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By Christopher Langlois, Saideep Tiku, and Sudeep Pasricha

HE NEED FOR INDOOR LOCALIZATION SYSTEMS THAT
can provide reliable access to location information in
areas that are not serviced sufficiently by a global
positioning system (GPS) has continued to grow.
There are a wide variety of use cases for this local-

ization data and increasing interest from industry, academia,

and government agencies that has fueled research in this area.
Smartphones are uniquely positioned to be a critical part of a
localization solution based on the proliferation of these
devices and the diverse array of sensors and radios that they
contain. In this article, the capabilities of these sensors are
explored along with the benefits and drawbacks of each for
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localization. Various methods for employing these sensors are
surveyed. Many localization systems currently being explored
utilize a combination of complimentary methods to enhance
accuracy and reliability and decrease energy consumption of
the overall system. Several of these localization frameworks
are also explored. Finally, we describe the major challenges
that are being faced in current research on indoor localization
with smartphones, as they are critical for charting the path for
future advances in indoor localization.

THE NEED FOR INDOOR LOCALIZATION

Global navigation satellite systems (GNSSs) have trans-
formed the way that people navigate, travel, automate, and
gather information about the world around them. Indoor
localization systems have the potential to similarly change
how people function in locations where satellite-based local-
ization systems are rendered ineffective. There is a need for
systems that can bridge this gap and create continuity in
localization regardless of location.

Indoor localization is a challenging problem, particularly in
complex spaces such as shopping malls, schools, high-rise
buildings, hospitals, subways, tunnels, and mines. The variety
of locales involve differing ambient environments, obstruc-
tions, architectures, and materials, which makes accurate local-
ization difficult. There are also challenges associated with the
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movement of people, machinery, furniture, and equipment,
which cause variations and interferences. There are many differ-
ent approaches to localizing indoors, but, unfortunately, there
is currently no definitive standard to meet all the needs and
challenges for localization in every indoor environment.

The ability to track people and equipment indoors has appli-
cations in many areas (Figure 1). Factory and warehouse auto-
mation through asset tracking and optimization analysis can
serve to increase productivity by effectively scheduling resourc-
es and equipment. Hospitals can track patients, employees, and
equipment to enhance navigation and allow for the automation
of hospital information systems. Retail stores can use beacons
to announce sales, customize displays to the shopper, collect
shopping pattern data, and assist customers in finding products.
Parking garages and underground parking structures could track
their fill capacity, direct vehicles to open spots, locate vehicles,
and ultimately enhance autonomous vehicle routing [37].

Companies such as Aisle411 have already begun to deploy
indoor localization for floor-plan optimization and augmented
reality in retail locations. Disney uses a wristband on guests
called the MagicBand that integrates with its theme park—wide
MyMagicPlus system to create a customized experience for
visitors as they are tracked throughout the park, including
indoor locales. The American National Football League has
partnered with Zebra to track players on the field during
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FIGURE 1. Some use cases for smartphone indoor localization.
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The ability to track people and
equipment indoors has applications
in many areas.

games to enhance sports officiating as well as to augment the
experience for fans. The ability to track people in stadiums, in
addition to helping to find family or friends in a crowd, is also
useful for emergency responders in the case of a disaster.

Realizing the importance and potential of indoor localiza-
tion, the International Conference on Indoor Positioning and
Indoor Navigation has been held since 2010 to bring research-
ers, developers, and service providers together to share
research and compete in challenges. Major corporations have
expressed interest in furthering the cause of indoor localiza-
tion. The Microsoft Indoor Localization Competition was
started in 2014 and encourages competition among teams in
various challenges to spur research in the area. Similarly,
beginning in 2017, the National Institute of Standards and
Technology also created its own indoor localization competi-
tion (Performance Evaluation of Smartphone Indoor Localiza-
tion) [1] to encourage the development of the best possible
indoor localization solutions.

