
T-LQG: Closed-Loop Belief Space Planning
via Trajectory-Optimized LQG∗

Mohammadhussein Rafieisakhaei1, Suman Chakravorty2 and P. R. Kumar1

Abstract— Planning under motion and observation uncer-
tainties requires the solution of a stochastic control problem
in the space of feedback policies. In this paper, by restricting
the policy class to the linear feedback polices, we reduce the
general (n2 + n)-dimensional belief space planning problem
to an (n)-dimensional problem. As opposed to the previous
literature that search in the space of open-loop optimal control
policies, we obtain this reduction in the space of closed-loop
policies by obtaining a Linear Quadratic Gaussian (LQG)
design with the best nominal performance. Then, by taking
the entire underlying trajectory of the LQG controller as the
decision variable, we pose a coupled design of the trajectory
and estimator (while keeping the design of the controller
separate) as a NonLinear Program (NLP) that can be solved
by a general NLP solver. We prove that under a first-order
approximation and a careful usage of the separation principle,
our approximations are valid. We provide an analysis on the
existing major belief space planning methods and show that
our algorithm keeps the lowest computational burden while
searching in the policy space. Finally, we extend our solution
to contain general state and control constraints. Our simulation
results support our design.

I. INTRODUCTION

Planning under process and sensing uncertainties is re-
ferred to as the belief space planning problem. In general, it
requires the solution of the Hamilton-Jacobi-Bellman (HJB)
equations to obtain the optimal feedback policy [1], [2]. The
Linear Quadratic Gaussian (LQG) methodology provides the
optimal estimator and controller for linear systems with
Gaussian noises [3]. However, an LQG planner requires a
nominal trajectory to begin with. One approach utilizing this
methodology decouples the two procedures of designing the
trajectory and the policy and provides a sequential design
of the trajectory and the LQG policy (the estimator plus
controller), either by providing various different a priori tra-
jectories and comparing the LQG performance over each one
[4], or by performing the decoupled procedure iteratively [5],
[6]. An approach to a coupled design of trajectory and the
policy in nonlinear systems utilizing the Extended Kalman
Filter (EKF) is based on the heuristic assumption of Most-
Likely Observations (MLO) during planning [7], [8]. Another
approach considers general belief distributions, either by
reformulating the problem in belief space as a Partially
Observed Markov Decision Process (POMDP) [9] or by

*This material is based upon work partially supported by the U.S. Army
Research Office under Contract No. W911NF-15-1-0279, the NSF under
Science & Technology Center Grant CCF-0939370, and NPRP 6-784-2-329
from the Qatar National Research Fund, a member of Qatar Foundation.

1M. Rafieisakhaei and P. R. Kumar are with the Department of Electrical
and Computer Engineering, and 2S. Chakravorty are with the Department
of Aerospace Engineering, Texas A&M University, College Station, Texas,
77840 USA. {mrafieis, schakrav, prk@tamu.edu}

(a) RHC-based results after
K = 16 steps

(b) T-LQG results after one
plan and execution

Fig. 1. Comparison between T-LQG and an MLO plus RHC-based method
[8]. In each figure, dashed line shows the ground truth trajectory and solid
line shows the state estimate trajectory. Purple circle shows the target and the
white region shows the landmark for a range and bearing observation model.
a) In RHC-based method replanning is triggered at every step. However,
these methods for stochastic systems fail to reach the goal after K number
of steps, and require heuristic tweaks to work; b) however, in T-LQG, for
this example, planning only happens once and the resulting feedback policy
is executed for the entire horizon, reaching the goal state after K steps.

utilizing a Monte-Carlo representation of beliefs [10], [11].
The state-of-the-art POMDP solvers are posed on decision
trees, reducing the search space to a finite set of reachable
belief nodes given an initial belief. However, this approach to
solve POMDPs for continuous action and observation spaces
requires continuous (uncountable) branching in the decision
tree of beliefs, which leads to intractable computations.

In this paper, we overcome this hurdle by providing a
coupled design of trajectory and estimator aiming for the
best estimation performance using the underlying trajectory
of the LQG controller as the optimization variable, while
keeping the design of controller separate from the design
of the estimator. This simplifies the belief space planning
to an optimization problem that can be solved by a general
NonLinear Programming (NLP) solver aimed for the design
of the nominal trajectory with the best nominal estimation
performance. In addition, the design of the controller is
performed utilizing the “separation principle” [1], [12]. We
term this method as the Trajectory-optimized LQG (T-LQG).
Essentially, we use the separation principle and the structure
of the LQG method to pose an optimization problem on
sequence of control actions parameterizing LQG polices,
rather than optimizing over the general policy space. This
method reduces the dimension of the underlying state in
the optimization problem from n + n2 (Gaussian belief di-
mension) to n (state dimension), breaking the computational
burden of belief space planning problems. The computational
complexity of our method is O(Kn3), where K is the
planning horizon and n is the state dimension, which is lower
than any other Gaussian belief space planning method in the
space of feedback policies, i.e., the optimization is equivalent
to doing an optimization over LQG parameterized policies.

We utilize the separation principle to separate the design
of estimator and the controller. Then—assuming the exis-
tence of a linear controller to stabilize the system around a
given nominal trajectory—we prove that under a first-order
approximation, the stochastic control objective is dominated
by the nominal part of the cost function. Moreover, over
the given nominal trajectory, the nominal performance of
the estimator is given by the dynamic Riccati equations
independent from the actual observations and the controller
form. The original problem is reformulated and reduced to a
deterministic problem over the state space by choosing the
underlying nominal trajectory as the optimization variable,
aiming for the best estimation performance over that trajec-
tory. The key observation is: fixing the feedback policy to an
linear policy and designing an LQG policy for a linearized
system around a nominal trajectory offers the solution of
an optimal estimation and control performance along that
specific trajectory.

