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MCMULLEN POLYNOMIALS AND LIPSCHITZ FLOWS FOR
FREE-BY-CYCLIC GROUPS

SPENCER DOWDALL, ILYA KAPOVICH, AND CHRISTOPHER J. LEININGER

ABSTRACT. Consider a group G and an epimorphism wug: G — Z inducing a splitting of G as a semidirect
product ker(ug) %, Z with ker(ug) a finitely generated free group and ¢ € Out(ker(ug)) representable by an
expanding irreducible train track map. Building on our earlier work [DKL], in which we realized G as 71 (X)
for an Eilenberg-Maclane 2—complex X equipped with a semiflow 1), and inspired by McMullen’s Teichmiiller
polynomial for fibered hyperbolic 3-manifolds, we construct a polynomial invariant m € Z[H1(G;Z)/torsion]
for (X, ) and investigate its properties.

Specifically, m determines a convex polyhedral cone Cx C Hl(G; R), a convex, real-analytic function
H: Cx — R, and specializes to give an integral Laurent polynomial m,(¢) for each integral u € Cx. We
show that Cx is equal to the “cone of sections” of (X, ) (the convex hull of all cohomology classes dual to
sections of of ¥), and that for each (compatible) cross section ©®, C X with first return map fy,: Oy — Oq,
the specialization my, (¢) encodes the characteristic polynomial of the transition matrix of f,,. More generally,
for every class u € Cx there exists a geodesic metric d,, and a codimension—1 foliation €, of X defined by
a “closed 1-form” representing u transverse to ¢ so that after reparametrizing the flow ¢ maps leaves of
Q. to leaves via a local esﬁ(“)fhomothety‘

Among other things, we additionally prove that Cx is equal to (the cone over) the component of the BNS-
invariant 3(G) containing uo and, consequently, that each primitive integral u € Cx induces a splitting of G
as an ascending HNN-extension G' = Qu*4, with Q, a finite-rank free group and ¢, : Qu — Qu injective.
For any such splitting, we show that the stretch factor of ¢, is exactly given by e?(*). In particular, we see
that Cx and $) depend only on the group G and epimorphism ug.
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1. INTRODUCTION
Given an outer automorphism ¢ of the finite-rank free group Fly, consider the free-by-cyclic group
G=G,=Fnx,Z=(Fy,r|r 'wr=&w),we Fy)

(here ® € Aut(Fy) is any representative of ¢). The epimorphisms G — Z are exactly the primitive integral
points of the vector space H!(G;R) = Hom(G,R), and every such u: G — Z gives rise to a splitting

1 ker(u) G—=7 1

of G and an associated monodromy ¢, € Out(ker(u)) generating the outer action of Z on ker(u). We are most
interested in the case that ker(u) is finitely generated, or more generally, finitely generated over the monoid
generated by ¢,. In this case there is a canonically defined stretch factor A(u) measuring the exponential
growth rate of ¢, acting on ker(u); see §3 for the precise definitions of ¢, and A(u).

We aim to illuminate the dynamical and topological properties of splittings of G, in the case that ¢ may
be represented by an expanding irreducible train-track map f. For example, one broad goal is to understand
how ¢, and A(u) vary with u. We began this undertaking in [DKL] where, inspired by the work of Thurston
and Fried on hyperbolic 3-manifolds and their fibrations over the circle, we defined a K(G, 1) space called
the folded mapping torus X = Xy that comes equipped with a semi-flow ¢. This determines an open convex
cone A = Ay C H(X;R) = Hom(G,R) containing the natural projection ug: G — G/Fy = Z associated
with the given splitting G = Fy X, Z. The cone A has the property that every primitive integral u € A
has ker(u) a finitely generated free group and monodromy ¢, which is again represented by an expanding
irreducible train-track map f,,. Moreover, if the original automorphism ¢ € Out(Fy) is hyperbolic and fully
irreducible, then so is ¢, for every primitive integral u € A. We also proved in [DKL] that there exists a
convex, continuous, homogeneous of degree —1 function $: A — R, such that $(u) is equal to the topological
entropy of f, and also to log(A(u)) for all primitive integral u. We refer the reader to [DKL] for a detailed
discussion of this material and other related results such as those in [AKR, BS, Gaul, Gau2, Gau3, Wan].

Comparing our results on G and (X, ) from [DKL] with those of a fibered hyperbolic 3-manifold leads to
several additional questions. The capstone of the 3-manifold picture is McMullen’s Teichmdiller polynomial
[McM1] which encapsulates nearly all the relevant information regarding fibrations of the manifold. In partic-
ular, it detects a canonically defined cone—which has topological, dynamical and algebraic significance—and
gives specific information about every class in this cone. It is thus tantalizing to ask: Is there an analogous
polynomial in the free-by-cyclic setting and, more importantly, what does it tell you about G and (X,)?
Any such analog would naturally determine a cone in H'(X;R) and a convex, real-analytic function on that
cone. What is the relationship of these to the cone A and function $) found in [DKL] or to the canonically
defined stretch function A? Is there a geometric, algebraic or dynamical characterization of the cone (e.g.,
in terms of foliations of X, Fried’s cone of homology directions [Fri2], or the BNS-invariant)? What, if any,
topological, geometric, or dynamical structure is there associated to the irrational points of the cone?

The centerpiece of the present paper is the construction of exactly such a polynomial m, which we call the
McMullen polynomial, together with a detailed analysis of m that answers all of the above questions. Our
multivariate, integral Laurent polynomial m is constructed as an element of the integral group ring Z[H],
where H = H;(G;R)/torsion = Zb for b = b;(G). As such, m has a natural specialization m, for every
u € H'(X;R); this is a single variable Laurent polynomial when u is an integral class and a “power sum” in
general. We now briefly summarize the the main results of the paper and explain the information packaged
in m. Over the following several pages, we then provide detailed and expanded statements of our results
together with discussion of related and other recent results in the literature and a more in depth comparison
with the motivating 3-manifold setting.

Convention 1.1. For the entirety of this paper (except in §2), G = G, will denote the free-by-cyclic group
associated to an outer automorphism ¢ € Out(Fy) represented by an expanding irreducible train track map
f:I' =T as above, and X = X will denote the folded mapping torus built from f.
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Meta-Theorem

I. Canonical cone There is an open, convez, rationally defined, polyhedral cone Cx C H'(G;R) = H'(X;R)
containing A, which can be characterized by any of the following:

(1) The dual cone of a distinguished vertex of the Newton polytope of m (Theorem E);

(2) The open convex hull of rays through integral u € H*(X;R) dual to sections of 1 (Proposition 5.12);

(3) {u € HY(X;R) | u is represented by a “fow-regular closed 1-form” } (Definition 5.9);

(4) {u e HY(X;R) | u is positive on all closed orbits of 1 } (Definition 6.1);

(5) {u € HY(X;R) | u is positive on a specific finite set of closed orbits of ¢ } (Theorem A);

(6) {u € HY(X;R) | u is represented by a cellular 1-cocycle which is positive on a specific set of 1—cells
of the “circuitry cell structure” of X } (Proposition A.2);

(7) The cone on the component of the BNS—invariant containing ug (Theorem I).

Item (1) shows that the cone Cx is determined by the McMullen polynomial m. Given u € Cx primitive
integral, the section ©, C X of ¢ dual to u provided by (2) has first return map we denote f,: ©, — ©,.
By (7) we can realize G (not necessarily uniquely) as an ascending HNN-extension G = Q,*4, dual to u
over a finitely generated free group Q.. For any class u € Cx (not necessarily integral), the flow-regular
closed 1-form provided by (3) determines a “foliation” €, of X.

I1. Specialization: entropy and stretch factors There is a convex, real-analytic function $: Cx — R
that is homogeneous of degree —1, extends the previously defined function on A, and tends to oo at 9Cx such
that for every primitive integral u € Cx:

(1) 2 > 1 is equal to the largest root of m,(C).

(2) fu: ©y — O, is an expanding irreducible train track map “weakly representing” ¢, .

(3) The characteristic polynomial of the transition matriz for f, is £¢*m,(¢), for some k € Z.

(4

(

) The entropy of f, is given by h(f,) = H(u);
5) The stretch factor of ¢, is A(u) = M(¢y) = e,

III. Determinant formula For any primitive integral u € H'(X;R), the first return map fu: O, — Oy
determines a matriz A, (t) = Ay(t1, ..., tps—1) with entries in the ring of Laurent polynomials Z[t{d, el tbi_ll],
for which Ay (1,...,1) is the transition matriz for f, and whose characteristic polynomial is m:

m(z,t) = det(z] — Ay(t)) € Z[z,t] = Z[H].

1V. Foliations and Flows From the construction of m, for any class u € Cx (not necessarily integral),
there is a geodesic-metric d, on X and a reparameterization Y of ¢ so that

(1) The flow lines s — Y% (&) are dy,—geodesics for all € € X ;
(2) The “leaves” of 0, are (possibly infinite) graphs.
(2) Y™ maps leaves to leaves;

(3) The restriction of Y to any leaf is a local e

Some remarks:

e We are indebted to Nathan Dunfield who suggested the scheme to prove Meta-Theorem I(7).

e We consider left actions instead of right actions, and so the BNS—invariant discussed here agrees
with X1(G; Z) from [BR], but is —X¢/(G) from [BNS]; see Section 1.3 of [BR].

e Despite the ostensible dependence on the dynamical system (X, ), Meta-Theorem I-II shows that
Cx and $ in fact depend only on the group G and the initial cohomology class ug: G — Z.

e We record that Theorem A, Proposition 5.10, and Proposition A.2 give the precise meaning to,
and prove the equivalence of, (2)—(6) in Meta-Theorem I. Meanwhile Theorems E and I prove the
equivalence of these with (1) and (7). Meta-Theorem II follows from Theorems B, C, and F. Meta-
Theorem IIT is just Theorem D, and Meta-Theorem IV is an abbreviated version of Theorem H.

s9(u) _homothety with respect to the induced path metric.

Remark 1.2. Contemporaneously with the release of this paper, Algom-Kfir, Hironaka, and Rafi [AKHR]
independently introduced a related polynomial = € Z[H] that provides information about G and X. We
stress that the results of the present paper (outlined above) have very little overlap with those of [AKHR].
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Specifically, the polynomial = similarly determines a cone 7 C H(G;R) and a convex, real-analytic function
L: T — R. Algom-Kfir, Hironaka, and Rafi prove that A (the cone defined in [DKL]) is contained 7 and
that L(u) = log(A(u)) for every integral class u € A. By real-analyticity, this implies that L = $ and that
T = Cx. Rather than study classes u € T \ A directly, the analysis in [AKHR] focuses on the construction
of alternate “A-—cones” inside 7, and also produces an interesting interpretation of = in terms of a “cycle
polynomial” (which we learned from the authors of [AKHR], and employ in the proof of Theorem E below).
However, [AKHR] provides no geometric, algebraic, or dynamical interpretation of the significance of the
cone T (c.f., Meta-Theorem 1), nor for the value L(u) when u is not in an A-cone (c.f. Meta-Theorem II);
note that Example 8.3 shows that Cx is not a union of .A-cones, in general. Furthermore, [AKHR] does not
provide any discussion of, nor structure for, the irrational points of Cx (c.f. Meta-Theorem IV).

We additionally remark that in general the polynomial = from [AKHR] is not equal to m. In fact, =
has the advantage of depending only on the pair (G, ug) and not on the folded mapping torus (X, ). The
construction of [AKHR] furthermore ensures that = is a factor of m. However, = consequently cannot in
general compute the characteristic polynomials for first return maps of cross sections to ¢ (c.f. Meta-Theorem

11(3)).

We now turn to a more detailed discussion of the main results and ideas in this paper.

1.1. Cross sections. Some of the central objects of our current investigation are the cross sections of ;
these are embedded graphs in X which are transverse to the flow and intersect every flowline of 1); see §5.1
for details. Every section © C X determines a dual cohomology class u = [O], and we construct an open
convex cone 8§ C H*(X;R) containing A with the property that an integral element u € H(X;R) is dual
to a section if and only if u € 8; see Proposition 5.10. This cone of sections 8§ has a convenient definition
in terms of closed 1-forms (in the sense of [FGS]) satisfying an additional property we call flow-regularity;
see §5.3. To aid in our analysis of 8, in §6 we introduce another cone, the Fried cone D C H'(X;R),
consisting of those cohomology classes which are positive on all closed orbits of v; in fact, D is determined
by finitely many closed orbits (Proposition 6.3). The definition of § in terms of flow-regular closed 1-forms
easily implies that 8§ C D. In Appendix A we give a combinatorial characterization of D (Proposition A.2)
that is similar in spirit to the definition of A and which allows us to show the reverse containment D C 8.
Our first theorem summarizes these properties of § and D:

Theorem A (Cone of sections). There is an open convexr cone 8 C HY(X;R) = HY(G;R) containing A
(and thus containing ug) such that a primitive integral class u € HY(X;,R) is dual to a section of v if
and only if u € 8. Moreover, 8 is equal to to the Fried cone D, and there exist finitely many closed orbits
O1,...,0% of Y such that u € HY(X;R) lies in 8 if and only if u(O;) > 0 for each 1 < i < k. In particular,
S is an open, convezx, polyhedral cone with finitely many rationally defined sides.

Remark 1.3. We emphasize that the closed orbits O; appearing in Theorem A are explicitly defined in
terms of the data used to construct X; see §6.

This theorem mirrors Thurston’s result in the 3-manifold setting, where the cone of sections is the cone
over a face of the (polyhedral) Thurston norm ball [Thu] and hence is defined by finitely many rational
inequalities, and also Fried’s characterization of this cone in terms of “homology directions” [Fri2]. In his
unpublished thesis [Wan], Wang uses Fried’s notion of homology directions to provide a similar characteri-
zation of the cone of sections for the mapping torus of a free group automorphism. Since there are semiflow
equivariant maps between the mapping torus and X, Theorem A implies Wang’s result in his setting.

For every primitive integral class u € 8§ we henceforth use ©, to denote a cross section dual to u; see
Convention 7.8. For technical reasons we impose an additional assumption on the section ©, we call “F—
compatibility”, but as we show in §A.6, every primitive integral u € 8 is dual to such a section. Every
cross section ® C X has an associated first return map © — © induced by the semiflow, and we will use
fu: Oy — Oy to denote the first return map of 0.
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1.2. Splittings. We will see that, in general, the sections ©, dual to primitive integral v € S are not as
nicely behaved as those dual to elements of A. In particular, the inclusion ©, — X need not be m—
injective and f, need not be a homotopy equivalence. Despite these shortcomings, our next theorem shows
that for each section ©,, the induced endomorphism (f,). of 71(0,) nevertheless provides a great deal
of information about the corresponding splitting of GG; namely it gives a realization of this splitting as an
ascending HNN-extension over a finitely generated free group and provides a way to calculate A(u).

For the statement, we need the following terminology regarding arbitrary endomorphisms ¢ of a finitely
generated free group F: As we explain in §2.4, each such ¢ naturally descends to an injective endomorphism
¢ of the stable quotient of F by the stable kernel consisting of all elements that become trivial under some
power of ¢. Additionally, each endomorphism ¢ has as growth rate or stretch factor defined as

A(¢) = sup liminf {/[|¢"(g)] 4
gEF n—oo
where A is any free basis of F' and ||¢™(g)|| , denotes the cyclically reduced word length of ¢™(g) with respect
to A. One can show that this definition is independent of the the free basis A; see §2.3 for details. With this

terminology, we prove that the first return maps f,: ©, — 0, provide the following information about the
splittings of G determined by primitive integral classes u € S.

Theorem B (Splittings and ascending HNN-extensions). Let u € 8 be a primitive integral class with F—
compatible dual section ©,, C X and first return map f,: ©, — O. Let Q, be the stable quotient of (fu)«
and let ¢, = (fu), be the induced endomorphism of Q.. Then

(1) fu is an expanding irreducible train track map.

(2) Qu is a finitely generated free group and ¢y : Qu — Qu is injective.

(3) G may be written as an HNN-extension

G = Qurg, = (Qu,7 | T_lqr = ¢ulq) for all g € Qu)
such that u: G — 7Z is given by the assignment r — 1 and Q,, — 0.
(4) If J, < ker(u) denotes the image of m1(0,) induced by the inclusion ©, — X, then there is an iso-
morphism Q. — Jy, conjugating ¢, to Dy, for some automorphism ®,, € Aut(ker(u)) representing
the monodromy @, .
(5) The topological entropy of fu is equal to log(A(¢y)) = log(A(Py|s,)) and also to log(A(w)).
(6) ker(u) is finitely generated if and only if ¢, is an automorphism, in which case we have ker(u) = Q.

and @, = [¢y] € Out(Qy).

Remark 1.4. Throughout this paper — for example in Theorem B(1) — we use “train track map” to mean
a graph map that satisfies the usual dynamical properties of train track maps in Out(Fy) theory but which
may not be a homotopy equivalence; see §2.1 for the precise definition.

As noted above, the inclusion ©,, C X is not necessarily m—injective and f,, may fail to be a homotopy
equivalence in two different ways. First, it can happen that (f,).: m1(0,) — m(©,) may be injective
but non-surjective, in which case Q, = 71(0y), ¢u = (fu)+ and ker(u) is not finitely generated even though
u € 8. Second, it can happen that (f,). is non-injective, in which case the Hopficity of the free group 71 (©,,)
necessitates that (f,). non-surjective as well. We will see (in Remark 8.4) that both of these possibilities can
in fact occur when u € 8\ A. In the second case it can moreover happen that the injective endomorphism
Oyt Qu — Q. is surjective and consequently an automorphism of @, = ker(u). These kinds of phenomena
are not present in the 3-manifold setting; see §1.7 for a more detailed discussion.

1.3. The McMullen polynomial. Having shown that a section 0, dual to u € § leads to an algebraic
description of the corresponding splitting of G, we now turn our attention to the dynamical properties of
these splittings. In this regard, our main result is the introduction of a polynomial invariant m, termed the
MecMullen polynomial, that simultaneously encodes information about all of the first return maps f,, and the
stretch factors of their associated endomorphisms (f,,)«. This result is analogous to McMullen’s construction
of the Teichmiiller polynomial in the setting of fibered hyperbolic 3—manifolds [McM1]. Let

H = H,(G;Z)/torsion = Z?,
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where b = by (G) is the first Betti number of G. The McMullen polynomial of (X, ) is a certain element m
in the group ring Z[H], that is, it is a finite sum

m= > ayh € Z[H]
heH

of elements of H with integral coefficients. Note that if we expresses the elements h € H in terms of a
multiplicative basis ¢1, ..., ¢, then m = m(¢1,...,%,) becomes an integral Laurent polynomial in ¢q,... .

For every integral class v € H'(G;Z), one may then form the specialization of m at u, which is the
1-variable integral Laurent polynomial

m, () =Y an¢"™ e Z[¢H).
heH
Our next theorem establishes an intimate relationship between these specializations m, and the first return

maps f, of sections ©, dual to u € S.

Theorem C (The McMullen polynomial and its specializations). There ezists an element m € Z[H]| as
above with the following properties. Let u € 8§ C H'(X;R) be a primitive integral class with dual compatible

section O, first return map f,, and injective endomorphism ¢, = (fu), as in Theorem B. Then

(1) The specialization m, () € Z[¢TY] is, up to multiplication by +C* for some k € 7, equal to the
characteristic polynomial of the transition matriz of f.

(2) The largest positive root A, of my is equal to the stretch factor M(¢y) of ¢u, to the spectral radius of
the transition matriz of f,, and to the stretch factor of (fu)«. In particular, A, = A(u). Additionally,
log(Ay,) is the topological entropy f,.

Remark 1.5. Using different methods, Algom-Kfir, Hironaka and Rafi [AKHR] have independently pro-
duced a polynomial and have obtained a similar result to Theorem C, but only for primitive integral elements
u € A. Their polynomial has an additional minimality property which guarantees that it is a factor of m and
that it depends only on the outer automorphism f, represented by f: I' — I'. Because of this last property,
their polynomial need not specialize to the characteristic polynomial of the train track map f, for primitive
integral u € A (even up to units; c.f. Theorem 11.3 and Example 11.5).

The McMullen polynomial m in Theorem C is constructed in the following manner, which is in some
sense “dual” to McMullen’s construction of the Teichmiiller polynomial [McM1]. Let X denote the universal
torsion-free abelian cover of X (which has deck group H) and consider the foliation F of X by (lifted)
flowlines of . In §4 we then construct a module of transversals to F; this is a module over the group ring
Z[H] and is denoted by T(F). A key fact regarding this module, which we prove in §10, is that T'(F) is
finitely presented as a Z[H]-module. The McMullen polynomial of (X, ) is then defined to be the g.c.d. of
the Fitting ideal of T'(F); see §4.1 for details.

This abstract definition of m is, however, rather opaque and thus somewhat unsatisfying. In particular,
it gives no indication as to why m should enjoy the properties described in Theorem C. Ultimately, these
properties follow from the fact that T'(F) encodes a great deal of information about the semiflow v, but it
is not readily apparent how this information is imparted to the fitting ideal and consequently to m.

To remedy this situation we give an alternate description of the McMullen polynomial, showing that m
is a very concrete and explicitly computable object. This alternate description is in terms of graph modules
for sections of ¥. More precisely, for each primitive integral class u € § with dual compatible section ©,,,
we consider the preimage (:)u C X in the universal torsion-free abelian cover and define a corresponding
graph module T(C:)u); this module is a certain quotient of the free module on the edges of (:)u that encodes
information about the first return map of @u to itself.

The module T(@)u) may be explicitly described as follows: Choosing a component 0. C (:)u7 the stabilizer
of ©, in H is a rank b — 1 subgroup H, C H, and H splits (noncanonically) as H = H, @ Z. There is a
canonical submodule of the free module of the edges of 0, consisting of finite sums of edges of ©,,, and if
we choose a finite set E of H,—orbit representatives of the edges of (:)u, then this submodule is naturally
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isomorphic to the finitely generated free Z[H,]-module Z[H,]?. Choosing a multiplicative basis ¢1,...,t,_1
for H,, this latter module may be regarded as the finitely generated free module Z[t]ﬂ7 e ,tbifl]E over
the ring of integer Laurent polynomials in b — 1 variables. The first return map f,: ©, — O, then lifts
to a map (:)u — éu which has a well-defined |E| x |E| “transition matrix” A, (t1,...,t,—1) with entries in
Z[tlﬂ, .. ,tbifl]; see §9.1.

Choosing a multiplicative generator = for the complement of H, < H produces an isomorphism between
Z[H] and the ring Z[tlﬂ, . ,tljf_ll, 2% of integral Laurent polynomials. With respect to this isomorphism,
the McMullen polynomial m is given by the following “determinant formula”, which is analogous to Mc-
Mullen’s formula for the Teichmiiller polynomial in [McM1] and which implies Meta-Theorem III.

Theorem D (Determinant formula). For any primitive integral uw € 8§ we have

m(th ooy tp—1, l’) = det(xl — Au(th Ce ,tbfl))
up to units in [T, tEY .

While the compatibility condition imposed on the cross sections ©, can be computationally expensive,
as it can lead to the addition of a large number of valence-2 vertices (see Definition 7.3), it is essential
for the above discussion because the module of transversals T'(F), and consequently m, is sensitive to the
choice of distinguished wverter leaves of F. These leaves are determined by the original graph structure
on I', and subdividing ' can indeed affect the McMullen polynomial by introducing extra factors. To
illuminate this dependence and increase computational flexibility, we derive a secondary determinant formula
(Theorem 11.3) that explains exactly how the McMullen polynomial m changes under the addition of new
vertex leaves resulting from any subdivision of I' or of any cross section ©,,.

1.4. The McMullen cone Cx. The McMullen polynomial m € Z[H] naturally determines yet another
convex cone Cx C H!(X;R), which we term the McMullen cone. Specifically, Cx is the dual cone associated
to a certain vertex of the “Newton polytope” of m € Z[H]; see Definition 12.6. The next result states that
Cx is in fact equal to the cone of sections 8. The proof of this result appeals to Theorems A and C and a
formula for m as a “cycle polynomial” introduced by Algom-Kfir, Hironaka and Rafi [AKHR]. The proof
of this formula involves the use of directed graphs labeled by homology classes, which also appears in the
work of Hadari [Hadl], and is related to McMullen’s recent work on the “clique polynomial” of a weighted
directed graph [McM2]. Thus in addition to supplying dynamical information about all cross sections of v,
our polynomial invariant also detects exactly which integral cohomology classes are dual to sections.

Theorem E (McMullen polynomial detects 8). The McMullen cone Cx is equal to the cone of sections 8.

Theorem C shows that for primitive integral points u of 8, the canonically defined stretch factor A(u) can
be calculated, without any mention of splittings of G or cross sections of v, in terms of the specializations
m,, of the McMullen polynomial. As such it is perhaps unsurprising that the algebraic object m might
impose strong regularity on the function A. Indeed, following McMullen [McM1], we use m and properties
of Perron-Frobenius matrices with entries in the ring of integer Laurent polynomials to prove that the
assignment u — log(A(¢y,)) = log(A(u)) extends to a real-analytic, convex and homogeneous function on the
entire cone 8. Thus we obtain a new proof of [DKL, Theorem D] and also extend that result to 8. Together
with Theorem E, our argument additionally shows that this function blows up on the boundary of S.

Theorem F (Convexity of stretch factors). There exists a real-analytic, homogeneous of degree —1 function
H: 8 — R such that:

(1) 1/% is positive and concave, hence $) is conver.

(2) For every primitive integral u € 8§ C HY(X;R) with dual compatible section ©,,, first return map f.,

and injective endomorphism ¢, = (fu), as in Theorem B we have

H(u) =log(A(u)) = log(A(¢u)) = log(A(fu)) = h(fu)-
(3) 9(u) tends to infinity as u — O8.
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Remark 1.6. In [AKHR] the authors have also constructed a function defined on a cone containing A,
and have proved a result similar to Theorem F (with (2) holding for u € A). Real-analyticity of £ and
of the analogous function from [AKHR]|, combined with the fact that these functions necessarily agree on
A C Cx, ensures that the function and cone constructed in [AKHR] agree with $) and Cx, respectively.
McMullen has obtained similar results in a purely graph theoretic setting; see [McM2, Theorem 5.2]. In
[Had2], Hadari generalizes and further analyzes the kinds of polynomials produced here (and in [AKHR],
[McM1], and [McM2]).

1.5. Foliations and Lipschitz flows. Up to this point our focus has been on properties of sections, or
equivalently on the integral points of 8. However there is a rich geometric, topological, and dynamical
structure associated to the non-integral points as well. To describe this structure, we recall that any element
u € 8 is represented by a closed 1-form w* that is flow-regular. Associated to w" is a “foliation of X
transverse to ¢” denoted by €2, with leaves that are (typically infinite) graphs. Concretely, the 1-form
determines a (flow-regular, u—equivariant) function on the universal torsion-free abelian cover X > R, and
each “leaf” of Q, is the image in X of a fiber of this map; see §13. The leaves 2, ,, are thus in one-to-one
correspondence with points y € R/u(m1(G)). As with sections, we are able to draw the strongest conclusions
about the closed 1-forms representing points in .A.

Theorem G (m;—injective foliations). Given u € A, there exists a flow-reqular closed 1—form w* representing
u with associated foliation 2, of X having the following property. There is a reparameterization of 1, denoted
P*, so that for each y € R the inclusion of the fiber 0y, — X is mi—injective and induces an isomorphism
m1(Qy,) = ker(u). Furthermore, for every s > 0 the restriction

WZZ Qy,u — Qers,u

of V¢ to any leaf €1y ., is a homotopy equivalence.

This result should be compared to the situation for a fibered hyperbolic 3-manifold M, where elements in
the cone on a fibered face of the Thurston norm ball are represented by closed, nowhere vanishing 1-forms.
The kernel of such a 1-form is then tangent to a taut foliation of M, which has 7—injective leaves by the
Novikov-Rosenberg Theorem; see e.g. [Cal]. Furthermore, appropriately reparameterizing the suspension
flow on M will map leaves to leaves by homeomorphisms.

Another application of the McMullen polynomial m mirrors McMullen’s construction of a “Teichmiiller
flow” for each cohomology class in the cone on a fibered face of the Thurston norm ball; see Theorems 1.1 and
9.1 of [McM1]. In the setting of a fibered 3-manifold M, there is a metric on M so that the reparameterized
flow mapping leaves to leaves is actually a Teichmiiller mapping on each leaf.

In our setting, associated to any u € §, we construct a metric on X so that the reparameterized flow,
which maps leaves of 2, to leaves, has “constant stretch factor”. See §5.3 and §14 for precise definitions.

Theorem H (Lipschitz flows). For every u € 8, let $(u) be as in Theorem F, w* a tame flow-regqular closed
1—form representing u, Y* the associated reparameterization of v, and €, the foliation defined by w*. Then
there is a geodesic metric d,, on X such that:

(1) The semiflow-lines s — (&) are local geodesics for all € € X.

(2) The metric d,, induces a path metric on each (component of a) leaf ., of the foliation Q,, defined
by w* making it into a (not necessarily finite) simplicial metric graph.

(3) The restrictions of the reparameterized semiflow to any leaf

*W?i Qy,u — Qy-‘rs,u}szo

are \*—homotheties on the interior of every edge, where A = e,
(4) The restriction of d, to the interior of any 2—cell of X is locally isometric to a constant negative
curvature Riemannian metric.

