do not know victims’ GPS coordinates. Victims are selected in
the UAV’s video feed, therefore their position is known only
relative to the image frame. While it is possible to estimate
GPS coordinates of an object in the video with the knowledge
of UAV’s altitude, GPS, camera tilt, and camera parameters,
the information may not be available and the estimate may
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not be precise. By using visual localization of EMILY, both
EMILY’s and victims’ coordinates are in the image frame. One
other method facing similar issues is radio-based localization.

There is extensive research focused on detecting an object
of interest in the image. Two algorithms most relevant for this
study are MeanShift and CamShift. MeanShift algorithm [17],
[18] can be used to track the area of maximum pixel density.
CamShift [19] is based on MeanShift and can adapt with the
changing size and orientation of the tracked area. The input
to those algorithms can be, for example, color threshold or
histogram back-projection.

Our work, as opposed to the above-mentioned studies,
provides a solution for color-based visual localization of a fast
moving object from a camera mounted on a moving platform
that is not necessarily directly above the target. The studies
described above either used fixed camera, tracked a static
object, tracked the object by staying directly above it, or used
motion-based detection. Motion-based detection is not reliable
when the camera is moving. Due to motion parallax static
objects will appear to be moving.

III. APPROACH

This section describes our application developed for EMILY
position and orientation estimation. The problem analysis
discusses the previous methods and provides details on the
lack of success of those methods.

The desired outcome is to determine coordinates of EMILY
in the video and a line segment approximating its orientation
and relative size. Therefore, the main question is how to rec-
ognize EMILY in the video feed? EMILY is being recognized
while in water and moving at speeds of up to 22 mph with the
possibility of frequent turns. The video feed is being recorded
by a UAV. Therefore, the camera itself may be moving relative
to the robot and the environment. The view might be from
various angles, not necessarily from the top. The lighting
conditions might change frequently due to the relative position
to the sun.

All of these assumptions and constraints make the local-
ization of EMILY a challenging task. In the problem analysis
subsection, the discussion will outline why certain approaches
do not work and then we will present a working solution in
the solution subsection.

A. Problem Analysis

Table I summarizes all the approaches and shows the
constraints that were satisfied. We will continue our discussion
by elaborating why certain approaches do not satisfy certain
constraints starting from the first row.

The size of the blob representing EMILY in the image
cannot be used. The apparent size might be very different and
could change frequently depending on the distance of EMILY
from the camera as well as the relative position and orientation
of EMILY in relation to the camera. The possible difference
in size is illustrated in Figure 1.

Inertia or circularity of the blob representing EMILY in the
image cannot be used. These two parameters depend on the
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Fig. 1. EMILY size may differ significantly in the image (relative size on the
left is much larger than on the right image).

Fig. 2. EMILY inertia may vary from high inertia (left) to low inertia (right).

Fig. 3. EMILY’s blob can be concave (left) or convex (right) depending on
various conditions.

Fig. 4. EMILY brightness scale from dark blob (left) to light blob (right).

relative orientation of EMILY to the camera. If EMILY is
facing towards the camera at an oblique angle, it might appear
to be circular. If EMILY is turned sideways, the inertia ratio
will be low. The example can be seen in Figure 2.

Convexity and concavity of the blob representing EMILY
are not constant. The color is not uniform since EMILY is
covered with yellow stripes. The non-uniformity might also
be caused by shadows, water, or payload. Because of the non-
uniformity, the whole body of EMILY might not be recognized
as one blob. For this reason, although EMILY is convex in real
life, the blob representing it in the image might not be convex.
This is illustrated in Figure 3.

We cannot use brightness of EMILY in the image. The
brightness may change significantly relative to the time of
day, time of year, weather, and relative position to the sun.
Brightness also depends on the relative position of the sun
to the camera. If the sun is in the camera’s field of view,
the camera will automatically adjust the exposition making
everything look darker. The perceived EMILY color may range
from almost black to almost white. The difference is apparent
from Figure 4.

In the previously mentioned approaches, we assumed the
algorithm uses only one video frame at a time. We hy-
pothesized that if we compare frames and extract significant
changes in pixel values across multiple frames, we would
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TABLE I
COLUMNS ARE CONSTRAINTS AND ROWS ARE APPROACHES. "YES”
SIGNIFIES THAT THE APPROACH SATISFIES THE CONSTRAINT.