For a fixed linearization trajectory, LQG gives the best
estimator and controller to track that nominal trajectory. Our
method uses the nominal trajectory itself as an optimization
variable in order to obtain the best trajectory, and, sub-
sequently, the best estimator and controller to follow that
trajectory. The central difference between this method and
the MLO method of [7], [8] is the utilization of the separation
principle, which maintains a separate design of the controller
to keep the state around the nominal trajectory. Otherwise,
the state deviation from the nominal trajectory keeps growing
and the assumptions of the nominal trajectory (of control
and subsequent state and observations) collapse, reducing
the approach to a heuristic design that requires replanning
at every time step as in [7], [8], [13] (see Fig. 1). On
the contrary, in our approach, the controller keeps the state
around the nominal trajectory, and therefore, the nominal
estimation performance remains valid, thereby obviating the
need to a constant replanning (see Sec. V). Also, using
a high-dimensional controller such as a belief-LQR over
an (n + n2)-dimensional space as in [7] or [5] and [6]
entails disregarding the separation principle by coupling the
controller design with the design of the estimator. Using the
separation principle also enables us to pose the problem
as a standard NLP in n-dimensional space, rather than
using a dynamic programming mechanism (which involves
calculations in an (n + n2)-dimensional space to solve the
coupled equations of the belief estimation and the controller
design, as in [5], [6]).

Finally, when the accumulated linearization error (or other
errors) increases above a tolerable threshold during the
execution, replanning is triggered. This is also a merit of
posing the planning problem as a standard NLP with low
dimension: replanning for a long horizon becomes possible
in online applications. Moreover, it enables the use of off the
shelf state-of-the-art optimization software and tools.

Unlike point-based POMDP solvers [14]–[16], in T-LQG
the time-horizon is a linear factor in the computational
complexity, rather than a factor in the exponent—the curse
of history. This means that T-LQG is capable of solving

belief space problems on a considerably larger scale. Indeed,
current point-based solvers cannot scale to the continuous
state, action and observation spaces that are considered in
this paper.

In Section II, we define the general problem, and in
sections III and IV we explain our method. In Section V, we
provide a theoretical analysis on the validity of our method
and provide sufficient conditions under which our solution is
a valid approximation of the original problem, and provide an
extensive theoretical comparison between the state-of-the-art
belief space planning methods in section VI. A more detailed
version of this paper exists as a technical report [17].

II. GENERAL PROBLEM

The general belief space planning problem is formulated
as a stochastic control problem in the space of feedback
policies. In this section, we define the basic elements of the
problem, including system equations and belief dynamics.

System equations: We denote the state, control and obser-
vation vectors by x ∈ X ⊂ Rnx , u ∈ U ⊂ Rnu , and z ∈
Z ⊂ Rnz , respectively. The motion f : X × U × Rnx → X,
and observation h : X→ Z processes are defined as:

xt+1 = f(xt,ut,ωt), ωt ∼ N (0,Σωt) (1a)
zt = h(xt,νt), νt ∼ N (0,Σνt) (1b)

where {ωt} and {νt} are zero mean independent, identically
distributed (i.i.d.) mutually independent random sequences.

Belief (information state): The conditional distribution of
xt given the data history up to time t, is called the belief
bt : X×Zt×Ut → R. It is defined as bt(x, z0:t,u0:t−1, b0) :=
pXt|Z0:t;U0:t−1

(x|z0:t; u0:t−1; b0), and denoted by bt in this
paper. We use a Gaussian representation of belief in belief
space, B, [18]. The belief dynamics follow Bayesian update
equations, summarized as a function τ :B×U×Z→ B, where
bt+1 = τ(bt,ut, zt+1) [1], [12].

Problem 1: Stochastic Control Problem Given an initial
belief state b0, solve for the optimal policy as follows:

min
π

Jπ := E[

K−1∑
t=0

cπt (bt,ut) + cπK(bK)]

s.t. bt+1 = τ(bt,ut, zt+1), (2)
where the optimization is over feasible policies, and π :=
{π0, · · · , πt} where πt : B → U specifies an action given
the belief, ut = πt(bt). Moreover, cπt (·, ·) : B×U→ R is the
one-step cost function, cπK(·) : B → R denotes the terminal
cost, and the expectation is taken over all randomness.

III. BELIEF SPACE PLANNING METHOD: T-LQG

We provide details of our design for the planning problem.
Parameterized Trajectories (p–traj): Using the noiseless

equation of (1a) we parametrize the possible feasible prop-
agated trajectories of the initial estimate, x̂0, given a set of
unknown control inputs {upt }K−1t=0 , as:

xpt+1 = f(xpt ,u
p
t ,0), 0 ≤ t ≤ K−1

where xp0 = x̂0. The trajectory {xpt }Kt=0 changes by changing
the underlying control inputs {upt }K−1t=0 . We will refer to the
parametrized trajectory of {xpt }Kt=0, {upt }K−1t=0 as the p–traj.