The proof of this theorem resembles McMullen’s construction of Teichmiiller flows in some ways. In
particular, the metric d,, in this theorem relies on the construction of a kind of “twisted transverse measure”
on the foliation F of X associated to the ray in 8 through w; see §14.1. These measures are similar in spirit
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to the “affine laminations” of Oertel [Oer] and the “twisted measured laminations” of McMullen [McM1] in
the context of hyperbolic surfaces and 3—manifolds.

1.6. Relation to the BNS-invariant. Recall that a rational point of H'(G;R) projects into the BNS-
invariant X(G) if and only if ker(u) is finitely generated as a (¢, )+—module [BNS] (see the remarks following
the Meta-Theorem). We note that the stretch function A is naturally defined on the rational BNS-cone
@E(G) consisting of classes u € H*(G;R) with [u] € 3(G) and u(G) discrete; see Definition 3.6. Theorem B
implies that the rational points of 8 project into X(G), and Theorem 5.11 shows that the rational points
of A in fact land in the symmetrized BNS-invariant X,(G) = X(G) N —=X(G). Our above investigations
into the foliations €2,, of X dual to non-rational points u € 8§ can be used to show that these inclusions
hold for irrational points as well; namely 8 = Cx projects into X(G) (Proposition 13.2) and A projects into
¥s(G) (Corollary 13.7). Combining the properties of the stretch function A provided by Theorem F and
Proposition 3.7, we moreover find that Cx projects onto a full connected component of X(G):

Theorem I (McMullen polynomial detects a component of X(G)). The McMullen cone Cx projects onto a
full component of the BNS-invariant X(G). That is, {[u] | u € Cx} is a connected component of X(G).

This shows that the component of ¥(G) containing ug is polyhedral and that A extends to a real analytic
function on the cone over that component. It is an interesting question whether every component of X(G)
has this structure:

Question 1.7. Does every component of ¥(G) contain a class u: G — Z so that ker(u) is finitely generated
and ¢, can be represented by an expanding irreducible train track map?

If the answer to Question 1.7 is “yes,” then the theory developed in this paper would imply that X(G) is
a union of rationally defined polyhedra and that A: @E(G) — R, admits a real-analytic, convex extension.

In a recent paper [CL, Theorem 5.2] Cashen and Levitt computed 3(G) for the case where G is the
mapping torus of a polynomially growing automorphism ¢ of Fiy. They showed that in that situation X(G)
is centrally symmetric and consists of the complement of finitely many rationally defined hyperplanes in
H'(G,R). For a polynomially growing ¢ we have A(¢) = 1, and such ¢ does not admit an expanding train
track representative. Thus the results of [CL] are disjoint from our results in the present paper.

1.7. Contrasting the 3—manifold setting. Our results illustrate some qualitatively different behavior for
free-by-cyclic groups as compared with similar results for 3-manifold groups. For a fibered hyperbolic 3-
manifold M, there are several natural cones that one may consider in H'(M;R), such as the cone determined
by McMullen’s Teichmiiller polynomial, the analog of the cone of sections 8§ (which can be viewed as the dual
on Fried’s [Fri2] cone of “homology directions”), and the components of both the BNS-invariant X(m (M))
and its symmetrization ¥s(m (M)) containing ug. These cones all turn out to be the same and are in fact
equal to the cone on a “fibered face” of the Thurston norm ball [Thu, McM1, Fri2, BNS].

Above we have seen that in the free-by-cyclic setting the positive cone A is contained in a component
of ¥5(G) and that the McMullen cone Cyx is equal to a component of ¥(G). However our computations
show that in general this component of ¥,(G) can be strictly smaller than Cx = 8. While it was already
known that, unlike the 3—manifold case, the BNS-invariant of a free-by-cyclic group need not be symmetric
(precisely because a free-by-cyclic group can also split as a strictly ascending HNN-extension of a finite rank
free group, as an example in Brown’s 1987 paper [Bro] illustrates), one still might have hoped that the
geometric property of being dual to a section was sufficient to ensure containment in X4(G). Evidently this
is not the case.

In particular, in the “running example” group G = G that we analyze in detail throughout this paper,
the positive cone A € H'(G,R) is equal to a component of ¥,(G) but is a proper subcone of § = Cx. We
moreover exhibit a specific primitive integral element u; € 8 N9.A such that ker(uy) is not finitely generated
but which does, in accordance with Theorem B, induce a splitting of G as a strictly ascending HNN-extension
over a finitely generated free group. Thus u; belongs to 8§ = Cx but not to X5(G); see Examples 5.6, 7.11, 8.3,
and 11.2 for the relevant computations regarding u;. For the running example we also exhibit a primitive
integral class us € 8\ A with dual section ©, such that the first return map fo: @2 — O, fails to be
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a homotopy equivalence but nevertheless the induced endomorphism descends to an automorphism of the
finitely generated free group ker(us); see Examples 5.7 and 7.15 for the relevant computations. This shows
that 8 can contain multiple distinct components of the symmetrized BNS-invariant ¥,(QG).

Remark 1.8. In Example 5.6 and continued in Example 7.11 and Remark 7.14, we find a section ©; C X
dual to a class u; € 8 (mentioned above) with ker(u;) infinitely generated and which gives rise to a splitting
of G as a strictly ascending HNN-extension of a finite rank free group over an injective but non-surjective
endomorphism. This example illustrates that some of the results similar to Theorem B that are claimed in
Wang’s thesis [Wan] are incorrect. Specifically [Wan, Lemma 1.3] produces, for any section of the semiflow
on the mapping torus, a kind of “fibration” of a related complex. According to [Wan, Lemma 4.1.3], this
would imply u; has finitely generated kernel (equal to the fundamental group of a fiber of the associated
“fibration”) and thus that u; would define a splitting of G as a (f.g. free)-by-cyclic group. However, our
computations show that this is not the case.

1.8. Acknowledgments: We are grateful to Nathan Dunfield for many useful discussions regarding the
Alexander norm and the BNS-invariant, and in particular for suggesting the approach to proving Theorem
I. We would also like to thank Curtis McMullen for his help with clarifying some results from the Perron-
Frobenius theory related to his earlier work and to the proof of Theorem F, Asaf Hadari for an interesting
conversation regarding labeled graphs, and Robert Bieri for his reference to [BR] clarifying the sign convention
for the BNS—invariant.

2. BACKGROUND

2.1. Graphs and graph maps. We briefly review the relevant terminology regarding graph maps while
referring the reader to [DKL, §2] for a more detailed discussion of these definitions. A continuous map
f: T — T of a finite graph I' is said to be a topological graph map if it sends vertices to vertices and edges
to edge paths. We always assume that our graphs do not have valence-1 vertices. If I' is equipped with
either a metric structure or a (weaker) linear structure, then f is furthermore said to be a (linear) graph
map if it enjoys a certain piecewise linearity on edges. For simplicity, we also typically assume that f is a
combinatorial graph map, which means that I' is given a metric structure in which every edge has length
one, and the restriction of f to each edge e is a local d.—homothety, where d. is the number of edges in edge
path f(e). The map is called ezpanding if for every edge e of I', the combinatorial lengths of the edge paths
f™(e) tend to infinity as n — oo.

Every graph map f: I' — T’ has an associated transition matriz A(f), which is the |ET| x |ET| matrix
whose (e, €’)-entry records the number of times the edge path f(e’) crosses the edge e (in either direction).
We caution that, while this definition of A(f) agrees with the definition given in [BH], it gives the transpose
of what was used to mean the transition matrix in [DKL]. The graph map f is then said to be irreducible if
its transition matrix A(f) is irreducible. We additionally use A(f) to denote the spectral radius of A(f).

A train track map is a linear graph map f: T' — T such that f* is locally injective at each valence-2 vertex
and on each edge of I' for all £k > 1. Note that this definition is slightly more general than the standard
notion of a train track map in Out(Fy) theory (in particular, more general than what was used in [DKL])
since here we don’t require f to be a homotopy equivalence. A train track map that is irreducible always
has A(f) > 1; furthermore this inequality is strict if and only if f is expanding.

If f: T — T is an irreducible train-track map with A(f) > 1, then by Corollary A.7 of [DKL] there exists
a volume-1 metric structure £ on I' with respect to which the map f is a local A(f)~homothety on every
edge of I". As in [DKL], we call £ the canonical metric structure on I and call the corresponding metric dz
on I' the canonical eigenmetric.

2.2. Markings and representatives. When I is a finite connected graph and f: I' — T' is topological
graph map which is a homotopy equivalence, it induces an automorphism f, of the free group 71 (I') that
is well-defined up to conjugacy; accordingly we say that f is a topological representative of the outer auto-
morphism [f.] € Out(r1(I")). Even when f is not a homotopy equivalence, there is still a sense in which f
represents an endomorphism of a free group, as we now explain.
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A marking on the free group Fy consists of a finite connected graph I" without valence—1 vertices and an
isomorphism «a: Fy — 71 (I'). If £ is a metric structure on T, then the pair («, £) is called a marked metric
structure on Fy. Lifting £ to the universal cover I' defines a metric dz on T such that T = (T, dz) is an
R-tree equipped with a free and discrete isometric action (via «) of Fy by covering transformations. For
an element g € Fy, let ||g||; := infyer dz(x, gx) denote the translation length of g on T'. Note that [|g||; is
equal to the L-length of the unique immersed loop in I" which is freely homotopic to the loop a(g) € w1 (I).
If A=/{ai,...,an} is a free basis of Fy, I' is a rose with N petals corresponding to the elements of A,
and L is the metric structure assigning every edge of I' length 1, then T is exactly the Cayley tree of Fiy
corresponding to A. In this case for g € Fy we have ||g|l; = ||g]| 4, where ||g|| 4 is the cyclically reduced
word length of g with respect to A. Note that if g, ¢’ € Fx are conjugate elements then ||g||; = [|¢'[| -

A topological representative of a free group endomorphism ¢: Fy — F consists of a marking a: Fy —
m1(I,v) (where v € VT') and a topological graph map f: I' — I' such that for some inner automorphism 7
of Fy we have To ¢ = a~ ' o f, oa. Here f,: m(I',v) — m(I',v) is the endomorphism of 7 (', v) defined
as fi(y) = Bf(y)B~* for some fixed edge path 8 in ' from v to f(v). Thus the only difference with the
standard definition of a topological representative is that here the graph map f: I' — I" need not a homotopy
equivalence. Indeed, we note that a topological representative f as above will be a homotopy equivalence
if and only if ¢ is an actual automorphism of Fy. As usual, we often suppress the marking and, by abuse
of notation, simply talk about f: I' — I' being a topological representative of ¢. Most of the free group
train track theory is developed for automorphisms of Fl, but topological and train track representatives of
endomorphisms of Fy appear, for example, in [AKR, DV, Rey].

2.3. Growth. Let a: Fyy — 7 (') be a marking on Fy, let £ be a metric structure on I, and let T = (T, dz)
be the corresponding R-tree as above. For any endomorphism ¢: Fiy — Fy and any element g € Fiy put

A(6:9,T) = liminf {67 (9)]7-

It is not hard to check that the liminf in the above formula is in fact always a limit. Moreover, if T’ is an R—
tree corresponding to another marked metric structure on Fy, then the trees T and T” are Fy—equivariantly
quasi-isometric. This fact implies that A\(¢; g,T) = A(¢; g,T") for all g € Fiy. Thus we may unambiguously
define \(¢; g) := A(¢;9,T), where T is the R-tree corresponding to any marked metric structure on Fy.

Definition 2.1 (Growth of an endomorphism). Let ¢: Fy — Fy be an arbitrary endomorphism. The
growth rate or stretch factor of ¢ is defined to be
A(@) := sup A(¢;g).

geEFN

We say that ¢ is exzponentially growing if A(¢p) > 1.

It is not hard to check that if ¢ is not exponentially growing then A(¢;g) = 1 or A(¢;g) = 0 for every
g € Fy. The case A(¢;g) = 0 is possible since ¢ need not be injective; indeed, A(¢;g) = 0 if and only if
#*(g) = 1 € Fy for some k > 1. Furthermore, since the translation length of an element for an isometric
group action is invariant under conjugation in the group, Definition 2.1 implies that A\(¢) = A(7¢) = A\(¢7)
for any inner automorphism 7 € Inn(Fy) of Fi.

Any irreducible train track representative of ¢ (assuming such a representative exists) can be used to
compute the growth rate A\(¢):

Proposition 2.2. Let ¢: Fy — Fn be an endomorphism and let f: I' — T be an irreducible train track
representative of ¢. Then A(¢) = A(f) and log(A(f)) = h(f), where h(f) is the topological entropy of f.

Proof. If \(f) = 1, then f is a simplicial automorphism of I" and hence ¢ is an automorphism of Fyy which
has finite order in Out(Fy ). Therefore A\(¢) = 1 and A(¢) = A(f), as required. Also, in this case it is easy
to see that h(f) = 0 and thus that log(A(f)) = h(f) holds as well.

Suppose now that A(f) > 1, so that f is expanding. Proposition A.1 of [DKL] then implies the equality
log(A(f)) = h(f). Let £ be the canonical metric structure on I'. Then for every edge e of I' we have
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L(f(e)) = A(f)L(e) and hence for every edge-path v in I" we have

L(f# () < L(F () = AHLM),

where fy(7) is the tightened form of f(-y). This implies that if T" is the R-tree corresponding to (I, £), then
for every g € Fy we have ||¢(g)|l; < A(f) ||lgllp- Therefore for n > 1 we have [[¢"(g)|l < A(f)™ ||lgllr and
hence A\(¢) < A(f).

Since f is an expanding graph map, for some edge e there exists m > 1 such that f™(e) contains at least
two occurrences of the same oriented edge. Therefore there exists a nontrivial immersed loop 7 in I' such
that v is a subpath of f™(e). Since f is a train track map, for every n > 1 the loop f"(vy) = (f")%(vy) is
immersed in I" and therefore satisfies

L)% () =L () = A" L(Y)-
Taking go € Fn to be any element whose conjugacy class is represented by -y, we see that ||¢™(go)|l; =
A(S)" lgoll for all n > 1. Hence A(¢; go, T') = A(f). Together with A(¢) < A(f), this implies that A(¢) =
ACS)- 0

Proposition 2.3. Let ¢: Fy — Fy be an arbitrary free group endomorphism. Given any i > 0, set
J = ¢"(Fy) and let £ = ¢|;: J — J. Then A(¢) = A(€).

Proof. Pick a free basis A of Fiy and let T' = T4 be the Cayley graph of Fy with respect to A. Let i > 0 be
arbitrary and let J = ¢*(F). Thus J is a finitely generated free group of rank < N. Choose a free basis
B for J and let 7" be the Cayley graph of J with respect to B. Let £ = ¢|;: J — J. For any g € F the
definitions imply that A(¢;g,T) = A(¢; ¢*(g), T). The subgroup J < Fy is quasi-isometrically embedded in
Fn. Hence there exists C' > 1 such that

1
¢ lwlz < llwllz < Cllwllz
for all w € J. Therefore for all n > 1 and g € Fy we have ¢'7"(g) = £"(¢(g)) and

Sl @)l < 1@ @)l < €l @) -

Hence
N3 9. T) = M5 0™ (9),T) = M& 0™ (9),T")
The definition of the growth rate now implies that A(¢) = A(€). d

2.4. Endomorphisms and HNN-like presentations. In this subsection we elaborate on the observation
of Kapovich [Kap] about the algebraic structure of HNN-like presentations based on arbitrary (and possibly
non-injective) endomorphisms.

Let ¢: G — G be an arbitrary endomorphism of any group G. We then use the notation G4 to denote
the group given by the “HNN-like” presentation

(2.4) Gxg = (G,r |17 gr = ¢(g), for all g € G).

The generator r here is called the stable letter of G*4, and the group has a (natural) projection Gxy — Z
defined by sending r — 1 and G — 0.

Presentations as above with ¢ non-injective are difficult to work with, since in that case G does not embed
into G4 and Britton’s Lemma (the normal form theorem for HNN extensions) does not hold. However, as
we will see below, presentation (2.4) does define a group which is a genuine HNN-extension along an injective
endomorphism of a quotient group of G.

To this end, define the stable kernel of ¢: G — G to be the normal subgroup

Ky = Jker(¢) <« G

i=1

obtained as the union of the increasing chain ker(¢) < ker(¢?) < --- of subgroups ker(¢*) < G. We also
denote G® = G/Ky4 and call G? the stable quotient of ¢.
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Proposition 2.5. Let G be a group and ¢: G — G be an arbitrary endomorphism. Let Gx4 be as in
presentation (2.4) above and let G = G®. Then the following hold:
(1) ¢: G — G descends to an injective endomorphism ¢: G — G.
(2) The natural homomorphism G — Gxy has kernel equal to Ky, so that the image of G in Gx4 is
canonically identified with G.
(3) The quotient map G — G (which we denote g — §) induces an isomorphism

Gxy — Gxg = (G,7 | 7 'gF = ¢(g), for all g € G),

whose composition with the projection G*q; — 7 yields the natural projection of Gxy. Thus Gxg s
canonically isomorphic to the (genuine) HNN-extension G*& over the injective endomorphism @.

Proof. From the definition of K4 we see that g € K, if and only if ¢(g) € K,. Therefore ¢ does indeed
descend to an endomorphism ¢: G' — G, and moreover ¢ is injective. Thus (1) is established.

If g € K4 then g € ker(¢") for some n > 1. Then ¢™(g) = 1 in G and therefore in the group G4 we have
g =r1"¢"(g)r~™ = 1. Therefore, by applying a Tietze transformation, we can rewrite presentation (2.4) of
Gy as

Grg = (G, | r'gr=¢(g) for all g € G)

<G,T ‘ rilgr = qﬁ(g) for all g e G; and g= 1 for all g€ K¢>
(G/Ky, 7|77 g7 = ¢(7) for all g € G/Ky) = G+,
(

This implies parts (2) and (3) of the proposition. a

The following proposition implies that in certain situations the isomorphism Gx4 =2 G 4 from Proposi-
tion 2.5 can actually be seen from inside G.

Proposition 2.6. Let ¢: G — G be an arbitrary endomorphism, and let G and ¢ be as in Proposition 2.5.
Suppose that i > 1 is such that for J = ¢*(G) the endomorphism § = ¢|;: J — J is injective. Then
K, = ker(¢') and there is a canonical isomorphism 7: G — J conjugating ¢ to €.

Proof. Since £ = ¢|; is injective by assumption, it follows that ¢™|; is injective for all n > 0. Therefore, if
g € G is such that ¢'(g) € J is nontrivial, then ¢"*(g) = ¢"(¢*(g)) is also nontrivial for all n > 0. This
implies that ¢'(k) = 1 € J for all k € K4 and thus that K, C ker(¢%). As we also have ker(¢?) C Ky by
definition, it follows that ker(¢®) = K.

Thus G = G/ ker(¢") and so the First Isomorphism Theorem provides a canonical isomorphism 7: G =
G/K, — J given by 7(gKy) = ¢'(g) for all g € G. Then for any g € G we have

E(m(9Ky)) = £(0'(9)) = ¢ (9) = T(d(9) Kg) = T(6(9k))-
Thus 7 indeed conjugates ¢ to &, and the statement of the proposition follows. |

It was observed by Kapovich [Kap] that the assumption of Proposition 2.6 is always satisfied when G is
a finite-rank free group Fiy.

Proposition 2.7. Let ¢: Fy — Fy be an arbitrary endomorphism of a finite-rank free group Fn. Then
there exists i > 0 such that by (¢*(Fn)) = bi(¢*TH(Fw)). Furthermore, if J = ¢*(Fn) for any such i, then
E=9¢|y:J— J is injective.

Proof. For every m > 1 the group ¢™(Fy) is a subgroup of Fy and it is also a homomorphic image
of ™ 1(Fy). Therefore each image ¢™(Fy) is a finitely generated free group and the integral sequence
{b1(¢™(Fy))} is nonincreasing. Therefore there exists i > 0 such that by (¢°(Fy)) = b1(¢* T (Fy)) as claimed.
For any such i > 0, the free groups ¢‘(Fy) and ¢'T!(Fy) have the same rank and are thus isomorphic.
Moreover the homomorphism ¢ maps ¢ (Fy) onto ¢*T!(Fy). Since finitely generated free groups are Hopfian,
it follows that ¢ maps ¢(Fy) isomorphically onto ¢**'(Fy) and thus the restriction of Blgi(Fy) is injective.
O
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Combining the above with the results from §2.3, we obtain the following corollary which, in the case that
G is free, gives two (essentially equivalent) useful ways of realizing the group Gx, from (2.4) as an ascending
HNN-extension of finitely generated free group along an injective endomorphism.

Corollary 2.8. Let G = Fy, let ¢: G — G be an arbitrary endomorphism and let G = G and ¢ be as
in Proposition 2.5. Then G is a finite-rank free group and there exists J = ¢*(G) for some i > 0 such that
€ = ¢|y: J — J is injective. Furthermore, the respective stretch factors satisfy M(¢) = M) = A(&), and
there are canonical isomorphisms

Gy = Grg = Jxe
respecting the natural projections of these groups to Z.

Proof. The existence of such an ¢ > 0 follows from Proposition 2.7. Proposition 2.6 then provides an
isomorphism 7: G — J showing that G is a finite-rank free group. Furthermore, since 7 conjugates ¢ to &
it also induces an isomorphism Gx $ — J*¢ and shows that A(§) = A(p). Lastly, the equality A(¢) = A(€)
follows from Proposition 2.3, and the isomorphism G, = G 4 from Proposition 2.5. |

2.5. Invariance of HNN stretch factor. Consider a finitely presented group D that splits as an HNN-
extension

D = Axy = (A, | rtar = ¢(a) for all a € A),
where A is a finite rank free group and ¢: A — A is an injective endomorphism of A. The natural projection
u: D — Z defined by 7 — 1 and A +— 0 is then said to be dual to the splitting D = Ax.

Note that if ker(u) = nclp(A) is not finitely generated, then there are infinitely many splittings of D
that are all dual to the same u. Indeed, in this case ¢: A — A is non-surjective and so we may choose
a finitely generated subgroup C' < A such that ¢(4) < C < A. Put B = rCr~!, so that C < A < B
and r~1Br = C < B. Defining ¢: B — B by %(b) = r~1br, it is not hard to see that the HNN-extension
Bxy = (B,r | r~tbr = 9(b), for all b € B) gives another splitting D = Bx,, which is again dual to u. Notice
that this construction can be used to produce splittings D = Bx*g4 dual to u where the rank of B is any
integer greater than the rank of A. Other variations and iterations of this constructions are also possible.

This shows that if a homomorphism w: D — Z is dual to an ascending HNN-extension splitting D = Ax
of D, then the injective endomorphism ¢: A — A defining the splitting is in no way canonical. Nevertheless,
its stretch factor A(¢) is uniquely determined by the homomorphism u:

Proposition 2.9. Suppose that w € Hom(D,Z) is dual to two splittings D = Axy and D = Bxy, where
¢: A— Aandi: B — B are injective endomorphisms of finite rank free groups A and B. Then A(¢) = A(¥).

Proof. By assumption we may write
(A7 | r~tar = ¢(a) foralla € A) = D = (B,s|s *bs = 1(b) for all b € B),

where u(r) = u(s) =1 and u(A4) = w(B) = 0. In particular, ker(u) = nelp(A) = nclp(B).

If ¢ is an automorphism of A, then A = ker(u) = B so that ¢ defines an automorphism of A in the same
outer automorphism class as ¢. In this case we obviously have A(¢) = A(¢0). Thus we may assume neither
¢ nor ¥ is surjective.

The fact that u(s) = u(r) implies s = ra’ for some a’ € ker(u) = UL r?Ar~*. Thus there exists k > 1
such that ag := r~*a/r¥ € A. Conjugating the HNN presentation D = Bx, by the element r—* € D,
which does not change the dual homomorphism w: D — Z and preserves the stretch factor of the defining
endomorphism, we may henceforth assume s = rag for some ay € A. Note that we then have s71A4s < A.

We claim that s™As™™ = r™Ar~™ for all m > 0. This is obviously true for m = 0, so by induction
assume it holds for some m > 0. Then

s(s™As™)sT = (rag) (r™ ArT™) (ag ') = T AT
where here we have used the fact that ao(r™Ar="™)ag* = r™Ar~™ since ag € r"™Ar~™. The claim follows.
We therefore have ker(u) = U5t As~%. Since B < ker(u) is finitely generated and s71As < A, it follows

that there exists ng > 0 for which s Bs™ < A. Thus, conjugating the splitting D = B, by the element
s~ "™ ¢ D, which does not change the stable letter s of the presentation, we may assume that B < A.
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Consider the injective endomorphism ¢': A — A defined by ¢'(a) = s 'as € A. Notice that for any
a € A, the elements ¢'(a) = s 'as and ¢(a) = r~lar are conjugate in A (since s = rag) and therefore have
the same cyclically reduced word length with respect to any free basis of A. Thus ||¢'(a)|| 4 = ||¢(a)|| 4 for
all @ € A, and so we obviously have A(¢) = A(¢'). On the other hand, since 9 is defined as 1(b) = s~ lbs
and B < A, we see that ¢ = ¢| . Therefore, letting K denote the maximum value of ||-|| , over all elements
in a free basis of B, we find that

A(@) = supliminf {/||¢" ()] 3 < supliminf {/K [|¢"(b)]|4 < supliminf ?/|¢(a)|l4 = A(¢').
beB M0 beB M0 acA M

Thus A(¢)) < A(¢') = AM(¢). By symmetry we have A(¢) < A(¢0) as well, and so the proposition follows. [

We remark that, in view of Corollary 2.8, the conclusion of Proposition 2.9 holds even if one omits the
requirement that the endomorphisms ¢ and 1 be injective.

3. SETUP

Let I" be a finite graph with no valence-1 vertices, and let f: I' — I' be an expanding irreducible train
track map representing an outer automorphism ¢ € Out(Fy) of the rank—N free group Fy = m1(T"). Let
G = Fn %, Z be the free-by-cyclic group determined by the outer automorphism ¢. Explicitly, G is defined
up to isomorphism by choosing a representative ® € Aut(Fy) of ¢ and setting

3.1 G=Fyx,Z:={(w,r|r lwr=>dw) for we Fy).
@

The first cohomology H'(G;R) of G is simply the set of homomorphisms Hom(G;R), and an element
u € HY(G;R) is said to be primitive integral if w(G) = Z. In this situation, the element u determines a
splitting (i.e., a split extension)

(3.2) 1 ker(u) G—+7 1

of G and a corresponding monodromy ¢, € Out(ker(u)). Namely, if ¢, € G is any element such that
u(t,) = 1, then the conjugation g ~ ¢ gt,, defines an automorphism of ker(u)</G whose outer automorphism
class is the monodromy (,,. It is easy to see that ¢, € Out(ker(u)) depends only on u and not on the choice
of t,. The homomorphism associated to the original splitting G = Fy x, Z (that is, the homomorphism to
Z with kernel Fiy < G and sending the stable letter r to 1 € Z) will be denoted by ug; its monodromy is the
given outer automorphism ¢.

We are particularly interested in the case where ker(u) is finitely generated, which automatically implies
that ker(u) is free [GMSW] and thus that ¢,, is a free group automorphism. However, even when ker(u) is
not finitely generated, we will see that in many cases ¢, has a naturally associated injective endomorphism
— of a finitely generated free subgroup of ker(u) — with respect to which the splitting (3.2) is realized as an
ascending HNN-extension; see §7.2.

3.1. The folded mapping torus. Given a train track map f as above, in §4 of [DKL] we constructed
a K(G,1) polyhedral 2—complex X = Xy, called the folded mapping torus of f. This 2-complex comes
equipped with a semiflow ¢ and a natural map n: X — S! that is a local isometry on flowlines and whose
induced map on fundamental groups is the homomorphism ug = 7,: G — Z. The 1-skeleton of X consists
of vertical 1—cells which are arcs of flowlines, and skew 1—cells which are transverse to the flowlines. Each
2—cell of X is a trapezoid whose top and bottom edges consist of skew 1-cells and whose sides consist of
vertical 1-cells (it may be that one side is degenerate).

As in [DKL], we will assume that f is a combinatorial graph map (see §2.1), though this is only done to
simplify the discussion and the exposition. We briefly recall the construction of X: Let Zy =I'x[0,1]/(z,1) ~
(f(2),0) be the usual mapping torus of f. There is a natural suspension semiflow on Zy given by flowing
in the [0, 1] direction. The folded mapping torus X is constructed as an explicit flow-respecting quotient of
Zy. In particular, the original graph I' may be identified with the image of I' x {0} C ' x [0,1] in X. In
this way, I' is realized as a cross section of the flow on X, and the first return map of v to this cross section
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is exactly f. Furthermore, the natural map Z; — S! descends to a map 7: X — S* whose induced map on
fundamental group is just the homomorphism ug: G — Z.
We will work in the universal torsion-free abelian cover p: X — X, which is the cover corresponding to
the subgroup
ker(G — H,(G;Z)/torsion) < G.
Denote the covering group of X — X by H = H;(G;Z)/torsion = ZP, where b = by(G) = rk(H). The
semiflow ¥ lifts to a semiflow {/; on X. The cell structure on X determines one on X so that the covering

map is cellular, and we will use the same terminology (skew, vertical, etc) to describe objects in X with the
same meaning as in X.

Example 3.3 (Running example). We recall here the ‘running example’ that was introduced in Example 2.2
of [DKL] and developed throughout that paper. In this paper we will continue our analysis of this example
as we use it to illustrate key ideas. Let I' denote the graph in Figure 1, which has four edges oriented as
shown and labeled {a,b,c,d} = E;I'. We consider a graph-map f: I' — I" under which the edges of I" map
to the combinatorial edge paths f(a) = d, f(b) = a, f(c) = b~ a, and f(d) = ba~*dblac. It is straight
froward to check that f is a train track map.