In 2015, the U.S. Federal Communications Commission
announced a mandate for the update of the Enhanced 911
standards to include a requirement for all commercial mobile
radio service providers to supply enhanced location data for
40% of all wireless 911 calls by 2017. This enhanced loca-
tion data requires x/y location within 50 m. In addition, the
mandate requires z-axis data for handsets with barometric
sensor data by 2018. These additional requirements are an
incremental step toward the use of improved indoor localiza-
tion by emergency responders.

Ambient Light
[ Microphone

As smartphones are the most widely adopted piece of per-
sonal communication technology today [36], they possess a
unique advantage to assist with indoor localization. These
devices have the requisite sensors to facilitate localization in
myriad ways. As smartphones continue to evolve, future itera-
tions are likely to continue to improve upon this sensor suite.
In this article, we survey the current state of indoor localiza-
tion research and practices that utilize commodity consumer
smartphone technology.

SMARTPHONE: SENSORS

AND RADIOS

Today’s smartphones have an arsenal of sensors and radios
(Figure 2) that can provide valuable data to enable indoor
localization through a number of different methods. As many
people carry their smartphones with them everywhere they
go, it is a compelling technology for enabling localization
and navigation in these scenarios.

INTERFACES

The microelectromechanical-system-based accelerometers,
gyroscopes, and magnetometers in today’s smartphones provide
motion and orientation data. The accelerometer detects relative
motion of the device in the form of acceleration. As the calcula-
tion of distance traveled is the double-integral of the accelera-
tion, small acceleration errors can rapidly accumulate as large
positional errors. The gyroscope provides angular acceleration
data relative to the body frame of the device. This angular accel-
eration data can be used to derive Euler angles or pitch, roll, and
yaw, which express angular position relative to the body frame.
In the same way that the accelerometer accumulates distance
errors, the gyroscope can rapidly accumulate angular position
errors. A way to overcome this error is to periodically recalibrate
angular position based on magnetometer data. The magnetome-
ter detects angular position data of the body of the device rela-
tive to magnetic north. Other sources of
magnetic fields such as electronics, met-
als, and magnets can introduce errors.
The combination of accelerometer and
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and orientation of the smartphone as rel-
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data is known as 9 DoF and provides a
frame of reference by anchoring this
data relative to magnetic north.
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FIGURE 2. Smartphone sensors and radios.
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nication, these signals are often available
as a source of positioning indoors with
respect to a cellular base station. However,



because of interference and multipath effects indoors, the received
signal strength indicator (RSSI) for wireless cellular signals often
varies greatly. Also, even though cellular signals have a relatively
high range, the low deployment density of cellular base stations
means that the localization accuracy with these signals is not very
high, varying between 50 and 100 m.

WiI-FI RADIO

Wi-Fi radios work with wireless signals that are shorter range
than cellular but longer range than Bluetooth. Wi-Fi access
points can be used as beacons, and, because of their proliferation
in indoor locales, they are being used more and more as sources
for indoor localization data by analyzing signal strength (using
an RSSI). IEEE Standard 802.11-2016 [38] recently introduced
a fine-timing measurement protocol called Wi-Fi location that
includes a measurement of the time it takes for the Wi-Fi sig-
nal to travel, enabling distance measurement. However, no Wi-Fi
location-certified smartphones have reached the market yet.

BLUETOOTH AND BLUETOOTH LOW-ENERGY RADIOS
Bluetooth devices or beacons can also be used as point sources
for localization. Bluetooth radios are lower range than cellular
and Wi-Fi radios. Bluetooth low energy (BLE) is a lower band-
width and lower power protocol than Bluetooth that works by
using a lower transmit duty cycle than Bluetooth classic, and it is
better suited for applications that do not require high data rates.
It is anticipated that by 2018, 90% of smartphones will support
BLE. A subset of BLE known as Apple iBeacon advertises and
allows background applications in an internetwork operating
system to be alerted when in proximity of a beacon. The same
challenges with RSSI detection that adhere to cellular/Wi-Fi
radios also apply to Bluetooth radios.