Linearization of the system equations: We linearize the
nonlinear motion and observation models of equation (1)
about the parametrized trajectory p–traj:

x̃t+1=Ap
t (x

p
t ,u

p
t)x̃t+Bp

t (x
p
t ,u

p
t)ũt+Gp

t (x
p
t ,u

p
t)ωt (3a)

z̃t=Hp
t (x

p
t)x̃t + Mp

t (x
p
t)νt, (3b)

where Ap
t (x

p
t ,u

p
t) = ∂f(x,u,ω)/∂x|xp

t ,u
p
t ,0

,
Bp
t (x

p
t ,u

p
t) = ∂f(x,u,ω)/∂u|xp

t ,u
p
t ,0

, Gp
t (x

p
t ,u

p
t) =

∂f(x,ut,ω)/∂ω|xp
t ,u

p
t ,0

, Hp
t (x

p
t) = ∂h(x,ν)/∂x|xp

t ,0
and

Mp
t (x

p
t) = ∂h(x,ν)/∂ν|xp

t ,0
. Moreover, let x̃t := xt − xpt ,

ũt := ut − upt and z̃t := zt − zpt define the state, control
and observation errors, respectively, and let zpt = h(xpt ,0).
As the control inputs change, the underlying trajectory
they represent, {upt }K−1t=0 and {xpt }Kt=0, also change, and
therefore the Jacobian matrices change.

Minimization over policies: In the cost function of problem
1, the minimization is over all policies in the feasible policy
space. We assume that the search is over linear feedback
policies (LQG class), which is a valid assumption for locally
controlling a linearized model around a nominal trajectory.

Separation principle: It can be shown that the minimiza-
tion of the stochastic cost function for a linear Gaussian
system in terms of state error xt − xpt is equivalent to
two separate minimizations in terms of the estimation error
xt − x̂t and the controller error x̂t − xpt , where xt − xpt =
xt− x̂t+ x̂t−xpt [12]. As a result, the design of a stochastic
controller with partially observed states reformulates to two
separate designs of an estimator and a controller assuming
full state observation. In the LQG case, the estimator is a
KF and the controller is an LQR controller.

Estimation cost: The optimization objective is quadratic:

J :=E[
K∑
t=1

x̌Tt Wx
t x̌t + ũTt−1W

u
t ũt−1], (4)

where x̌t := xt− x̂t is the estimator error (KF error), and
Wx

t ,W
u
t � 0 are two positive-definite weight matrices,

and Wx
t is symmetric, thereby, it has a square root. This

cost function can be rewritten as a function of the belief
trajectory [17]. However, we show in Section V under a
first-order approximation, J is dominated by the part of the
cost function that depends only on the underlying nominal
trajectory (p–traj here). Thus, we approximate J with Jp:

Jp :=
K∑
t=1

(E[x̃Tt Wx
t x̃t] + (upt−1)TWu

t upt−1), (5)

where the first term is a function of the nominal belief which
is discussed next.

Nominal evolution of covariance: Define
P+
bpt

(xp0:t,u
p
0:t−1) := E[(xt − xpt)(xt − xpt)

T] to be
the covariance of the nominal belief along the p–traj.
Therefore, the first term of the cost function (5), can be
rewritten as

∑K
t=1 tr(WtP

+
bpt

WT
t), where Wt := (Wx

t)1/2.
For a presumptive parametrized trajectory p–traj, the
evolution of P+

bpt
is given by the recursive Riccati equations

(6a)-(6d) bellow, independent from the observations but as
a function of the trajectory itself. This also provides the
nominal performance of the estimator along that trajectory.

The dependencies on the p–traj inside the parenthesis is
dropped for simplicity in the following.

Problem 2: Planning Problem Given an initial belief
b0 ∈ B, a goal region represented as an `2-norm ball,
Brg (xg), of radius rg around a goal state xg ∈ X, and a
planning horizon of K > 0, we define the following problem:

min
up

0:K−1

K∑
t=1

[tr(WtP
+
bpt

WT
t) + (upt−1)TWu

t upt−1]

s.t. P−
bpt

=Ap
t−1P

+
bpt−1

(Ap
t−1)

T+Gp
t−1Σωt−1

(Gt−1)
T (6a)

Sbpt = Hp
tP
−
bpt

(Hp
t)
T + Mp

tΣνt
(Mp

t)
T (6b)

P+
bpt

= (I−P−
bpt

(Hp
t)
TS−1

bpt
Hp
t)P

−
bpt

(6c)

P+
bp0

= Σx0
(6d)

xp0 = Ex[b0(x)] (6e)
xpt+1 = f(xpt ,u

p
t , 0) 0≤ t≤K−1 (6f)

||xpK − xg||2 < rg (6g)
||upt ||2 ≤ ru, 1≤ t≤K, (6h)

where equations (6a)-(6c) are regarded as one constraint
at each time step, and are used to calculate the first term
of the objective at that time step, equations (6d) and (6e)
represent the initial conditions, equation (6f) defines the
state propagation (and relates the optimization variables to
the state trajectory), equation (6g) constrains the terminal
state to Brg (xg), equation (6h) accounts for the saturation
constraints for ru > 0. Moreover, the first term of the
objective aims for minimizing the estimation uncertainty,
whereas the second term penalizes the control effort. This
problem is an optimization in the space of control actions
with every other variable, such as the covariances, as a
function of those controls.

Optimized Trajectory, o–traj: We will denote the resulting
optimized p–traj of problem 2 with {xot}Kt=0, {uot}K−1t=0 and
refer to it as the o–traj.

Feedback control: The resulting trajectory from the op-
timization problem is optimized in terms of estimation
performance. Now, using the separation principle, the LQR
controller is designed to follow the o–traj. Therefore, the
LQR cost is designed for the controller error x̂t − xot . The
resulting control policy is a linear feedback policy, and
ut = −Lt(x̂t − xot) + uot , where the feedback gain Lt
is obtained using the backward Riccati recursions, and the
evolution of x̂t is obtained from the KF equations using the
actual observations in the execution. The details of these
equations are common to any LQG problem [17]. Note, in a
Receding Horizon Control (RHC) implementation as in [8],
ut would only consist of uot , and to get the corrections from
the output, the planning problem is solved again at each time
step from the current belief, Multiplying the whole effort of
the algorithm (optimization problem plus convergence to an
optimized trajectory) to a factor of K.