Variable  Variable  Variable Variable Moving

Size Inertia Convexity  Brightness  Camera
Size No Yes Yes Yes Yes
Inertia Yes No Yes Yes Yes
Convexity | Yes Yes No Yes Yes
Brightness | Yes Yes Yes No Yes
Movement | Yes Yes Yes Yes No
Color Yes Yes Yes Yes Yes

Fig. 5. Application of Gaussian blur on EMILY image to smooth the surface.

be able to detect EMILY’s movement. However, this method
proved to be usable only under the assumption that the camera
was fixed. This is unfortunately not the case for the camera
mounted on a UAV. If the camera is moving by itself, it will
cause the algorithm to detect stationary objects as moving,
because it does not know that the camera is moving. Moreover,
this background movement is not uniform and cannot be
compensated for by the algorithm. Due to parallax motion, the
objects which are closer to the camera will appear to move
faster than objects further away from the camera.

B. Solution

After failed attempts with the previously mentioned ap-
proaches, we settled on color-based detection for our visual
localization solution satisfying all the previously mentioned
constraints. EMILY itself has a very bright red color. We came
up with two working solutions — simple thresholding on hue
values, and histogramming with back-projection and CamShift
algorithm.

There are two major problems with color-based detection.
First, the color of EMILY is not uniform. It has a white cross
on top and numerous yellow stripes on its body, which covers
a significant portion of the red. It also has black handles,
colorful labels, white ropes, and black radio transceiver. Its
non-uniformity could cause the surface to be broken down
into multiple small red blobs. Most of the non-red parts have
an important function and cannot be removed. This problem
can be alleviated by using Gaussian blur to diffuse the color of
the additional elements in the red. The application of Gaussian
blur is illustrated in Figure 5.

The second problem is that hue is difficult to define in RGB
color space used by the camera. The values might be different
in all three color coordinates and still, have the same hue. It is
also problematic to capture changes in saturation and intensity
of particular hue. Therefore, it is challenging to set intervals
for the color that need to be extracted. Furthermore, different
lighting significantly affects RGB values for the same object,
making it difficult to detect a single color. One solution might
be the conversion of RGB color space to grayscale, which
has just one dimension. This, however, leads to extreme loss
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Fig. 6. Threshold (left) and application of erosion and dilatation (right).

of information. The color space is reduced from 16,777,216
colors to 256 colors. EMILY might not be distinguishable from
the background in that case.

The solution to this problem is the conversion to HSV color
space. HSV color space specifies a color in terms of hue,
saturation, and value. In this color space, we can specify the
hue range of the color we want to extract. It also enables to
filter based on saturation and value. The hue in HSV is also
less affected by lighting than in RGB.

Let us continue with two aforementioned methods to local-
ization.

1) Thresholding: The first method is to apply thresholding
to select pixels lying within the specified range of HSV values.
The thresholding method will create a binary map where
1 (white) means that the corresponding pixel is within the
specified range, and 0 (black) otherwise. The example of a
threshold for EMILY can be seen on the left side of Figure 6.

The thresholding as described above inherently contains
some noise. This noise is reduced with morphological erosion.
Erosion will delete a certain number of pixels that border with
black pixels. It will ultimately delete very small dispersed
clusters and leave just larger clusters.

After erosion, we apply dilatation to amplify the clusters
and also fill-in possible holes in the clusters. Holes might
occur due to non-uniformity of EMILY’s surface and also
other factors described above. The example of threshold after
applying erosion and dilatation is on the right side of Figure 6.

The next step is to detect blobs in the threshold. Two blob
detection approaches were examined. The first is OpenCV
SimpleBlobDetector. It is able to detect blobs based on color,
area, circularity, convexity, and inertia. As explained above,
we cannot use those filters since EMILY’s image might differ
significantly in those parameters. Therefore, the algorithm will
usually choose all the blobs in the image.