CAMERA

Today’s smartphones have sophisticated high-resolution cam-
eras that can be used to detect identifying features indoors or
aid in the detection of relative motion. To utilize this sensor,
the camera needs to be exposed. Typical smartphone front-
facing cameras are lower resolution and face the user. The
rear-facing cameras usually have a higher image resolution or
even dual cameras. However, image processing requires high
computational overhead in comparison to some of the other
sensors and has variable performance in low light conditions.

BAROMETER

The barometer detects barometric pressure and is primarily
used in localization systems as a relative indicator of vertical
elevation (z-axis localization). Data from this sensor is especial-
ly useful to eliminate the vertical positional drift from purely
inertial localization techniques. For example, in the case of
using elevators, an inertial solution utilizing step detection may
be a complete failure [2]. Unfortunately, wind, indoor ventila-
tion systems, and weather fluctuations can cause changes in the
barometric pressure and are potential sources of error during
vertical localization. Also, barometric sensors are not as readily
available in all smartphones.

GPS

The GPS sensors in smartphones are the de facto standard for
outdoor localization, but they perform poorly or not at all in
indoor conditions where they lose line-of-sight to the GPS satel-
lite constellation. They can still be used in some indoor scenarios
near windows or outside doors or while entering buildings to
calibrate an indoor localization framework.

MICROPHONES

Smartphones contain one or more microphones that can be
used to detect ambient sound sources or beacons that may be
used for localization. As these microphones are optimized for
speech, they are not necessarily optimized for detection of
sound outside of the audible range. Microphones can also be
adversely affected if the phone is carried in a pocket or bag.

PROXIMITY SENSORS

The proximity sensors in smartphones typically utilize an
infrared light-emitting diode (LED) and detector or capaci-
tive proximity sensors. The primary use for these sensors is
to detect the presence of the hand or face near the smart-
phone. The limited range on these sensors renders them inef-
fective for most localization scenarios.

AMBIENT-LIGHT SENSOR

An ambient-light sensor detects the magnitude of ambient light.
The typical use for this sensor is brightness adjustment on the
smartphone for different ambient-light scenarios. The use of
this sensor for localization can be challenging, as natural ambi-
ent light in a building is highly dependent on the time of day.
However, artificial lighting fixtures/sources can be employed to
overcome these challenges. Recent works have successfully
incorporated ambient-light sensors for indoor localization.

TEMPERATURE SENSORS

Changes in temperature in different indoor locales can also
be measured and used for indoor localization. But the useful-
ness of temperature sensors on smartphones for localization
is practically limited, as they can be affected by device and
user body temperature.

EXTERNAL SENSORS AND RADIOS

The addition of external sensors to the smartphone’s sensor
suite can also aid in localization by adding capabilities that
are not otherwise available in the phone itself. External sen-
sors can either be attached via external ports on the smart-
phone or wirelessly interface with the smartphone using
Bluetooth, BLE, and/or Wi-Fi. Some examples of promising
external sensors for localization include ultrawideband radios
that can be used for time-of-flight (ToF) ranging with bea-
cons and ultrasonic sensors that can similarly use sound
waves. The radio-frequency (RF) identification doorway and
threshold sensors can indicate proximity to these points and
estimate movement around an indoor environment. These
external sensors add to the cost and complexity of the indoor
localization system.
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INDOOR LOCALIZATION METHODS

Several methods have been explored for indoor localiza-
tion with smartphones in recent years. These methods
utilize the sensors and radios discussed in the “Smart-
phone: Sensors and Radios” section. Some major indoor
localization techniques are shown in Figure 3, and a

summary of indoor localization techniques can be found
in Table 1.

DEAD RECKONING
Dead reckoning refers to the class of techniques in which sen-
sor data is used along with the previously known position

Indoor Localization Methods
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FIGURE 3. A taxonomy of indoor localization methods.

Table 1. A summary of indoor localization methods.