Replanning during execution: In a stochastic system, even
with a closed loop control strategy, after a finite number of
execution steps, the estimate may deviate from the planned

trajectory. This happens due to the accumulation of errors
resulting from the un-modeled dynamics or forces, noise,
and nonlinearities. In such a situation, the planned policy
becomes irrelevant and a new policy is needed to drive the
agent toward the predefined goals. In order to overcome
the problem, we track the nominal belief. Then, based on
the Kullback-Leibler divergence between the nominal and
current belief, we define a symmetric distance (average of
unsymmetrical KL-divergences). Once such a distance is
greater than a predefined threshold dth > 0, a deviation is
detected, the planning module is initialized with the current
belief, and all planning procedures are performed again. The
expanded details of this derivation is discussed in [17].

IV. NON-CONVEX STATE CONSTRAINTS

Barrier functions are used for non-convex state constraints.
Polygonal obstacles approximated by ellipsoids: Given

a set of vertices that constitute a polygonal obstacle, we
find the Minimum Volume Enclosing Ellipsoid (MVEE) and
obtain its parameters [19]. Particularly, for obstacle i, the
barrier function includes a Gaussian-like function, where the
argument of the exponential is the MVEE, which can be
disambiguated with its center ci and a positive definite matrix
Ei that determines the rotation and axes of the ellipsoid.
Moreover, we add several number of inverse functions that
tend to infinity along the major and minor axes of the ellip-
soid. So, the overall function acts as a barrier to prevent the
trajectory from entering the region enclosed by the ellipsoid.
Note for non-polygonal obstacles, one can find the MVEE,
and the algorithm works independently from this fact. Thus,
given the ellipsoid parameters C := (c1, c2, · · · , cnb) ∈
Rnx×nb and E := (E1, · · · ,Enb) ∈ Rn2

x×nb , the Obstacle
Barrier Function (OBF) is constructed as:

Φ(E,C)(x):=

nb∑
i=1

[
M1 exp(−[(x− ci)TEi(x− ci)]q)

+M2

∑
θ=0:εm:1

(||x−(θζi,1+(1−θ)ζi,2)||−22 +||x−(θξi,1+(1−θ)ξi,2)||−22)
]
,

where εm = 1/m,m ∈ Z+, M1,M2 ≥ 0, q ∈ Z+, and ζi,1,
ζi,2 and ξi,1, ξi,2 are the endpoints of the major and minor
axes of the ellipsoid, respectively. Therefore, the second term
in the sum places inverse functions whose values tend to
infinity along the axes of the ellipsoid at points formed by
convex combination of the two endpoints of each axis. As εm
tends to zero, the entire axes of the ellipsoid become infinite,
and, therefore, act as a barrier to any continuous trajectory
of states. we define the cost of avoiding obstacles as:

costobst(xt1,xt2) :=

∫ xt2

xt1

Φ(E,C)(x′)dx′, (7)

which is the line integral of the OBF between two given
points of the trajectory xt1 and xt2. Therefore, the addition
of this cost to the optimization objective, ensures the solver
minimizes this cost and keeps the trajectory out of banned
regions. Using this equation, we add the running obstacle
cost of costobst(xt−1,xt) to the optimization objective and
use the modified optimization problem to obtain locally
optimal solutions in the inter-obstacle feasible space using

gradient descent methods [20].
V. THEORETICAL CONSIDERATIONS

In this section, we derive the conditions upon which
our planning strategy is an acceptable approximation of the
original problem. We perform a first-order approximation
on the propagated errors of the state, control, observation,
belief, and cost function around a nominal trajectory that
stems from a nominal trajectory of the control actions. We
show that under some sufficient conditions, our planning
strategy provides an acceptable approximation to the original
problem. Due to the lack of space, details of the derivations
and proofs are in the technical report [17].

Linearization of process model, observation model, belief
dynamics, and cost function: Assuming there exists a nomi-
nal trajectory of control actions, {upt }K−1t=0 , then there exists
a corresponding nominal trajectory of states, {xpt }Kt=0 and
observations {zpt }K−1t=0 , where xpt+1 = f(xpt ,u

p
t ,0), zpt =

h(xpt), and the state, control, and observation error vectors
are ũt = ut−upt , x̃t = xt−xpt and z̃t = zt−zpt , respectively.
We linearize the state and observation dynamics around
the nominal trajectories of state and control. Corresponding
to the nominal trajectory of states, there exists a nominal
(Gaussian) trajectory of beliefs, {bpt }Kt=0, where xpt = E[bpt],
and the covariance evolution follows the Riccati equations
from a KF. Likewise, we linearize the belief dynamics around
the nominal trajectories of belief, control and observation
and linearize the cost function around the nominal trajectory
of belief and control as J ≈

∑K−1
t=0 ct(b

p
t ,u

p
t) + cK(bpK) +

J̃ , where we assume continuity of the cost function, and
Cb
t = ∂ct(b,u)/∂b|bpt ,up

t
, Cu

t = ∂ct(b,u)/∂u|bpt ,up
t
, Cb

K =

∂cK(b)/∂b|bpK , b̃t := bt − bpt denotes the belief error, and
J̃ := E[

∑K−1
t=0 Cb

t b̃t + Cu
t ũt + Cb

K b̃K].
Feedback controller: As mentioned before, we assume the

search is over linear feedback policies, which is a valid
assumption for locally controlling a linearized model around
a nominal trajectory. Our design, based on the separation
principle, supposes the existence of an LQR controller to
track and stabilize the trajectory of states around the nominal
designed trajectory. Thus, ũt = −Lt(x̂t − xpt) + upt .