FI1GURE 1. The example train track map. Left: Original graph I'. Right: Subdivided graph
A with labels. Our map f: I' — I' is the composition of the “identity” ¢: I' — A with the
map f': A — I' that sends edges to edges preserving labels and orientations.

The graph map f induces an automorphism ¢ = f, of the free group F3 = F(y1,72,73) = m1(I") generated
by the loops 71 = b~ta, 72 = a~'d and v3 = ¢. Explicitly, the automorphism ¢ is given by ¢(y1) = 72,
©(72) = 75 ' M27173, and @(v3) = 1. Moreover, one may verify that ¢ is hyperbolic and fully irreducible.

Consider now the group extension G = G, defined by the presentation (3.1). As this presentation contains
relations 2 = 7717 and 73 = ry;7~!, we see that G is in fact generated by v and r. Writing v = 7,
and performing Tietze transformations to eliminate the generators v and -3, one may obtain the following
two-generator one-relator presentation for G:

(3.4) G=(y,r |y iy ey Ty = 1),

Using the specified train track representative f of ¢, we construct the corresponding folded mapping torus
X = X;. This folded mapping torus X, equipped with its trapezoid cell structure, is illustrated in Figure 2.
See the examples in [DKL] for more details. The covering group H = H,(G;Z) of the universal torsion-free
abelian cover X — X is then just Z2. Moreover H is freely generated by the image (under G — G) of the
stable letter r € G and the image of y; (which is also the image of v and of 7).

For the purposes of analyzing examples, we also note that the trapezoidal cell structure on X is, in
general, a subdivision of a cell structure with fewer cells. The 1—cells of this unsubdivided cell structure are
again either vertical or skew, and so may be oriented so that restriction of the orientation to a 1-cell of the
subdivision agrees with its original orientation. In particular, a positive (or nonnegative) 1—cocycle for the
canonical cell structure will give rise to one for the unsubdivided cell structure. We do not bother with a
formal definition of this cell structure as it will only be used to simplify our discussion of examples, where it
will be described.
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d a b a b a d b a c

a b ¢ d

FIGURE 2. The folded mapping torus X, with its trapezoid cell structure, for the example
f: ' = TI'. The top is glued to the bottom as described by the labeling, and shaded cells
with the same shading and shape are identified.

W r |
M |
N |

a b c

FIGURE 3. A simpler picture of the folded mapping torus with the unsubdivided cell struc-
ture. The six vertices vy, ..., vg are those at the heights 1,...,6 as indicated.

Example 3.5. Let us employ the observations of the preceding paragraph to build a simplified cell structure
on the folded mapping torus from Example 3.3. This cell structure is shown in Figure 3 where we have
removed the duplicate polygons to further simplify the picture.

There are just six vertices in the unsubdivided cells structure, and we label them vy, ..., vg according to
the heights as illustrated in Figure 3. There are twelve 1—cells, with at most one 1—cell between every pair
of vertices. As such, we can label the oriented 1—cells by their endpoints, and they are

{ [Ulv U3]7 [U37 U5]7 [1)57 v1]7 [UQ» U4]7 [’04, UGL [vﬁv vl]v }
[v1, 2], [va, v3], [v3, va], [Va, V5], [vs, ve), [v6,v1] [~

We let {v],...,v§} denote the dual basis of 0-cochains. Similarly, if [v;,v;] is an oriented 1-cell, we let
[vf,v}] denote the dual 1-cochain, thus determining a basis of the 1-cochains.

There are also six 2—cells obtained by gluing the polygons in the figure. Orienting the 2—cells, we can
read off the vertices along the boundary. Since there is at most one 1-cell between any two vertices, this
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ordered list of vertices uniquely determines the loop in the 1-skeleton which is the boundary of the 2—cell.
The boundaries of the 2—cells are:

(’Ul, U3, Us, V4, U2, Uﬁ)a (’Ula V2, Vg, ’Us), (’UQ, V4, Vg, Us, ’Ug), (Ula U3, V4, ’UQ),

('Ug, U5, V1, Vs, U4)7 (vly vs, Us, V1, U2, U3, V1, U, Us, VU4, U3, U2, Vg, U4, U5)

3.2. The BNS-invariant and the stretch function. Recall from [BNS] that the BNS-invariant of our
finitely generated group G is defined to be the subset ¥(G) of the sphere S(G) = (H'(G;R) \ {0})/R,
consisting of those directions [u] for which G’ = [G, G] is finitely generated over a finitely generated sub-
monoid of {g € G : u(G) > 0} (where here G acts on G’ by conjugation—see the remarks following the
Meta-Theorem). It follows from [BNS, Proposition 4.3] that for v € H'(G;R) primitive integral, the ray
[u] is in 3(G) if an only if there exists t € G with u(t) = 1 and a finitely generated subgroup B < ker(u)
such that t7'Bt < B and G = (B, t). Defining ¢: B — B by ¢(b) = t~1bt, we then see that G splits as an
ascending HNN-extension
G = Bxg = (B,t |t 'bt = ¢(b) for all b € B)

that is dual to u (i.e., so that u: G — Z is given by B — 0 and t — 1). Theorem 2.6 (with Remark 2.7) of
[GMSW] shows that in this case B is necessarily a free group. Therefore ¢ is a free group endomorphism and
we may consider its stretch factor A(¢). By Proposition 2.9, A(¢) is independent of the particular choices of
t € G and B < ker(u) and in fact only depends on u; thus we may unambiguously define A(u) := A(¢).

Definition 3.6 (Stretch function). Let us define the rational BNS-cone of G to be the set
@(G} ={uc H'(G;R) : [u] € (G) and u(G) is discrete}.

Given u € @E(G)7 there is a unique k > 0 so that u/ = ku is primitive integral, and we define A(u) := A(u’)*
(with A(u’) as defined above). This gives a well-defined function

A: QY(G) = R,

that we call the stretch function of G. It is a canonical invariant of the free-by-cyclic group G and satisfies
the homogeneity property A(ku) = A(u)'/* for all k > 0.

One of the main goals of this paper is to understand and explicitly compute A on a large part of @E(G)
Along the way, will need the following crucial feature of the stretch function:

Proposition 3.7. The stretch function A is locally bounded. That is, for all u € @(G), there exists a
neighborhood U C QX(G) of u and a finite number R > 0 so that A(u') < R for allu’ € U.

This result will be obtained by expanding on some ideas in [DKL]. As these considerations are somewhat
far afield of our current discussion, the proof of Proposition 3.7 is relegated to Appendix B.

4. THE MODULE OF TRANSVERSALS AND THE MCMULLEN POLYNOMIAL

The flowlines of 1Z intersected with each trapezoidal 2—cell determine a 1-dimensional foliation of X. The
two skew 1—cells of each trapezoid are transverse to the flowlines, and the vertical 1-cells are arcs of flowlines.
The arcs of flowlines in a 2-cell will be called plague arcs. A maximal, _path connected, countable union of
plaque arcs will be called a leaf. We will refer to this decomposition of X into leaves as a foliation of X and
denote it F (we also use F to denote the actual foliation of any 2—cell). This foliation descends to a foliation
on X for which the leaves are the images of the leaves in X , and by an abuse of notation we also refer to
this foliation as F whenever it is convenient to do so.

Recall that the union of the vertical 1-cells is preserved by 1. Moreover, since the vertices of I' C X all
lie on vertical 1—cells, and since the preimages of these vertices under all powers of f form a dense subset of
T, it follows that the set of points that eventually flow into vertical 1—cells form a dense subset of X. This
set is, by definition, a union of leaves, and we refer to these as the vertex leaves of F.

Definition 4.1 (Transversal). A transversal T to F is an arc contained in a 2—cell of X which is transverse
to the foliation F and has both endpoints contained in vertex leaves. We do not view a single point as an
arc.
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Let F(F) denote the free Z-module generated by all transversals 7 to F. Following McMullen, we define
the module of transversals to F, denoted T'(F), to be the largest quotient F(F) — T'(F) in which the images
[T] of transversals 7 satisfy the following basic relations:

(1) [r] =[m1] + [r], if T =7 Ume and 71 N 73 is a single point in a vertex leaf,
(2) [r] = [7'], if 7 flows homeomorphically onto 7’ in the sense that there exists a continuous, nonnegative
real function v: 7 — [0, 00) so that w — Jy(u,)(w) defines a homeomorphism from 7 onto 7.
More precisely, we make the following definition:

Definition 4.2 (Module of transversals). Let R < F(F) be the submodule generated by all elements
T—1 — 7 and T — 7/, with 7,7/, 71, 72 as in the basic relations (1)-(2) above. The module of F is defined
to be the quotient T'(F) = F(F)/R.

The covering group H acts on the set of transversals by taking preimages: given an element h € H and
transversal 7, we have h - 7 = h~!(7). This is naturally a right action, and it is sometimes convenient to
write

T-h=h-7=h" (7).
Since H is abelian, the distinction between left versus right is not important, but taking preimages (as
opposed to images) will be important. This makes both F(F) and T'(F) into Z[H]-modules, where Z[H] is
the integral group ring of H. We also note that the quotient F(F) — T'(F) is a Z[H]-module homomorphism
(not just a Z-module homomorphism).

4.1. The McMullen polynomial. We now define a multivariable polynomial which is analogous to the
Teichmiiller polynomial defined by McMullen in the 3—manifold setting [McM1]. In later sections we will see
that this polynomial invariant encodes much information about cross sections to % and various splittings of
G. The definition relies on the following proposition, which will follow from the results in §10.

Proposition 4.3. The Z[H]-module T(F) is finitely presented.

Choose any finite presentation of T'(F) as a Z[H]|-module, say with m generators and r relations. This
gives an exact sequence
D

Z[H]" Z[H]™ T(F) 0

where D is an m x r matrix with entries in Z[H]. Recall that the fitting ideal of T(F) is the ideal Z < Z[H]
generated by all m x m minors of D, and that this ideal is independent of the chosen finite presentation of
T(F) [Lan, Ch XIII, §10] [Nor].

Definition 4.4 (The McMullen polynomial). Define m € Z[H] to be the g.c.d. of the fitting ideal Z of T'(F),
which is well-defined up to multiplication by units in Z[H] (note that Z[H] is a unique factorization domain).
Explicitly, if py, ..., pr denote the minors generating Z, then we have

m=gced{p € Z} = ged{p1,...,pr}-
Viewing Z[H] as the ring of integral Laurent polynomials in b variables, we can think of m as a Laurent

polynomial which we call the McMullen polynomial of (X, ). Note that this definition depends only on X ,
F, and the action of H.

In the process of proving Proposition 4.3 we will see that m enjoys many of the properties that McMullen’s
Teichmiiller polynomial does for 3—manifolds.

5. CROSS SECTIONS, CLOSED 1-FORMS, AND COHOMOLOGY

We will see that the McMullen polynomial is intimately related to the cross sections of the semiflow .
In fact, these cross sections will play a crucial role in our analysis and understanding of m. To this end, we
discuss here the definitions and general properties of cross sections and the duality between cross sections
and cohomology. Along the way we recall the notion of a closed 1-form on a topological space, and describe
a class of closed 1-forms which interact well with ¥. We then introduce the cone of sections 8§ and give two
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descriptions of it—one in terms of cross sections and the other in terms of closed 1-forms. In Appendix A
we will describe a procedure for explicitly building cross sections dual to certain cohomology classes. This
provides a characterization of the classes in 8§ in combinatorial terms and results in a concrete description of
8 allowing us to prove Theorem A.

5.1. Cross sections and flow-regular maps. Given an open subset W C X (or )~(), we say that a
continuous map 1’: W — Y with Y = S! or Y = R is flow-reqular if for any ¢ € X the map {s € Rxg |
Ps(§) € W} — Y defined by s — n/(¢s(£)) is an orientation preserving local diffeomorphism. With this
terminology, we say that a finite embedded graph © C X is transverse to 1) if there is a neighborhood W of
© and a flow-regular map 7': W — S! so that © = (') ~1(zg) for some z( € S*.

Definition 5.1 (Cross section). A finite embedded graph © C X which is transverse to v is called a cross
section (or simply section) of 1 if every flowline intersects © infinitely often, that is, if {s € Rx¢ | ¢5(¢) € O}
is unbounded for every £ € X. The cross section then has an associated first return map fo: © — O,
which is the continuous map defined by sending § € © to ¥y (€), where T'(£) is the minimum of the set

{s>0] (&) € O}

If © is a cross section, there exists a reparameterization 1)© of the semiflow v such that this first return
map is exactly the restriction of the time-1 map %9 to ©. Explicitly, if K is larger than T/(¢) for all £ € ©,
then we may reparameterize v inside the flow-regular neighborhood W to obtain a semiflow v’ for which the
first return map of O to itself is exactly ;. The desired reparameterization is then given by 19 = 04 K

Proposition-Definition 5.2 (Flow-regular maps representing cross sections). For any cross section © C X
there exists a flow-reqular map ne: X — S! such that © = 7751(0). (Thus the flow-regular map W — St
witnessing the fact that © is transverse to ¥ may in fact be taken to have domain all of X ). We say that
any such ne represents O.

Proof. Note that the function
7€) =min{s >0 | 2() €O} foréec X

is bounded above. Indeed, 7 = 1 on © by construction, and the fact that © is transverse to v implies that 7
is also bounded on an open neighborhood U of ©. As 7 is continuous and therefore bounded on the compact
set X \ U, the global boundedness of 7 follows. This implies that every biinfinite flowline (that is, a map
v: R — X satisfying 9 (y(t)) = (s +1)) must intersect © infinitely often in the backwards direction. Since
every point of X lies on a biinfinite flowline, it follows that

(5.3) x=e2© = | voe®©).

s>0 0<s<1
In particular, we see that 7(£) < 1 for all £ € X and that 7(§) = 1 if and only if £ € ©. The assignment
€+ 1 — 7(£), which is continuous on X \ O, thus descends to a continuous map 7g: X — R/Z = S! that
satisfies 7o (V9 (€)) = s+ne(€) for all ¢ € X and s > 0. This map ne is a local isometry on each ¢®—flowline,
and we also have © = ng 1(0) by construction. Since ¢® is just a reparameterization of 1, it follows that ne
is also flow-regular with respect to the original flow ). g

5.2. Cross sections and cohomology. Every cross section © of 1) determines a homomorphism [0]: G —
Z as follows: Let n’: W — S! be a flow-regular map for which © = (n')~1(x) for some zy € S!. Taking a
sufficiently small neighborhood W’ C W of ©, any closed loop 7: S! — X may then be homotoped so that
t — 1’ (v(t)) is a local homeomorphism on y~(W’). (In fact, one may perform the homotopy by applying
1 judiciously inside W to arrange, for example, that each component of v N W’ is an arc of a flowline).
The value of [O] on « is then equal to the number of components of y~1(W’) on which 7’ o v is orientation
preserving, minus the number on which it is orientation reversing. Alternatively, if no: X — S! represents
© as in Proposition-Definition 5.2, then [0] = (7).

Definition 5.4 (Duality). The cross section © and corresponding integral cohomology class [0] € H!(X;Z)
are said to be dual to each other.
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For any cell structure Y on X, there is a natural way to represent the class [©] by a cellular 1-cocycle
z € ZY(Y;Z): Adjusting © by a homotopy if necessary, first choose a small neighborhood W’ C W of O,
as above, such that W' is disjoint from the O-skeleton Y (9. For each 1-cell ¢ of Y, one may then find
an arc v: [0,1] — Y that is homotopic to o rel do and for which the assignment ¢ — 7’(v(¢)) is a local
homeomorphism on each component of y~!(WW’). The value of the cocycle z on ¢ is then defined, as above,
to be the number of components of y~1(W’) on which 7’ o« is orientation preserving minus the number
on which it is orientation reversing. By definition, z then agrees with [©] on any l—cycle representing a
closed loop in X. Therefore we see that z is in fact a cocycle (since the boundary 97T of any 2—cell T is
nullhomotopic and thus satisfies z(97) = [©](9T") = 0) and that the cohomology class of z is equal to [©)].

Proposition 5.5. A cross section © of ¥ is connected if and only if its dual cohomology class [©] is primitive.

Proof. Let fo: ©® — O denote the first return map. First suppose that © is a disjoint union of £ > 1 connected
components O1, ..., 0. By continuity, fe must map each ©; into some other connected component ©; and
thus determines a self-map < of the set {1,...,k}.

We claim that ¢ must be surjective. To see this, suppose by contradiction that 1 was not in the image
of ¢. It then follows that every flowline {¥s(§) | s > 0, € X} intersects the graph ©; at most once, for
otherwise there would be some point of ©; that was mapped back into ©1 by some iterate of fg. This fact
shows that the subgraph ©' = ©5 U - - - U Oy, which is automatically transverse to 1), is also a section of .
Equation (5.3) then shows that X = Us>0%s(0’); in particular, there exist a point £ € ©’ and a time s > 0
for which ¢(§) € ©;1. This contradicts the assumption that 1 is not in the image of .

Since ¢ is surjective it is also injective and therefore a permutation of the set {1,...,k}. In fact it must be
a cyclic permutation: For each i, the set X; of points £ € X that eventually flow into ©; is connected. If the
action of ¢ partitioned {1,...,k} into multiple orbits, then the corresponding sets X; would give a nontrivial
decomposition of X into disjoint closed subsets, contradicting the connectedness of X. It now follows that
each component ©; of © is it itself a cross section and so determines a dual cohomology class [©;]. However,
it is easy to see that these classes are all equal (for example, by using the fact that /9 (0;) = O(;)) and
thus that their sum [0]; + - - - + [Ok], which necessarily equals [©], is not primitive.

Conversely, suppose that © is connected. Choose a point £ € © and consider the loop v C X obtained
by concatenating the flowline from & to fo(§) with a path in © back to {. Taking a homotopic loop that
is transverse to © (for example, 1.(7y) for some small € > 0) we see that v intersects © once with positive
orientation. Therefore [O]() = 1 showing that [©] is primitive. O

Example 5.6 (The cocycle z1). Let us construct a cross section and dual cohomology class for the running
example. Using the unsubdivided cell structure introduced in Example 3.5 and illustrated in Figure 3.5,
consider the cocycle

21 = [U;,U;] + [U;U;] + Q[UZ,UE;} + [U;,Uﬂ + [U§7U§]-

Evaluating this expression on the boundary of each 2—cell shows that it is indeed a 1-cocycle, and we may
construct a cross section dual to the class [z;] as follows: Place z1(0) vertices along each 1-cell o of X, so
in our case the cells [va,vs], [vs,v5], [vs,v1], and [vg, v2] each get one vertex and [v4,vg] gets two vertices.
Since z; satisfies the cocycle condition, it is possible to “connect the dots” in each 2—cell yielding a graph
O, intersecting X (V) at exactly these points. In this case it is moreover possible, as we have illustrated in
Figure 4, to construct ©; so that it is transverse to the flow. Every flowline of 1 is seen to hit ©; infinitely
often by inspection, so 07 is in fact a cross section. Applying the recipe following Definition 5.4 to ©; yields
exactly the cocycle z1, so ©1 is indeed dual to [z1] as desired.

The abstract graph ©; is illustrated at the right of Figure 4. We note that here we have used the the
standard graph structure of Definition 7.3 to ensure that the first return map sends vertices to vertices.
Following flowlines, we can then calculate the first return map f1 = fo,: ©1 — ©; as indicated in Figure 5.
We thus find that the characteristic polynomial of the transition matrix A(f) is

P - -2
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FIGURE 4. A cross section ©; dual to the class [z1]. The vertices of X are small and the
vertices of ©; are larger.

FIGURE 5. The first return map map f;: ©; — 05 for the section ©; dual to [z;] and the
result of Stallings folds x on the right.

One may also verify directly, or by using Peter Brinkmann’s software package xtrain', that f; is a train track
map (c.f. Proposition 7.7 below).

By applying Stallings folds to the graph in the middle we produce the graph on the right. This folding
operation k is a homotopy equivalence, and f; factors as the composition of x with the locally injective
immersion from the graph on the right into ©;. Since this immersion is locally injective but not injective,
we see see that (f1). is an injective endomorphism that is not an automorphism.

Example 5.7 (The cocycle z2). Here we exhibit another cross section for the running example. Consider
the graph O, illustrated in Figure 6. As in Example 5.6 above, one may verify by inspection that ©, is
indeed a cross section and that its dual cohomology class [©3] is represented by by the cocycle

2 = [UT»U;] + [U§7U§] - [ULU;] - [U;,U;} + [UT,U;} + 2[1}2,1};].

L Available at http://gitorious.org/xtrain
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.. oo

FIGURE 6. A cross section ©2 dual to the class [z5]. Again the vertices of X are small and
the vertices of ©9 are larger.

FIGURE 7. The first return map fo: ©5 — ©Os.

Notice that the cells [vyg, v5] and [vs, vg] cross O2 “against the flow”, that is, in the opposite direction as the
flowlines do. The abstract graph ©2 along with its first return map fo are illustrated in Figure 7. Here we
have again used the standard graph structure from Definition 7.3 to ensure that fo sends vertices to vertices.
Applying Stallings folds to the graph on the right produces a graph with rank 4, showing that (f2). is neither
injective nor surjective. We have also verified, using xtrain, that fo is an expanding irreducible train track
map and calculated that the characteristic polynomial of A(fy) is ¢13(¢% —3¢3 — 3¢ —1).

5.3. Closed 1-forms and cohomology. Cross sections provide a useful tool for analyzing certain coho-
mology classes, however working with cross sections confines us to studying only the integral classes. To
consider more general cohomology classes we must recall some additional machinery borrowed from differ-
ential geometry.

Following [FGS], a closed 1-form w on a topological space Y is a collection of functions

UJZ{OJUZ U%R}UGJ
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defined on some open cover J of Y with the compatibility property that if U NV # () then there exist a
locally constant function Ay so that on U NV, wy (&) = wy(§) + Ap,v(§). We assume that the collection
of functions and open sets are maximal in the sense that any other function on an open set W — R that also
satisfies this compatibility property is already in w. Any collection of functions satisfying the compatibility
condition is contained in a maximal collection which is unique up to addition of locally constant functions,
so we typically ignore this technicality when no confusion arises.

Given a continuous path ¢: [a,b] — Y, take a partition a = ag < a1 < -+ < ar = b such that for all
j=1,...,k 0(laj-1,a;]) C U; for some U; € J. Then we can integrate w over ¢:

k
/610 = Zwu, (a;) — wu, (a;-1).

This integral is independent of the covering used and does not change if we homotope d relative to its
endpoints. In particular, the integral over a null-homologous loop is zero, and in this way a closed 1-form
defines a 1-dimensional cohomology class. If w represents the cohomology class u, then we will sometimes
write w = w" or u = [w]. Another consequence of these observations is that if U is a simply connected open
subset of Y then by the maximality condition on the functions defining w, U is a domain for a function
wy € w.

Closed 1-forms can be added and multiplied by scalars (by applying these operations to the defining
functions on simply connected domains, for example), and hence the closed 1-forms on Y form a real vector
space. If Y is a CW-complex then the map from closed 1-forms to H'(Y;R) is an epimorphism.

Given a continuous function 3: Y’ — Y between topological spaces and a closed 1-form w on Y, we can
pull w back by 3 to a closed 1-form $*(w). This is the collection of functions obtained from the compositions

wy o /B‘B—L(U): Bil(U) —R

and extended to a maximal collection.

For the universal torsion-free abelian cover p: X — X and any closed 1-form w* on X representing
u € H'(X;R) the pull-back & = p*(w") contains a globally defined function 7,: X — R € &*. Composing
with any covering transformation h: X — X, h € H, gives rise to another such function T © h, and these
differ by translation by wu(h)

M © h(&) = 1u(§) + u(h).

That 7, and 7, o h differ by a translation follows from the definition of a closed 1-form. To see that
the translation is by u(h), take a loop v: [0,1] — X in G = m1(X) representing the homology class h.
The covering transformation h sends the initial point & = 4(0) of a lift of v to X to the terminal point
(1) = h(&) and so

i 0 h(E) — Tullo) = Tu(3(1)) — Tu(3(0)) = / o' = [ w =) = ulh).

Conversely, given a function 7, : X >R equivariant with respect to the action of H on R by translation
determined by the homomorphism u: H — R, it is easy to see that this function belongs to the pull-back
p*(w") for a unique closed 1-form w* on X representing u.

5.4. Flow-regular closed 1-forms and sections. We will be interested in closed 1-forms that interact
with % in some meaningful way. To that end, we make the following

Definition 5.8 (Flow-regular closed 1-form). Say that a closed 1-form w is flow-regular provided all the
functions wy € w are flow-regular. If v:(s) = ¥s(§) is a flowline, then the w-height of the arc v¢([0, so]) of
the flowline is defined to be
[ e
¢ ([0,50])

We say that a flow-regular closed 1-form w is tame, if the restriction to every 2-cell is smooth and if the
restriction to each skew 1-cell has finitely many critical points.
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Given a flow-regular closed 1-form w, it is possible to construct another one which is tame and which
represents the same cohomology class. The point is to first adjust w along the skew 1-cells so that it is
smooth with finitely many critical points, but without changing the integral of w over the 1-cell. Then we
further adjust the 1-form over every 2—cell. When convenient we will pass from an arbitrary flow-regular
closed 1-form to a tame one.

For every section O, the integral class [@] may be represented by a closed flow-regular 1-form wl®]. Indeed,
consider a lift of the flow-regular map ne: X — S! to a map

77@ : 5(: — R.
Then for every h € H we have 7jg o h = 7jo + [©](h), and hence 7je determines a closed 1-form w!®! on X.
[©]

Since ng is flow regular, so is g and hence also w!®'.
Conversely, a flow-regular closed 1-form w(®! representing a integral class determines a flow-regular map
ne: X — S! by integrating along paths from a fixed basepoint, and any fiber of this map is a section.
Given this correspondence between sections and integral classes represented by closed flow-regular 1-forms,
the following definition is quite natural.

Definition 5.9 (Cone of sections). Let § C H'(X;R) denote the set of all cohomology classes represented
by flow-regular closed 1-forms. We refer to 8§ as the cone of sections.

The discussion above proves the following.

Proposition 5.10. The integral classes in 8 are precisely the set of classes in H'(X;R) that are dual to
sections of V. a

5.5. Convexity and the A cone. In [DKL] we introduced the nonempty, open, convex cone A C H*(X;R)
containing the epimorphism ug associated to the original splitting G = Fy X, Z and consisting of cohomology
classes that may be represented by cellular 1—cocycles that are positive on all 1—cells of X. We then proved
that every primitive integral class u € A is dual to a cross section of 1) with some nice additional properties.
More precisely, Theorem B of [DKL] gives:

Theorem 5.11. Given a positive cellular 1-cocycle z € Z1(X;R) representing a primitive integral element
u€AC HYX;R) = HY(G;R), there exists a flow-reqular map n,: X — St with (n,)x =u: G — m(SY) =Z
and a fiber ©, = n; (yo) for some yo € St so that
(1) ©, is a finite, connected topological graph such that the inclusion ©, C X is m —injective and such
that m1(0,) = ker(u) < m(X) =G, and
(2) ©, is a section of Y that is dual to u.

From this theorem and basic properties of flow-regular closed 1-forms we deduce the following.

Proposition 5.12. The cone of sections 8 is an open convex cone in H'(X;R) containing A. Moreover, 8
18 the convex hull of the rays through integral classes dual to sections.

Proof. If wy and wy are closed flow-regular 1-forms, then so is tjwy + towy for any t1,t; € Ry, thus 8 is a
convex cone. According to Theorem 5.11, every primitive integral element of A is dual to a section, and
hence the rays through integral classes of A are contained in 8. Since A is an open convex cone, these rays
are dense and in fact A is the convex hull of this set of rays. By convexity of 8, it follows that A4 C 8.

We now prove that 8 is open. Given u € 8, choose a tame, flow-regular closed 1-form w representing u.
The derivative of w along flowlines is well-defined (independent of the choice of function in w since any two
differ by a constant) and we denote it Dyw. Since w is smooth on each 2—cell, Dyw is a continuous function
on X. By compactness, Dyw is bounded above and below by positive constants, and we let € > 0 be a lower
bound.

Next, since A is open, we can choose tame, flow-regular closed 1-forms wy, ..., w, representing elements
of A which form a basis for H!(X;R). Let K > 0 be such that Dyw; < K for all j =1,...,b. Now the set

b
U= w-l—Zejwj lej] < e/(bK) forallj=1,...,b
j=1
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is an open neighborhood of [w] in H*(X;R). Furthermore, Dy (w + 3 €;w;) with |¢;| < ¢/(bK) is bounded
below by € — > |e; K| > € —bKe/(bK) = 0, and hence this closed 1-form is flow-regular. It follows that U is
contained in 8 and hence 8 is open. The last statement of the proposition is now immediate. O

As we will see in Example 8.3, A can be a proper subcone of 8.

6. A HOMOLOGICAL CHARACTERIZATION OF §

In this section we introduce a new cone D C H!(X;R) and investigate its properties. Studying D
ultimately leads to a homological characterization of 8§ and the proof of Theorem A. Let O(v) denote the set
of closed orbits O of ¥. Each O € D(1) may be thought of an integral homology class on X; for emphasis,
we will sometimes denote this class by [O] € H;(X;Z). Since this set of homology classes mimics Fried’s
cone of homology directions [Fri2], we call its dual the Fried cone:

Definition 6.1. The Fried cone of (X,1) is defined to be the set
D={uec H(X;R) | u(O) >0 for all O € O(x))} ¢ H'(X;R).