Authors Technology Technique Accuracy

Pasricha et al. [27] A, G, Wi-Fi, PDR + fingerprinting: KNN, NN Mean error 1 m

Bitsch et al. [3] A G M PDR, MM Mean error 1.6 m

Kim et al. [5] A G M Motion of pelvis as inverted pendulum 1% step, 5% distance,
for stride length 5% heading errors

Bahl and Padmanabhan [10] Wi-Fi RSSI fingerprinting and Euclidean Mean error 20.5 m

distance measure empirical calculation

LaMarca et al. [12]

Wi-Fi, cellular

Fingerprinting

Mean error 20 m

Chintalapudi et al. [13] Wi-Fi RSSI distance estimation: EZ algorithm Median error 2 m
Karalar and Rabaey [14] RF ToF Error within 2.5 m
Hoflinger et al. [16] Acoustic Time difference of arrival (TDoA) Mean error 30 cm
Xiong and Jamieson [17] RF Angle of arrival (AoA) Median accuracy 23 cm
Bitsch et al. [21] Camera Optical flow of ground Mean error 3 m
Beauregard et al. [22] A G M PDR ZUPT, particle filter Mean error 2.56 m

Hellmers et al. [24]

Magnetic coil, A, G, M

ToF, EKF, PDR

Deviation of 0.15-0.3 m

Martin et al. [30]

Mic, photosensor,

Fingerprinting

camera, A, G, Wi-Fi

87% accuracy

Lazik et al. [31]

Ultrasound,

BLE TDoA

Error: three dimensional: 16.1 cm;

two dimensional: 19.8 cm

Xu et al. [32]

A, G, M, photosensor

Illumination peak detection, PDR, MM

Mean error 0.38-0.74 m

A: accelerometer; G: gyroscope; M: magnetometer; PDR: pedestrian dead reckoning; MM: map matching; KNN: k-nearest neighbor; NN: neural
networks; ZUPT: zero velocity update; EKF: extended Kalman filter.
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to determine the current position. The most commonly used
strategy in this area is known as pedometer-based dead reckon-
ing. This strategy works by first detecting and then counting
steps and using this data with stride length information to esti-
mate distance traveled. Figure 4 shows a simplistic strategy for
step detection in FootPath (indoor navigation) [3]. Steps can be
detected if there is a difference in acceleration p on the low-pass
filter in the vertical direction in a given time window. In [4],
stride length is modeled to have a linear relationship with step
frequency, whereas [5] models the motion of the pelvis as an
inverted pendulum to approximate stride length. A heading
(direction) estimation is achieved with magnetometers and hori-
zontal acceleration data. The step count, along with stride
length and heading estimate combine to form a movement vec-
tor. This movement vector can be applied to a previous location
to approximate the current location. The motion sensors found
in smartphones (the accelerometer, gyroscope, and magnetome-
ter) are capable of high sampling and update rates and allow
such pedometer dead reckoning [6], [7]. The pedometer-based
approach has its challenges; e.g., distance calculations can
accumulate errors because of an imperfect stride length
estimation or irregular walking pattern. This approach is also
ineffective for alternate means of transportation that do not
require a step motion such as wheelchairs, moving walkways,
and subway trains, among others.

FINGERPRINTING

Fingerprinting involves characterizing an environment
based on parametric data from one or more wireless radios
or sensors over many spatial points. This process involves a
survey step in which locations are characterized with unique

signal values (fingerprints) from sensors or radios. After
this step, in real time, observed sensor readings on the
smartphone are compared to this fingerprint data to approxi-
mate indoor location. Two commonly used types of finger-
printing are discussed next.

MAGNETIC FINGERPRINTING

While the magnetometer in a smartphone is typically used to
reference magnetic north, indoor environments contain many
sources of noise that affect this sensor. The presence of met-
als, magnets, electronics, and building wiring can all affect the
magnetic signature in any given location. By better character-
izing these effects throughout the building, magnetometer data
can be used to estimate location [8]. IndoorAtlas is a magnetic
fingerprint-based localization solution provider that has
teamed up with Yahoo! for building mapping in Japan [9].

