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Abstract—This paper presents the visual localization subsystem
of the ongoing EMILY project. This project aims to assist respon-
ders with establishing contact with drowning victims as quickly
as possible through the use of a 1.3-meter autonomous unmanned
surface vehicle (USV). Once victims are reached, the device
can serve as a flotation device to support them. An unmanned
aerial vehicle (UAV) provides a live video feed to responders and
aids USV’s navigation by visually estimating the USV’s position
and orientation. The movement of the UAV and the USV along
with varying lighting, distance, and perspective make the task
of estimating USV’s position and orientation challenging. We
present two implemented solutions for reliable visual localization,
the first relying on color thresholding and contour detection,
and the second using histograms, back-projection, and CamShift
algorithm. The visual localization system was validated in four
proof-of-concept field trials. Other unsuccessful methods are
discussed.

I. INTRODUCTION

The main pathway for refugees who attempt to escape

war and find asylum in Europe involves a journey across the

Mediterranean Sea. For example, the Greek island of Lesbos

is separated from Turkey by only 5.5 km.

The large majority of refugees often arrive on overloaded

boats that are in poor condition and sometimes do not have

a rudder. Many refugees drown each year after falling off the

boat, or after their boat sinks. Other boats end up on dangerous

shores with hidden currents, big waves, and sharp cliffs.

Rescue boats can guide refugees to safe shores, and individ-

ual rescuers can wait in shallow waters near the shore to assist

refugees as they disembark. However, the rescue boats cannot

get too close to the shore due to shallow water and cliffs.

At the same time, individual responders cannot get too far

from the shore. Therefore, there is approximately 100 m stripe

where refugees are on their own. Furthermore, the number of

responders is too low to help everybody.

A solution is to use an unmanned surface vehicle (USV)

to operate in otherwise unreachable areas and to assist re-

sponders. An USV called Emergency Integrated Lifesaving

Lanyard (EMILY) by Hydronalix was tested in teleoperation
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mode by Murphy et al. at Lesbos in 2016. EMILY is a robotic

flotation device that can support up to 6 people.

Teleoperation reduces the number of responders that can

assist in person. Therefore, the idea is to make EMILY

autonomous and send it to less urgent cases while responders

can help refugees who could be facing more urgent issues.

The ongoing autonomous EMILY project proposes to use

EMILY in combination with an unmanned aerial vehicle

(UAV). The UAV serves two purposes. First, it provides live

video feed to the operator who can identify the victims EMILY

should assist. Second, the UAV visually estimates EMILY’s

position and orientation to navigate EMILY to the victims.

The operator would use a tablet to circle the victims in the

live video feed from the UAV and EMILY would approach

them autonomously.

This paper presents the localization subsystem used to

determine EMILY’s position and orientation from the UAV

video feed. EMILY’s position and orientation can be used

together with the victim’s relative position to visually navigate

EMILY to reach the victims. The UAV can also use EMILY’s

position to keep it in its field of view all the time. EMILY

stops after victims are reached so that they can hold on to it

and wait for responders. EMILY is not able to move when

people are holding on to it.

II. RELATED WORK

This section describes related work on UAV tracking from

multiple perspectives. First, it introduces the idea of using

a UAV to improve the situational awareness of the USV’s

operator. Second, it discusses the problem of keeping objects

in UAV’s field of view. Third, it examines three categories

of tracking: single UAV tracking a single object, single UAV

tracking multiple objects, and multiple UAVs tracking multiple

objects. Fourth, it discusses alternative methods of localization.

Finally, it introduces two major algorithms for visual localiza-

tion.

The idea of using a UAV to support USVs or unmanned

ground vehicles is not new. UAVs were used to provide

situation awareness for the operator of USV [1]. It was pointed

2016 IEEE International Symposium on
Safety, Security, and Rescue Robotics (SSRR)
EPFL, Lausanne, Switzerland, October 23-27, 2016

978-1-5090-4349-1/16/$31.00 ©2016 IEEE 147



out in [2], that autonomy is needed to make the assistance

more efficient and to reduce the human-robot ratio.