Lemma 1: Belief Error Propagation Given the nominal
trajectory of p–traj, and linearization of state, observation,
control and belief dynamics around the p–traj, let belief
error be b̃t = bt − bpt for t ≥ 0. Then, for a design
that follows the separation principle, there exists matrices
T̃x0
t , T̃ωs,t, and T̃νs,t, such that for t ≥ 0 the belief error

propagation can be written as follows:

b̃t = T̃x0
t x̃0 +

t−1∑
s=0

T̃ωs,tωs +
t∑

s=1

T̃νs,tνs, (8)

where x̃0, ωs and νs denote the initial state error, process
and measurement noises, respectively.

Theorem 1: Cost Function Error Let cost function error
be J̃ = J−Jp for t ≥ 0. Given that process and observation
noises are zero mean i.i.d. and are mutually independent
from each other and the initial belief, under a first-order
approximation, the expected error in the stochastic cost
function is zero, i.e., J̃ = 0.

Thus, the error in our cost function is only dependent on the
propagated error of the process and observation models’ lin-
earizations. In practice, the time horizon is only chosen large
enough to find feasible solutions, and the linearization error
is neglected. Thus, choosing the underlying linearization
trajectory (or equivalently, the control actions corresponding
to the nominal trajectory) as the optimization variables, the
optimal underlying trajectory can be calculated. Moreover,
whenever the accumulated error of the belief approximation
under these assumption gets higher than a threshold, the
problem restarts and replanning follows, as described pre-
viously. It is important to note that the separation principle
is the central idea behind the method, since it provides the
mechanism to design the controller and estimator separate
from each other. The T-LQG method utilizes this theory and
the dependence of the LQG on the underlying trajectory to
find the LQG controller with the best performance.

VI. COMPARISON OF METHODS

In this section, we provide a comparison between T-LQG
and other state-of-the-art belief space planning approaches
from a methodology and computational complexity perspec-
tive. We make occasional references to the following meth-
ods: a) LQG-MP [4], b) iLQG-based method [5], c) SELQR
[6] d) the method utilizing MLO [7], e) the non-Gaussian
Receding Horizon Control (RHC)-based method [10], f)
the non-Gaussian observation covariance reduction method
[11], g) the covariance-free open-loop optimization problem
coupled with RHC implementation [8], and h) the point-
based POMDP solvers [9], [14]–[16]. Table I summarizes
the key differences between the methods. Due to the lack of
space, more discussion points and a detailed explanation of
all these are laid out in the technical report [17]. Regarding
the Table, we note that:
• We assume the size of vectors x,u and z are all O(n),

and K is planning horizon
• nr is the number of RRT paths generated in [4]
• For the method of [7], ntr is the number of transcription

steps in the direct transcription; k is the number of unit
vectors pointing in the desired directions to minimize
the covariance in; the second computational complexity
is valid if the B-LQR is also used, otherwise, the first
complexity is more accurate

• N is the number of samples, ε is the convergence error
• Convergence Rate is the number of calls needed to the

oracle to converge using the optimization method
• DP is Dynamic Programming
• Second order is the general rate of Newton-like methods
• Method of [8] defines an optimization problem with

dimension of O(nx + nu) whereas T-LQG’s problem
dimension is O(nu). Moreover, [8] utilizes an approach
similar to [7] with MLO assumption and EKF design;
however, [8] utilizes RHC as the final implementation.

• The computational complexity only reflects the calcula-
tions of the core problems for belief space planning in
each method. For obstacle-avoidance, each method has
a different approach, which is out of the scope of this

TA
B

L
E

I.
C

om
pa

ri
so

n
of

be
lie

f
sp

ac
e

pl
an

ni
ng

m
et

ho
ds

on
im

po
rt

an
t

is
su

es
.

Pl
an

ni
ng

as
an

O
pt

im
iz

at
io

n
L

in
ea

ri
za

tio
n

Tr
aj

ec
to

ry
(E

xp
lo

ita
bl

e
fo

r
O

pt
im

iz
at

io
n)

Pl
an

ni
ng

O
bs

er
va

tio
ns

C
om

pu
ta

tio
na

l
C

om
pl

ex
ity

C
on

ve
rg

en
ce

R
at

e

L
Q

G
-M

P
[4

]
N

on
e

R
R

T
tr

aj
ec

to
ri

es
(N

o)
—

O
(n
r
K
n
3
)

—

iL
Q

G
-b

as
ed

[5
]

D
P

Fi
xe

d
at

ea
ch

ite
ra

tio
n

(N
o)

St
oc

ha
st

ic
ob

se
rv

at
io

ns
O

(K
n
6
)

Se
co

nd
or

de
r

(l
in

e-
se

ar
ch

tu
ni

ng
)

SE
L

Q
R

[6
]

D
P

Fi
xe

d
at

ea
ch

ite
ra

tio
n

(N
o)

M
L

O
O

(K
n
6
)

Se
co

nd
or

de
r

M
L

O
[7

]
N

L
P

Pr
ed

ic
te

d
m

ea
n

up
da

te
(Y

es
)

M
L

O
O

(n
tr

(K
n
3
+
k
n
2
))

or
O

(n
tr

(K
n
3 +
k
n
2
)+
K
n
6
)

SQ
P

ra
te

N
on

-G
au

ss
ia

n
R

H
C

-B
as

ed
[1

0]
C

on
ve

x
L

in
ea

r
pr

op
ag

at
io

n
of

in
iti

al
es

tim
at

e
(Y

es
)

M
L

O
O

(N
K

(K
n
3
+
N
n
2
))

Ω
((
N

+
K
n

)
lo

g
(
1 ε
))

N
on

-G
au

ss
ia

n
O

bs
.