To further analyze D, we now describe a way to organize the set O(1)) that reveals some additional
structure. Recall that f: I' — I is an expanding irreducible train track map and that the (e, e’)—entry of its
transition matrix A = A(f) records the number of times that the edge path f(e’) crosses the edge e in either
direction. The matrix A(f) has an associated transition graph G(f) whose vertex set is ET' and which has
A(f)(e,ery directed edges from €’ to e for each pair (e,e’) € EI'? = (VG(f))>.

Consider a combinatorial edge path ¢; - - -t in G(f) consisting of directed edges t; from e;_; to e;. Such
an edge path is said to be a circuit in G(f) if ex, = e and all of the vertices e, ..., e, are distinct. Notice
that in this case the edges 1, ..., are also distinct. Let ) denote the set of circuits in G(f). Circuits that
differ by a cyclic permutation of its edges are not considered distinct, thus ¢; - - - t; and to - - - txt; define the
same element of Y. Since G(f) is a finite graph, the set ) of circuits is finite.

Suppose that y = t1---t, € YV is a circuit in G(f) with ¢; directed from e;_; to e;. Then by definition
of G(f), the directed edge t; corresponds to a particular occurrence of e; in the combinatorial edge path
f(ei—1) C T'. Similarly, the entire circuit determines a particular occurrence of e, = e in the edge path
f*(eo) € T. By the linearity of f, there is then a subinterval oo C eg such that the restriction (f*)|, maps
a homeomorphically and affinely onto this particular occurrence of ey in the edge path f*(ej). The map
f¥|a: o — ep then necessarily has a unique fixed point p € o, and we let

Oy ={¥s(p) | s 2 0} ={s(p) [0 < s <k}
denote the closed orbit of ¢ through p € I' C X. Notice that this orbit is independent of the cyclic ordering
on the directed edges t1,...,tx of the circuit y. For each y € ) we thus have a well-defined closed orbit

o, C X.
More generally, each closed combinatorial edge path w = t; -t in G(f) (not necessarily embedded)
determines a closed orbit O,, in the same way. Conversely, any closed orbit of ) crosses a sequence ey, ..., e

of edges of I' C X and so determines a closed combinatorial edge path in G(f). Thus we have a surjective
function from the set of closed edge paths in G(f) (up to cyclic permutation) to the set of closed orbits O(1));
this function is a bijection off the preimage of closed orbits through vertices of T'.

Lemma 6.2. Given any closed edge path w in G(f), we may write w as a union of circuits w =y, U---Uy,
with y1,...,yn € Y and correspondingly write [O,,)] as the sum

(O] = [Oyl} +eet [Oyn] € Hi(X;Z).

Note that since [w] = [y1] + -+ + [yn] € H1(G(f); Z), it follows that the function from closed edge paths
in G(f) to O(¢) descends to an additive map on the level of homology.

Proof. If w =ty -- -ty is already a circuit, then there is nothing to do. Otherwise, we decompose w as a union
of circuits in the following recursive way. Let w; = w. Since w; is closed, there must exist a subpath ¢; - - - ¢;,
for some 1 <1 < j <k, that is a circuit. In this case, we may ‘factor out’ the subpath y; =1¢;---t; € Y to
obtain a shorter closed path wy = t;---t,_1tj41 -t in G(f). Since wy is again closed, we may factor out
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another circuit y, € Y giving yet a shorter closed path ws. This process continues until we reach a closed
path w, that is itself a circuit y, = w, € Y.

On the level of homology, we may perform an analogous factoring procedure to the orbit O, C X.
Specifically, we note that the closed orbits O, and O,, start on some edge e of I', cross the same set
of edges (and at the same occurrences inside iterates of f on e) before returning back to e when O,
closes up. At this time O, switches and starts crossing the same edges as O,,, finally returning to e
as both O, and O,, close up. Thus, the closed orbit O, is homotopic to a closed curve constructed
out of the closed orbits O,, and O,, together with a collection of subarcs of the edge e. In particular,
[Ow] — [Oy,] — [Ow,] € Hi(X;Z) is represented by a cocycle contained in e which one may check is null
homologous, and hence [O,] — [Oy,] — [Ow,] = 0 € H(X;Z). Repeating this procedure for [O,,] and
continuing recursively, we obtain the desired formula

[Ow] =[Oy, + - + [0y, ]. O

As a consequence, we see that D can be defined by requiring positivity on only finitely many orbits
(compare [Fri2, Theorem I] and [Wan, Theorem 1.6]).

Proposition 6.3. The Fried cone D is given by
D= {uec H(X;R) | u(Oy) >0 for ally € V}.
In particular, D is an open, convez, polyhedral cone with finitely many rationally defined sides.

Proof. Since {Oy}ycy C O(1), the set in question clearly contains D. For the other containment, we suppose
u(O,) > 0 for all y € Y and prove u € D. Every closed orbit O € O(¢)) has the form O, for some closed
path w in G(f). By Lemma 6.2 we may then write [O,] = [Oy,] + - -+ + [0y, ], from which we obtain

u(Oy) =u(Oy,) + - +u(0,,) > 0.
This proves the first claim of the proposition. The second claim is an immediate consequence of the first. [
Integrating a closed, flow-regular 1-form over a closed orbit yields a positive number, and hence we have
Proposition 6.4. The Fried cone contains the cone of sections: 8§ C D.

Proof. Given any class u € §, we can represent it by a closed flow-regular 1-form w = w*. For any closed
curve v we then have u(y) = f7 w®. In particular, for each closed orbit O € O(1)), this gives

u(0) = / w* >0
o
by flow-regularity. Therefore u € D. a

We will see that the containment in this proposition is actually an equality. Proving this fact requires
that we construct a section dual to any integral class u € D. This is a fairly technical construction which
we carry out in Appendix A; see Proposition A.12. With this result in hand, we may now prove Theorem A
from the introduction.

Theorem A (Cone of sections). There is an open convexr cone 8 C HY(X;R) = HY(G;R) containing A
(and thus containing ug) such that a primitive integral class uw € H*(Xs,R) is dual to a section of i if
and only if u € 8. Moreover, 8 is equal to to the Fried cone D, and there exist finitely many closed orbits
O1,...,0% of ¥ such that u € H(X;R) lies in 8 if and only if u(O;) > 0 for each 1 < i < k. In particular,
8 is an open, convezx, polyhedral cone with finitely many rationally defined sides.

Proof. The first assertion follows from Propositions 5.10 and 5.12. According to Proposition 6.4, we have
8 € D. On the other hand, Proposition A.12 shows that all rational points of D are contained in 8. Since D
is the convex hull of its rational points, we also have D C §, and thus § = D as claimed. Taking the finite
set of closed orbits {Oy, ..., O} to be {O,},cy, the remaining claims then follow from Proposition 6.3. O
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7. THE ALGEBRA AND DYNAMICS OF CROSS SECTIONS TO ¥

In this section we study the first return maps to cross sections of 1. While technical considerations require
that we restrict to certain nice cross sections, this is not a serious restriction as every integral class in 8 is
seen to be dual to such a section. In §7.2 we go on to describe how each of these first return maps, which need
not be homotopy equivalences, gives a realization of G as an HNN-extension. This discussion culminates in
the proof of Theorem B.

7.1. First return maps. Topologically, a cross section is merely a subset © = (1) ~!(x), for some flow-
regular map n’: X — S! and z¢ € S!, which abstractly has the structure of an embedded topological graph.
To aid in our analysis of the first return map fg, here we describe a topological graph structure on © that
is tailored to the complex X and flow 1. We then show that © moreover supports a linear graph structure
with respect to which fg is an expanding irreducible train track map.

Suppose that ’: X — S! is a flow-regular map and that © = (') ~1(x) is a cross section of 9 for some
xp € St Tt follows that for each x € S' the subset ©, := (1')~!(x) is again a cross section and that all of
these cross sections {O; },est are homotopic to each other.

Definition 7.1 (Compatible cross section). A cross section © C X is said to be compatible with the foliation

F (or more succinctly F—compatible) if © N X (1) consists of a finite set of points that all lie on vertex leaves
of F.

Remark 7.2. Since the union of vertex leaves of F is dense in X, it is always possible to adjust any given
cross section by a homotopy so that it is F—compatible. Nevertheless, when we construct cross sections in
§A.6 below, we will explicitly arrange for the constructed cross sections to be F—compatible.

Every F—compatible cross section may be equipped with a convenient topological graph structure:

Definition 7.3 (Standard graph structure). Let © be an F—compatible cross section. The standard (topo-
logical) graph structure on © is then defined as follows. Firstly, ©® naturally inherits a topological graph
structure in which the (finite) vertex set is © N X and every edge is an embedded arc in the interior of a
2—cell of X. We subdivide this initial graph structure by declaring the vertex set of © to be

ve=|(Jv.0nxW)|ne.

s>0

Since F—compatibility ensures that each point £ € ©NX M lies on a vertex leaf and thus that the ¢—orbit of &
eventually becomes periodic, we see that this is indeed a finite subdivision making © into a finite topological
graph.

Remark 7.4. We emphasize that when an F—compatible cross section © is equipped with its standard
graph structure, then each edge of © is an embedded arc contained in a 2—cell of X with both endpoints
lying in vertex leaves of F. In particular each edge of © is a transversal to F; this fact will play an important
role in §10 below.

With these definitions, the arguments from [DKL, §7] establishing [DKL, Theorem C] essentially go
through verbatim to prove that the first return map to an F-compatible cross section is an expanding
irreducible train track map. Rather than repeat the entire proof, here we briefly go through the argument
while recalling the relevant results from [DKL].

Lemma 7.5. Let © be an F—compatible cross section equipped with its standard graph structure and first
return map fo: © — ©. Then for alln > 1 the map f§ is locally injective on the interior of each edge of
©. Moreover, fo(VO) C VO, and fo is a reqular topological graph map.

Proof. The fact that fo(VO) C VO is ensured by the definition of the standard graph structure (Defini-
tion 7.3). Lemma 7.2 of [DKL] shows that for every arc a: (—d,0) — o in the interior of a 2—cell o of X and
transverse to the flow 1, the assignment (¢, s) — 1s(a(t)) defines a locally injective map (—4,9) x R>g — X.
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Since each edge of © is by construction an embedded arc contained in the interior of 2—cell and is trans-
verse to 1), the proof of [DKL, Lemma 7.3] goes through verbatim to establish the remaining claims of the
lemma. O

Lemma 7.6. Let © be an F-compatible cross section equipped with its standard graph structure. Then
there exists a linear structure on © with respect to which fo: © — © is a linear graph map with irreducible
transition matriz A(fe) and spectral radius M\(fo) > 1.

Proof. By assumption, the original map f: I' — I' defining the folded mapping torus X is an expanding
irreducible train track map. The proof of [DKL, Lemma 7.4] thus shows that the topological graph map
fo: © — O is “expanding on all scales” (see Appendix A.2 of [DKL]). It then follows from [DKL, Theorem
A 3] that there exists a linear structure A on © with respect to which fg is a linear graph map, the transition
matrix A(fg) is irreducible, and the spectral radius A(fg) is larger than 1. d

Proposition 7.7. Let © be an F—-compatible cross section equipped with the linear graph structure provided
by Lemma 7.6. Then the first return map fo: © — O is an expanding irreducible train track map.

Proof. By Lemmas 7.5-7.6 we know that fo is a regular linear graph map for which A(fe) is irreducible,
A(fo) > 1, and for which each iterate f§ is locally injective on each edge of ©. To prove that all iterates
of fo are locally injective near the degree-2 vertices of ©, we can follow the proof of [DKL, Lemma 2.12]
verbatim with one difference: the assumption that the map was a homotopy equivalence was only used to
guarantee that it was surjective. Here surjectivity of fg is immediate from the fact that A(fg) is irreducible.
Therefore the linear graph map fo: © — O satisfies all the conditions of being an expanding irreducible
train track map, and so the claim holds. |

Convention 7.8. Henceforth, for any primitive integral element u € 8, we let 7,: X — S' denote any
flow-regular map whose induced map on fundamental group is (1,)« = u: G — Z and whose fiber 0, C X
is an F-compatible cross section. Note that such a map 7, always exists by Proposition A.12. We equip ©,,
with the standard graph structure; the first return map f, = fo,: ©, — 0, is then an expanding irreducible
train track map by Proposition 7.7. Lastly, we use ¥* to denote the the reparameterized semiflow for which
the restriction of the time-1 map % to ©,, is exactly f,.

7.2. Sections and Endomorphisms. Here we explain how every section O of ¢ gives rise to splitting of
G as a (possibly ascending) HNN-extension

(7.9) G = Qel*ope

of a finitely generated free group Qe along an injective endomorphism ¢e; with respect to which [0]: G — Z
is exactly the natural projection Q[@]*¢[e] — Z sending the stable letter to 1 and Qg) to 0. This general
situation should be compared with the special case [0] € A, where Theorem 5.11 shows that we can find ©
so that in the splitting (7.9) we can take Qo] = m1(©) and let ¢g) = (fo)« be the isomorphism induced by
the first return map.

Let u € 8§ be any primitive integral class with dual cross section ©, as in Convention 7.8. Choosing
a basepoint v € ©, and a path § C ©, from f,(v) to v, we then let (f,)«: m1(Oy,v) — m1(O,,v) be
the endomorphism defined by (f.)«(y) = B8f(7)B~ L. If we let 7, € G = m1(X,v) be the loop obtained
by concatenating the flowline from v to f,(v) with 3, it then follows that u(7r,) = 1 and therefore that
the conjugation g + 7, 1g7, defines an automorphism ®, € Aut(ker(u)) representing the monodromy ¢,,.
Furthermore, the splitting (3.2) gives a realization of G as the HNN-extension G = ker(u)xg, for which the
natural projection is u: G — Z

The inclusion ¢: ©, < X now induces a homomorphism

st T1(Oy,v) = ker(u) < m(X,v) =G

that semiconjugates (fy)« to ®,. Despite the fact that ©, need not m—inject into X and that (f,). need
not be an automorphism, van Kampen’s Theorem still applies to yield the following:
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Lemma 7.10. Let ©,, be a section of 1. Then, with the above notation, the homomorphism t.: 71 (0, v) —
ker(u) induces an isomorphism

(11(0u,v),r | r7iyr = (fu)e () for all ¥ € m1(Oy,v)) — ker(u)*g, = G
with respect to which u: G — Z is given by sending w1 (©,,v) to 0 and r to 1.

We can now prove Theorem B. For the statement, recall that the stable kernel K, of an arbitrary en-
domorphism ¢: W — W was defined in §2.4 and that ¢ naturally descends to a homomorphism ¢ of the
corresponding stable quotient W/ K.

Theorem B (Splittings and ascending HNN-extensions). Let u € 8 be a primitive integral class with F
compatible dual section ©, C X and first return map f,: O, — O,. Let Q. be the stable quotient of (fy)«
and let ¢, = (fu), be the induced endomorphism of Q. Then

(1) fu is an expanding irreducible train track map.
(2) Qu is a finitely generated free group and ¢y : Qu — Qu is injective.
(3) G may be written as an HNN-extension

G= Qu*¢u = <Qua r | 7'_1qT = ¢u(Q) for all q € Qu>

such that u: G — 7Z is given by the assignment r — 1 and Q,, — 0.

(4) If J, < ker(u) denotes the image of m1(©,) induced by the inclusion O, — X, then there is an iso-
morphism Q. — J,, conjugating ¢, to ®,|;, for some automorphism ®, € Aut(ker(u)) representing
the monodromy @, .

(5) The topological entropy of fu is equal to log(A(¢y)) = log(A(Py]s,)) and also to log(A(uw)).

(6) ker(u) is finitely generated if and only if ¢, is an automorphism, in which case we have ker(u) = Q,
and that @, = [¢y] € Out(Qy).

Proof. We use the notation introduced before Lemma 7.10 and, in particular, implicitly use v € 0, as a
basepoint and take ®, € Aut(ker(u)) to be conjugation by 7, € m(X) = G. Then ®, represents the
monodromy ¢, € Out(ker(u)). Item (1) was established by Proposition 7.7, and by Proposition 2.2 this
further implies that the topological entropy of f, is equal to log(A((f.)«)). Corollary 2.8 then implies item
(2) and additionally proves A(¢.) = A((fu)«), thus establishing the first part of (5). The remaining assertions
AMdw) = MNPy s,) and A(u) = A(¢y,) of (5) will follow from items (4) and (3), respectively.

Since ¢y : m1(0,) — ker(u) semiconjugates (fy)« to @, which is injective, it follows that the stable kernel
K(s,). is contained in ker(c,). Therefore ¢, factors through the stable quotient @, thus yielding a pair of
homomorphisms

m1(0y) = Qu — ker(u).

Since these homomorphisms respectively semiconjugate (fy)« to ¢, = (fu), and ¢, to ®,, they induce
canonical homomorphisms

m(@u)*(m* — Qu*g, — ker(u)xg, = G

that respect the natural projections of these groups to Z. The above composition is an isomorphism by
Lemma 7.10, and thus each map is itself an isomorphism. This proves (3). Since @, embeds into Q. *4,,
this furthermore implies that @, — ker(u) is injective. Therefore @, — ker(u) is an isomorphism onto its
image which, by definition, is equal to J,. This isomorphism establishes (4).

It remains to prove (6). The fact that u: G — Z is the natural projection Qq*4, — Z defined by r — 1
and @, +— 0 implies that ker(u) is equal to the normal closure ncl(Q,) of @, in G. The HNN-extension
presentation G = @y *4, further implies that ncl(Q.) = UsZyr" Qyur~". Thus if ¢,, is an automorphism, then
ker(u) is equal to @,, and is thus finitely generated by (2). On the other hand, if ¢, is not an automorphism,
then ¢, : Q. — @, is necessarily non-surjective (by (2)) and thus ncl(Q.) = USZyritQyr, ™ is the union of
an infinite strictly increasing chain of subgroups of ker(u). This shows that ker(u) is not finitely generated
and completes the proof of (6). a
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Example 7.11 (The ascending HNN-extension for u; = [z1]). Let us calculate the splitting described by
Theorem B(2) for the homomorphism u; = [21], where

21 = [v3,v3] + [v3, v5] + 2[vg, vg] + [v5, vi] + [vg, v3]
is the cocycle introduced in Example 5.6. Recall from equation (3.4) that in our running example G has the
two-generator one-relator presentation
(7.12) G=(y,r |y ey ey e ey T = 1),

Thus we may apply Brown’s method [Bro] to compute the kernel ker(u;) and corresponding monodromy
©1 = @y, . Working in the unsubdivided cell structure on X, the loops v, C X generating G may be realized
as 1-chains

v = [[Ul,vg] + [v2, v4] + [v4, v5] — [V3, v5] — [1}1,’[}3]:| and r = [[vl,vg] + [vs, vs] + [U57U1]}.

Pairing these with z; we find that u;(y) = —1 and u;(r) = 2. Setting 8 = 72 and 7 = y~%, we therefore

have u; (7) = 1 and u1(8) = 0. Conjugating k > 7~ 1k7 by 7 thus yields an automorphism ®; € Aut(ker(u;))
representing the monodromy ;. Noting that v = 77! and r = 372, we may rewrite the defining relation of
(7.12) in terms of the generators § and 7 to obtain the following presentation for G:

G = (8,7 | 767 BB~ r prpr T a2 ),
We now represent G as an HNN-extension of another one-relator group, following the method introduced

by McCool and Schupp [MS]. For each i € Z denote 3; = 7~!47%. Then the defining relation above may be
rewritten as

B1B-aB3B-aB-sB_1B 3B, = 1.
Hence we can rewrite the above presentation of G as

(7.13) G= <5—5 s Bos T B1BoaBsB-af-5P"3B 305" = 1. >

T8 = Biyy fori=—5,..., -1

Consider now the one-relator group

B = {(B_5,....00 | B_1B-aBZ2B-aB_5B_4B=35;")-

By Magnus’ Freiheitssatz theorem for the one-relator group B, the subgroups L = (8_5,...,6-1) < B and
J ={(B_4,...,580) < B are free groups of rank 5 and the indicated generating sets of L and .J are their free
bases. Hence the map ¢;: L — J, sending §; — B;41 for i = —5,...,—1 is an isomorphism. Moreover, since
the defining relation of B implies that Sy = ,8_1,6’_45:515_46_56;15:%, we see that the generator 5y may
be eliminated from the presentation of B and thus that L = (5_s,...,_1) is in fact equal to B. Therefore
¢1: L — J is actually an injective endomorphism ¢, : B — B of the rank-5 free group B. This shows that
the presentation (7.13) gives a splitting of G as an HNN-extension

G = Bxg, = (B, 7| 771 = ¢1(b) for b € B).

Note that with respect to the free basis B = (f_s,...,_1), the injective endomorphism ¢, is given by
$1(B-1) = B1B-aB 2B_4B_58"48"5 and ¢1(B;) = Piy1 for i = —5,...,—2. Using the Stallings folding
method [KM, Sta] we find that ¢; is not surjective: The fact that S_5 occurs in ¢1(5-1) twice leads to the
conclusion that the rose with petals labelled by the words ¢1(8-5),...,®1(8-1) does not fold onto the rose
with petals labelled 8_s,...,_1. Therefore (7.13) is a strictly ascending HNN-extension presentation of G
with base B = F(8_s,...,8-1) and stable letter T along the injective but non-surjective endomorphism ¢,
of B.

It follows that ker(uy) is not finitely generated because it equal to the infinite union nelg(B) = U7 BT
of a strictly increasing chain of subgroups. We also note that the free group endomorphism ¢; is just the
restriction ®1|p of ®; to B < G. Using the software package xtrain, one may verify that ¢; does admit
an expanding irreducible train track representative and that the spectral radius of the transition matrix for
this train-track representative is ~ 1.35827. By Proposition 2.2 we may thus conclude that ¢; has a stretch
factor of \(¢1) ~ 1.35827.

—i
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Remark 7.14. In light of the proof of Theorem B, one may also see that ker(u;) is infinitely generated by
noting, as we have done in Example 5.6, that the first return map f; induces an injective but not surjective
endomorphism (f1). of m1(©1): The fact that (f1). is injective implies that its stable kernel is trivial and
that ©; m—injects into G. Thus the HNN-extension provided by Theorem B(2) is simply

G = 71'1(61) *<f1)* .
Therefore, as (f1). is not surjective, Theorem B(6) implies that ker(u;) is not finitely generated.

Example 7.15 (The splitting for us = [22]). Let us also calculate the splitting of G for the homomorphism
u2 = [22] determined by the cocycle

Z2 = [ULU;] + [’U;,’Ug] - [’ULUS] - [’Ug?vg] + [UT»U:’;] + Q[Ugvv;]

introduced in Example 5.7. Again, by realizing the generators v, € G as 1—cycles and pairing with 25, we
find that ua(y) = —1 and us(r) = 1. Setting 8 = ry and 7 = 7™, we may rewrite the presentation (7.12)
for G in terms of the generators S and 7 as we did in (7.13) above to find that

B_1B_3B1B% 3B 3B 18, =1, >

7718 = Biyy for i =—4,...,—1

(716) G= <ﬂ—4»---7ﬁ077-

where we again denote 3; = 77¢37¢ for i € Z. Setting

B/ - </6747 .. '750 ‘ /871/8735:;1&33/8:21/6:%/3071%

Magnus’ Freiheitssatz now tells us that the subgroups L' = (f_4,...,8-1) < B’ and J' = (8_3...,00) < B’
are freely generated by the indicated generating sets and that the assignment §8; — B;41 for i = —4,..., -1
gives an isomorphism ¢o: L' — J’. However, as the generator 3y of B’ is evidently superfluous, we in fact
have L' = B’. Thus ¢ is actually an endomorphism ¢o: B’ — B’, and with respect to the free basis B’ =
(B_4,...,B_1) it takes the form ¢o(8_1) = B_18_3B"18%3B8"38"1 and ¢o(Bi) = Biy1 for i = —4,...,—2.
Here the Stallings folding method shows that ¢ is both injective and surjective, and therefore (7.13) presents
G as an HNN-extension G = B’x4, over the free base group B’ along the automorphism ¢,. It now follows
that ker(ug) = B’ is finitely generated and in fact has rank 4. Theorem B then implies that ¢ represents
the monodromy o = ¢,, € Out(ker(us)), and the program xtrain calculates that the stretch factor here is
Ap2) = A(d2) ~ 1.632992.

8. CROSS SECTIONS AND HOMOLOGY

In this section we return our attention to the abelian group H = H;(G;Z)/torsion and describe bases for
H and associated coordinates systems on H!(G;R) = H!(X;R) that are tailored to each integral class u € 8.
Viewing a given primitive integral class u € § as a surjective homomorphism G — Z, we let X'u — X denote
the infinite cyclic cover corresponding to the kernel of u. The inclusion ©,, — X lifts to an inclusion ©,, — X,
since m1(0,,) < ker(u). Because H is the maximal, abelian, torsion-free quotient of G, the homomorphism
factors as a composition G — H — Z, and we let H,, < H denote the kernel of this homomorphism H — Z.

Observe that H, is the image in H of m1(X,) = ker(u) < G under the homomorphism G — H. In fact,
we claim that H, is the image of 7 (0,,) (if u € A, then m(0,) = m(X,,) and this is obvious). Before we
prove the claim, we note that m(0,,) is only well-defined up to conjugacy in general, but any two conjugates
have the same image in H. Now, given an arbitrary element [a] of H,, let o be a loop in X, sent to [o].
Lifting the semiflow ¥ to )?u we flow « into some lift of ©, in )?u, producing a loop o’ in some lift of ©,,,
freely homotopic to a. Pushing down to X, we find [a] = [o/] € H,,, and hence [¢] is in the image of 71 (©,,),
as required.

Write p: X - X, let @u =p71(0,) C )~(, and let éu denote some component. Since X - )~(u is the
cover corresponding to the kernel of 7 ()?u) — H,, and m1(0,) maps onto H,, H, is precisely the stabilizer

in H of éu Furthermore, H/H, is the covering group of X,, — X, and so H/H,, = Z. It follows that there
is a (noncanonical) splitting H = H,, @ Z. Since H has rank b, H,, has rank b — 1.
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A useful alternative way to describe this splitting is the following. Consider the subgroup of cohomology

fixed by f,, denoted
HY(0,;2)" c HY(0.,;2).

Given a homotopy class « of loops in ©,, evaluating cohomology classes on « defines an element of
Hom(H'(©,;7Z)’«,7). This is a quotient of H;(0,;7Z), and in fact it is the maximal quotient on which
fu acts trivially. On the other hand, the inclusion ©, C X induces a map H;(©,;Z) — H, and it is
straightforward to check that this map factors as a composition Hy(0,;Z) — Hom(H'(0,;Z)/,Z) — H.
Moreover, this second map is actually an injection, so since Hq(0O,;Z) is the abelianization of m1(0,,), from
the discussion above, we have a natural isomorphism

H, = Hom(H(©,;7)", 7).

We choose a basis si,...,s,—1 for H, and w € H a generator for the complement. Here the group
structure is additive, but it will also be convenient to have a multiplicative basis. Specifically, we let
ti,...,tp—1,2 € H1(X;R,), be given by t; = e and x = e". Formally, this just means that ¢; and =
are the images of s; and w, respectively, under the isomorphism H;(X;R) — H;(X;R,) determined by
the isomorphism of coefficient groups exp: R — R;. When convenient we write s = (s1,...,8p—1) and
t =e% = (t1,...,tp—1). In this way, the integral group ring of H is naturally identified with the ring of
Laurent polynomials

ZUH) =TI o) = 2l o)
It is also convenient to think of ¢1,...,¢,—1, 2 as generators for the covering group Hof X — X, and we will
do so. Finally, we assume that the generator 2 is chosen so that it translates X positively with respect to 1/)
It will be convenient to have a concise means for referring to all of these choices, so we make the following

Definition 8.1. Given a primitive integral class u € § with dual cross section ©,,, we say that the splitting
H = H, ® 7, and associated bases s,w and t = e®,x = " described above are adapted to u.

Convention 8.2. The pairing between homology and cohomology allows us to view the homology classes
$1,...,8p_1,W,11,...,ty_1, > as real-valued functions on H*(X;R). In fact, (s,w): H(X;R) — R® are linear
coordinate functions, and in these coordinates
u = (s(u),w(u)) = (0,1).
Furthermore, the formal expressions t = e® and x = e" can be interpreted as a functional relation
1 1 . b
(t,z) = (e®,e’): H (X;R) = R},
The bases t and t,z for H, and H, respectively, determine isomorphisms of integral group rings with

rings of integral Laurent polynomials:

ZIH,) = 2t =zt . )
and

ZIH) = 26, o = 2 g 2.

Whenever we have chosen bases adapted to u, we will freely use these identifications.
Example 8.3 (The cones A C 8). Let us return to the running example introduced in Example 3.3. If we
take up to be the homomorphism associated to the original splitting G = Fx X, Z, then ©,, is the original
graph I' shown in Figure 1. Let Hy = H,, as above giving rise to the splitting H = Hy ¢ Z. Here Hy < H
is the cyclic group (t) generated by the image of either v, 72, or v3 € G under G — H = G, and its

complement Z = (x) is generated by the image of the stable letter r € G.
Let s,w be the corresponding additive elements with e®* =t and e* = x, which we represent by 1-cycles

s = [[vl,vg] — [va,v3] — [vl,vz]} and w = [[vl,vg] + [vs,vs] + [v5,v1]}.

Using (s, w) as coordinates on H'(X;R) we can express the classes ug, 1y, us as
Ug = (O, 1)7 uy = (71,2), Uy = (71, 1).
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FIGURE 8. The cones A C § C H}(X;R) for our running example.