RSSI FINGERPRINTING

By measuring the signal strength of received RF signals
using one or more of the radios in the smartphone, a finger-
print for a given location can be established. This is by far
the most popular technique for indoor localization, especial-
ly when used with Wi-Fi RF signals, which are ubiquitous in
almost all indoor locales today. By characterizing an RF fin-
gerprint throughout the localization area, an estimation of
location based on this information can be established. Radio
detection and ranging (RADAR) [10] is an example of a
localization framework that uses Wi-Fi RSSI fingerprinting
in combination with a Euclidean distance measure empirical
calculation to determine indoor location. One constraint of
such strategies is that the initial fingerprinting survey can be
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FIGURE 4. The step detection in FootPath [3].
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time consuming, and the fingerprinting process may need to
be repeated if RF signal sources are added, removed, or
moved. Several public Wi-Fi access points (and also cellular
network identification) databases are readily available [1]
that can reduce survey overheads for empirical fingerprint-
ing-based indoor localization solutions; however, the limited
quantity and granularity of fingerprint data for building inte-
riors remain a challenge. Skyhook Wireless was one of the
early pioneers of Wi-Fi fingerprinting, creating an access
point fingerprinting database that was originally used for
localization on the iPhone [11]. Similarly, the PlaceLab
indoor localization technique utilizes Wi-Fi and cellular
RSSI information [12].

TRILATERATION

A series of distance estimations between the smartphone and
external RF beacons can be used to estimate location. With
distance measurements at a minimum of three separate
known locations, a three-dimensional position relative to the
beacons can be established. The various forms of distance
measurement discussed next can all be used as sources of
data for the purposes of trilateration.

RSSI DISTANCE ESTIMATION

The measured RSSI value changes proportionally to distance
from its origin and thus can be used to estimate distance to an
RF signal source. An early example of research in RSSI dis-
tance estimation using Wi-Fi radios is the EZ localization algo-
rithm [13]. But such an estimation can be error prone because
of RF interferences and multipath effects. The magnitude of a
received audio signal can alternatively be used to approximate
distance, although reflections, echo, and interfering objects can
be sources of error for this type of estimation.

ToF OR TIME OF ARRIVAL RANGING

By measuring the time it takes for a signal to travel from a
source to a receiver, the distance between the two can be esti-
mated [14]. ToF ranging can be achieved using various types
of signals such as audio, RF, or light. But the sensors in a
smartphone are not configured to provide received timing
with accuracies sufficient to accomplish ToF/time-of-arrival
(ToA) ranging, so these strategies are typically employed
using external sensors and/or beacons.

TIME DIFFERENCE OF ARRIVAL OR MULTILATERATION

Multilateration strategies involve a signal sent from a mobile
point, which is received by two or more fixed points. The
difference in time at which each of the fixed points receives
the signal corresponds to the difference in distance between
the mobile point and each of the fixed points [15]. An alter-
nate method is to have each of the fixed points send out a
signal simultaneously and to calculate the position based on
the difference in time at which these signals are received by
the mobile point. These strategies can be used to find the
location of the mobile point in relation to the fixed points.
One constraint of this approach is that the fixed points
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require a method for precise time synchronization. Smart-
phones do not contain radios that are designed for multilater-
ation by default, so RF-based methods would require
external sensors and/or beacons. Acoustic multilateration has
been accomplished with smartphones using the internal
speakers and/or microphones [16].

TRIANGULATION

If the angles at a minimum of two known locations for a
smartphone are known, their location can be estimated. The
only sensor in a typical smartphone that can estimate an
angle to a known location is the magnetometer, which is
prone to interference. Due to this fact, triangulation-based
systems using a smartphone require the addition of other
external sensors. Angle-of-arrival (AoA) techniques are
often used to determine the angle between an array of
receiving antennas and a transmitting source. One technique
is similar to the time difference of arrival (TDoA), and is
accomplished by measuring the time difference at which the
signal arrives at each antenna in the array to calculate an
incident angle to the array. Another method is based on
spacing the antennas in the array a known wavelength apart
and measuring the phase difference of the received signal
between each of the antennas to calculate an incident angle
[17]. An external antenna array would be required to mea-
sure AoA in smartphones as these devices do not contain
such an array.