C
ov

.R
ed

uc
tio

n
[1

1]
C

on
ve

x
L

in
ea

r
pr

op
ag

at
io

n
of

in
iti

al
es

tim
at

e
(Y

es
)

Pr
ed

ic
te

d
en

se
m

bl
e

of
ob

se
rv

at
io

n
pa

rt
ic

le
s

O
(K

n
3
+
N
n
2
)

Ω
(K

n
lo

g
(
1 ε
))

C
ov

.-F
re

e
R

H
C

[8
]

N
L

P
Pr

ed
ic

te
d

m
ea

n
up

da
te

(Y
es

)
M

L
O

O
(K

n
3
)

Se
co

nd
or

de
r

T-
L

Q
G

N
L

P
N

on
lin

ea
r

pr
op

ag
at

io
n

of
in

iti
al

es
tim

at
e

(Y
es

)
—

O
(K

n
3
)

Se
co

nd
or

de
r

discussion and can be further detailed in a pure motion-
planning perspective. The information in table I and the
calculations regarding the computational complexity are
estimated to the best of our knowledge.

As reflected in the table, a central difference between these
methods is the way the system and observation equations
are linearized. After linearization of the equations, the cor-
responding Jacobians become coupled with the trajectory.
Therefore, if the underlying linearization trajectory is a
sequence of fixed points, the Jacobians become constant
matrices for the entire optimization, and the structure of
the system models (on which depends many other proper-
ties of the system, such as sensitivity of the observations,
controllability, reachability, etc.) essentially become fixed,
untouchable, and, more importantly, un-exploitable for the
optimization purposes. As noted, our method fully exploits
this property and finds the best linearization trajectory among
the methods. Moreover, no assumptions on observations in
our method are made. Most importantly, the computational
complexity of T-LQG is the lowest among all, while still
providing a feedback policy, a claim none of the other
methods can make.

Point-Based POMDP Solvers [9], [14]–[16] The POMDP
problem was introduced in 1971 in [9], with an algorithm to
obtain the exact optimal solution using the alpha-vectors. The
algorithm then evolved into an anytime algorithm in 2003
in [14], introducing the point-based POMDP solvers. This
method has been the foundation for the majority of research
in the POMDP field [15]. There has been many successes
in solving POMDP benchmark problems with low CPU-
times. Even the latest advancements in the field, such as [16],
suffer from multiple limitations. For instance, the scalability
with time-horizon—exponential dependency—seems to be a
fundamental limitation that might be difficult to overcome.
Ad-hoc solutions to reduce the planning time horizon to local
planning (which are much lower than enough for reaching
the goal region) and replanning every few steps may not be
a feasible solution for practical problems.

Moreover, in T-LQG, by tracking the nominal and true
belief during online implementation, whenever the optimality
deviation is more than a tolerable threshold, replanning oc-
curs, which may be impractical in long-horizon point-based
POMDP solvers. FIRM [21] on the other hand, provides an
offline approach to tackle the original POMDP problem by
solving the dynamic programming over a graph in the belief
space and breaking the curse of history; but, to get closer to
optimality, more FIRM nodes need to be sampled offline.

Fig. 2. The overall feedback control loop.

Algorithm 1: T-LQG
Input: Initial belief b0, Goal region Brg (xg), Planning

horizon K, Obstacle parameters (E , C)
1 t← 0;
2 while P(bt, rg,xg) ≤ pg do
3 if d(bt, b

o
t) > dth or t == 0 or t == K then

4 Optimal Trajectory:
{uo0:K−1,xo0:K} ← π(b0, E , C,K,xg);

5 t← 0;
6 end
7 else
8 Policy Function: x̂t ← E[bt],

ut ← −Lt(x̂t − xot) + uot ;
9 Execution: xt+1 ← f(xt,ut,ωt);

10 Perception: zt+1 ← h(xt+1,νt+1);
11 Estimation: bt+1 ← τ(bt,ut, zt+1);
12 t← t+ 1;
13 end
14 end

VII. SIMULATION RESULTS

In this section, we provide our simulation results to show
the performance of T-LQG. Our simulations are performed
in MATLAB 2016a with a 2.90 GHz CORE i7 machine
with dual core technology and 8 GB of RAM. We use the
MATLAB’s fmincon solver to solve the NLP problem. First,
we provide the overall algorithm and the overall control
loop. Then, we investigate several situations in which the
environment is obstacle-free. We perform 6 simulations for
a KUKA youBot base model, with 6 different observation
models including models adapted from the literature. In the
second scenario, we perform a comparison between the per-
formance of T-LQG and an RHC-based method [8]. Then, we
perform a simulation in a complex environment with many
obstacles. We conduct this scenario for two different initial
trajectories and compare the results. In each scenario, we
show the initial trajectory used to initialize the optimization
problem along with the optimized output trajectory.

Implementation: The overall control loop is shown in Fig.
2, and the overall T-LQG algorithm is reflected in Algorithm
1. As it is seen in Fig. 2 and Alg. 1, the planning problem
starts with the supply of an initial belief and ends whenever
the probability of reaching the goal region is greater than a
predefined threshold pg > 0. The planner π is fed the initial
belief b0, the obstacle parameters (E , C), planning horizon K,
a goal region Brg (xg) and other parameters, such as system
equations. The resultant planned trajectory is provided to the
controller, whose output is the policy function. The policy is
executed, a new observation is perceived, and a new belief is
obtained. If the distance between the updated belief and the
nominal belief d(bt, b

o
t) > dth is greater than a threshold, or

the policy execution is finished but the criteria is not met,
the planning algorithm restarts.