The problem of keeping tracked objects in the field of

view was investigated as well. In [3] the authors proposed

an algorithm that tracks multiple ground objects and uses

dispersion to keep the optimal viewpoint. Leader following

method was proposed in [4], where the UAV keeps the leader

marked with artificial tags in its field of view and the other

robots stay close to the leader.

Three categories of tracking tasks with UAVs were found

in the literature. The first category was one UAV tracking one

target. A method to chase uncooperative moving object was

proposed in [5]. The algorithm used moving object detection

and was tested only with a fixed camera and not actual UAV.

Feng [6] presented a vision-based tracking system that can

detect a ground target using image processing. His experiment

used a static object, but he claimed the algorithm could be

easily extended to a moving object.

The second category was a single UAV tracking multiple

targets. A method to track multiple ground objects using

motion detection and providing this information to ground

robots was designed in [7]. USV tracking was used for floating

object recovery in [8]. In the work, a USV was tracked from a

UAV. Then the relative position and orientation of the USV and

target was estimated. A UAV was used to fly over large areas

to detect victims and provided their position to a USV [9].

Sometimes, there might be multiple clusters of victims. An

algorithm to estimate the probability of successful rescue for

each cluster was proposed in [10]. The problem of how to track

an object if there were possible occlusions was investigated

in [11]. Motion detection method for object tracking was

proposed in [12].

The third category was multiple UAVs tracking multiple

targets. An algorithm to keep a formation of ground robots in

the field of view of multiple UAVs was presented [13]. Ground

moving target radar was successfully used for the same task

instead of the visual sensor [14]. Most of the research used

vertical takeoff and landing platforms. However, fixed wing

platforms were investigated as well [15]. The main objective

of the study was to keep the group of ground moving targets

in the field of view of multiple fixed wing UAVs under the

restricted motion assumption. Multiple UAVs were used to

track multiple USVs and autonomous underwater vehicles as

well [16]. They cooperated on underwater oil spill localization.

The spills were detected from UAVs, and their positions were

provided to the operators for situation awareness.

Various methods can be used to determine the position

of a moving object. GPS and compass are frequently used

onboard robots to establish position and orientation, and enable

navigation. We are not considering this approach because we

do not know victims’ GPS coordinates. Victims are selected in

the UAV’s video feed, therefore their position is known only

relative to the image frame. While it is possible to estimate

GPS coordinates of an object in the video with the knowledge

of UAV’s altitude, GPS, camera tilt, and camera parameters,

the information may not be available and the estimate may

not be precise. By using visual localization of EMILY, both

EMILY’s and victims’ coordinates are in the image frame. One

other method facing similar issues is radio-based localization.

There is extensive research focused on detecting an object

of interest in the image. Two algorithms most relevant for this

study are MeanShift and CamShift. MeanShift algorithm [17],

[18] can be used to track the area of maximum pixel density.

CamShift [19] is based on MeanShift and can adapt with the

changing size and orientation of the tracked area. The input

to those algorithms can be, for example, color threshold or

histogram back-projection.

Our work, as opposed to the above-mentioned studies,

provides a solution for color-based visual localization of a fast

moving object from a camera mounted on a moving platform

that is not necessarily directly above the target. The studies

described above either used fixed camera, tracked a static

object, tracked the object by staying directly above it, or used

motion-based detection. Motion-based detection is not reliable

when the camera is moving. Due to motion parallax static

objects will appear to be moving.

III. APPROACH

This section describes our application developed for EMILY

position and orientation estimation. The problem analysis

discusses the previous methods and provides details on the

lack of success of those methods.

The desired outcome is to determine coordinates of EMILY

in the video and a line segment approximating its orientation

and relative size. Therefore, the main question is how to rec-

ognize EMILY in the video feed? EMILY is being recognized

while in water and moving at speeds of up to 22 mph with the

possibility of frequent turns. The video feed is being recorded

by a UAV. Therefore, the camera itself may be moving relative

to the robot and the environment. The view might be from

various angles, not necessarily from the top. The lighting

conditions might change frequently due to the relative position

to the sun.

All of these assumptions and constraints make the local-

ization of EMILY a challenging task. In the problem analysis

subsection, the discussion will outline why certain approaches

do not work and then we will present a working solution in

the solution subsection.

A. Problem Analysis

Table I summarizes all the approaches and shows the

constraints that were satisfied. We will continue our discussion

by elaborating why certain approaches do not satisfy certain

constraints starting from the first row.