All of these classes are dual to cross sections (see Examples 5.6-5.7) and are therefore contained in 8. By
construction we also know that A contains ug. On the other hand, since ker(uy) is infinitely generated (see
Example 7.11) we necessarily have u; ¢ A. This gives us some information about A and 8, and we may in
fact calculate these cones explicitly as follows.

First recall that every class in .4 may be represented by a positive cocycle on the unsubdivided cell
structure. We note also that the coboundary operator §: C1(X;R) — C2?(X;R) is linear, and hence that
finding 1-cocycles that represent points on the boundary of A amounts to finding ¢ € C'(X;R) that maxi-
mizes/minimizes the linear function ¢ — ¢([v1,v3]—[va, v3]—[v1, v2]), subject to the system of linear equations
and inequalities

0(c) =0,
c([v1,vs] + [vs, vs] + [vs, v1]) = 1,

c([vi,v;]) > 0, for all ¢, j with [v;,v;] a 1-cell.
Here the first equation corresponds to the requirement that ¢ be a cocycle. The third inequality is the
requirement that the cocycle is nonnegative. The second condition is a normalization that the cocycle
evaluates to 1 on w. The function we are trying to maximize/minimize is the s—coordinate, and so if A
contained the ray through (1,0) or (—1,0), then there would be no maximum or minimum, respectively,
subject to the constraints. This is a linear programming problem that can easily be solved in Mathematica
or by hand. Doing so, we find that the the minimum and maximum values of the s—coordinate subject to
these constraints are —1/2 and 1/2, respectively. The A cone is therefore as illustrated in Figure 8, and we
note that u; in fact lies on its boundary 0.A.

We now calculate 8 using the homological characterization given by Theorem A. Following the explicit
construction of §6, we find that in the case of our running example the finitely many closed orbits O;
appearing in the statement of Theorem A consist of 7 closed loops which are freely homotopic in X to the
following 7 elements of 71 (X) = (y1, 72,73, 7):

{ T’Y;;I’Yfl, TzW;;lVflV;l, ’1“2%;1, 7”3, }
e T e e TH :
In terms of the additive basis {s, w}, the images of these elements in H are
(=2,1), (-3,2), (-1,2), (0,3), (—1,4), (-3,3), (—2,3).

The cohomology classes u which are positive on all of these vectors are exactly those whose (s, w)—coordinates
satisfy both w(u) > 0 and w(u) > 2s(u); such classes comprise the cone of sections 8§ and are illustrated in
Figure 8.

Remark 8.4. When u € A, Theorem 5.11 ensures that ker(u) is finitely generated. However, Theorem B
makes no claims about the finite or non-finite generation of ker(u) when u € 8 \ A. Indeed, since ker(uy) is
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infinitely generated and ker(uz) is finitely generated (see Examples 7.11 and 7.15), the above Example 8.3
illustrates that both outcomes are possible for classes in 8 \ A.

9. GRAPH MODULES

Here we describe another, more combinatorial module that will connect the McMullen polynomial to the
geometry of splittings of G. Let 1,/}“ be the lift of the reparameterized flow ¥* = ¥®+ so that wl maps 0. to
x(@u) (recall that x € H is a generator for the complement of H,, which translates positively with respect
to 1;“) Thus z~! o 1/)1 restricts to a graph map on @u, in fact, 271 o 1/) is just a lift of the first return map
fu: ©y — O, of the flow ¢¥* to ©,, C X.

The covering group H acts on (unoriented) edges of (:)u7 as with transversals, by taking preimages, so
that h € H acts on an edge e by

h-e=e-h=h"t(e).

We can organize the edges of ©,, nicely as follows. Let E = {71,...,5,,} denote the set of (unoriented)
edges of ©,. For each &; we choose an edge o; € p~1(5;) contained in éu, and we denote this set by
E ={01,...,0m}. Because the action of H is free, we see that the action on every orbit is also free. Thus
the free Z module on the set of edges of ©,, which is naturally a Z[H]-module, can be identified with the
module

ajh € 7. with ajn =0

for all but finitely many h

H]E Z Z ajnh-o;

j=1heH

Furthermore, since the elements of F were chosen to lie in éu, we see that the set of edges in éu is naturally
identified with the H,—orbit of F, and hence the free Z-module on the edges of 6u is premsely Z[H,)".

We now define the module of G)u7 denoted T(@u)7 to be the largest quotient Z[H]® — T(@u) in which
the image [e] of any edges e satisfies the relations

le] = [e1] + ... + [ex],

where the edge path J}‘(e) = ey - - ey is the image of e under J% We refer to these above relations as the
basic relations of T'(0,). More precisely:

Definition 9.1 (Module of éu) Let M < Z[H]F denote the submodule generated by all elements of the
forme—ey —---—eg, with e, e1,..., e, as above. Note that the set of such elements is preserved by H. The
module of ©, is defined to be the quotient Z[H]-module T(0,,) = Z[H|¥ /M.

9.1. Connection to transition matrices. Here we develop an alternate description of the module T’ ((:)u)
closely related to the transition matrix of f,, ultimately culminating in a finite presentation. Let t =
t1,...,tp_1,x be a multiplicative basis for H adapted to u as in Definition 8.1. For each edge e € éu, trans-
latmg the edge path Pi(e) = e - ~ep by x” ! gives a new ‘edge path s loyt(e) =¢, - e, =z ey ep),
which now lies in ©,,. Since 2~ ! o 1/)1 (e) = 1/;“( Le)) = w}‘(x e), the corresponding basic relation becomes

z-le] = [er] + ...+ [ef].

Now, for e = 0; € E, if we rewrite the sum on the right as a Z[H,|linear combination of the edges in E

this relation becomes
-loj] =) Aij-[oil.
i=1

This gives a matrix A = (A;;) with entries in Z[H,]; to clarify the dependence on u, we may sometimes
write this matrix as A, = (Ay,;). Given the isomorphism with the ring of integral Laurent polynomials
Z[H,] = Z[t*], A, becomes a matrix A, (t) with coefficients in Z[t*'].

Observe that 27! o {/}vf is a lift of the first return map f,: ©, — ©,, and so the following is not so
surprising.
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Proposition 9.2. For every primitive integral u € 8, the integral matriz A, (1), obtained by evaluating
Au(t) att =1=(1,...,1), is exactly the transition matriz of the train track map f,.

Proof. The (i,j)—entry of A, is a Z-linear combination of edges in the H,—orbit of ;. Moreover, for each
edge e € Hy, - 0;, the coefficient of e in A, ;; is the number of times the path x 1 o{ﬂ(aj) crosses e. As these
edges are exactly those which project to the edge &; in ©,, the sum of these coefficients (namely A, ;;(1))
is just number of times that the projected path p(z~! o {Ef(aj)) C O, crosses ;. But this projected path is
exactly f,(d;), and so the number of times it crosses &; is given by the (4, j)-entry of the transition matrix
for fy. a

Furthermore, as the submodule M < Z[H]¥ of relations defining T'(©,) is generated, as a Z[H]-module,
by the elements

m

X - O'j — ZA”(t) 0
i=1
for j =1,...,m, we have the following useful presentation for T(@u)

-~

Proposition 9.3. The module T(0,,) is finitely presented as a Z[H]-module by

ZIHF -2 7[H]P T(8,) 0,
where D, is the square m x m matriz xI — A, (t) with entries in Z[H].
We thus have the following immediate corollary:
Corollary 9.4. The g.c.d. of the fitting ideal of T(@u) is given by
det(xI — A, (t)) € Z[H].

Example 9.5. Here we return again to our running example and calculate A, and det(z] — A,) in this
case. We take u = ug so that O, is the original fiber I'; the infinite cyclic cover éu — I' is then as shown in
Figure 9. Here the generator ¢ of H,, is pictured as translating to the right. The edges E of I are labeled as
in Figure 1, and we have used the same labels for the representative edges E of (:)u; the rest of the edges of
O, are obtained (and labeled) as translates of these representative edges under H,.

FIGURE 9. The infinite cyclic cover 0, of ©, for our running example f: I' — I'" when
u = ug is the homomorphism associated to the original splitting G = F3 %, Z.

The module T((:)u) is then generated by the edges {o1,...,04} = {a,b,¢c,d}. For each o; € {a,b, c,d}, we
calculate =1 o4p1 () by lifting the edge path f(5;) C T to ©, and expressing it in the form Z?Zl A;i;(t)-[oy]
with A;;(t) € Z[t*]. This gives the matrix:
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0 1 t7' t+¢

0 0 1 ¢+¢
AD=10 0 0o ¢

10 0 t?

Notice that A(1) is the transpose of the transition matrix for f found in [DKL, Example 2.9]. Calculating

det(zI — A(t)), we see that the fitting ideal of T'(0,,) is generated by the polynomial

m(t,z) = ' — t?2® — 32 — ta? — P2 — t*r — 2z — t € Z[H).

10. THE ISOMORPHISM OF MODULES

In this section we prove that there is a Z[H]-module isomorphism between 7'(6,) and T'(F) for every
primitive integral class u € §. We first note that by construction of ©,, each edge of @u is in fact a
transversal to F; see Remark 7.4 and Convention 7.8. This gives a natural (injective) Z[H]-module map
S: Z[H|E — F(F). We also recall from Definitions 4.2 and 9.1 that the Z[H]-modules T(@)u) and T'(F) are
the quotients of Z[H]F and F(F) by submodules M and R, respectively. We can now state the main result
of this section.

Proposition 10.1. The Z[H]-module map S: Z[H|F — F(F) descends to a Z[H]-module isomorphism
S:T(0,) = T(F).

Remark 10.2. We emphasize that this isomorphism holds for every primitive integral class u € S. In

-~

particular, the graph modules 7'(6,,) are all isomorphic.

Proof. First note that since H preserves the set of basic relations generating M, we see that elements of M

are precisely Z-linear combinations of elements of the form (e —e; — - -+ —e), where e is an edge of @u and
7;51“(6) is the edge path e;...ex in (:)u Similarly, the elements of R are exactly the Z-linear combinations
of elements of the form (r — 7 —--- — %) or (r — 7'), where 7,7, 71,..., 7} are transversals to F as in the
basic relations defining R (more precisely, 7 — 73 — -+ — 7 is obtained from the first relation by repeated
subdivision).

To see that S descends to the quotient, we need only check that S(M) is contained in R. Consider a basic
relation m =e —e; — .-+ — e in M for edges e, eq,...,ex in @u. By definition, the semiflow LZIU then maps

e to the edge path e; ...ex. Let 7 = S(e) and 7; = S(e;). Then 7 may be subdivided as the concatenation
T{ - - - T, where each 7/ flows homeomorphically onto 7; via 9. Thus we have

k
S(m):T—Tl—---—Tk:(T—T{—---—T,;)—Q—Z(T{—Ti)ER.
i=1

To see that S is surjective, let 7 be any transversal, and let [7] denote its equivalence class in T'(F). The
transversal 7 may be flowed forward locally homeomorphically onto an edge path e; - - - e in (:)u (necessarily
this edge path lies in one component of @u) This identification of 7 with e; - - - e; gives a subdivision of 7
into transversals 71, ..., 7, where each 7; flows forward homeomorphically onto the edge e;. Therefore

[r]=[m]+ -+ [m] = led] + - + [ex] = S(lea] + -+ - [ex])-
Remark 10.3. Note that this step uses the fact that transversals have endpoints on vertex leaves of F.

The only remaining difficulty, then, is to show that S is injective. Suppose that w € Z[H]F is such that
S(w) € R. Tt suffices to show that w € M. By assumption, we may write S(w) as a finite sum of basic

relations in R:
S(w) = Z r®
acA
where A is a finite index set and each r® is either a basic subdivision relation r® = £(7% — 7{* — .- — 72 ),
or a basic flow relation r* = £(7% — 7/*) in which 7 flows forward homeomorphically onto 7'¢.
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Since the sum ) r* comprises only finitely many transversals, we may find some connected component
C of @u (the image of éu by a sufficiently high power of z € H) so that each of these transversals flows
forward into C. After translating by an even higher power of z, we may furthermore assume that C is
disjoint from each of these transversals (so that C' is strictly higher than the transversals in question) and
that the endpoints of these transversals all flow into vertices of C.

Now, using the relations in M we can push w up into the the graph C'. More precisely, the assumption
on S(w) implies that each edge e occurring with nonzero coefficient in w lives in a component of C:)u that is
below C. Adding a relation in M, we may effectively replace e with the sum e; + - - - + ey, where ';Z%(e) is the
edge path e ... e. Doing this repeatedly for each edge in w (and then again until all edges have been pushed
up into C), we obtain an element m € M (a sum of basic relations) so that the element w +m € Z[H] is
a Z-linear combination of only edges contained in C'. More precisely, every edge e € @u appearing with a
nonzero coefficient in w + m lives in the component C.

We claim that w-+m = 0 € Z[H]F (so that w € M as desired). We have explicitly constructed m as a sum
of particular basic relations that only involve edges in the level C' or below. Therefore, the above explicit
proof that S(M) C R shows us how to express S(m) as a finite sum S(m) = > .z r* of basic relations
r® € R that only involve transversals that are either edges of C or lie strictly below C. We may now write

S(w+m) = Z re,

acAUB

where this is an equality in F(F). In particular, for every transversal 7 to F that lies strictly below C, we
know that the net coefficient of 7 in the the right hand side must be zero.

Let 7 be any transversal occurring in any of the basic relations %, @ € A U B. By construction, 7 flows
homeomorphically onto some edge path e] --- e} _in C. (It may be, if 7 is in one of the new relations coming
from m, that 7 is already a single edge in C, but every other transversal occurring in a r* lies strictly below
C.) Flowing the vertices of this edge path backwards onto 7 we obtain a canonical subdivision p] - - - g, of
the transversal 7. Now, for each occurrence £7 of 7 in a basic relation r%, o € A LI B, let us add the basic
relation 0, = +(pf +---pp_—7) € R. Notice that the sum of all added relations is 0 (in F(F)) since each 7
either lies strictly below C and thus occurs with net coefficient 0 in S(w + m), or is contained in C' in which
case 0, = p] —7 = 0 by construction (i.e., such a transversal does not get subdivided). Letting Q, denote
the set of (signed) transversals 7 occurring in the relation r7* and grouping the new added relations ¢, along
with the old, we may now write

Sw+m)= > <r°‘+ > 6T>.

a€AUB TEQ

Let’s regroup terms and see what we have. First consider a basic subdivision relation r* = 7% — 7* —
-» — 74 . Let us denote the canonical subdivision of 7/* as ;1 -+ B ;. Then since 7{*--- 72 was already a
subdivision of 7%, we see that the canonical subdivision of 7¢ must be

= (Br1 ) Bea Bogn) (Bt Brasjny)

Therefore we have complete cancellation in the term (r® + ) o ;). That is, for each such subdivision
relation * we have

ko
(7.04_'_ Z 57) :Ta_,rla_.../;—]?a _Z(Bi11+...+/3i,j7j _Tia)

TEQ i=1
+ Bt + B+ Baga + o Bagga, —T)
=0.
Now consider a flow relation r* = £(7 — 7/) in which 7 flows forward homeomorphically onto 7. In

this case 7 and 7/ both flow homeomorphically onto the same edge path in C, and so in their canonical
subdivisions Sy - -+ Bk, and B --- B} , we must have that k; = k. and that §; flows homeomorphically onto
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B; for each i (after possibly reindexing). Therefore, the term (r® + > ¢, ) may be reorganized

<ra+ > a) —k (o) Bt B~ ) F (BB, )
TEQ,
==+ ((B1 = B) + -+ (Be, — Br,))
into a sum of basic flow relations. Furthermore, each transversal appearing in this sum flows homeomorphi-
cally onto a single edge of C.

The above two paragraphs show that, in F(F), we may write S(w + m) as a finite sum Zf\;l r; of basic
flow relations r; = 7; — 7/ between two transversals that both flow homeomorphically onto a single edge of C.
Let © denote the set of all transversals appearing in the sum ), 75, and let us partition  into equivalence
classes in which two transversals are equivalent if they both flow homeomorphically onto the same edge of
C. Notice that, since the two transversals appearing in a relation r; = 7; — 7/ are in the same equivalence
class, the sum of the coefficients of all transversals in a given equivalence class must be zero. On the the
other hand, for each transversal 7 € ) that is not an edge of C, the the net coefficient of 7 in the sum
>, T; must also be zero (since ), r; = S(w+m) in F(F), and the only edges of O, with nonzero coefficient
in w+ m lie in C'). As each equivalence class contains at most one transversal T € Q which is an edge of
C, these two facts imply that the net coefficient of such a 7 (i.e., of a transversal which is an edge of C)
must also be zero. Therefore, for each 7 € €, the net coefficient of 7 in the sum ), r; is zero. This proves
that S(w+m) =Y, r; = 0 in F(F). On the other hand, S is injective and hence w +m = 0 in Z[H|¥ as
required. (|

11. SPECIALIZATION, CHARACTERISTIC POLYNOMIALS, AND STRETCH FACTORS

Propositions 10.1 and 9.3 together prove Proposition 4.3 and thus verify that the McMullen polynomial
m is well-defined. Furthermore, Corollary 9.4 now provides an explicit way to calculate m: Given a primitive
integral class u € 8, let t,z be a basis for H = H, ® Z adapted to u as in Definition 8.1. Viewing m as
an integral Laurent polynomial m(t,z) € Z[t*, 2], we can now prove the “determinant formula” from the
introduction.

Theorem D (Determinant formula). For any primitive integral uw € 8 we have

m(t, z) = det(z] — Ay(t))

up to units in Z[t*, 2*1).

Proof. Since the g.c.d. of the fitting ideal of a module depends only on the isomorphism type of the module
up to units, the claim follows from Corollary 9.4 and Proposition 10.1. a

The determinant formula also tells us about characteristic polynomials of transition matrices for the
expanding irreducible train track maps f,: ©, — ©,. The relationship can be stated in terms of the
specializations of m. To describe these, first note that any cohomology class u € H*(G;R) (not necessarily
integral) determines a homomorphism u: H — R. Writing the McMullen polynomial as a finite sum

m= Y ayh € Z[H],
heH
the specialization of m at u is then the single variable power sum given by
my(Q) =Y anc®.
heH
The exponents here are real numbers, but in the case that w is integral, this is in fact an integral Laurent
polynomial in (.

Corollary 11.1 (Specialization). For any primitive integral u € 8, the specialization m,(¢) is equal (up to
a factor £¢7 for some j € 7Z) to the characteristic polynomial of the transition matriz for the train track
map fu: Oy — Oy.
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Proof. We first recall that the kernel of the homomorphism u: H — Z is exactly H,, < H. By definition of
the basis t1,...,t—1,z of H = H, & Z, we consequently see that u(¢;) = 0 for each i = 1,...,b—1 and that
u(z) = 1. Thus by Theorem D we have

my (¢) =m(¢%,...,¢%¢h) = det(CMT = Au(C’ ... (") = det(¢] — Au(1,...,1)).
But A4,(1,...,1) is the transition matrix for f, by Proposition 9.2. d

We may now prove Theorem C from the Introduction:

Proof of Theorem C. The existence of m follows from Proposition 4.3, and Corollary 11.1 implies that the
specialization m, ({) at a primitive integral class u € § is, up to a factor, equal to the characteristic polynomial
of f,. Thus the largest root of m,(¢) is the spectral radius A(f,) of the transition matrix of f,. Since f,
is an irreducible train track map, Proposition 2.2 gives h(f,) = log(A(f.)) so that the equalities A(f,) =
A(fu)«) = Méwu) = A(u) follow from Theorem B(5). O

Example 11.2 (Specializing at u; and us). We now use Theorem C to calculate the stretch factors associated
to the classes u; and ug. Using the splitting H = Z[s]®Z[w] of H adapted to the class u = ug, the McMullen
polynomial is then given, as calculated in Example 9.5, by

m(t,z) =t — 2% — 322 — ta? — P2 — t*z —x — t € Z[H).
Since (s(u1),w(u1)) = (—1,2), the specialization of m at u; becomes
my, (() =¥ = (20 = - - - - -
=N -C - - - -¢-2).
Up to a power of ¢, this is exactly the characteristic polynomial of A(f;) for the first return map f; calculated
in Example 5.6. Furthermore, the largest positive root of m,, is A,, ~ 1.35827, which we note agrees with

the stretch factor of the injective endomorphism ¢; computed in Example 7.11.
On the other hand, as (s(u2), w(u2)) = (—1,1), the specialization of m at u; is

My, (() =¢t = (P (P =TI =T
= (3¢ -3¢ -3¢ - 1),
which, again up to a power of (, is exactly the characteristic polynomial of A(f2) for the first return map
f2 found in Example 5.7. We also find that the largest positive root of m,,, is A,, ~ 1.63299, in agreement

with the stretch factor of the monodromy (2 = ¢, calculated in Example 7.15. Thus the data provided by
m for the classes u; and uy agrees with the conclusion of Corollary 11.1.

11.1. Subdivision. Recall from §4 that the foliation F of X has distinguished vertex leaves. These play
an important role in the definition of the module T'(F) (see Definitions 4.1-4.2), and this is reflected in the
McMullen polynomial m.

For example, suppose that ® C X is a cross section equipped with any topological graph structure for
which fe sends vertices to vertices, and let T(@) be the corresponding graph module as constructed in §9.
If all vertices of © lie on vertex leaves of F, then the proof of Proposition 10.1 still goes through verbatim
and gives an isomorphism T'(©) — T(F). Thus any finite presentation of T(©) may be used to calculate the
McMullen polynomial m.

However, if VO contains points that do not lie on vertex leaves, then Proposition 10.1 fails (see Remarks 7.4
and 10.3) and so the fitting ideal of T(©) is conceivably different from that of T(F). Nevertheless, if
we declare the leaves of F through VO to be vertex leaves—effectively creating a new foliation F’ with
a new module T(F’) and corresponding McMullen polynomial m’—then Proposition 10.1 again gives an
isomorphism T(©') — T(F’) that may be used to calculate m’.

Theorem 11.3 below explains exactly how the McMullen polynomial changes in this situation. To set up
notation, let ©, be an F—compatible cross section dual to u € § and equipped with the standard graph
structure, and let ©/, be the graph structure obtained by subdividing ©,, along a finite set V C ©,, that

is preserved by f,. Notice that any such set V is necessarily disjoint from the vertex leaves of F. This is
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because any point contained in a vertex leaf eventually flows into a vertical 1—cell of X and thus onto a
vertex of ©,. Let F’ be the foliation obtained by declaring the leaves through V to be vertex leaves, and let
m’ be the corresponding McMullen polynomial (i.e., the g.c.d. of the fitting ideal of T'(F")).

Let {t,z} be a basis of H adapted to u. If Y C O, denotes the preimage of V, then the group H, < H
acts freely on V. Thus if Vo = {v1,...,u5} C Vis any set of orbit representatives, then the free Z-module
on V is isomorphic to the finitely generated free Z[H,] -module on Vo, namely Z[H, ]V = Z[H,]*. Choosing
a lift f,: é; — é’ of f, then induces a Z[H,]-linear map Z[H,]Y> — Z[Hy]"* which we may represent
by a matrix B, (t) with entries in Z[H,] as follows: Choose an orientation on each edge of ©,, and lift to
an orientation on the edges of ©,,. For each vertex v; € Vo, we have fu(vj) =h-v; for a unique v; € Vo
and h € H,. Accordingly we set B, ;; = £h, where the sign £ records whether or not fu preserves the
orientation at v;. All other entries in the j—column of B, are set to 0. We may now state the relationship
between m, m’ and B, (t).

Theorem 11.3. Suppose ©!, is obtained by subdividing ©., along the finite f,—invariant set V as described
above. Let F' denote the foliation in which the leaves through V are declared to be vertex leaves, and let
m,m’ € Z[H] be the McMullen polynomials corresponding to the modules T(F) and T(F'). Then with B,(t)
as above, up to units in Z[H]| we have

m'(t,2) = m(t, z) - det(zl — B,(t)).

Proof. By Proposition 10.1 we have T(F") = T(@;)7 thus the McMullen polynomial m’ may be calculated
using any finite presentation of T(C:);) By choosing this presentation carefully, the above formula will
become obvious.

Asin §9, let £ = {&1,...,5,,} be the edges of ©,, and let E = {o1,...,0,,} denote chosen lifts in Ou.
These choices determine the transition matrix A,(t) as in §9.1. Recall also that, as described above, Vy is
any set of orbit representatives for the H, action on the preimage V C 9’ of V, and that B, (t) describes
the Z[H,]-linear action of the lift fu:©y — O, on V.

‘We now choose convenient generators for T(@;). As described above, fix an orientation on each edge of
O, and lift to an orientation on the edges of éu Each vertex v; € V; is contained in a unique edge o of éu,
and we let a; denote the initial subarc of o that terminates at v;. We similarly let ozj' denote the terminal

subarc. Each of the arcs o;,aF C 0, are comprised of edges of (:); and as such may be thought of as

J
elements of the free Z-module on the edges of (:);L Moreover, since we can add and subtract H-translates of
these to obtain representatives of every H-orbit, the m+k elements {o1,...0m, 07 ,...,ay } freely generate
this module. There is a bijection between this set and £ UV, which we use as a notational convenience.

By Definition 9.1, we now see that T(©/,) is the quotient of Z[H]®YY0 by a certain submodule M of
relations. Namely each arc f € F UV, must satisfy the relation

8= |51,

where here 3 and 1271‘(/)’) are shorthand for the sum of edges of @; comprising those edge paths. Let us
express these relations in terms of our generating set. For o; € E the corresponding relator may, as in §9.1,
be rewritten as (z - 0; — >, A;;(t) - 0;); notice that this does not involve any of the generators a; .

By definition of B,, for each v; € Vy we have fu(vj) > Buij -vi = h-v for some h € H, and v € V.
Notice that J% (z- oz;) is an edge path in @’ that starts at a vertex of @u, crosses several complete edges of

O., and then terminates at fu(vj) = h-v. Therefore in Z[H]?YY0 this edge path may be expressed as

~ib(-r'aj_):hl‘Ul+"'+hm'0m+ZBu,i]‘(t)’ai—7

for some coefficients h; € H (here we have used the fact that «; + o is a complete edge of @u) Since the
above m + k relators (one for each element of E'UVy) generate the submodule M of all relations, it follows
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that the Z[H]-module T(©,) is presented by a block matrix of the form

xl — A, (t) *
0 xl — Byu(t) )’
Since m(t,z) = det(zI — A,(t)) by Theorem D, the result follows. O

Corollary 11.4. If m and m' are McMullen polynomials as in Theorem 11.3, then for any integral class
u € 8 the specialization m,({) is a factor of m.,(¢).

Proof. For any u € H'(G,Z), the assignment

> enh > et

heH heH
defines a ring homomorphism Z[H] — Z[¢*']. By definition of specialization, this homomorphism sends m
to m,, and m’ to m/,. Therefore, since Theorem 11.3 implies that m’ is a product of m with another element
of Z[H], it follows that m/, is the product of m, and another element of Z[¢*']. O

Example 11.5. There is a fixed point in the d-edge of our running example, and we can subdivide I" at
this point to produce I'. Looking at Figure 9 if we choose our representative point in the edge labeled d,
then the image is contained in the edge labeled t2d. Thus, B(t) = t2, and we see that

w'(t,z) = m(t, z)(x — t2).
12. REAL-ANALYTICITY, CONVEXITY, AND DIVERGENCE

Theorem D of [DKL] showed that the logarithm of the stretch factor of ¢, for primitive integral u € A,
extends to a continuous, convex, and homogeneous of degree —1 function $: A — R. This theorem was
an analogue of Fried’s result in the setting of fibered hyperbolic 3—manifolds [Fril]. Following McMullen’s
more recent approach to this 3—manifold result [McM1], we now use the McMullen polynomial m to give an
alternate proof of [DKL, Theorem D] and to moreover extend this result to the entire cone of sections 8.

This discussion involves yet another cone Cx C H'(X;R), termed the McMullen cone, that is naturally
determined by the McMullen polynomial. We use the properties of m to show that the above function
$: A — R naturally extends, with the same properties, to the entire cone Cx and that this extension
diverges at 9Cx. On the other hand, the relationship between m and the primitive classes u € § (as
illuminated by Theorem C) shows that this extension $): Cx — R is finite on 8 and therefore that 8§ C Cx.
Finally, we prove that $) in fact diverges as we approach the boundary of § by establishing the equality
8 = Cx, which is Theorem E. This proof combines the characterization of 8 provided by Theorem A with
another formula for m that is due to [AKHR].

12.1. McMullen’s Perron-Frobenius theory. Given a primitive integral element u € 8, let H = H, ®Z
and s,t = €%, w, and x = ¢ be adapted to u as in Definition 8.1. We then express elements u € H'(X;R)
in terms of their (s,w)—coordinates following Convention 8.2:

u = (s(u),w(u)) = (s,w).

Given a nonzero polynomial p(t, ) € Z[t*!, 1]

p(t,2) =) ajta)]

jeJ

, we express this polynomial as

where j = (j1,...,4s) runs over some finite index set J, (tx)l = t{l ~--tib_"11;cjb7 and a; # 0 for all j € J.
Then given j € J, the dual cone of aj(tz)d for p is defined by

C(p, aj(tz)) = {(s,w) €R" | j- (s,w) > - (s,w) for all j € T\ {j}}
Here, “” denotes the standard dot product on R®. The cone C(p, aj(tx)!) is usually referred to as the dual

cone of the Newton polytope of p associated to aj(tz)). The dual cones for terms a;(tz)) and aj (tz))" of the
same polynomial p are either disjoint or equal.
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As (s,w) are coordinates on H(X;R), we can view C(p, a;(tz)}) C H'(X;R). This cone depends only
on p € Z[H] and (tz)} € H. Furthermore, if ¢ = +(tz)ip, then

C(q, £aj(te)*) = €(p, qj(tz)’) € H'(X;R).