PROXIMITY ESTIMATION

The most basic form of localization utilizing RF beacons
(access points) is to estimate that the position of the user is
the same as the position of the beacon with the highest signal
strength. This is effective for strategies where only general
proximity is needed, as the positional accuracy can be low.
BLE beacons and iBeacons are examples of valid point-
source beacons. Aruba, a company that develops BLE-based
indoor location beacons for retail stores, was acquired by
Hewlett Packard Enterprise in 2015 and offers an application
program interface that developers can use to deliver indoor
navigation and location-relevant push notifications [18].
Ambient sounds that are present in the environment naturally
or audio beacons can also be detected and used to identify the
rough proximity to these sources. As smartphone micro-
phones operate in the audible or near-audible range, the
options for detecting frequencies that are not distracting to
humans or animals can be limited.

VISUAL LOCALIZATION

One or more of the smartphone’s cameras can be used as input
data sources for localization through a variety of methods. A
key requirement is that the camera must be exposed and unob-
structed for these localization strategies to be effective.

VISUAL RECOGNITION
The camera on a smartphone can be used for recognition of
visual cues in the environment. A company called ByteLight



uses different coded pulses in overhead LED lighting within
a building that can be picked up by a smartphone camera to
indicate that the device is located within a certain section of
that building [19].

SCENE ANALYSIS

Localization can also be accomplished through scene analy-
sis by identifying preprogrammed landmarks and their posi-
tion, observed size, and orientations relative to one another in
a scene. This process is akin to the way humans visually rec-
ognize their surroundings and estimate their position relative
to them.

OPTICAL FLOW

Camera information can also be important for detecting
motion and rotation. A process known as optical flow mea-
sures the distance at which points of interest move. If the dis-
tance between the camera and the points of interest is known,
the distance traveled can be extrapolated. Optical flow is com-
monly used for indoor flying drones by using a camera point-
ed at the ground to estimate change in location and speed
[20]. Smartphone cameras have also been used to capture the
optical flow of the room floor for direction and velocity esti-
mation [21]. But floors that lack visual features or are reflec-
tive lead to reduced accuracy.

SUPPLEMENTARY TECHNIQUES

There are some methodologies that cannot be used for indoor
localization directly but aid many of the previously discussed
localization techniques to further improve localization accu-
racy and speed.

MAP MATCHING

These are techniques for matching sensor/signal readings to a
physical floor plan. By considering geometric constraints in
floor plans, location accuracy can be improved. In general, the
path taken by a mobile subject should be similar to the floor
plan in the map, and any deviations may be suggestive of
errors. Map matching has been used in many indoor localiza-
tion scenarios. For instance, FootPath [3] utilizes accelerome-
ter and magnetic compass data for step detection and heading
estimation, respectively, and then overlays this information
onto a map available through OpenStreetMap, using specially
designed map-matching heuristics.

PARTICLE FILTERS

Using particle filters is an extension on the concept of simple
map matching. It is important to note that the motion of any
mobile subject is constrained by natural laws of physics that
limit the acceleration or feasibility of certain locations. This
technique usually involves representing many possible esti-
mated positions as particles on the map and then eliminating
them when they defy these natural laws. The remaining parti-
cles would then represent the possible locations of the mobile
subject. In [22], a framework was proposed to combine a
backtracking particle filter with different levels of building-
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There are advantages and
disadvantages to each of
the sensors in a smartphone.

plan detail to improve indoor localization performance via
dead reckoning.

HYBRID LOCALIZATION METHODS

There are advantages and disadvantages to each of the sen-
sors in a smartphone as well as to each of the localization
methods described thus far. For this reason, many recent
efforts have focused on combining data from multiple sensors
and/or utilizing multiple localization methods.

One commonly used method for combining multiple
input sources is known as linear quadratic estimation or
Kalman filtering [23]. The Kalman filter utilizes a previous
location and multiple sensors that can estimate a change in
state to arrive at a predicted current location [24]. This
method has also been used for outdoor localization, com-
bining inertial sensor data with GPS data to approximate
location over time more swiftly than either of the two inde-
pendently. The process for estimating the position based on
multiple sensors is sometimes referred to as sensor fusion.
Other commonly used filters for sensor fusion, particularly
with inertial measurement units, are the Madgwick et al.
[25] and Mahony filters [26].