The size of the blob representing EMILY in the image

cannot be used. The apparent size might be very different and

could change frequently depending on the distance of EMILY

from the camera as well as the relative position and orientation

of EMILY in relation to the camera. The possible difference

in size is illustrated in Figure 1.

Inertia or circularity of the blob representing EMILY in the

image cannot be used. These two parameters depend on the
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Fig. 1. EMILY size may differ significantly in the image (relative size on the
left is much larger than on the right image).

Fig. 2. EMILY inertia may vary from high inertia (left) to low inertia (right).

Fig. 3. EMILY’s blob can be concave (left) or convex (right) depending on
various conditions.

Fig. 4. EMILY brightness scale from dark blob (left) to light blob (right).

relative orientation of EMILY to the camera. If EMILY is

facing towards the camera at an oblique angle, it might appear

to be circular. If EMILY is turned sideways, the inertia ratio

will be low. The example can be seen in Figure 2.

Convexity and concavity of the blob representing EMILY

are not constant. The color is not uniform since EMILY is

covered with yellow stripes. The non-uniformity might also

be caused by shadows, water, or payload. Because of the non-

uniformity, the whole body of EMILY might not be recognized

as one blob. For this reason, although EMILY is convex in real

life, the blob representing it in the image might not be convex.

This is illustrated in Figure 3.

We cannot use brightness of EMILY in the image. The

brightness may change significantly relative to the time of

day, time of year, weather, and relative position to the sun.

Brightness also depends on the relative position of the sun

to the camera. If the sun is in the camera’s field of view,

the camera will automatically adjust the exposition making

everything look darker. The perceived EMILY color may range

from almost black to almost white. The difference is apparent

from Figure 4.

In the previously mentioned approaches, we assumed the

algorithm uses only one video frame at a time. We hy-

pothesized that if we compare frames and extract significant

changes in pixel values across multiple frames, we would

TABLE I
COLUMNS ARE CONSTRAINTS AND ROWS ARE APPROACHES. ”YES”

SIGNIFIES THAT THE APPROACH SATISFIES THE CONSTRAINT.

Variable
Size

Variable
Inertia

Variable
Convexity

Variable
Brightness

Moving
Camera

Size No Yes Yes Yes Yes
Inertia Yes No Yes Yes Yes
Convexity Yes Yes No Yes Yes
Brightness Yes Yes Yes No Yes
Movement Yes Yes Yes Yes No
Color Yes Yes Yes Yes Yes

Fig. 5. Application of Gaussian blur on EMILY image to smooth the surface.

be able to detect EMILY’s movement. However, this method

proved to be usable only under the assumption that the camera

was fixed. This is unfortunately not the case for the camera

mounted on a UAV. If the camera is moving by itself, it will

cause the algorithm to detect stationary objects as moving,

because it does not know that the camera is moving. Moreover,

this background movement is not uniform and cannot be

compensated for by the algorithm. Due to parallax motion, the

objects which are closer to the camera will appear to move

faster than objects further away from the camera.

B. Solution

After failed attempts with the previously mentioned ap-

proaches, we settled on color-based detection for our visual

localization solution satisfying all the previously mentioned

constraints. EMILY itself has a very bright red color. We came

up with two working solutions — simple thresholding on hue

values, and histogramming with back-projection and CamShift

algorithm.

There are two major problems with color-based detection.

First, the color of EMILY is not uniform. It has a white cross

on top and numerous yellow stripes on its body, which covers

a significant portion of the red. It also has black handles,

colorful labels, white ropes, and black radio transceiver. Its

non-uniformity could cause the surface to be broken down

into multiple small red blobs. Most of the non-red parts have

an important function and cannot be removed. This problem

can be alleviated by using Gaussian blur to diffuse the color of

the additional elements in the red. The application of Gaussian

blur is illustrated in Figure 5.