A polynomial in Z[tﬂ] is monnegative if all coefficients are nonnegative, and positive if it is nonnegative
and nonzero. Following [McM1], a matrix P(t) with entries in Z[t*'] is said to be Perron-Frobenius if each
entry is nonnegative, for every 4, there exists k > 0 so that (P(t)*);; is positive, and P(1), the matrix
obtained by evaluating t at (1,...,1), is not a permutation matrix. In [McM1, Appendix A.1], McMullen
proves the following theorem.

Remark 12.1. This is a slightly weaker definition of Perron-Frobenius matrix than that given in [McM1],
but the proof in that paper goes through in this setting as well with only minor modifications.

Theorem 12.2 (McMullen [McM1]). Let E(t) be the leading eigenvalue of a k x k Perron-Frobenius matriz
P(t) with entries in Z[t*']. Then:
(1) The function &(s) = log(E(e®)) is a convex function of s € R¥~!
(2) The graph & = {(s,w) | w = &(s)} meets each ray from the origin in RP~! x R at most once.
(3) The rays passing through & coincide with the dual cone C(p,z*) C R*™1 xR for p = det(xI — P(t)) €
Z[tﬂ:l7 J:.:i:l] .

Note that the terms of det(x] — P(t)) other than x* have a smaller exponent on x, and hence (0,1) €
R’~! x R is contained in C(p, z%).

Remark 12.3. In fact the statement in [McM1] is sharper, but the above theorem will suffice for our
purposes.

Lemma 12.4. For any primitive integral class u € 8, the transition matriz
Au(t) € My (Z[tF])
is a Perron-Frobenius matriz with entries in Z[t*Y] = Z[H,].

Proof. The entries of A,(t) are nonnegative Laurent polynomials in Z[t*']. By Proposition 9.2, A,(1) is
the transition matrix for f, which is an expanding irreducible train track map by Theorem 5.11. Therefore,
A,(1) is not a permutation matrix. Moreover, for every i,j there exists k so that (A4,(1)¥);; > 0, which
implies (A, (t)*);; is a positive Laurent polynomial, as required. a

12.2. The McMullen cone. From Theorem D, we have m = det(xI — A, (t)), and we let
Cx(u) = €(det(x] — A, (t)),2™) = C(m,z™) C H'(X;R)

be the cone from Theorem 12.2, which contains u. Since any two primitive integral elements u, v’ € 8§ define
the same polynomial m € Z[H] up to units in Z[H], it follows that we either have Cx(u) = Cx(u’) or
Gx(u) N C?X(u’) = .

Lemma 12.5. For any two primitive integral elements u,u’ € 8, Cx(u) = Cx(u'). Furthermore, writing
Cx = Cx(u) for any (hence every) primitive integral u € 8, we have § C Cx.

Proof. Suppose Cx (u) # Cx(u') for two primitive integral classes u,u’ € 8, so that as mentioned above
Cx(u) N Cx (u") = (. Because the cones are defined by linear inequalities with integer coefficients, it follows
that the line segment in H'(X;R) between u and u’ meets the boundary of Cx (u) at some rational point. This
rational point is a rational multiple of some primitive integral point v” € 8, and hence u” lies in the boundary
of Cx(u). Since the cones are open, it follows that Cx (u”) N Cx(u) # 0, and so C,(u) = C,(v”) > u”. This
contradicts the fact that «” is in the boundary of Cx (u). Therefore, Cx (u) = Cx (u') for all primitive integral
u,u’ € 8§ and we let this common cone be denoted Cx.

It follows that every primitive integral point and hence every rational line of 8 is contained in Cx. By
convexity, Cx then contains the convex hull of such rays which, by Proposition 5.12, is equal to 8. |
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Definition 12.6. We call the cone Cx C H'(G,R) constructed in Lemma 12.5 the McMullen cone associated
to the folded mapping torus X.

In fact the containment 8 C Cx can be promoted to an equality:
Theorem E (McMullen polynomial detects 8). The McMullen cone Cx is equal to the cone of sections 8.

The proof of Theorem E is somewhat involved and so is postponed to the end of this section. For now we
use it to prove that $ extends to all of § with many nice properties.

Example 12.7 (Computing the McMullen cone Cx). The McMullen polynomial for our running example
is, as calculated in Example 9.5, given by

m(t,z) = 2t — ?2° — %% — ta® — 30 — Px — 2z — t € Z[H].

Accordingly, we calculate that the dual cone C(m(t,z),z*) is the interior of the convex hull of the rays
through (1,2) and (—1,0); this is exactly equal to the cone of sections 8 as calculated in Example 8.3, and
so Cx has already been illustrated in Figure 8. We note that the equality Cx = S here is in agreement with
Theorem E.

12.3. Stretch factors. In the notation we have established the specialization of m(t, ) at any point (s, w) €
H(X;R) is given by

M(s,w) (C) = m(<57 Cw)'
We now define a function k: 8§ — R U {oc} by setting

k(sa ’LU) = SUP{C S R+ | m(s,w)((:) = 0}
for (s,w) € 8. If there does not exist ¢ € Ry such that ms,,(¢) = 0, we interpret the above definition as
k(s,w) = oo. We note that from the definition we have k(qu) = k(u)'/? for any u € § and ¢ € R (with the
convention that co'/? = o).

Note that for any primitive integral element (s, w) = u € 8§, Theorem C shows that k(s,w) = A(fy), the
Perron-Frobenius eigenvalue of the transition matrix A(f,) of the expanding irreducible train track map
fu: Oy — O,. Thus for such (s,w) € 8§ we have k(s,w) > 1, and consequently £ > 1 on rays through
integral points in 8. A priori, k£ could be equal to infinity on rays through non-integral points. The next
proposition shows that this is in fact not the case, and 1 < k(s,w) < oo for all (s,w) € 8.

Proposition 12.8. Let A,(t) be the Perron-Frobenius matriz from Lemma 12./, and let & be the corre-
sponding graph as in Theorem 12.2. The following hold:

(1) For any (s,w) € & we have mg ,(e) = 0.

(2) & is the level set k(s,w) =e in 8.

(3) For all (s,w) €8, 1< k(s,w) < oo and the function k: 8 — (1,00) is real-analytic.

Proof. Fix (s,w) € &, so that w = log(E(e®)). According to Theorem 12.2 the ray though (s, w) is contained
in Cx, and by Theorem E, it follows that (s,w) € 8. We claim that k(s,w) = e. To prove this claim, first
observe that
Mg ) (e) = m(ef, e”) = m(e, elog(E(es))) =m(e%, E(e®)) = 0.

This last equality follows from the fact that E(e®) is an eigenvalue of A, (e®), and m(e3, z) is its characteristic
polynomial. Thus (1) is verified.

By definition, we now have e < k(s, w). Suppose that k(s,w) = kg > e for some (s, w). Set \g = log(ko) >
1. We then have

0 = ms ) (ko) = m(k§, k') = m(elog(kg), elog(kéu)) = m(e/\‘]s7 e/\ow) = M(xps,00w) (€)-

But this says that z = e is a zero of m(e**®, 2) and hence is an eigenvalue of A, (e**®). By definition
E(e*0®) is the largest such eigenvalue and thus it follows that

E(e)\os) > erw.
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Therefore
log(E(e*%)) > Aow.

We claim that this is a contradiction. To see this, first observe that by Theorem 12.2 the ray through (s, w)
intersects & in exactly one point, namely the point (s,w). For all A > 1 we must have A(s,w) above the
graph ®—that is, Aw > log(E(e*®)). Since \g > 1, we arrive at the desired contradiction. Thus (2) is
verified.

To see that (3) holds, let (s,w) € 8 be arbitrary. Then there exists a unique ¢ > 0 such that (s.,w.) =
(s/q,w/q) € &. Then k(s.,w.) = e and

k(s,w) = k(gs., qu.) = €'/%, so that 1 < k(s,w) < .

Since & is the graph of a real-analytic function (see the proof of Theorem 12.2 in [McM1, Appendix A]),
the above formula also shows that the function k: 8 — (1,00) is real-analytic. Compare with the proof of
[McM1, Corollary 5.4] O

We now prove Theorem F from the introduction:

Theorem F (Convexity of stretch factors). There exists a real-analytic, homogeneous of degree —1 function
$H: 8 — R such that:

(1) 1/$ is positive and concave, hence $) is convez.
(2) For every primitive integral u € 8 C HY(X;R) with dual compatible section ©,, first return map fu,
and injective endomorphism ¢, = (f.), as in Theorem B we have
)

(3) H(u) tends to infinity as u — OS.

Proof. In view of Proposition 12.8 and Lemma 12.5, there is a real-analytic function k: 8§ — (1,00) such
that for every u = (s,w) € 8§ we have

k(s7w) = sup{{ S RJr | M(s,w) (C) = 0}

Define $: 8§ — R as H(u) := logk(u) for v € 8. Then for any primitive integral u = (s,w) € 8,
Theorem C implies that $(u) > 0 is equal to the topological entropy h(f,) of f., and that e?() ig equal to
the spectral radius of the transition matrix of f, and also to the stretch factor A(u) = A(¢,,), proving (2).
Since the function k(u) satisfies k(qu) = k(u)'/9 for any v € 8 and ¢ > 0, it follows that $(u) = log k(u) is
homogeneous of degree —1, that is, $H(qu) = H(u)/q for any v € 8§ and ¢ > 0. By Proposition 12.8(2), we
know that & is the the level set of $(u) = 1. Therefore the concavity of 1/ follows from convexity of the
hypersurface &, as proved by McMullen in his proof of [McM1, Corollary 5.4], thus (1) follows.

All that remains is to prove (3). For this, we suppose {u,} C 8 is a sequence in 8 converging to u € 98
for which $)(uy,) is bounded. By homogeneity of $ there exists such a sequence with u,, € & for all n. But
since & is a closed subset of H'(X;R), it follows that v € & N d8. This is impossible since & C Cx by
Theorem 12.2, €x = 8 by Theorem E, and 8 N 98 = @ since § is an open cone. |

12.4. The McMullen cone is the cone of sections. We now return to the proof of Theorem E and show
that Cx = 8.

We fix attention on the original monodromy f: I' — I' defining X. Let ug € H'(X;R) be the associated
primitive integral class, H = Hy & Z with Hy = H,, the corresponding splitting, and s,w and t = €%, 2 = e
the bases adapted to ug as in Definition 8.1. Let E = {51,...,5,,} be representative edges in T cT of the
H-orbit of edges. Recall from §9 the construction of the matrix A(t) = A, (t) with entries in Z[Hy] = Z[t*"]
in terms of E so that A(1) = A(1,...,1) is the transition matrix of f: I' — I" by Proposition 9.2.

Next we let G denote the directed graph associated to A(1) and Y the set of all closed oriented circuits
in G, as in §6. Following the construction in [AKHR] (and also used by Hadari [Hadl]), we now associate to
the matrix A(t) a labeling on the edges of G by elements of Hy (this labeling differs slightly from [AKHR]
due to our convention on the action of H on T(F) = T(T')). First note that A;;(t) € Z[t*1] is the coefficient
of [0;] in the expression of z - [0,] as a Z[t*!]-linear combination of the elements of E.
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Convention 12.9. For the remainder of this subsection we assume that A;;(t) is written as a positive sum
of elements of H, that is, it is a sum of monomials in tf'l, e ,tbifl with coefficient 1. We refer to these
simply as the terms or the monomials of A;;(t). We also consider the monomial 1, so A;;(t) may also have

several terms which are just 1.

The terms in the polynomial A;;(t) are in a 1-1 correspondence with the edges of G from the Gt vertex
to the it" vertex (again appealing to Proposition 9.2), and we use any such correspondence to label those
edges by the terms of A;;(t). Denote the labeled graph as G(t).

Given a circuit y € Y, let |y| denote the length of the circuit; that is, |y| is the number of vertices in y.
We also observe that y gives rise to a monomial p,(t) which is a product of the monomials in the circuit
y C G(t).

Next let ) denote the set of subsets of pairwise disjoint circuits in G. That is,

V={y={vi,- -y} CY |y Ny; =0 for all i # j}

Every y = {y1,...,yx} € Y also has a length, |y| = |y1| + - - + |yx|, and an associated monomial py (t) =
Dy, (t) -y, (t). We also record the number of circuits in y as #(y) = k. For a set with one element
{y} € V', we denote this y € )'.

Finally, for every n > 1 we let Y(™) denote the subset of )’ consisting of y with |y| = n. Thus )’ is the
disjoint union of Y™ over all n from 1 up to m, the number of vertices of G.

We now have the following very useful formula which is essentially the “cycle polynomial” of [AKHR],
but differs slightly, again due to our conventions on the actions of H on T(f) This formula is also closely
related to the “clique polynomial” recently studied by McMullen [McM2] in the general setting of directed
graphs.

Theorem 12.10. [AKHR] With the notation above we have

(12.11) m(t,z) = det(xl — A(t)) = 2™ + i Z (~1)#®py (t) | 2™
n=1 \yey)

For completeness, and since our definition differs slightly from [AKHR], we include the proof of this
theorem.

Proof. We use the definition of the determinant as a product

(12.12) II (SgH(P) [[@1- A(t))p(i)i)

PESm i=1

over all permutations p of the set {1,...,m}, where sgn(p) € {£1} is the sign of the permutation. Expanding
this expression out (without cancellation), we analyze each nonzero monomial go(t, z) of this expression and
produce exactly one monomial in the expansion of (12.11) (also without cancellation).

The monomial ¢o(t,z) is obtained from some permutation p by taking the product for ¢ = 1,...,m of
some choice of a single term of the polynomial (I — A(t)),():, for each i. To better understand go(t, ),
first write p in its disjoint cycle notation, and to simplify the notation, we assume that this representation
of p takes the following form:

(mm—1 ..k + 1) oo oy + 1) (ky oo g+ 1)) (ky — 1)+ (2)(1).

Here we are composing right to left instead of left to right as is classical because this better matches our
other conventions. In particular (321) sends 1 to 2, 2 to 3 and 3 to 1.

Next note that the only cycles in this decomposition that can contribute a power of = to qo(t,z) are the
1-cycles since these correspond precisely to entries on the diagonal. We further assume that by reindexing if
necessary (and without loss of generality) these 1-cycles are the initial ky appearing, for some 0 < kg < k.
Thus qo(t,z) = zFoq; (t). To see what g1 (t) is, we write the product of monomials defining it as a product,
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over each of the remaining cycles in the disjoint cycle representation of p, of some monomials of the associated

entries of the matrix. So, for the remaining 1-cycles (k1), (k1 —1),..., (ko + 1) we obtain monomials
My (t)7 ) mko+1(t)
where for each i = kg + 1,..., k1, the monomial m;(t) is a term of —A;;(t).
Every other cycle (ki1 ... k; + 1) gives us a monomial which is a product of monomials

mki+1(t) = Mk;+1,ki41 (t)mk1+1aki+171(t) T mki+3-,ki+2(t)mki+2qki+1(t)’
and each m; ;(t) is a term of —A;;(t). Then

q1(t) = sgn(p)my, +1(t) - - my, 41 (€)mp, (t) -+ mke11(t).

Now we observe that, because ¢;(t) # 0, each of our cycles (except the first kg) determines a circuit in
G(t): specifically, the 1—cycle (j) determines a circuit y of length 1 around the loop edge of G(t) labeled by
—m,(t). That is to say, the monomial associated to this y is precisely py(t) = —m;(t).

On the other hand, the cycle (k;41 ... k; + 1) determines a circuit y of length |y| = k;+1 — k; (equal to
the length of the cycle) labeled by the monomials (which as we traverse the circuit are read right-to-left in
the following list)

(7mki+1yki+l (t)) ) (7mki+lyki+1—l(t)) PR (7mki+3,ki+2(t)) ’ (7mki+2-,ki+1(t)) .

The monomial associated to this circuit is precisely

py(t) = (=1)"'my, 11 (8).
Finally note that because these are disjoint cycles, the vertices of the circuits are all distinct, hence the circuits
are pairwise disjoint, and therefore their union determines an element y € )’. Writingy = {y1, ..., y,} where
r = #(y) is the number of circuits in y, the previous calculations prove that

q1(t) = sgn(p) (=1)¥py (¢).
Since the sign of a permutation is the product of the signs of its disjoint cycles, and the sign of a j—cycle is
(—1)7+1) we see that
sgn(p) = (— 1)zl tlultr — ()yl+#).
Combining this with the previous equation, and the fact that qo(t,2) = ¢;(t)z* and ky = m — |y| we find
that our original monomial has the form

QO(ta .’L') = (—1)#(y)py (t)xm—|y| )

This is a term in the sum (12.11). Reversing this discussion, we can find a corresponding term in the
expansion of the determinant, proving (12.11). a

We need one more ingredient before proving Theorem E. Recall from §6 that every circuit y € ) corre-
sponds to a closed orbit O, C X of 9. This closed orbit defines an element of H which we denote [O,].

Lemma 12.13. For every y € Y we have [O,] = (p,(t))1z!¥l.
Here py(t) is a monomial with coefficient 1 so that it and its inverse, can be viewed of as elements of H.

Proof. To simplify the proof of the lemma, we suppose that the closed circuit y runs around the vertices
1,2,...,k —1,k,1 in order, where k = |y|. Recall that £ = {&1,...,5%} are the edges of I with o; an edge
in the preimage of ;. The closed orbit O, starts at a point { € &1, then runs through &4, 53, ...,0) before
returning to &; at the point ¢ (§) = €. To see what [O,] is as an element of H, we lift the path s — 1)5(§)
for s € [0, k] to a path in X , and find the covering transformation taking the initial point to the terminal
point. The lift is obtained by simply picking a point é € X in the preimage of £ and considering the lifted
flow: s+ Js(é ), for s € [0, k]. Since the covering group is abelian, it does not matter which point §~ we pick,
0 we assume £ € o7.

Now consider the monomials on the edges of the circuit y, and denote these p; (t), ..., px(t). By definition,

pi(t) € Hop has the property that the edge path wil({ﬁvl(ai)) contains the edge p;(t) - oi11 = (pi(t)) " (oit1)
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for all 4, with ¢ + 1 taken modulo k (recall the convention for the action of H on the edges of Tin §9).
Therefore, we see that 11 (0;) contains the edge (z7'p;(t)) - ;11 for all 4. From this, we have

(o) D 27 'pi(t) - Ur_1(oa) D 2 Zpy(t)pa(t) - Yk_o(os) D

S aEp (O)pa(t) - peoa(8) - di(ok) D 2T pa(t)pa(t) - pr(t) - o1
It follows that 1;;6(5) lies in this edge, and hence the covering transformation h taking £ to Jk (5) is precisely
h=a"(py(t) ™" = 2lV(py (8) 7"

as required. O
Proof of Theorem E. We have already seen in Lemma 12.5 that 8 C Cx. We let u € 98 and prove that
u € 0Cx. By convexity of Cx this will prove the theorem. We note that the containment of cones implies

u € Cx, so it suffices to prove that u & Cx. Let y € Y be the shortest length circuit (that is, with minimal
ly|) for which u([Oy]) = 0. Since 8 = D by Theorem A, we are guaranteed that some such O, exists.

Claim 12.14. Inm(z,t) = det(z]—A(t)), the term p,(t)z™ 1Y has a nonzero coefficient co (after ezpanding
and cancellation).

Proof. We note that there is a term of this form after expanding (12.11) and before canceling, so we just
need to make sure it survives the cancellation. Note that after expanding, the coefficient of py(t)x”“‘y‘ is
just (—1)#®) = —1. Thus, for there to be cancellation, there must be some y = {y1,...,yx} € )’ so that
py(t)z™ =¥ = p, (t)z™ ¥l but for which the coefficient after expanding is +1 (all coefficients are equal to
+1, and if they were all —1, there could be no cancellation). But since the coefficient is (—1)#®) =1, we
must have #(y) =k > 1.
Since py (t) = py, (t) - - - py, (t), applying Lemma 12.13, we have
[04,]- -+ 0y,] = (yy () 7't (py, (£) 71 = (py (8) 712 PT = (py (£) 7M.
On the other hand, u € 88 = 9D and so u([0,,]) > 0 for all ¢ = 1,..., k. The previous equation, together
with the fact that u is a homomorphism implies
0 = u((py(t) " ) = u((py (£)) '2) = w([0,]) + - + u([0y,])

Since the terms on the right are all greater than or equal to 0, they must all be equal to zero. This contradicts
the minimality assumption on the length of y (since each y; has length less than that of y), and this completes
the proof of the claim. O

Writing p, (t) = t{l - ~ti”:11x‘y‘, Lemma 12.13 implies that in the additive basis for H we have
[Oy] = —j151 — Jos2 — -+ — Jp—15p-1 + |ylw
Thus the condition u([O,]) = 0 implies
(12.15) [ylw(u) = jisi(u) + -+ Jp—15p-1(u).

We set j = (ji,---,5—1,m — |y|) so that co(tz)! is a nonzero term of m(t,z) according to Claim 12.14.
The “leading term” z™ is the one that defines the McMullen cone

Cx = C(m, .Z'm)
as described in §12.2. Writing j’ = (0,0, ...,0,m), we have 2™ = (tz)}i". However, for the class u, Equation
(12.15) implies that if we write u in the coordinates, (s(u),w(u)), we have
jo(s(u),w(w) = (rseesdo—1.m = [y]) - (s(u), w(u))
= gisi(u) + -+ Je—1sp—1(u) + (m — |y|)w(u)
= |ylw(u) +mw(u) — |ylw(u) = mw(u)

3" (s(u), w(u)).

u

 —
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But then u cannot be in C(m,z™) since this requires j' - (s(u), w(u)) > j(s(u), w(u)). This completes the
proof of Theorem E. O

13. CLOSED 1-FORMS AND FOLIATIONS

Given u € 8, let w = w" be a tame, flow-regular closed 1-form representing u. In this section, we describe
the foliation €2, associated to w". This is analogous to the foliation tangent to the kernel of a closed 1-form
in the classical smooth manifold setting. This discussion quickly leads to a proof of Theorem I. After this,
we specialize to the case u € A, where w" can be chosen so that it and ,, satisfy stronger geometric and
topological conditions analogous to those satisfied in the 3-manifold setting.

For each & € X, setting v¢(s) = ¥5(§) we let

re(s) = / wh.
7 ([05])

This can be used to define a reparameterization of ¢ by ¥¥(&) = w7,g1(s)(§) so that arcs of flowlines map

isometrically to R by functions in w*. We lift this reparameterization QZ;‘ to X.
Let (7,: X — R) € p*(w") be a function defined on all of X. Then as in §5.3 we have

M © h(§) = Nu(§) + u(h)
for all £ € X and h € H. Let (leu denote the fiber (le’u = 7, (y), for y € R. This ﬁyu is naturally a
graph with vertex set QS,OL equal to the intersection with the 1-skeleton X (1. As such, the valence of ﬁy,u

is uniformly bounded. Each of these fibers ﬁyyu covers a graph Q, , that includes into X.

We define the foliation €, defined by w" to be the decomposition of X into the sets €, ,,, which we call
the leaves. We note that two leaves €, = Q, , if and only if y and 3’ differ by an element of w(H). As
such, the leaves of €2, are in a one-to-one correspondence with elements of R/u(H). Thus, when we write

Q. it should be understood that y is representing the coset y + u(H) in R/u(H).
Lemma 13.1. The reparameterized semiflow " maps leaves to leaves, Y (Qy ) = Qyts.u-

Proof. We verify that the corresponding statement holds in X , and then the lemma follows. By construction
of the reparameterization, we know that s — 7, (¥%(£)) is an isometry. From this fact we deduce that if
£ €y, then

Ta(VL(E)) = Mu(€) +s =y + 5.
So, YX(€) € Qy 1 au, as required. 0

We note that in the special case that w is primitive integral, then the leaves are compact (in fact they are
sections). Indeed, in this case w* defines a map n,: X — R/u(H) = R/Z = S, the descent of 7j,: X — R,
and Qy , = Oy 4.

Recall that ¥(G) C (H'(G;R)\{0})/R, denotes the BNS-invariant of G, which consists precisely of those
u € HY(G;R) for which H is finitely generated over a finitely generated submonoid of u=1([0, 00)) < G (see
the remarks following the Meta-Theorem). There is an alternate, more geometric description of 3(G) due
to Bieri-Neumann-Strebel [BNS, Theorem G] which allows us to deduce the following.

Proposition 13.2. The cone 8 C HY(X;R) = HY(G;R) projects into 3(G).

Proof. The construction of [BNS] associates to any v € H'(G;R) \ {0} a u—equivariant continuous map
x': X — R. The authors prove that u € %(@) if and only if m (x' ([0, 00))) surjects onto m (X) (or if
X' ~1([0,)) is disconnected, one considers the fundamental group of the unbounded component). They
further note that modifying x’ to x” by an equivariant, bounded homotopy, does not change the prop-
erty of m—surjectivity. Therefore, any continuous u—equivariant map X — R will suffice in applying this
characterization. _

Now suppose u € 8 and let (7,: X — R) € w*, where w" is a closed flow-regular 1-form representing u.

According to [BNS, Theorem G], we need only prove that 71 (77, 1([0, c0)) surjects onto 7 (X). For this we
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take any loop v € X, and let —s € R be the minimum value of 7, on v. Then P¥(y) C 1771([0,00)), and
P¥(y) is clearly homotopic to 7. (|

In light of Proposition 3.7 and Theorem F, it follows that Cx in fact detects a full component of ¥(G):

Theorem I (McMullen polynomial detects component of X(G)). The McMullen cone Cx projects onto a
full component of the BNS-invariant X(G). That is, {[u] | u € Cx} is a connected component of £(G).

Proof. Let S(G) = {u € H'(G;R) | [u] € £(G)}, and let $o(G) denote the component containing ug.
Proposition 13.2 shows that Cx C ZAIO(G). Supposing the reverse inclusion fails, then EA]O(G) necessarily
contains a point of 9Cx. Since EO(G) is open and the faces of Cx are rationally defined, this implies that
EO(G) contains a rational point u € 9Cx N @E(G) By Theorem F we know that log(A) agrees with $
and is consequently unbounded on Cx N @E(G) N U for any open neighborhood U of u. As this contradicts
Proposition 3.7, we conclude £0(G) C Cx as claimed. d

13.1. In the cone A. For u € A, the closed 1-form w* can be chosen to enjoy better properties than for
an arbitrary u € § (as is true for the flow-regular maps to S! in the integral case). Before we describe the
properties we will want for these closed 1-forms, we recall the following from [DKL, Definition 5.2].

Definition 13.3 (Local model). A local model for 1) is a subset of X of the form
M(K,s0)= | s(K)

0<s5<s0
where sg > 0 and K is a closed contractible neighborhood of a point of I'y, for some t. We call K the
bottom of M and v, (K) the top and we call M minus the top and bottom the flow-interior of M. For any

0 < 51 < 82 < s,
U vx)

51<5<s2

is also a local model, and we call it a local submodel of M(K, s¢).

The local models were used in [DKL] to ensure that for integral classes u € A, the reparameterized flows
1% mapped each fiber 7, (y) = Oy, to the fiber ©, 4, for y,y +s € S!, by a homotopy equivalence; see
[DKL, Corollary 6.20]. The key point was that we could cover X(!) by finitely many flow-interiors of local
models so that each component of the fiber ©, , intersected with any of the local models M in the finite set
is contained in a fiber of the original fibration n: X — S'.

Definition 13.4 (non-singular closed 1-form). We will say that a closed 1-form w on X is nonsingular if it
is flow-regular and the following holds
(1) For any point £ in the 1-skeleton, there is a simply-connected neighborhood U of € containing a
local model M (K, sg) such that the fibers of wy intersected with M(K, s9) have the form (K for
some 0 < s < s (and are hence contained in fibers of the original fibration 7: X — St).
(2) The integral over any oriented 1—cell of X is positive.

In particular, note that if w is a nonsingular closed 1-form, then by the second condition the 1-cocycle
z determined by integrating w over 1-cells is a positive 1-cocycle, and hence u = [z] € A. We write
w = w? = w" in this case.

If u € A is primitive integral and w is constructed as in §5.4 from the flow-regular map 7, from Theorem
5.11, then [DKL, Lemma 6.16] guarantees that w* is non-singular. This fact can be used to show that every
element of A is represented by a nonsingular closed 1-form.

Proposition 13.5. For every class u € A, there is a nonsingular closed 1-form w" representing u.

Proof. Suppose uq,...,u, € A are integral classes such that u can be written as a positive linear combination

of these elements .
u= Z Ciths.-
i=1
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Let w* be a nonsingular closed 1-form as above. Then w is represented by the closed 1-form

n
w" = E Gw™.
i=1

Since positive combinations of flow-regular maps are flow-regular, it follows that w* is flow-regular.

If z; is the positive cocycle representing u; obtained from w;, then the cocycle z representing u obtained
from w is precisely Y (;z;. Therefore, the the second conditions of non-singularity is satisfied.

By choosing the covering of X(*) in [DKL, Lemma 6.16] by sufficiently small local models (see also [DKL,
Proposition 5.6]), we can assume that the same covering works for all of uy,...,u,, and that each are
contained in simply connected open sets in X. The first property of non-singularity then also follows. g

Now for any u € A, we assume that u is represented by a nonsingular closed 1-form and €2,, is the foliation
defined by w". We also write 7,,: X — R with fibers €, , C X covering the leaves €, .