The LearnLoc framework [27] combines dead reckoning,
Wi-Fi fingerprinting, and machine-learning techniques to
deliver a low-cost and infrastructure-free localization solu-
tion. Three supervised machine-learning techniques were
considered to improve localization accuracy: k-nearest
neighbor (KNN), linear regression (LR), and nonlinear
regression with neural networks (NL-NN). It is important to
note that only regression-based variants of these techniques
were applied, as they delivered faster predictions with much
lower energy requirements. LearnLoc is able to accommo-
date different Wi-Fi scan intervals to tradeoff energy con-
sumption and localization error. Figure 5 summarizes the
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FIGURE 5. The impact of Wi-Fi scan intervals on indoor localiza-
tion errors [27].
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The fact that most people carry a
smartphone makes it an attractive
platform for localization.

impact of Wi-Fi scan intervals on localization errors; fre-
quent scans end up consuming more energy but also
improve accuracy. All three machine-learning algorithms
demonstrated a logarithmic increase in the error distance
with increasing Wi-Fi scan intervals. A Wi-Fi scan interval
of 4 s was chosen to balance energy consumption and local-
ization accuracy. The three variants of LearnLoc (corre-
sponding to the three machine-learning techniques) were
compared against radar [10], FootPath (InertialNav) [3], and
PlaceLab [12] for different buildings, as shown in Figure 6.
It was observed that all variants of LearnLoc consistently
outperformed the other techniques, and the KNN variant of
LearnLoc delivered the most accurate results in all cases.
LearnLoc represents one of the first studies to explore trad-
eoffs between energy consumption and localization accura-
cy on smartphones.

There also exist a few commercial offerings that utilize
hybrid techniques for indoor localization. SPIRIT Navigation
offers a service called IndoorSpirit that uses multiple data
sources to localize with a smartphone, including magnetic
fingerprinting, pedestrian dead reckoning, Wi-Fi fingerprint-
ing, and map matching [28]. In 2003, Apple acquired the
indoor location startup WiFiSLAM, whose core technology
utilizes Wi-Fi fingerprinting, trilateration, motion sensors,
TDoA, and magnetic fingerprinting in a smartphone [29].
With this data, crowdsourced trajectory mapping is done
using machine learning and pattern recognition to build
indoor maps over time.

Some techniques propose the combination of radio signals
with unconventional noninertial sources. SurroundSense [30]
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FIGURE 6. A comparison of indoor localization techniques with
different building types [27].
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establishes a fingerprint for indoor locations with a smart-
phone based on ambient sounds, lighting, colors, motion pat-
terns, Wi-Fi access points, and geocentric solar magnetospheric
coordinates. The currently observed fingerprint was then uti-
lized to predict which location the user was at from a location
database. Another technique called the acoustic location pro-
cessing system (ALPS) [31] employs a combination of BLE
transmitters and ultrasound signals to form time-synchronized
beacons with a focus on minimal setup effort. ALPS uses BLE
solely for time synchronization, whereas ultrasound chirps are
used for ranging through TDoA. This process allows for the
automated computation of beacon locations, saving the manu-
al effort. In [32], the IDyLL indoor localization system uses
the combination of dead reckoning with photosensors on
smartphones. Typical luminary sources (including incandes-
cent, fluorescent, and LED) are often uniquely (sometimes
evenly) spaced in many indoor environments. IDyLL uses an
illumination peak-detection algorithm and fuses this informa-
tion with dead reckoning and map matching to achieve fine-
grain localization.

CHALLENGES

Despite the exciting developments in the area of indoor localiza-
tion in recent years, a number of challenges still remain. Different
use cases require disparate levels of accuracy and have varying
requirements for deployed infrastructure and cost; thus, a single
localization solution may not be suitable for all scenarios.

EVALUATION

Location accuracy is often a focus of research and comparison
of techniques. One area for improvement is the standardization
of measurement techniques, environments, and use cases that
would lend itself to a better comparative benchmarking of pro-
posed approaches. These types of analysis tools, metrics, and
benchmarks could help to minimize ambiguity in comparison
and speed the pace of research by quickly highlighting some of
the more promising solutions for a particular use case.