The second approach is to find contours (boundaries of self-
contained shapes) in the thresholded binary image. We can
then compute various moments on the contours, such as area,
shape size, and shape center. The contours method might still
return multiple objects. Our algorithm selects the largest one.
After selecting the biggest shape, we compute its centroid and
draw an indicator on the screen. The centroid coordinates are
the ultimate output of the algorithm.

2) Histogramming: The second method is to use histogram-
ming. The main idea is to use a histogram instead of a simple
hue range. At the beginning, our application will let the user
select EMILY in the image. It will then construct the histogram
of hue values. A histogram specifies for each range of hue
values how many pixels in that range are contained within the
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Fig. 7. EMILY histogram constructed automatically from the selected image
area. The horizontal axis is the hue and the vertical axis is the frequency.

Fig. 9. EMILY localization using histogram back-projection and CamShift
algorithm during the second trial. Green cross represents the centroid, the
ellipse approximates the shape, and the yellow line represents the orientation.

selected area. Therefore, it is a much more precise description
than the simple hue range. The example of a histogram for
EMILY can be seen in Figure 7. We still have to specify
saturation and value intervals manually.

After we have the histogram, we can calculate back-
projection of each frame. This will create a grayscale map
where each pixel’s brightness represents how much this pixel’s
hue is represented in the histogram (in other words how well
the pixel fits the histogram distribution). The back-projection
is illustrated in Figure 8.

Now we can apply advanced CamShift algorithm [19] for
finding objects. It finds the area of maximum pixel density
by sliding a window towards the centroid of all the pixels
in that window. This is iterated until the algorithm finds the
maximum density area. The window size is adapted with each
iteration dynamically to the size of the target. This algorithm
not only finds the centroid of EMILY, but it also fits an ellipse
to EMILY’s shape which can be used later for orientation
estimation. The result is illustrated in Figure 9.

C. Orientation Estimation

So far, we discussed only how to get EMILY’s position.
Now we will take a look at how to estimate the orientation.
If we can estimate the orientation from the image, we can
navigate the robot to go to the particular direction in the
coordinate system with the origin in its centroid.

Two classes of orientation estimation methods were consid-
ered. The first class uses movement to estimate the heading.
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Since EMILY can only move forward, the direction of move-
ment should represent the front part of EMILY. Unfortunately,
this technique would work only for a fixed camera. However,
our camera is mounted on a UAV. This might result in blob
motion caused by the camera movement and not by the
movement of blob itself.

The second class is based on the blob shape itself. The major
axis of the blob should give a good orientation approximation.

There are many techniques that can be used to estimate
the principal axis. The first method we tried was to fit a line
through the blob. That method was more suitable for multiple
data points and did not work well for a single blob.

The second method was to fit a rectangle with the minimum
area that would contain the blob; however, that approach was
not very accurate. The rectangle would oftentimes fit in a way
that EMILY would be enclosed diagonally, so the orientation
would be estimated incorrectly.

The third method was principal component analysis. This
algorithm is designed to find a principle component of the
data. However, it suffered from the similar problems as fitting
a line. It implicitly required more data points to work correctly
and did not work well with a single blob.

The fourth and best solution was to fit an ellipse with the
minimum area to the blob. The fitting will cause the vertices
of the ellipse to be on both ends of the robot. Then, we
can compute major axis of the ellipse to approximate robot’s
orientation and relative size of the robot in the image. That
approach worked better than fitting a rectangle because it
eliminated the extra space at the corners of the rectangle.
Moreover, if we use CamShift algorithm, we already have the
minimum fitting ellipse, so we save some computing power.
The example of the orientation estimation is the yellow line
in Figure 9.

IV. IMPLEMENTATION

All aforementioned approaches were implemented in C++
using OpenCV library. The input video files were either
prerecorded MP4 or MOV in high definition or RTSP video
stream from a UAV. UAV video stream came from UAV’s
control tablet using screen mirroring application since the used
UAVs cannot stream to a computer directly. In order to reduce
computational complexity, the input frames were resized to a
lower resolution.

Graphical user interface (GUI) was implemented. It enables
important parameters to be set and also the frames in various
phases of the processing to be visible. The parameters can
include (depending on selected method) HSV ranges, blur
level, erosion level, and dilatation level. This is critical because
the parameters might depend on various outside conditions
such as weather or time of day, and cannot be fixed. The
GUI can be seen in Figure 10. The application automatically
records the localization and exports it as AVI video file.