The second problem is that hue is difficult to define in RGB

color space used by the camera. The values might be different

in all three color coordinates and still, have the same hue. It is

also problematic to capture changes in saturation and intensity

of particular hue. Therefore, it is challenging to set intervals

for the color that need to be extracted. Furthermore, different

lighting significantly affects RGB values for the same object,

making it difficult to detect a single color. One solution might

be the conversion of RGB color space to grayscale, which

has just one dimension. This, however, leads to extreme loss
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Fig. 6. Threshold (left) and application of erosion and dilatation (right).

of information. The color space is reduced from 16, 777, 216
colors to 256 colors. EMILY might not be distinguishable from

the background in that case.

The solution to this problem is the conversion to HSV color

space. HSV color space specifies a color in terms of hue,

saturation, and value. In this color space, we can specify the

hue range of the color we want to extract. It also enables to

filter based on saturation and value. The hue in HSV is also

less affected by lighting than in RGB.

Let us continue with two aforementioned methods to local-

ization.

1) Thresholding: The first method is to apply thresholding

to select pixels lying within the specified range of HSV values.

The thresholding method will create a binary map where

1 (white) means that the corresponding pixel is within the

specified range, and 0 (black) otherwise. The example of a

threshold for EMILY can be seen on the left side of Figure 6.

The thresholding as described above inherently contains

some noise. This noise is reduced with morphological erosion.

Erosion will delete a certain number of pixels that border with

black pixels. It will ultimately delete very small dispersed

clusters and leave just larger clusters.

After erosion, we apply dilatation to amplify the clusters

and also fill-in possible holes in the clusters. Holes might

occur due to non-uniformity of EMILY’s surface and also

other factors described above. The example of threshold after

applying erosion and dilatation is on the right side of Figure 6.

The next step is to detect blobs in the threshold. Two blob

detection approaches were examined. The first is OpenCV
SimpleBlobDetector. It is able to detect blobs based on color,

area, circularity, convexity, and inertia. As explained above,

we cannot use those filters since EMILY’s image might differ

significantly in those parameters. Therefore, the algorithm will

usually choose all the blobs in the image.

The second approach is to find contours (boundaries of self-

contained shapes) in the thresholded binary image. We can

then compute various moments on the contours, such as area,

shape size, and shape center. The contours method might still

return multiple objects. Our algorithm selects the largest one.

After selecting the biggest shape, we compute its centroid and

draw an indicator on the screen. The centroid coordinates are

the ultimate output of the algorithm.

2) Histogramming: The second method is to use histogram-

ming. The main idea is to use a histogram instead of a simple

hue range. At the beginning, our application will let the user

select EMILY in the image. It will then construct the histogram

of hue values. A histogram specifies for each range of hue

values how many pixels in that range are contained within the

Fig. 7. EMILY histogram constructed automatically from the selected image
area. The horizontal axis is the hue and the vertical axis is the frequency.

Fig. 8. EMILY histogram back-projection.

Fig. 9. EMILY localization using histogram back-projection and CamShift
algorithm during the second trial. Green cross represents the centroid, the
ellipse approximates the shape, and the yellow line represents the orientation.

selected area. Therefore, it is a much more precise description

than the simple hue range. The example of a histogram for

EMILY can be seen in Figure 7. We still have to specify

saturation and value intervals manually.

After we have the histogram, we can calculate back-

projection of each frame. This will create a grayscale map

where each pixel’s brightness represents how much this pixel’s

hue is represented in the histogram (in other words how well

the pixel fits the histogram distribution). The back-projection

is illustrated in Figure 8.

Now we can apply advanced CamShift algorithm [19] for

finding objects. It finds the area of maximum pixel density

by sliding a window towards the centroid of all the pixels

in that window. This is iterated until the algorithm finds the

maximum density area. The window size is adapted with each

iteration dynamically to the size of the target. This algorithm

not only finds the centroid of EMILY, but it also fits an ellipse

to EMILY’s shape which can be used later for orientation

estimation. The result is illustrated in Figure 9.

C. Orientation Estimation

So far, we discussed only how to get EMILY’s position.

Now we will take a look at how to estimate the orientation.

If we can estimate the orientation from the image, we can

navigate the robot to go to the particular direction in the

coordinate system with the origin in its centroid.

Two classes of orientation estimation methods were consid-

ered. The first class uses movement to estimate the heading.
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Since EMILY can only move forward, the direction of move-

ment should represent the front part of EMILY. Unfortunately,

this technique would work only for a fixed camera. However,

our camera is mounted on a UAV. This might result in blob

motion caused by the camera movement and not by the

movement of blob itself.