INFRASTRUCTURE AND COST

The use of additional sensors and beacons can greatly
increase indoor localization accuracy but also increase
deployment cost. Many research efforts are thus focused on
smartphone localization without the need for infrastructure or
additional sensors, as this is the lowest barrier-to-entry solu-
tion. Other solutions focus on minimizing or hiding beacon
infrastructures [33]. More effort is needed to aggressively
reduce costs for localization. For example, techniques that
can calculate the optimal placement of beacons in an indoor
environment (based on wireless signal type, overlap, cover-
age, and so on) can lead to the minimization of beacons
required for accurate localization, which can help reduce
costs associated with localization.

SETUP REQUIREMENTS
Fingerprinting, mapping, calibration, and characterization
can aid in localization but usually come at the cost of



added complexity and time required. Changes to the envi-
ronment can sometimes necessitate these efforts to be
repeated. A fingerprint or map-based system may suffer
from reduced accuracy or inability to localize in environ-
ments where this information is not already available.
Some research has been done in the areas of crowdsourced
mapping and fingerprinting, on-the-fly fingerprinting, and
iterative map learning.

SENSOR ERROR

RF signals are subject to noise, multipath interference, and vari-
able propagation performance in indoor environments. Some
locations are more problematic than others, and very few
research efforts account for these sources of interference. Mag-
netometer-based localization methods often suffer from interfer-
ence in the presence of metals as well as magnetics and
electronics. Inertial sensor-based solutions have challenges asso-
ciated with drift, irregular movement patterns, and accumulation
of error. Research in the area of filtering and calibration for dead
reckoning is essential to reduce these sources of error [34].

POWER

The frequent use of radios and/or sensors in a smartphone
for localization can come at the price of high power over-
head. Efforts to balance location accuracy with battery life
are ongoing [35]. Different scenarios or usage patterns may
require different localization strategies, and solutions are
needed that can employ a customized approach based on
the situation.

PERFORMANCE REQUIREMENTS

Some localization strategies employ machine learning, image
processing, or complex signal processing. Some of these
types of operations can require high-processing or memory
overhead, which may restrict the methods that can be viably
deployed on a smartphone. In general, more resource-inten-
sive strategies reduce battery life and user quality-of-service.

NEW SENSORS AND RADIOS

Smartphones are currently packed with sensors and radios,
but there is a continuous push to increase the capabilities of
these devices. Additional sensors or radios that specifically
target indoor localization have been proposed for smart-
phones. The determination of which new sensors/radios
would be the best choice and the design of solutions involv-
ing them are open questions.

CONCLUSIONS AND FUTURE DIRECTIONS

The variety of sensors and radios available in today’s smart-
phones, and the fact that most people carry a smartphone,
make it an attractive platform for localization. The evolution
of the smartphone will continue to alter the landscape of how
we approach localization. Any integration of new sensors
specifically for localization into smartphone devices may
drastically shift our approach to this problem. Creative appli-
cation of machine learning or sensor fusion algorithms can

also help to integrate the strengths of various smartphone
sensors/radios and maximize the potential of currently avail-
able smartphone technology. As smartphone technology
improves, the ability to run more complex algorithms for
localization also increases. The holistic goal of creating a sin-
gle indoor localization strategy using commodity smart-
phones with no additional infrastructure, calibration, or setup
that is highly accurate and low power across all use cases is a
work in progress. It may be that this panacea for indoor local-
ization is simply not feasible and that a portfolio of solutions
is the optimal approach.

Inevitably, indoor localization is poised to fill a gap left
by GNSSs in environments without coverage. Applications
that currently rely on a GNSS in outdoor environments
would be well served to have an alternative solution avail-
able as necessary, and this is something that can benefit from
research on indoor localization. The many potential industry
and consumer uses for this technology as well as govern-
ment mandates for improved indoor localization ensure that
there will continue to be a focus on this theme from both
academia and industry for a long time.
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