V. TRIALS

Four proof-of-concept field trials were conducted to vali-
date the visual localization system. The data were manually
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Fig. 10. Graphical user interface of the implemented application. Top left is
the blurred image, top right is the threshold, bottom left is the application of
erosion and dilatation, bottom right is the resulting position and orientation
information, and the very bottom are sliders with parameters.

TABLE I
AVERAGE LOCALIZATION ERROR IN PIXELS. H IS HISTOGRAMMING AND
T IS THRESHOLDING METHOD. RESOLUTION IS INPUT VIDEO RESOLUTION

IN PIXELS.
Trial 1 Trial 2 Trial 3 Trial 4
H T H T H T H T
Error 15 440 8 15 7 311 43 100
Resolution | 1920x1080 | 1920x1080 | 2132x1200 | 1024x640

annotated to mark true coordinates of EMILY in the video
and compared with algorithm output coordinates to measure
estimation error. Table II shows the error computed as average
distance in pixels between true coordinates and output coordi-
nates from the algorithm. The table also lists the resolution of
the videos used in the trials so that the trials can be compared
to each other.

The first trial was held at Lake Bryan, Bryan, TX on March
28th. EMILY was controlled manually, and the video was
taken from an elevated position. The video camera used was
GoPro HERO4. This was a preliminary experiment, so the data
was not collected from a UAV. We determined two challenges.
First, GoPro has 15 mm focal length (ultra wide field of
view) and therefore objects in the distance were very small.
Therefore, EMILY would only be represented by few pixels
if it is in the distance. This problem can be alleviated by
using lens with higher focal numbers. The second challenge
encountered was the sun facing directly into the camera.
This will cause the camera to change the white balance and
distort the brightness in the image. Therefore, EMILYs color
might be desaturated to the color of the environment. This is
illustrated in Figure 11, where EMILY has exactly the same
color as the water in another part of the image. This problem,
however, is less likely to happen for a UAV, since the UAV
camera is facing downwards.

The second trial was performed during Fort Bend County,
TX floods on April 23rd. EMILY was controlled in manual
mode. DJI Inspire 1 was used to get low altitude video of
EMILY. Both EMILY and the UAV moved with frequent
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Fig. 11. In this sample image, EMILY has the same color as the water in
another area of the image.

Fig. 12. Testing the reliability of position and orientation estimations under
various viewpoints. View from UAV.

changes in direction. UAV was chasing EMILY and changed
view angles frequently. The weather was sunny with no cloud
cover, and the water was dirty flood water. Figure 10 presents
the GUI while processing video from this trial using the
thresholding algorithm. Figure 9 is a snapshot from the video
from this trial processed using the histogram algorithm. We
encountered a problem with flood water having desaturated red
color. However, this was easily filtered by raising the lower
limit for saturation.

The third trial was conducted at Lake Bryan, Bryan, TX
on May 10th. EMILY was used in autonomous waypoint
navigation mode. DJI Phantom 3 Professional was used to get
high altitude video from the shore. The UAV was not chasing
EMILY, but rather was looking from above while still directly
above the shore, simulating the intended use. The weather was
cloudy causing EMILY to go from the sun to shadow.

The fourth trial was conducted in our laboratory and was
designed to try various viewpoints. EMILY was stationary, and
the UAV was carried around to observe EMILY from various
angles. The example of the position and orientation estimations
can be seen in Figure 12.

Each trial required certain modifications of the parameters
to account for local conditions (weather, time of day, water
color). This was done easily using the GUI and usually took a
couple of minutes. As can be seen from Table II, the histogram
method generally worked better than hue thresholding because
it enables the algorithm to work with more information about
the object and also to dynamically create the histogram in
local lighting conditions. Furthermore, histogramming method
requires fewer parameters to be set in the GUI (only saturation
and value limits) making the process more scalable.
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VI. FUTURE WORK

One area of future work to be explored will be the use of
feature tracking for object detection, allowing to use structure
as well as color for improved robustness. A potential challenge
we anticipate is perspective, as EMILY may be seen by the
UAV from various sides.