The second class is based on the blob shape itself. The major

axis of the blob should give a good orientation approximation.

There are many techniques that can be used to estimate

the principal axis. The first method we tried was to fit a line

through the blob. That method was more suitable for multiple

data points and did not work well for a single blob.

The second method was to fit a rectangle with the minimum

area that would contain the blob; however, that approach was

not very accurate. The rectangle would oftentimes fit in a way

that EMILY would be enclosed diagonally, so the orientation

would be estimated incorrectly.

The third method was principal component analysis. This

algorithm is designed to find a principle component of the

data. However, it suffered from the similar problems as fitting

a line. It implicitly required more data points to work correctly

and did not work well with a single blob.

The fourth and best solution was to fit an ellipse with the

minimum area to the blob. The fitting will cause the vertices

of the ellipse to be on both ends of the robot. Then, we

can compute major axis of the ellipse to approximate robot’s

orientation and relative size of the robot in the image. That

approach worked better than fitting a rectangle because it

eliminated the extra space at the corners of the rectangle.

Moreover, if we use CamShift algorithm, we already have the

minimum fitting ellipse, so we save some computing power.

The example of the orientation estimation is the yellow line

in Figure 9.

IV. IMPLEMENTATION

All aforementioned approaches were implemented in C++
using OpenCV library. The input video files were either

prerecorded MP4 or MOV in high definition or RTSP video

stream from a UAV. UAV video stream came from UAV’s

control tablet using screen mirroring application since the used

UAVs cannot stream to a computer directly. In order to reduce

computational complexity, the input frames were resized to a

lower resolution.

Graphical user interface (GUI) was implemented. It enables

important parameters to be set and also the frames in various

phases of the processing to be visible. The parameters can

include (depending on selected method) HSV ranges, blur

level, erosion level, and dilatation level. This is critical because

the parameters might depend on various outside conditions

such as weather or time of day, and cannot be fixed. The

GUI can be seen in Figure 10. The application automatically

records the localization and exports it as AVI video file.

V. TRIALS

Four proof-of-concept field trials were conducted to vali-

date the visual localization system. The data were manually

Fig. 10. Graphical user interface of the implemented application. Top left is
the blurred image, top right is the threshold, bottom left is the application of
erosion and dilatation, bottom right is the resulting position and orientation
information, and the very bottom are sliders with parameters.

TABLE II
AVERAGE LOCALIZATION ERROR IN PIXELS. H IS HISTOGRAMMING AND

T IS THRESHOLDING METHOD. RESOLUTION IS INPUT VIDEO RESOLUTION

IN PIXELS.

Trial 1 Trial 2 Trial 3 Trial 4
H T H T H T H T

Error 15 440 8 15 7 311 43 100

Resolution 1920x1080 1920x1080 2132x1200 1024x640

annotated to mark true coordinates of EMILY in the video

and compared with algorithm output coordinates to measure

estimation error. Table II shows the error computed as average

distance in pixels between true coordinates and output coordi-

nates from the algorithm. The table also lists the resolution of

the videos used in the trials so that the trials can be compared

to each other.

The first trial was held at Lake Bryan, Bryan, TX on March

28th. EMILY was controlled manually, and the video was

taken from an elevated position. The video camera used was

GoPro HERO4. This was a preliminary experiment, so the data

was not collected from a UAV. We determined two challenges.

First, GoPro has 15 mm focal length (ultra wide field of

view) and therefore objects in the distance were very small.

Therefore, EMILY would only be represented by few pixels

if it is in the distance. This problem can be alleviated by

using lens with higher focal numbers. The second challenge

encountered was the sun facing directly into the camera.

This will cause the camera to change the white balance and

distort the brightness in the image. Therefore, EMILY’s color

might be desaturated to the color of the environment. This is

illustrated in Figure 11, where EMILY has exactly the same

color as the water in another part of the image. This problem,

however, is less likely to happen for a UAV, since the UAV

camera is facing downwards.

The second trial was performed during Fort Bend County,

TX floods on April 23rd. EMILY was controlled in manual

mode. DJI Inspire 1 was used to get low altitude video of

EMILY. Both EMILY and the UAV moved with frequent
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Fig. 11. In this sample image, EMILY has the same color as the water in
another area of the image.