Obstacle-free environment: Let us use the kinematics
equations of KUKA youBot base as described in [22].
Particularly, the state vector can be denoted by a 3D vector,

(a) Range and bearing (b) Bearing-only (c) Range-only

(d) Range-squared (e) Light-dark [7] (f) Light-dark [10]

Fig. 3. Simulation results for obstacle-free situation with different obser-
vation models. The information is color-coded. Lighter means less noisy
observations. The dashed green line represents the initial trajectory; the
solid yellow line shows the optimized trajectory. In all cases, x̂0 = (0, 0, 0),
xg = (2, 2, 2), and rg = 0.1.

TABLE II. Comparison T-LQG with method of [8].

Final Distance from Goal
(after 16 steps) Total Time (MATLAB)

RHC-based [8] 4.09 (m) 352 (seconds)
T-LQG 0.45 (m) 20 (seconds)

x = [xx,xy,xθ]
T , which describes the position and heading

of the robot base, and x ∈ SO(2). The control consists of the
velocities of the four wheels. It can be shown that the discrete
motion model can be written as xt+1 = f(xt,ut,ωt) =
xt + Butdt + Gωt

√
dt, where B and G are appropriate

constant matrices, and dt is the time-discretization period.
The results depicted in Fig. 3 are for different observation
models; including the range and bearing; bearing-only and
range-only observation from landmarks in cases (a)-(c). In
case (d), the observation function is changed to the square
of the range function. Finally, in cases (e) and (f), the light-
dark models of the papers [7] and [10] are adopted. In both
cases, the observation functions are linear, and the covariance
of the observation noise is state dependent. It is a quadratic
function with a minimum at 3 in case (e) and a hyperbolic
function with a minimum at +∞ in (f). More details of these
functions can be found in the corresponding papers and [17].
Finally as noted in all cases, the optimization is initialized
with the trivial straight-line, which is reflected in the figures
with the dashed green line, whereas the optimal trajectories
are depicted with solid lines.

Comparison: Depicted in Fig. 1, is the results of T-LQG
and our implementation of an RHC-based method which uses
the MLO assumption [8] for a youbot in a landmark-based
observation model with range and bearing information. Table
II shows the comparison of the costs after K = 16 steps of
execution. In our method, the optimization problem is solved
only once and then the resulting feedback policy is executed
without the need to re-plan. Whereas, in the method of [8],
at every time step, replanning is triggered in order to close
the feedback loop. However, this means the optimization
problem is solved 16 times, and yet the agent does not

reach to the goal after 16 steps. It is worth mentioning that
although both methods have same order of complexity for the
optimization problem, the fact that in [8] the optimization is
solved for convergence 16 times more (and possibly much
more is need to reach to goal), in T-LQG it is only solved
once (for this example), and thus, the overall execution time
of T-LQG is O(K) times lower, with much reliable plans.

Complex environment: Next, we perform a simulation in
an environment full of obstacles for the youBot, with range
and bearing observations from several landmarks. Inspired
by [23], we model the robot with a configuration of a set of
points that represent the balls’ centers that cover the body
of the robot. As it is seen in Fig. 4. we have initialed the
optimization problem with two different initial trajectories
obtained using a modified viability graph algorithm (shown
with the green dashed lines). It should be noted that there
is nothing particular about the initialization algorithm and
methods—a planner such as RRT can be used as well, as long
as the initialization trajectory is semi-feasible in that it does
not pass through the infeasible local minima of the barrier
functions. As it seen in this figure, the planning horizon
is large (26 steps in case (a) and 25 steps in case (b)),
which shows the scalability of T-LQG. The results show that
the optimized trajectory (reflected with solid lines) avoids
entering the banned regions bordered by the ellipsoids, so
that the robot itself avoids colliding with the obstacles.
Moreover, the locally optimal trajectory gets closer to the
information sources and thereby obtains the best predicted
estimation performance. In this scenario, by comparing the
cost of the two optimize trajectories, the better of the two
(trajectory in Fig. 4b) is chosen as the plan for execution.

VIII. CONCLUSION
In this paper, we simplified the solution of the belief

space planning problem by proposing a scalable method that
is backed by theoretical analysis supported by the control
literature. Particularly, we proposed a deterministic optimal
control problem that can be solved by an NLP solver with
O(Kn3) computational complexity. The goal of Trajectory-
optimized LQG is to find an LQG policy with the best
nominal performance. T-LQG achieves this by finding the
best underlying linearization trajectory for a nonlinear system
with a nonlinear observation model, utilizing the trajectory-
dependent covariance evolution of the Kalman filter given
by the dynamic Riccati equations. We could do this by the
proper usage of the separation principle that provided us with
an LQR controller for a linearized system along that nominal
trajectory. We proved that the accumulated error that is re-
sulted by our calculations is deterministic under a first-order
approximation and only depends on the linearization error.
This can be overcome by either increasing the linearization
points or by replanning whenever the deviation from the
planned trajectory is higher than a predefined tolerance. We
also extended the method to non-convex environments by
adding a cost function to avoid collision with the obstacles.
Finally, we performed simulations for a common robotic
system with several observation functions in obstacle-free
environments, and complex narrow passages with obstacles.

(a) (b)

Fig. 4. Simulation results for two different initializations with obstacles. The obstacles are the red solid polygons; the ellipses show the inflated regions
around them avoided by the configuration of points that represent the robot (they are also the argument of the Gaussian function in the obstacle cost). In
all cases, x̂0 = (0.25, 0.25, 0), xg = (0.5, 2.7, 2), and rg = 0.1. The optimized trajectory in case (b) has a lower overall cost.