Next, we want to automate the parameter tuning. In the
case of histogramming method, this would require estimating
saturation and value that would separate the object of interest
from the background.

More importantly we would like to continue to fully in-
tegrate the position and orientation estimation into the entire
system. First, the control signals will be issued back to the
UAV to tilt the camera and possibly to change position so that
EMILY is kept in the field of view. Second, the position and
orientation of EMILY together with victim’s position will be
used to navigate EMILY to the victims.

In its final form, first responders will view EMILY from
UAV video camera and will be able to circle victims. EMILY
will then autonomously navigate to the victims using data from
the UAV and our application.

VII. CONCLUSION

Responders need a solution to assist them with saving
refugees without sacrificing manpower and to enable them
to operate in unreachable areas. The ongoing autonomous
EMILY project proposes using an autonomous USV cooper-
ating with a UAV to serve that purpose. In this system, the
operator would see video feed from UAV, circle refugees, and
EMILY would autonomously navigate there.

This paper presented the subsystem for localizing EMILY
in the video feed from a UAV to estimate its position and
orientation. The information is necessary to enable robust
navigation. The discussion provided complete analysis of the
problem including solutions that did not work and explanations
of why.

We presented our application for reliable visual localization.
The video images are preprocessed first using Gaussian blur,
conversion to HSV, and equalization on HSV values. Next, two
possible methods were proposed. The first method is based
on color thresholding, erosion, dilatation, and contour blob
detection. The second method is based on histogramming,
back-projection, and CamShift algorithm.

The orientation is estimated by fitting an ellipse with the
minimum area and taking its principal axis. Other methods that
did not work were discussed as well. Those include motion
detection, line fitting, minimum rectangle fitting, and principal
component analysis.

The proposed solution was implemented in C++ and
OpenCV including graphical user interface to view multiple
frames at various stages of processing and to set important
parameters. Four experimental field trials were conducted as
proofs-of-concept for the localization system. The first was a
hand-held outdoor test with a GoPro HERO4. The second was
an outdoor field test at Fort Bend with a DJI Inspire One. The
third was at Lake Bryan with a DJI Phantom 3 Professional.
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The final trial was also with the DJI Phantom 3 Professional,
but was conducted indoors to test different viewpoints. The
results of those trials demonstrated the viability of the pre-
sented localization subsystem and will help direct our efforts
for future work.

ACKNOWLEDGMENT

I would like to thank my advisor, Dr. Robin Murphy, and all
the fellow students working on other parts of the autonomous
EMILY project. In alphabetical order Matt Hegarty, Jesus
Orozco, Tim Woodbury, and Xuesu Xiao. I would also like to
thank Justin Adams for providing the data from DIJI Inspire 1
in the second field trial.

REFERENCES

[1] R. Murphy, S. Stover, K. Pratt, and C. Griffin, “Cooperative damage
inspection with unmanned surface vehicle and micro unmanned aerial
vehicle at hurricane wilma,” in Intelligent Robots and Systems, 2006
IEEE/RSJ International Conference on, Conference Proceedings, pp. 9—
9.

[2] M. Lindemuth, R. Murphy, E. Steimle, W. Armitage, K. Dreger, T. Elliot,
M. Hall, D. Kalyadin, J. Kramer, M. Palankar, K. Pratt, and C. Griffin,
“Sea robot-assisted inspection,” IEEE Robotics & Automation Magazine,
vol. 18, no. 2, pp. 96-107, 2011.

[3] M. Cognetti, G. Oriolo, P. Peliti, L. Rosa, and P. Stegagno, “Cooperative
control of a heterogeneous multi-robot system based on relative local-
ization,” in Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ
International Conference on, Conference Proceedings, pp. 350-356.

[4] E. H. C. Harik, F. Guerin, F. Guinand, J. F. Brethe, and H. Pelvillain,
“Uav-ugv cooperation for objects transportation in an industrial area,”
in Industrial Technology (ICIT), 2015 IEEE International Conference
on, Conference Proceedings, pp. 547-552.