Fig. 12. Testing the reliability of position and orientation estimations under
various viewpoints. View from UAV.

changes in direction. UAV was chasing EMILY and changed

view angles frequently. The weather was sunny with no cloud

cover, and the water was dirty flood water. Figure 10 presents

the GUI while processing video from this trial using the

thresholding algorithm. Figure 9 is a snapshot from the video

from this trial processed using the histogram algorithm. We

encountered a problem with flood water having desaturated red

color. However, this was easily filtered by raising the lower

limit for saturation.

The third trial was conducted at Lake Bryan, Bryan, TX

on May 10th. EMILY was used in autonomous waypoint

navigation mode. DJI Phantom 3 Professional was used to get

high altitude video from the shore. The UAV was not chasing

EMILY, but rather was looking from above while still directly

above the shore, simulating the intended use. The weather was

cloudy causing EMILY to go from the sun to shadow.

The fourth trial was conducted in our laboratory and was

designed to try various viewpoints. EMILY was stationary, and

the UAV was carried around to observe EMILY from various

angles. The example of the position and orientation estimations

can be seen in Figure 12.

Each trial required certain modifications of the parameters

to account for local conditions (weather, time of day, water

color). This was done easily using the GUI and usually took a

couple of minutes. As can be seen from Table II, the histogram

method generally worked better than hue thresholding because

it enables the algorithm to work with more information about

the object and also to dynamically create the histogram in

local lighting conditions. Furthermore, histogramming method

requires fewer parameters to be set in the GUI (only saturation

and value limits) making the process more scalable.

VI. FUTURE WORK

One area of future work to be explored will be the use of

feature tracking for object detection, allowing to use structure

as well as color for improved robustness. A potential challenge

we anticipate is perspective, as EMILY may be seen by the

UAV from various sides.

Next, we want to automate the parameter tuning. In the

case of histogramming method, this would require estimating

saturation and value that would separate the object of interest

from the background.

More importantly we would like to continue to fully in-

tegrate the position and orientation estimation into the entire

system. First, the control signals will be issued back to the

UAV to tilt the camera and possibly to change position so that

EMILY is kept in the field of view. Second, the position and

orientation of EMILY together with victim’s position will be

used to navigate EMILY to the victims.

In its final form, first responders will view EMILY from

UAV video camera and will be able to circle victims. EMILY

will then autonomously navigate to the victims using data from

the UAV and our application.

VII. CONCLUSION

Responders need a solution to assist them with saving

refugees without sacrificing manpower and to enable them

to operate in unreachable areas. The ongoing autonomous

EMILY project proposes using an autonomous USV cooper-

ating with a UAV to serve that purpose. In this system, the

operator would see video feed from UAV, circle refugees, and

EMILY would autonomously navigate there.

This paper presented the subsystem for localizing EMILY

in the video feed from a UAV to estimate its position and

orientation. The information is necessary to enable robust

navigation. The discussion provided complete analysis of the

problem including solutions that did not work and explanations

of why.

We presented our application for reliable visual localization.

The video images are preprocessed first using Gaussian blur,

conversion to HSV, and equalization on HSV values. Next, two

possible methods were proposed. The first method is based

on color thresholding, erosion, dilatation, and contour blob

detection. The second method is based on histogramming,

back-projection, and CamShift algorithm.

The orientation is estimated by fitting an ellipse with the

minimum area and taking its principal axis. Other methods that

did not work were discussed as well. Those include motion

detection, line fitting, minimum rectangle fitting, and principal

component analysis.

The proposed solution was implemented in C++ and

OpenCV including graphical user interface to view multiple

frames at various stages of processing and to set important

parameters. Four experimental field trials were conducted as

proofs-of-concept for the localization system. The first was a

hand-held outdoor test with a GoPro HERO4. The second was

an outdoor field test at Fort Bend with a DJI Inspire One. The

third was at Lake Bryan with a DJI Phantom 3 Professional.
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The final trial was also with the DJI Phantom 3 Professional,

but was conducted indoors to test different viewpoints. The

results of those trials demonstrated the viability of the pre-

sented localization subsystem and will help direct our efforts

for future work.
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