In conclusion, while T-LQG and the MLO method of
[7] address a similar optimization problem, their theoretical
approach is vastly different:

• where MLO uses a heuristic approach, T-LQG uses the
separation principle;

• MLO does not have a controller in the design, whereas
T-LQG does;

• MLO uses assumptions on the observations to reach the
optimization problem, while in T-LQG, assumptions on
observations are inconsequential;

• MLO designs a belief-LQR, but T-LQG only requires
an LQR on the state;

• MLO starts with an EKF design and linearizes the
system equations around the mean update, while T-
LQG starts with linearizing around a nominal trajectory
and uses the KF and separation principle to obtain the
nominal performance around that trajectory;

• MLO assumes from the beginning that process noise
does not exist, and, ultimately, assumes observation
noise does not exist either, but in T-LQG, neither of
these assumptions exist; and

• while the computational complexity for MLO is
O(ntr(Kn

3 + kn2)) or O(ntr(Kn
3 + kn2) + Kn6),

T-LQG minimizes the complexity to O(Kn3).
Our future works will extend the theory and test the

validity of our results for more complex situations.
REFERENCES

[1] P. R. Kumar and P. P. Varaiya, Stochastic Systems: Estimation,
Identification, and Adaptive Control. Englewood Cliffs, NJ: Prentice-
Hall, 1986.

[2] D. Bertsekas, Dynamic Programming and Stochastic Control. Aca-
demic Press, 1976.

[3] P. Kumar et al., “Control: a perspective,” Automatica, vol. 50, no. 1,
pp. 3–43, 2014.

[4] J. Van Den Berg, P. Abbeel, and K. Goldberg, “Lqg-mp: Optimized
path planning for robots with motion uncertainty and imperfect state
information,” The International Journal of Robotics Research, vol. 30,
no. 7, pp. 895–913, 2011.

[5] J. Van Den Berg, S. Patil, and R. Alterovitz, “Motion planning under
uncertainty using iterative local optimization in belief space,” The
International Journal of Robotics Research, vol. 31, no. 11, pp. 1263–
1278, 2012.

[6] W. Sun, J. van den Berg, and R. Alterovitz, “Stochastic extended
lqr for optimization-based motion planning under uncertainty,” IEEE

Transactions on Automation Science and Engineering, vol. 13, no. 2,
pp. 437–447, 2016.

[7] R. Platt, R. Tedrake, L. Kaelbling, and T. Lozano-Perez, “Belief space
planning assuming maximum likelihood observatoins,” in Proceedings
of Robotics: Science and Systems (RSS), June 2010.

[8] S. Patil, G. Kahn, M. Laskey, J. Schulman, K. Goldberg, and P. Abbeel,
“Scaling up gaussian belief space planning through covariance-free
trajectory optimization and automatic differentiation,” in Algorithmic
Foundations of Robotics XI. Springer, 2015, pp. 515–533.

[9] E. J. Sondik, “The optimal control of partially observable markov
processes,” PhD thesis, Stanford University, 1971.

[10] R. Platt, “Convex receding horizon control in non-gaussian belief
space,” in Algorithmic Foundations of Robotics X. Springer, 2013,
pp. 443–458.

[11] M. Rafieisakhaei, A. Tamjidi, S. Chakravorty, and P. Kumar, “Feed-
back motion planning under non-gaussian uncertainty and non-convex
state constraints,” in 2016 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2016, pp. 4238–4244.

[12] D. Bertsekas, Dynamic Programming and Optimal Control: 3rd Ed.
Athena Scientific, 2007.

[13] W. Sun, S. Patil, and R. Alterovitz, “High-frequency replanning under
uncertainty using parallel sampling-based motion planning,” IEEE
Transactions on Robotics, vol. 31, no. 1, pp. 104–116, 2015.

[14] J. Pineau, G. Gordon, and S. Thrun, “Point-based value iteration: An
anytime algorithm for POMDPs,” in International Joint Conference
on Artificial Intelligence, 2003, pp. 1025–1032.

[15] G. Shani, J. Pineau, and R. Kaplow, “A survey of point-based pomdp
solvers,” Autonomous Agents and Multi-Agent Systems, vol. 27, pp.
1–51, 2013.

[16] K. M. Seiler, H. Kurniawati, and S. P. Singh, “An online and
approximate solver for pomdps with continuous action space,” in 2015
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2015, pp. 2290–2297.

[17] M. Rafieisakhaei, S. Chakravorty, and P. Kumar, “Belief space plan-
ning simplified: Trajectory-optimized lqg (t-lqg)(extended report),”
arXiv preprint arXiv:1608.03013, 2016.

[18] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. MIT Press,
2005.

[19] N. Moshtagh, “Minimum volume enclosing ellipsoid,” Convex Opti-
mization, vol. 111, p. 112, 2005.

[20] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[21] A. Agha-mohammadi, S. Chakravorty, and N. Amato, “Firm:
Sampling-based feedback motion planning under motion uncertainty
and imperfect measurements,” International Journal of Robotics Re-
search, no. 2, 2014.

[22] zakharov, “zakharov youbot model,” GitHub, 2011. [On-
line]. Available: ”https://github.com/zakharov/youbot model/wiki/
KUKA-youBot-kinematics,-dynamics-and-3D-model”

[23] M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith,
C. M. Dellin, J. A. Bagnell, and S. S. Srinivasa, “Chomp: Covariant
hamiltonian optimization for motion planning,” The International
Journal of Robotics Research, vol. 32, no. 9-10, pp. 1164–1193, 2013.