[5] W. Ding, Z. Gong, S. Xie, and H. Zou, “Real-time vision-based object
tracking from a moving platform in the air,” in Intelligent Robots
and Systems, 2006 IEEE/RSJ International Conference on, Conference
Proceedings, pp. 681-685.

[6] L. Feng, M. C. Ben, and L. K. Yew, “Integration and implementation
of a low-cost and vision-based uav tracking system,” in 2007 Chinese
Control Conference. 1EEE, 2007, pp. 731-736.

[71 Z. Sun, “Vision-assisted adaptive target tracking of unmanned ground
vehicles,” in Control Conference (CCC), 2014 33rd Chinese, Conference
Proceedings, pp. 3685-3690.

[8] N. Mikovi, S. Bogdan, . Na, F. Mandi, M. Orsag, and T. Haus,
“Unmanned marsupial sea-air system for object recovery,” in Control
and Automation (MED), 2014 22nd Mediterranean Conference of,
Conference Proceedings, pp. 740-745.

[9] F. F. Ramirez, D. S. Benitez, E. B. Portas, and J. A. L. Orozco, “Coor-
dinated sea rescue system based on unmanned air vehicles and surface
vessels,” in OCEANS, 2011 IEEE - Spain, Conference Proceedings, pp.
1-10.

[10] T. Tao and R. Jia, “Uav decision-making for maritime rescue based on
bayesian network,” in Computer Science and Network Technology (ICC-
SNT), 2012 2nd International Conference on, Conference Proceedings,
pp. 2068-2071.

[11] Q. Gao, Z. C. Zeng, and D. Hu, “Long-term tracking method on ground
moving target of uav,” in Guidance, Navigation and Control Conference
(CGNCC), 2014 IEEE Chinese, Conference Proceedings, pp. 2429-
2432.

[12] M. Siam and M. ElHelw, “Robust autonomous visual detection and
tracking of moving targets in uav imagery,” in Signal Processing
(ICSP), 2012 IEEE 11th International Conference on, vol. 2, Conference
Proceedings, pp. 1060—-1066.

[13] M. Aranda, L. N. G, C. Sagues, and Y. Mezouar, “Formation control
of mobile robots using multiple aerial cameras,” IEEE Transactions on
Robotics, vol. 31, no. 4, pp. 1064-1071, 2015.

[14] A. Sinha, T. Kirubarajan, and Y. Bar-Shalom, “Autonomous ground
target tracking by multiple cooperative uavs,” in Aerospace Conference,
2005 IEEE, Conference Proceedings, pp. 1-9.

978-1-5090-4349-1/16/$31.00 ©2016 IEEE

[15] H. Oh, S. Kim, H. S. Shin, and A. Tsourdos, “Coordinated standoff
tracking of moving target groups using multiple vavs,” IEEE Transac-
tions on Aerospace and Electronic Systems, vol. 51, no. 2, pp. 1501-
1514, 2015.

[16] A. Vasilijevic, P. Calado, F. Lopez-Castejon, D. Hayes, N. Stilinovic,
D. Nad, F. Mandic, P. Dias, J. Gomes, J. C. Molina, A. Guerrero,
J. Gilabert, N. Miskovic, Z. Vukic, J. Sousa, and G. Georgiou, “Het-
erogeneous robotic system for underwater oil spill survey,” in OCEANS
2015 - Genova, Conference Proceedings, pp. 1-7.

[17] K. Fukunaga and L. Hostetler, “The estimation of the gradient of
a density function, with applications in pattern recognition,” [EEE
Transactions on information theory, vol. 21, no. 1, pp. 32—40, 1975.

[18] Y. Cheng, “Mean shift, mode seeking, and clustering,” IEEE transactions
on pattern analysis and machine intelligence, vol. 17, no. 8, pp. 790-
799, 1995.

[19] G. R. Bradski, “Computer vision face tracking for use in a perceptual
user interface,” 1998.

[20] Z. Henkel, J. Suarez, B. Duncan, and R. R. Murphy, “Sky writer:
sketch-based collaboration for uav pilots and mission specialists,” in
Proceedings of the 2014 ACM/IEEE international conference on Human-
robot interaction. ACM, 2014, pp. 172-173.

153