Theorem 13.6. Suppose w* is a nonsingular closed 1-form on X definingu € A. Then for everyy € R, the
inclusion of the fibers Qy . = ;' (y) = X is a homotopy equivalence (in particular, the fibers are connected).
Furthermore, for every s > 0, the restriction of the reparameterized flow

Ve Qyu = Qyisu
is a homotopy equivalence.

Before we give the proof, we observe the following corollary. Here 3,(G) = £(G) N —=3(G) is the sym-
metrized BNS-invariant.

Corollary 13.7. The cone A projects into ¥4(G).

Proof. For u € A, we have the inclusion of ﬁO,u = 771({0}) = X is a homotopy equivalence by Theorem
13.6. Therefore, 7, 1([0,00)) and 7, 1((—00,0]) are m;—surjective. As in the proof of Proposition 13.2, we
can appeal to Theorem G of [BNS] to conclude that both u and —u are in £(G) and hence u € £4(G). O

Remark 13.8. For a fibered hyperbolic 3-manifold, every cohomology class in the cone on the fibered face
of a hyperbolic 3-manifold is represented by a nowhere vanishing closed 1-form that evaluates positively on
the vector field defining the suspension flow (of any fiber in the cone on the face). In particular, the kernel
of the 1-form is tangent to a taut foliation, and so by the Novikov-Rosenberg Theorem the leaves m;—inject
into the 3—manifold; see e.g. [Cal]. Furthermore, reparameterizing the flow (so that the vector field evaluates
to 1 on the 1-form) the leaves map homeomorphically from one onto another.

Proof. We first note that when u is a scalar multiple of a primitive integral v’ € A, then (leﬁu is a component
of the preimage in X of the graph O,/ .+ (though the vertex set for ﬁy,u might be a proper subset of those
coming from the standard graph structure of @,/ , if O, , is F-compatible). In this case, the conclusion
follows from [DKL, Corollaries 6.20 and 6.21]. We therefore assume that u is not a scalar multiple of an
integral element. We will prove the last statement, and then deduce the rest from this.

We assume that all local models considered in what follows satisfy the condition (1) of nonsingularity
for w*. We choose a finite cover M of X by flow-interiors of such local models satisfying the following
conditions for some ¢ > 0.

(i) Any M € M intersects X () in a contractible subset containing at most 1 vertex;
(ii) Given M(K,sg), M(K’,s() € M, if ¢s(K) N (K') # O for some s € [0,s0],8 € [0,s(], then
Ys(K) Nabe (K) N XM £ ) is a single point;
(iii) Any arc of a flowline ¢(s) = 9,(£) that nontrivially intersects X1, and for which the integral of
w is at most ¥, is contained in a local model.
Appealing to [DKL, Proposition 5.6] we can find a finite cover of X(*) by flow-interiors of local models so
that the first and second conditions are satisfied. This is done by first choosing sufficiently small, pairwise
disjoint flow-interiors of local models, My, ..., My, one containing each 0-cell of X, and intersecting X
in a contractible set. Then we appropriately choose very tiny flow-interiors of local models about each
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point & € XM\ (M, U---U My) which are also all disjoint from the 0-cells. These are chosen so that
they intersect X1 in an arc (necessarily contained in a single 1—cell), and are so small that any two which
intersect different 1—cells of X(!) are disjoint. By compactness, we can take a finite subcover M, which we
do, noting that the flow-interiors covering the O—cells chosen first are necessarily in this set. The existence
of £ > 0 so that the third condition is satisfied is then also a consequence of compactness of X1,

Now we lift each local model in M to a local model in X via the covering map p: X - X (which is
posmble since each M € M is contained in a simply-connected open subset of X), and denote the collection
as M. Observe that the conditions (i)-(iii) are also satisfied by M with the same ¢ > 0 (though this is no
longer a finite cover).

Fix any y € R, look at the fiber ﬁy « = 7.1 (y), and consider the set

y,y+£€],u U w yu —ﬁgl([y,y—kf]).
0<s<e
Suppose that the arc 4¢([0, £]) of the the flowline through £ € Qy u nontrivially intersects X X1 Then this arc
is contained in a local model M € M by condition (iii). The intersection Q [y,y+t,u M is a local submodel
M cM (most likely not a local model in M)
Note that M’ N XM is a component of Q[yyy_;'_g]yu nx® by (i). We enumerate the components of
ﬁ[y,y+g]7u N X® and choose M; € M containing the it" component of ﬁ[yyy_;'_g]_’u N XD and let

M= M0 Qi

By condition (i), /\7; N ./W; # () if and only if M; N M; NX® £0. Since /T/l/; N XM is the i*" component,
it follows that Mv' NXD = Mv’ N XM and hence i =3j.

For any 0 < s < ¢, we can subdivide Qy « and Qy+s « S0 that the intersections of these with any M’ are
subgraphs Qy ui C Qy « and Qy+s ui C Qy_,.s u, respectively. The restriction of the reparameterized flow
1/)5 Qi — Qyﬂ,w is controlled rel boundary in the sense of [DKL, Definition 5.3]. In any complementary
component, 1;" restricts to a homeomorphism (since this is contained in the interior of a 2—cell where the
semiflow restricts to an honest local flow). We can now apply [DKL, Proposition 5.5] to guarantee that ';ZJ“
restricts to a homotopy equivalence from Qy,u to Qy+57u

Remark 13.9. Proposition 5.5 of [DKL] was only stated for finite graphs because that was the only case
of interest. The proof is valid in the current setting as well.

Thus we have proved the last part of the theorem for any y € R and any 0 < s < /. Since IZ;‘ is a semiflow,
it also holds for any s > 0.

Next we claim that every fiber is connected. To see this, observe that since the semiflow restricts to a
homotopy equivalence of fibers, it maps distinct components to distinct components. Thus flowing forward
and backward (i.e. taking the preimage under the semiflow) for any two components of a fiber defines d1s301nt
open sets. Thus we have a bijection between the components of a fiber and the components of X but X is
connected, and hence so is every fiber.

Finally, to see that the inclusion Qy v Xisa homotopy equivalence, we note that both spaces are
Eilenberg-Maclane spaces for (possibly infinitely gcncratcd) free groups, so we need only prove that the map
is an isomorphism on fundamental groups. Any loop in X based at a point &y of QO « 1s contained in the
region between two fibers Qy,u and Qy . for some y < 0 < y’. This loop flows forward onto a loop in Qy s
but since the flow restricts to homotopy equivalences between fibers, it follows that the loop is in the image
of 1 (Qo,u,&0). Similarly, for any loop in 0,u based at &y, suppose there is a null-homotopy of this loop
to a point. This null-homotopy can be flowed forward to some fiber ﬁyu and since the flow restricts to a
homotopy equivalence ﬁ(),u — ,Qy’u’ the loop must have already been null-homotopic in ﬁ()u This completes
the proof. O

Theorem 13.6 quickly implies our theorem from the introduction.
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Theorem G (m-injective foliations). Given u € A, there exists a flow-regular closed 1-form w® representing
u with associated foliation ., of X having the following property. There is a reparameterization of v, denoted
P*, so that for each y € R the inclusion of the fiber €y, — X is m —injective and induces an isomorphism
m1(Qy,) = ker(u). Furthermore, for every s > 0 the restriction

Vot Qyuw = Qyisu

of ¥¥ to any leaf Qy ., is a homotopy equivalence.

Proof. Let w* be the nonsingular closed 1-form from Theorem 13.6.

We observe that the image of ker(u) in H, which we denote kery (u), preserves the fiber Qy,u = 1(y)
in X via the action of H on X. Indeed, kerpy (u) is precisely the stabilizer in H of ﬁyyu. Since the inclusion
of ﬁyu — X is a homotopy equivalence by Theorem 13.6, so is Qyu/ kerg (u) — )?/ kerg (u). The further
quotient X /kery (u) — X maps ﬁyu/ kerfr (v) homeomorphically onto €2, ,, since it is the quotient by the
action of H/ kery(u) = H/stabg (Qy.,). Since X/ kery(u) — X is the cover corresponding to ker(u), we see
that the inclusion €2, ,, induces an isomorphism (€2, ) = m1(X [ kerg (u)) = ker(u) < G, as required.

By Theorem 13.6 Jg: ﬁyu — §~2y+s7u is a homotopy equivalence for all y,s € R, s > 0. Since X Xisa
covering map (hence restricting to a covering map on all fibers of 7) and since this covering map is semiflow
equivariant, it follows that ¢ : Q, , — Q4. is also a homotopy equivalence. a

14. LIPSCHITZ FLOWS

Associated to every primitive integral class u € 8, there is a rich geometric structure on X described by
the following.

Proposition 14.1. For every primitive integral uw € 8, there exists a geodesic metric d,, on X such that for
the reparameterized semiflow Y* we have:

(1) The semiflow-line s — Y¥(&) is a local geodesic for all £ € X;

(2) The metric d,, restricts to a path metric on each fiber ©,, and the maps

{w}: @yﬂt — ey+s,u}320

are \°—homotheties on the interior of every edge, where A = X(fy), is the stretch factor of the first
return map f,.

The metric can be built explicitly by taking the canonical eigenmetric on ©,,, defining a metric on the
fibers so that (2) holds, and then extending to a metric on X so that the semiflow-lines from (1) have unit
speed and are “perpendicular” to the fibers (in the interior of each 2—cell, this makes sense, and then the
2—cells are glued together by isometries).

The main result of this section is that one can carry out an analogous construction for any cohomology
class w € 8. This mirrors the Teichmiller flow from Theorem 1.1 of [McM1] for fibered hyperbolic 3—
manifolds. There the flow mapped leaves of the foliation tangent to the kernel of a 1-form to leaves and was
a Teichmiiller mapping. In our construction, all maps are Lipschitz with constant stretch factor, and so we
call these Lipschitz flows.

Theorem H (Lipschitz flows). For every u € 8, let $(u) be as in Theorem F, w* a tame flow-regqular closed
1—form representing u, Y% the associated reparameterization of 1 and €, the foliation defined by w*. Then
there is a geodesic metric d,, on X such that:

(1) The semiflow-lines s — (&) are local geodesics for all £ € X,

(2) The metric d,, determines a path metric on each (component of a) leaf of Q, ., of the foliation €,
defined by w* making it into a (not necessarily finite) simplicial metric graph,

(3) The restriction of the reparameterized semiflow

{W; Qy,u — Qy+s,u}520

are \°—homotheties on the interior of every edge, where A = e,
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(4) The induced path metric from d, on the interior of any 2—cell U is locally isometric to a constant
negative curvature Riemannian metric.

In the special case that u € § is primitive integral, the 1-form w" is given by restricting the fibration
Ny: X — S! to simply connected open sets and lifting the resulting maps to the universal covering R — S*.
In particular, the leaves 2, , are precisely the fibers ©,, and the metric d, satisfies the conclusion of
Proposition 14.1. Thus, Proposition 14.1 will follow from Theorem H. We recall that the label y for the
leaves ), , makes sense as an element of R/u(H).

14.1. Twisted transverse measures on F. For the remainder of this section we fix a primitive integral
class ug € A, which we may as well assume is the class associated to our original fibration n: X — S! with
©,, = I' and first return map f,, = f: I' = I'. We write Hy = H,, < H, and let s = (s1,...,5p-1),
(t1,. .. tp—1) =t =€ = (e%1,...,e%1), w, x = e” be adapted to ug as in Definition 8.1.

Any class u € H'(X;R) = Hom(G,R) can be used to turn the additive group R into a module over
Z[H] as follows. Since u: G — R factors through H, we can view the exponential of u as a homomorphism
p=pu =e*: H— R, to the multiplicative group of positive real numbers. This defines an action of H on R
by h-y = p(h)y for h € H and y € R. Let R,, denote R with this module structure. Given j = (j1,...,Jo-1),
if we write t§ = #]' .- #;""} € H, then we can think of this as a function H*(X;R) — R, and we have

) = b0 = () 1y y ()
Similarly, p(x7) = x(u)7.
Remark 14.2. To clarify the notation we note that t(u) € R%, while for j = (j1,...,7s—1) we have
t(u)J S R+.

The construction of the metric d,, uses the following proposition. Recall that & C Cx € H'(X;R) = R?
is the graph of s — log(E(e®)) as in Theorem 12.2.

Proposition 14.3. For any u € &, there exists a homomorphism of Z[H]-modules
=ty T(F) = R,
such that for every transversal T we have p([7]) > 0. Moreover, p is unique up to scaling.

The condition that u is a Z[H]-module homomorphism means that it is a group homomorphism, and for
every h € H and transversal 7 we have

p(h-[r]) = p(h)u([r]).
Proof. Recall that uy € A is our initial primitive integral class coming from the graph I' = ©,,,. As in Section
9, we let E = {01,...,0m,} be the representative edges in I' C I" and A(t) = A,,(t) be the associated matrix
for the action Z[Ho|¥ — Z[Hy|F for the lift x=to1py of f: T — T.
We will construct a homomorphism of Z[H]-modules
a: Z[H)F - R,
so that for every edge e of I' we have i(e) > 0 and if Jl(e) =ep---¢j, then
(14.4) (e) = ler) + .. + fies):

By definition of T(f), such a homomorphism will descend to a homomorphism of Z[H|-modules

p: T(T) = T(F) = R,.
Since every transversal 7 flows forward into an edge path of f, hence is equivalent in T'(F) to a positive
linear combination of edges of I, we will have p([7]) > 0 as required.
Now, since u € ® we have w(u) = log(E(e3(")) or equivalently
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Let U(t) be the (left) Perron-Frobenius eigenvector associated to E(t). Thus, we have
U(t)A(t) = E(t)U(t).
Given £ € {1,...,m}, define
fi(oe) = Ug(t(w)).
For an arbitrary element tiz/ with ti = ¢ ... tib_’f 27 and £ € {1,...,m} we define
A(tia’ - o0) = p(tia?)a(or) = t(uPe(u) Ug(t(u)).

Since Z[H]F is a free abelian group, there is a unique extension to a group homomorphism. By construc-
tion, this is a Z[H|-module homomorphism:

ﬁ(tj/mj/ . (tjxj coy)) = (t.] "+igi i e
= t(u) Ha(u) (o)
= t(U) 9«“( ) (P (u) i(or))
= p(t'a?)u(t'2’ - oy)

Finally, to prove (14.4), we note that an arbitrary edge e has the form t327 - o, and so by definition of
A(t) and the fact that fi is a homomorphism, we are left to prove that for every £ =1,...,m we have

$ O'g <Z Az Z > .
For this, we note that since z(u) = E(t(u)) we have
f(z-o0) = a(u)Ul(t(u))
= E(t(u)Us(t(u))

- Z A o(t(w)Us (t(u))

= ZAZZ tl (tb 1))["(01)

as required. Thus, 7 descends to p: T(f) =T(F) = R,.

To prove the uniqueness, suppose y' is some other homomorphism with p/([7]) > 0 for all transversals 7.
We note that any homomorphism is determined by its values on [o1],...,[om], and so we need only verify
that there is some A > 0 so that

1 ([oe]) = Aul[oe])

forall ¢ =1,...,m. For this, we write o = ([o1], ..., [om]) as a row vector, and write p'(c) = (/' ([01]), - - -, 1/ ([om]))
and x -0 = (z - [01],...,2 - [oy]). With this convention, the relations can be expressed in matrix form as
x-0=o0-A(t).

Then we have
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This shows that p/(o) is an eigenvector for the Perron-Frobenius eigenvalue F(t(u)). Since p(o) = U(t(u))
is the unique eigenvector for E(t(u)) up to scalar multiples, it follows that p/(o) is a scalar multiple of u(o),
and we are done. O

We think of p as defining a “transverse measure” on F which is twisted by the action of H and the
homomorphism p,,. It is only defined on transversals, and not arbitrary arcs in 2—cells transverse to F. This
transverse measure can be extended to any arc, as we explain in Remark 14.9.

Before we proceed, we note that p satisfies a monotonicity condition.

Lemma 14.5. For any pair of transversals 7,7, if T C 7' then

p([r]) < u([r'])

with equality if and only if T = 7'.

If T1,79,...,7n C 7T are subtransversals of the transversal T, pairwise intersecting at most in their end-
points, then

w([ml) + -+ 4 plm]) < wdl7)).
Equality holds if and only if T =1 U---UT,.
Proof. We can subdivide 7/ as 7/ = 717273, where 75 = 7, and where either or both of 71,73 may be empty.
Then
pu(r') = p(m1) + p(r2) + p(7s) = p(r2) = p(7).

Equality holds if and only if u(71) = p(73) = 0 and hence if and only if 7 and 73 are empty, which is to say
T=m =1\

The last statement holds for similar reasoning by subdividing 7 into a concatenation of subtransversals
consisting of 71, ..., 7,, together with a (possibly empty) collection of other subtransversals. O

14.2. Constructing the metric. Recall that the foliation {2, is the descent to X of the foliation by fibers
(N)u of X. We want to define a metric on fibers ﬁyu using p and then push it down to a metric on the leaves
of €, but there is a technical difficulty we must address first. To begin, we just define a notion of length
for certain paths.

Given a transversal 7 contained in some ﬁyﬁu, we define the p—length of 7 to be

bu(r) = €’ p([7]).
We can similarly define the p-length of any path 7/ = ¢%(1) C (leﬂ,’u, where 7 is a transversal in ﬁ%u, by
0u(7) = e u(fr).
We note that while 7 is really a subset of X , we need to think of 7/ as a parametrized path (though the
parametrization is unimportant) since the restriction of ¢ to 7 need not be injective. It is straightforward

to check that this length is independent of the transversal 7 that flows into 7/. We will call such a path 7 a
flowed transversal.

Lemma 14.6. For any y,s € R and s > 0 and any flowed transversal 7' we have
() = (7).
Proof. Take a transversal T € ﬁyu and s so that 1;;‘0 (1) =7'. Then
GUE(E) = et ot u([r]) = e (Vo u([r]) = e (7). O
Lemma 14.7. The H-action preserve pu—lengths of flowed transversals:
() = Lu(P(7)).
Proof. Since 12“ commutes with the action H, appealing to Lemma 14.6 we may assume that 7 is a transversal

contained in €, ,,. Suppose h € H, and then h(r) = h~!.7 is contained in the fiber §~2y+u(h)7u. Because pu is
a homomorphism of Z[H]-modules we have

Cu(h(r) = e O p(h= - [r]) = eve Mem M p([r]) = evu([r]) = £u(r). 0
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By a transversal 7 in a leaf Q,, C X we mean the image of a transversal in ﬁyu under the covering
projection p: X — X. We similarly define flowed transversal 7 in £, , C X and note that by Lemma 14.7,

the p-length £,(7) of any such 7 is well-defined as the p—length back in X. Moreover, from Lemma 14.6 we
have

Cu(g (7)) = 2u(7)

for all s € R and any transversal 7 in any leaf Q, .

Lemma 14.8. Let y,e € R with € > 0, and £ € Q,,, be given. Then there is a finite set of paths T1,...,7; in
Qy . whose union forms a neighborhood of &, which are each flowed transversals, and for which the sum of
the p—lengths is less than e. If £ is not a vertex of €, ., then we can take j =1 and 7 = 71 to be a transversal.

Proof. We give the proof for £ not a vertex.
We suppose that the conclusion is false. Thus there is a sequence of flowed transversals {7,} in Q,,
containing ¢ in their interiors for which
L(mn) > €

and for which the intersection is {£}. Since & is not a vertex of €, ,, it lies in the interior of a 2—cell, and
hence these flowed transversals can be taken to be transversals. Such a sequence exists since vertex leaves
of F are dense.

Suppose first that £ lies on a periodic orbit of 1)*. That is, for some r > 0 we have ¥;; (&) = ¢ for all
integers j > 0. Then note that for any j, there is some n so that 7, is so small that

;‘j (T) C 7.
On the other hand, together with Lemma 14.5 this implies
(1) 2 L0y (m)) = €774, (1) > €'

Since the left- and right-hand side does not depend on n, and the inequality between these holds for all j,
this contradicts the fact that £,,(1) is some finite number.

A similar argument works if £ flows into a point which is periodic, so we assume that this is not the case.
Therefore, we can assume that {¢%(§)}s>0 accumulates somewhere. It follows that there is a sequence of
times s; — 00 so that W;j (&) € Qy , for all j and some y', and that these points are contained in a single
transversal 7 in £y ,,. Then, for any j > 0, we can find n so that 7,, is so small that

1/):1 (Tn), :2 (Tn)s - 71/);2 (Tn)

are pairwise disjoint transversals inside 7. Now we note that £,(7) is some finite number, whereas by Lemma
14.5 we have

Cu(T) Z Lu (04, (Tn)) + - -+ Lu (95 () = je.
Since the right-hand side tends to infinity, this is a contradiction.

This completes the proof for the case that £ is not a vertex. The case that £ is a vertex is similar and we
leave that to the reader. ]

Remark 14.9. Lemma 14.8 can also be used to extend p to any arc transverse to F (say, contained in a 2—
cell, so that transversality makes sense). The reason is that we can approximate any such arc by transversals,
and the lemma tells us that the limit of the values of p will be independent of the sequence of transversals
used.

For every y and every edge e of €, ,,, we next define a path metric called the p—path-metric on e inducing
the given topology, so that the length of any transversal is the u—length. For any two points &, £’ contained in
e, we consider a sequence of transversals whose endpoints limit to £ and £’. By Lemma 14.5, the limit of the
p—lengths of these edges is independent of the sequence, and we call this the p—path distance between £ and
&’. The transversals and flowed transversals define a basis for the topology on e, and so Lemmas 14.5 and
14.8, together with the fact that every transversal has positive pu—length (Proposition 14.3), further implies
that the p—path distance is a path metric inducing the given topology.
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We now define a metric on X for which the induced path metric on every edge e of Q, ., is precisely the
p—path-metric. This metric on X is obtained as a quotient path metric of a collection of “nice” subsets of
the hyperbolic plane, and will be constructed in a couple steps.

First, for every y € R and every transversal 7 C Q,, C X let .: [0,79] — 7 denote a unit speed
parameterization with respect to the y—path-metric (note that 7 is contained in some edge). Next, let so > 0
be any positive real number and define a map

BT~,30: [07 TO} X [07 30} - X
by
Brsy(r,8) = g (Br(r)).

We give [0,70] x [0, so] the Riemannian metric e2*dr? + ds?, and note that this is isometric to the region
in the hyperbolic plane bounded by two asymptotic geodesics and two tangent horocycles with its induced
path metric. We call this the hyperbolic metric on [0,79] x [0, so]. Also observe that B, s, maps [0,7¢] X {s}
into Q4 and for any arc of [0,7¢] x {s} that maps into an edge e of €15 ., the map on this arc is a path
isometry to the y—path-metric e.

We will also want to consider this same construction in a slightly more general setting, namely when 7 is
an injective flowed transversal. In this case, 7 will be a concatenation of finitely many transversals and the
p—path metric makes sense on each of these and extends to a metric on all of 7. We then proceed choosing a
unit speed parameterization B : [0,79] — 7 and constructing the map B, 4, : [0,70] x [0, so] = X as above.

We call any B 5, which is a homeomorphism onto its image a hyperbolic model map. Suppose 6: [0,1] — X
is a path contained in the image of some hyperbolic model map B; ,,. Define the d,length of § to be

£u(8) = U(B7 4, (6))

where on the right, ¢ denotes length in the hyperbolic metric on [0,7¢] x [0, so]. Given a path ¢: [0,1] = X
which can be subdivided into subpaths, each of which is contained in the image of some hyperbolic model
map, we define the d,—length to be the sum of the d,~lengths of the subpaths. We call such a path a tame
path. The d,~length of any tame path is independent of the set of hyperbolic model maps used to calculate
its length—this follows from the fact that on the overlap of any two, the composition B; 4, o B;,’lsé (where

defined) is a path isometry.
Now we define a pseudo-metric d,, on X by

d,(&,€) =inf{€,(8) | 6 is a tame path with 6(0) = &,46(1) = ¢’}

Proposition 14.10. The pseudo-metric d, is a geodesic metric on X. Furthermore, for every point £ in
the interior of a 2—cell, there is a hyperbolic model map B, s, and a disk A € [0, o] x [0, so] isometric to a
disk in the hyperbolic plane so that B s, |A maps isometrically onto a neighborhood of €.

For any other point £, there exists a finite set of hyperbolic model maps {Br, s, ,}7—, and disks A; C
[0,70,:] %0, s0,5] isometric to disks in the hyperbolic plane such that B, restricts to an isometric embedding
and the union of the images defines a neighborhood of §.

350,14

Proof. For a point ¢ in the interior of a 2—cell, we can find a hyperbolic model map that is a homeomorphism
onto a neighborhood of £. Restricting to a sufficiently small disk provides the required neighborhood.

For a point £ which is not in the interior of a 2-cell, we choose a finite number of hyperbolic model maps
{Br,,s0.; yi=1 for which the images, denoted {V;};-,, contain £ and so that the union V=V, U...UV, is a
(closed) neighborhood of £. By shrinking the model maps if necessary, we can assume that (1) the domains
are all the same, so sg,;, = so and r,; = r¢ for some rp,so > 0 and all 4, (2) the defining transversals (or
flowed transversals) 71,...,7, are contained in a single leaf €, ,, and (3) £ = B, 5,(r0/2, s0/2) for all 1.
These conditions are easy to arrange and primarily serve to simplify the notation.

We note that the “top” V;* = B., ([0, 70], x{s0o}) C V; is contained in the leaf Q. , for all i, and the
union V+ = V;FU...UVF forms a neighborhood of the point Vg, /2(&) (which is also the point B, s, (ro/2, s0),
for all ) inside ;45,4 By shrinking the models further if necessary, we can assume that V1 is a contractible
subset of the graph Q44 ., hence V7T is a tree.
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FIGURE 10. The maps B, s, Br,.s, from [0,70] % [0, so] (left) to the neighborhood V' (mid-
dle), and the projections II; and Il back onto [0,7¢] X [0, sg]. In this example, the map
II; o B;, 5, maps the upper left rectangle to the lower right rectangle, and is given by
(r,s) = (r',s) where v’ =r if r > r9/2 and 1’ =1 /2 if r < rg/2.

Claim 14.11. For each i =1,...,n, there is a map 11;: V — V; such that
1I; o BT].,SUZ [07 7’0] X [0, 80] — [0, 7"0] X [0, 80]
satisfies the following conditions with respect to the hyperbolic metrics on domain and range:

(i) for everyi,j, II; o By, g, is 1-Lipschitz, and
(ii) for every i, II; o B, 4, is the identity.

See Figure 10.

Proof of Claim. For each i, the top ViJr is an arc, and we first define the restriction of IT; to V't to be the
“closest point projection” V7 — Vf; since VT is a tree, this closest point projection is independent of the
choice of a path metric used to define it. For each ¢, = 1,...,n, we compose II; with the model maps and
their inverses to obtain a map m; ;: [0,79] — [0, 7¢] given by

Ti,j (r) = BT_,lso (Hi(BTjA,S(J (Tv 50)))'

Observe that when ¢ = j, we have 7;; is the identity. Furthermore, when ¢ # j, m; ; is 1-Lipschitz: in
fact, because of the way closest point projections work in a tree, we can subdivide [0, 7] into at most three
segments, so that on each segment m; ; is either an isometry, or constant.

Now, given any point &, € V' we define II;(§p) to be the point obtained by first flowing up for some time
s to VT, projecting by closest point projection to Vf, then within V; flowing backward a time s. This last
map in the composition is possible because inside V;, the semiflow restricts to a local flow: since B, , is
a homeomorphism onto its image, this local flow is just the conjugate of the local flow v on [0,7¢] x [0, s¢]
defined by v (r,s) = (r,s +t). With this notation we can write down the map II;

I1;(&) = v—s (B, (IL(v¢ (£0))))

where s > 0 is the smallest number so that 15(&) € V.
For any 4,5 = 1,...,n, the composition II; o B, ,, takes the simple form

I 0 Brj 50 (1, 8) = (mi,5(r), 5).
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It now follows from the properties of 7; ; mentioned above that II; satisfies (i) and (ii) from the claim, for
all ¢ and j. O

Now suppose that (r, s), (r’,s") € [0,70] X [0, so] are any two points. If  is tame path between B, s, (7, s)
and By, 5, (1, s") contained in V, then II,(d) is a path between (r,s) and (r’,s’) with hyperbolic length no
more than the d,—length of § (since II is 1-Lipschitz on each hyperbolic model where we compute lengths).
Therefore, with respect to the path pseudo-metric on V' induced by d,-lengths, the map B, s, preserves
distances. In particular, this pseudo-metric on V' is a metric.

Finally, let ¢ > 0 be half the hyperbolic distance from (r(/2,s¢/2) to the boundary [0,70] x {0,s0} U
{0,709} x [0, so], and let A be a hyperbolic ball of radius € centered at (r9/2, s0/2).

Claim 14.12. The restriction of B;, s, to A is distance preserving with respect to the d,, pseudo-metric.

Proof of Claim. Observe that from the discussion above, in the path metric on V' induced by d,—lengths,
the union of the images of A

Br 5o (A)U...UB;, 5,(A)

is precisely the e-ball about . Furthermore, for any two points (r, s), (', s’) € A, a path § between B, g, (r, s)
and By, 5, (', s") which leaves V must contain two subpaths, each connecting the frontier of B, 5,(A)U...U
B, s, (A) to the frontier of V', completely contained in V. Considering appropriate projections II; and IIj,
we see that these subpaths must each have length at least €, and so the path § has length at least 2¢. Since
the hyperbolic distance between (r,s) and (r’,s’) is less than 2¢, it follows that the hyperbolic geodesic in
A between these points projects to a path whose d,—length is strictly shorter than any path not entirely
contained in V. But then distances between points in By, s,(A) are computed in terms of d,-lengths of
paths in V. We have already seen that B, ,, is distance preserving in the d,-path metric on V, and so
B;, s, is distance preserving as a map from A into X. a

All that remains is to see that d, is actually a metric, and not a pseudo-metric—as a path metric on
a compact space, it will necessarily be geodesic. For that, we just need to know that no two points have
distance 0. This follows from the arguments just given: a path from some point £ to any other point £ is
either entirely contained in the neighborhood of £ built from hyperbolic models, and hence is bounded away
from zero, or else must exit the neighborhood and hence has length bounded away from 0 (by the radius of
the hyperbolic disk A). This completes the proof. O

Corollary 14.13. For any y € R the path metric on Q, , induced by d,, makes €, ,, into a simplicial metric
graph. Moreover, the path metric on any edge e induced by d, is precisely the p—path-metric on e.

Proof. Because w" is tame, the restriction to any skew 1-cell has only finitely many critical points. There-
fore the components of intersection of the neighborhoods from Proposition 14.10 with a leaf €, , define
neighborhoods of points in €, , which are obtained by gluing finitely many flowed transversals of the form
By, 5,([0,70] x {s}) along finitely many arcs. Furthermore, the metric d,, induces the y—path-metric on these
flowed transversals. Since every point in any €2, ,, has such a neighborhood, the corollary follows. d

We are now ready to give the

Proof of Theorem H. Suppose first that « € § lies in & so that A = ¢?®) = e. Let d, be the metric
constructed above. Proposition 14.10 guarantees that d,, is a metric, and provides enough local information
to guarantee that d, satisfies all the properties of the theorem as we now explain.

First, the flowlines of the local flow v;(r,s) = (r,t + s) on the [0, 7] X [0, so] are unit speed geodesics in
the hyperbolic metric on [0, ro] x [0, so] and the hyperbolic model maps By, 5, conjugate the local flow to the
restriction of the semiflow on the image. Since By, s, is an isometric embedding, (1) follows. Part (2) follows
from Corollary 14.13. In the hyperbolic metric on [0, 7] X [0, so], ¥s maps [0, ro] x {s'} to [0,7¢] X {s’+ s} and
is an e®~homothety. Since A = e and By, 5, conjugates v to the restriction of ¢*, (3) is also true. Finally,
part (4) is an immediate consequence of the first part of Proposition 14.10 since it says that the metric on
the interior of every 2—cell is locally isometric to the hyperbolic plane, hence has constant curvature —1.
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For an arbitrary class u € 8, we use the fact that 8 is contained in the McMullen cone Cx hence the ray
through u intersects & in a unique point w’. Let ¢ > 0 be such that «' = tu then A = P = NG =
) = ¢t Let w" be the closed 1-form used above since u/ € &. Then w* = tw" represents u, and the
foliation £, is exactly the same as the foliation €,/ except that the leaves are given by ., = Q4. (since
Ty = t7,). Similarly, the reparameterization ¢* is related to 1,0“/ by ¥y = 1,[)]5{

Now let d,, = %du/. Since ¢y = w}f; , the ¥—flow lines are local geodesics, and on any edge of any leaf of Q,,
(= Qu), % = Y% is still an e'>~homothety (this is unaffected by scaling the metric). Since A = et = e9(®),
this completes the proof. |

APPENDIX A. CHARACTERIZING SECTIONS

The goal of this appendix is to prove Proposition A.12, which explicitly constructs dual cross sections for
all integral classes in the Fried cone D. To facilitate the construction, we give a combinatorial characterization
of D in terms of a positivity condition for cellular cocycle representatives with respect to a certain trapezoidal
subdivision of X. This characterization is similar in spirit to the definition of the cone A from [DKL]. This
allows us to borrow many of the techniques from [DKL] for constructing sections and apply them to classes
in the Fried cone D. The constructions require a number of modifications and new ideas, and while the
resulting sections still provide a wealth of information about the associated cohomology class, they do not
(and can not) behave as nicely as those from Theorem 5.11 in general.

We begin by recalling some of the relevant notions about Trapezoidal subdivisions from [DKL]. Then we
introduce the combinatorial characterization of D and analyze some of its consequences. Next we describe
a procedure for subdividing the cell structure and refining the cocycle so that it more closely resembles a
cocycle representing an element of A. From this we finally construct a section dual to any primitive integral
class u € D following the construction in [DKL] with appropriate modifications.

A.1. Trapezoidal subdivisions. Our construction of cross sections will involve working with various trape-
zoidal subdivisions of the cell structure on X. To this end we recall from [DKL, §6.3] the relevant structure
of these subdivisions as well as some terminology and notation for working with them. A trapezoidal cell
structure on X is one in which every 1—cell is either vertical or skew, and every 2—cell is a trapezoid. Each
1—cell e is equipped with a globally defined positive orientation so that the restriction 7. is orientation
preserving. The boundary of a trapezoidal 2—cell T' consists of four arcs £_(T), {4 (T), e_(T), and e4(T)
which we refer to as the left, right, bottom and top arcs of T, respectively. Each of these arcs is a union
of 1—cells and may therefore be regarded as a cellular 1-chain in X. The trapezoid induces a T—orientation
on each of these arcs in which ¢4 (7)) and e_(T) are given the positive orientation; the sides ¢4 (T") are then
distinguished by the convention that e_(7T') is oriented from ¢_(T) to £, (T"). The T—orientation on the top
arc ey (T') is defined so that it is also oriented from £_(T") to £4(T). This T—orientation on e, (7)) may not
agree with the globally defined positive orientation, and we define the sign ((T') € {£1} of T so that the
1—cells comprising the 1—chain {(T")e (T) appear with positive sign.

In any trapezoidal cell structure we require that the sides ¢4 (T") of each trapezoid consist of vertical
1—cells (however ¢4 (T') may degenerate to a vertex), and that the bottom arc e_(T') consists of a single skew
1—cell. Conversely each skew 1—cell is equal to e_(T") for a unique trapezoid 7. On the other hand, the top
arc e4(T') of a trapezoid may consist of several skew 1—cells. Finally, we note that each O—cell is the initial
endpoint of a unique (positively oriented) vertical 1—cell.

A.2. A combinatorial characterization of the Fried cone D. Recall that f: I" — I' is an expanding
irreducible train track map with transition matrix A(f) and associated transition graph G(f). The circuits
Y of G(f) determine a finite set of closed orbits {Oy},cy as explained in §6.

We subdivide X along the closed orbits O, for all circuits y € Y. More precisely, for a given circuit y € ),
each skew 1-cell o of X that intersects O, is subdivided by adding a 0-cell at o N O,, and each trapezoidal
2—cell T' of X that intersects O, is subdivided into two trapezoids by adding the vertical 1-cell ’NO,. The
cell structure obtained by performing these subdivisions for each y € ) is called the circuitry cell structure
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on X and will be denoted X €. Since ) is finite, we note that X¢ is indeed a finite trapezoidal subdivision
of X.

Definition A.1 (Vertical positivity). A cellular 1-cocycle z € Z}(Y;R) of a trapezoidal subdivision Y of
X is said to be vertically positive if z(o) > 0 for every vertical 1-cell o of Y.

Proposition A.2. The Fried cone D is equal to the set of cohomology classes that can be represented by
vertically positive 1—cocycles of the circuitry cell structure X©.

Proof. Recall from Proposition 6.3 that D C H!(X;R) consists exactly of those classes which are positive
on all orbits O, for y € Y. Since each O, is comprised of vertical 1—cells of X¢, it follows immediately that
every vertically positive cocycle of the circuitry cell structure X ¢ represents a class in D.

It remains to prove that each class in D can be represented by a vertically positive cocycle of X€. Let
u € D so that u(O) > 0 for every closed orbit @ € (1) of ¥. Let us say that a vertical 1-cell of X©
is periodic if it lies on a closed orbit of ¢ and that it is nonperiodic otherwise. As closed orbits of i are

necessarily disjoint, we see that the periodic 1-cells form a disjoint union of finitely many ~1, ..., closed
orbits of ¢ (some of which are of the form O, for y € ). The (oriented) nonperiodic 1-cells, on the other
hand, form a disjoint union of oriented rooted trees 77, ...,T,, (oriented towards the root) with the root of

each tree lying on one of the closed orbits ~;.

Choose any cocycle zy € Z'(X¢;R) representing u. Since u € D, we then have zy(7;) > 0 for each of the
closed orbits 1, ...,7v,. Therefore, by adding coboundaries associated to the vertices of ~; to distribute the
value zo(y;) equally among all periodic 1-cells comprising ~;, we obtain a cohomologous cocycle z{, that is
positive on all periodic 1—cells.

Having accomplished this, we may now freely add coboundaries associated to any vertex in any tree T},
except for the root, without affecting the value of z{ on the periodic 1—cells. Since each T} is a tree, it
straightforward to add such coboundaries — working from the root down — so that the resulting cocycle z is
positive on all nonperiodic 1—cells as well. Thus z is a vertically positive representative of u, as desired. [

Recall that our objective is to prove D C 8 by constructing cross sections dual to all integral classes u € D.
The first step towards this goal is the following lemma, which is a quantified strengthening of Proposition 6.3.

Lemma A.3 (Positive on flowlines). Given u € D, there exists k > 0 with the following property. Let X’
be any trapezoidal subdivision of X and suppose that £ € X and t > 0 are such that & and (&) both lie on
the same skew 1—cell o of X'. If v C X denotes the closed loop obtained by concatenating the flowline from
& to (&) with the arc of o connecting V¥:(§) to &, then we have

u(y) > k(t—1).

Proof. Let § > 0 be the minimum of u(0,) for y € ¥ and let L > 1 denote the longest (combinatorial)
length of any circuit in G(f). Set k = §/L.

Choose the smallest s > 0 so that ¢ = ¢¥5(§) € I' C X, and consider the the homotopic loop ¥s(7). Let
e € ET be the edge of I" containing ¢. By pushing the ‘slanted’ portion of the loop %s(y) (running along
1s(0)) onto e, we see that there is some integer k£ > 1 (near to t) so that () is homotopic to the closed
loop v’ obtained by concatenating the flowline from ¢ to ¥, (q) with the arc along e from 9 (q) to ¢. In fact,
|t — K| here is equal to the length of the image of the arc along o from 1/;(€) to & under the map n: X — S*.
Since this is a subarc of some skew 1—cell of X and, by construction (see [DKL, §4.4]), every skew 1—cell of
X projects under n: X — S! to an arc of length less than 1, we have k € (t — 1, + 1).

There is a subinterval o C e containing ¢ on which f* is an affine homeomorphism onto e, and we let
go € a denote the fixed point of f¥. There is thus a closed orbit O,, through go, which is homotopic to 7/
and which also crosses I' k times. It follows that the associated closed path w in G(f) has combinatorial
length k. By Lemma 6.2 we can now write

[V =[] =[0u] = Oy, ]+ -+ +[0y,]
for some circuits y; € ) whose combinatorial lengths sum to k. Since each y; has length at most L, we have
u(y) =u(Oy,) + - +u(0,,) >nd > kd/L > (t —1)6/L = k(t — 1). O



MCMULLEN POLYNOMIALS AND LIPSCHITZ FLOWS FOR FREE-BY-CYCLIC GROUPS 63

A.3. Height. Recall that p: X — X is the universal torsion-free abelian cover of X; the induced homomor-
phism p,: H; (X;R) — Hy(X;R) is then trivial by definition of X. Given a trapezoidal subdivision Y of
X, let Y denote the lifted trapezoidal cell structure on the universal torsion-free abelian cover and choose
a vertex vg € YO to serve as a basepoint. Every cocycle z € Z!(Y;R) then determines a height function
h,: Y(© — R whose value at a vertex v € Y(© is defined to be

h=(v) = 2(%),

where Z = p*(z) is the pull-back of z and ¥ is any cellular 1-chain on Y with boundary 9% = v —vg. If ¥’ is
any other 1—chain with 0¥/ = v — vy, then ¥’ — 3 is a cycle and so p. (¥’ —X) is nullhomologous in Hy(X;R).
Therefore Z2(X' — X) = z(p«(¥' — X)) = 0 showing that h,(v) is well-defined. We note that for any two
vertices v, v’ € YO the difference h.(v') — b (v) is equal to () for any 1-chain in ¥ with % = v/ —v. For
notational convenience, we similarly define the height of a 1-cell o of Y as h.(o) = min{h,(t(c)), h,(o(0))}.
Lemma A.4. Let Y be a trapezoidal subdivision of X with a cellular cocycle z € Z*(Y;R). Then there
exists L > 0 such that if T is a trapezoid of Y and o+ are skew l—cells along the arcs ei(f), then
halos) — ha(o )] < L.

Proof. For any trapezoid T of Y, let M(T) denote the quantity
=Y lxo)
oeoT

where the sum is over all 1—cells that occur in the 1-chain 7. Take L to be the maximum value of M (T')
among all (finitely many) trapezoids T of Y. For skew 1-cells o4 as in the statement of the lemma, let vy
denote the vertex of o4 achieving h,(o4). Then there exists a 1-chain ¥ consisting of cells in 97" for which
0% = vy — v_. By the above definition of L, it then follows that

|hz(04) = hz(o-)] = |hz(vy) — ho(vo)] = |2(5)] < L. O

Combining this with Lemma A.3, we can now prove the following.

Lemma A.5 (Linear ascent). Let Y be a trapezoidal subdivision of X and let z € Z1(Y;R) be a cocycle
representmg a class [z] € D. Then there exists k > 0 and N > 0 satisfying the followmg property. Suppose
that € € Y and t > 0 are such that & and 1/1,5(5) lie on skew 1—cells o and o’ on respectively. Then

h.(¢") — h,(c) > Kkt — N.

Proof. Let us declare two skew 1-cells of Y to be equivalent if they cover the same 1-cell of Y, and let us
denote the corresponding set of equivalence classes by W. Note that W is finite. Let £ > 0 be the constant
provided by Lemma A.3, and let L > 0 be as in Lemma A 4.

Write oy = o and let Wi € W be its equivalence class. Set s; = 0 and define

t1 = max{s € [0, 1] | ¥s(¢) lies in a skew 1—cell in Wy}

to be the last time that the flowline from & to Jt(f) hits a skew 1-cell in W;. Denote the skew 1-cell
containing vy, (§) by f1 € Wi. If t; =t then we stop, otherwise let

s = min{s € (t1,t] | ¥s(€) lies in a skew 1—cell}

be the next time that the flowline hits a skew 1-cell. We again let oy denote the skew 1-cell containing
JSQ(S) and let W5 € W be its equivalence class. Notice that Wy # W, by definition of ¢; and s;. We now
similarly define
ty = max{s € [0,1] | ¥s(¢) lies in a skew 1-cell in Wy}
to be the last time the flowline hits a skew 1-cell in W5 and let 82 € W5 denote that particular 1-cell. Note
that t5 > s9 by definition.
Continuing in this manner, we find a sequence of times

0251St1<52§t2<"'<8n§tn=t
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such that for each 1 < ¢ < n the points 1251(5) and 1Zt1. (&) lie on skew 1—cells o; and f3;, respectively, that are
both members of the same equivalence class W;, and that moreover these equivalence classes Wy,..., W,
are all distinct. In particular we note that n < |[W|.

Now, the trapezoidal cell structure on X was explicitly constructed so that every flowline must hit a skew
1—cell of X (and thus also of Y) within time 2; see [DKL, §4.4]. Therefore for each 1 < i < n we have
Si+1 — t; < 2 by definition of s;41. Furthermore, since the flowline from {Eti (&) to Jslﬂ(f) is disjoint from
all other skew 1-cells, it must be that 8; and a;y; lie along the bottom and top arcs e_(T) and e (T),
respectively, for some trapezoidal 2-cell T of Y. Lemma A.4 therefore implies |h(ciy1) — ho(8;)| < L for
all 1 <i<n.

On the other hand, since «; and f; are in the same equivalence class, Lemma A.3 implies that h,(3;) —
h.(c;) > k(t; — s; — 1). Therefore we may conclude

(Zh (B;) — ) (Zh Qit1) z(ﬁi))
(Z Kt — s; — 1)) —L(n—1)

i=1

n—1
—ﬁ<t—25i+l—ti) —kn—L(n—1)

i=1
>kt — (3k+ L) [W| O

h.(c") — h.(0)

A%

This “linear ascent” is a crucial feature of classes in the Fried cone. For an integral class u € D with
cover X,, — X corresponding to ker(u), this shows that lifting any biinfinite flowline to X, yields a path
that exits both ends of X,, (compare [Fri2, Theorem A] and [Wan, Theorem 1.1]).

A.4. Depth. In order to construct cross sections dual to certain cohomology classes, we will need to represent
those classes by cocycles that enjoy certain properties. Here we introduce the first of these properties and
show that classes in the cone D have such representatives. B

A biinfinite flowline in X is a path 5: R — X such that for all ¢ € R and s > 0 we have ¢, (5(t)) = (s +1).
In this case we say that the set 5((—o0,0]) is a backwards flowline of 5(0). Notice that every point of X has
infinitely many backwards flowlines.

For a trapezoidal subdivision Y of X and a vertex v € 17(0), a skew 1—cell o of Y is said to be behind v if
there is a backwards flowline of v that intersects o.

Definition A.6 (Depth). Let Y be a trapezoidal subdivision of X and let 2 € Z(Y;R) be a cellular cocycle.
The z—depth of a vertex v € Y (© is defined to be the number of 1-cells o of Y for which there exists some
biinfinite flowline 4 through v = 4(0) and a time ¢ < 0 such that

e (t) € 0, and

e h.(v) < h.(c") for every skew 1-cell o’ of Y that intersects 5([t,0]).
The equivariance of 1/7 and 7 under deck transformations of ¥ implies that vertices of Y that project to the

same point of Y necessarily have the same z—depth. Thus we also define the z—depth of a vertex of Y to the
z—depth of any of its lifts.

While the z-depth of a vertex could in general be infinite, this is never the case when the cocycle z
represents a class in D:

Lemma A.7. Let Y be a trapezoidal subdivision of X and let z € Z*(Y;R) be a cocycle for which [z] € D.

Then for any M > 0 and any vertex v of Y there are only finitely many skew 1-cells o of Y behind v
satisfying
h.(c) > h,(v) — M.

In particular, every vertex ole/ has finite z—depth.
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Proof. Let k >0 and N > 0 be the constants provided by Lemma A.5. Since every flowline of X eventually
hits a skew 1—cell, we can find s > 0 so that 1, (v) lies in a skew 1-cell o’ of Y. Set L = k=1 (h,(c") — h.(v) +
M + N).

Suppose that 4 is any biinfinite flowline through v = 4(0) and that ¢ < 0 is such that () lies on a skew
1—cell o of Y satisfying h. (o) > h.(v) — M. Then by Lemma A.5 we have

h,(0') = h,(c) > k(s —1t) = N,
which together with the assumption on o implies
k(s —t) — N < h,(0') — h,(v) + M.

In particular we see that
—t <k M (ha(0') = ho(v) + M+ N) —s < L.

The above paragraph shows that any skew 1-cell o of ¥ behind v that satisfies h(o) > h,(v) — M
must intersect ¥([—L,0]) for some backwards flowline of v. But if we declare two biinfinite flowlines to be
equivalent if they agree on [—L,0], then there are are only finitely many equivalence classes of biinfinite
flowlines ¥ satisfying 4(0) = v. Thus, taking the union of 5([—L, 0]) over all flowlines ¥ satisfying 5(0) = v,
we see that there are only finitely many skew 1—cells intersecting this set. g

Once one knows that every vertex has finite depth, it is straightforward to build a refined cocycle for which
every vertex in fact has zero depth. We recall here that a refinement of a cellular cocycle z € Z1(Y;R) to a
subdivision Y’ of Y is a cocycle 2/ € Z1(Y';R) such that 2/(c) = z(o) for every 1-cell o of Y, where in the
expression z'(0) we regard ¢ as a 1-chain in Y.

Lemma A.8 (A shallow refinement). Let Y be a trapezoidal subdivision of X and let z € Z*(Y;R) be
a vertically positive cocycle for which [z] € D. Then there exists a trapezoidal subdivision Y’ of Y and a
vertically positive refinement 2’ € Z*(Y';R) of z such that every vertex of Y' has 2’ —depth equal to zero.

Proof. Let K denote the largest depth of any vertex in Y, and choose a vertex @ of Y with z—depth equal
to K. We may assume K > 1. Lemma A.7 implies that the set

{h.(0) — h,(5) | & is a skew 1—cell behind o}

is discrete. Therefore we may choose ¢ > 0 such that every skew 1-cell & behind ¢ satistying h.(5) < h.(0)
also satisfies h,(6) < h,(0) — 9.

Since ¢ has 2—depth equal to K > 1, Definition A.6 implies that there exists biinfinite flowline ¥ with
(0) = v, a time ¢ < 0, and a skew 1—cell 6 of YV satisfying h.(?) < h.(6) such that 5(¢) € 6 and such that
5((t,0)) is disjoint from all skew 1—cells of Y. Letting T’ denote the trapezoid of Y for which e_(T) = &, it
follows that @ € e, (T). Now, if the arc 5([t,0]) were equal to ¢4 (T) and thus comprised of vertical 1—cells,
then the vertical positivity of z would imply h.(6) < h,(0). As this is not the case, the arc 4([¢t,0]) must
therefore traverse the interior of T. B

Recalling that p: Y — Y is the covering map, let T = p(T') and o = p(¢). It follows that p(?) lies in the
interior of e4 (T") and that w = p(5(t)) is an interior point of e_(T") = 0. We now subdivide o into two skew
1-cells a3, g by adding a vertex at w and subdivide T into two trapezoids 77 and T, by adding the vertical
1-cell 8 = p(5([t,0])). Call the resulting subdivision Y’ and let w and &; respectively denote the unique
lifts of w and «; that are contained in T. We refine z to a cocycle 2/ € Z1(Y’;R) by setting 2/(3) = & and
defining 2’(«;) subject to the cocycle condition for T;. Notice that 2’ is again vertically positive.

Let us now consider the z’~depth of vertices in Y”. First recall that h, () < h.(5) = min{h,(¢(5)), h.(o(5))}.
Since h,/ (W) = h,(0) — 6 by construction, it follows that h,/ () < h,(t(5)), h;(0(F)). Therefore h,/(&;) <
h.(¢) for i = 1,2, and the same holds for all equivariant translates of @i, &s,&. In particular, we see that
whenever &; is behind some vertex 99 of Y satisfying h.(6) < h.(?p), then we also have h,/(&;) < h./(0)
for ¢ = 1,2. This shows that the z’~depth of every vertex of Y is bounded above by its z—depth. Moreover,
since h,/(&;) = h,/(0) — 0 we see that neither of the new skew 1—cells &; contribute to the z’~depth of 7,
whereas & did contribute to the z—depth of ©. Thus the z’~depth of ¥ is strictly less than its z—depth.
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It remains to analyze the z'~depth of the new vertex w. Notice that the set of skew 1-cells of Y’ behind @
is a subset of the ones behind ¥. Furthermore any skew 1—cell 6o of Y’ behind ¢ satisfying h.:(6¢) < h./(0)
also satisfies h./(50) < hu: (@) = h. () — & by the choice of 8. Thus the set of skew 1—cells of Y’ counting
towards the z’-depth of w is a subset of those counting towards the z’~depth of ©. This shows that the
z'~depth of @ bounded by the z’~depth of ¥, which we have seen is at most K — 1.

Recall that K was chosen to be the maximal z—depth of any vertex in Y. We have constructed a subdivision
Y’ and cocycle refinement 2’ € Z!(Y”;R) so that no vertex has z’~depth more than K and so that the number
of vertices in Y’ with z’~depth equal to K is strictly less than the corresponding number of vertices in Y.
By repeating this recursively, we eventually arrive at the desired subdivision in which every vertex has depth
Zero. (|

A.5. Consistent signage and the refinement procedure. We now introduce the second property we
require of our cocycles in order to construct dual cross sections. Recall that if T is a trapezoidal 2—cell in a
trapezoidal subdivision Y of X, then we may write its top arc as a cellular 1-chain e, (T') = {(T)(o1+- - -+0%)
where each o; is a (positively oriented) skew 1—cell in Y.

Definition A.9 (Consistently signed). Let Y be a trapezoidal subdivision of X and let z € Z*(Y;R) be a
cocycle. We say that z is consistently signed if it is vertically positive and for every trapezoid T' of Y with
top arc ey (T) = ((T)(01 + - - - + 0%), all of the numbers z(o;) are nonzero and have the same sign.

Before showing how to arrange for a cocycle to be consistently signed, we first recall the subdivision
procedure introduced in §6.4 of [DKL]. Briefly, if Y is a trapezoidal subdivision of X, then following [DKL,
Definition 6.8] the standard subdivision Y of Y is obtained as follows: For each trapezoid T of ¥ whose
top arc ey (T) = ¢(T)(o1 + -+ + ok) contains at least k > 2 skew 1-cells, we subdivide the bottom arc
e_(T) (which is a single skew 1-cell) into k skew 1-cells that flow homeomorphically onto the skew 1-cells
01,...,0k comprising ey (T'), and we add k—1 vertical 1—cells through 7" connecting the newly added vertices
on e_(T) to the already existing vertices along e (T"). (Note that the first step of the standard subdivision
procedure, in which all invariant bands are subdivided, has no effect here since f is an expanding irreducible
train track map; see Remark 6.7 of [DKL)].)

Lemma A.10. Let Y be a trapezoidal subdivision of X and let z € Z1(Y;R) be a vertically positive cocycle
such that every vertex of v has z—depth equal to zero. Then there exists a trapezoidal subdivision Y' of Y
and a consistently signed cocycle 2’ € Z'(Y';R) that refines z.

Proof. In fact we will take Y’ to be the standard subdivision Y. Let T’ be any trapezoidal 2—cell of Y’. Then,
by nature of the standard subdivision procedure, the top arc ¢(1")e;(T”) of T" is equal, when considered as
a l-chain in Y, to a single skew 1-cell o of Y. This skew 1—cell ¢ is in turn equal to e_(7") for a unique

trapezoid T of Y. Writing the top arc of T as a concatenation of skew 1-cells of Y, we let vg,vy,...,v; be
the vertices of Y along e (T") (traversed in that order with the T—orientation), so that vg is the top endpoint
of £_(T') and vy, is the top endpoint of ¢4 (T"). Then in the subdivision procedure, new vertices uy, ..., ux_1

are placed along o (indexed so that u; flows onto v;), and for each 1 < i < k a vertical 1-cell §; is added
connecting u; to v;. We also let ug = o(0) and uy, = t(o) denote the bottom endpoints of £_(T") and ¢ (T),
respectively. Thus in Y, the skew 1—cell o is subdivided into the k skew 1—cells a; = (u;—1,u;) for 1 <14 < k.

With this notation, writing the top arc of 7”7 as a 1-chain in Y’ we now have e (T") = {(T") (a1 +- - -+ o).
Thus we must define 2z’ on the new 1—cells «; and f3; so that 2’ refines z and all of the numbers z(«), ..., z(ag)
have the same sign. Notice that o is behind each of the vertices vy, ...,v;. Since every vertex of Y has
zero z—depth by assumption, we therefore have h,(c) < h.(v;) for each 0 < ¢ < k. Given any partition of
unity p; + -+ + pr = 1 with each p; > 0, if we define 2'(a;) = p;z(o) for 1 < i < k, then the numbers
hy(u1)y ..., he (ug—1) will interpolate between h:(ug) = h.(o(0)) and h,:(ux) = h.(t(c)). Therefore, since
each v; satisfies h,(0) < h.(v;), we may choose the partition p; + -+ 4+ pr = 1 so hy (u;) < hy(v;) for all
1 < i < k (in fact, we could even arrange to have h, (u;) < min{h,(vo),...,h,(v)} for each 1 < i < k).
Defining each z’(e;) in this way, we then set z'(8) = h.(v;) — ho(u;) > 0 for 1 < i < k and leave the value
of z unchanged on the vertical 1—cells of ¢4 (T"). This ensures that 2z’ satisfies the cocycle condition and that
it is moreover a vertically positive refinement of z. a
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In §6.5 of [DKL] we also introduced an accompanying standard refinement procedure for positive cocycles.
However, the reader may check that Definitions 6.10 (skew ratios) and 6.11 (standard refinement) of [DKL]
make sense verbatim if each occurrence of the word ‘positive’ is replaced with ‘consistently signed’. The
proofs of Lemmas 6.12-6.13 of [DKL] also go through verbatim in this more general context to give the
following.

Lemma A.11. Let Yy be a trapezoidal subdivision of X and z9 € Z'(Yy;R) a consistently signed cocy-
cle. Consider the sequence of standard subdivisions Yy, Y1, ... with corresponding consistently signed cocycle
refinements defined recursively by Y11 =Y, and z,11 = z,. Then the numbers

S, =max {|z,(0)]: o is a skew 1—cell of Yy, }
tend to zero as n — oo.

A.6. Constructing cross sections. Finally, we construct cross sections dual to all integral classes u € D.
For the proof, we first recall from [DKL, Definition 6.14] that a trapezoidal 2-cell T is said to be unconstrained
by a cocycle z if

max {0, z(e_(T))} < min {z((_(T)), z({_(T)) + 2(e+(T))}.
By the cocycle condition, this is equivalent to |z(e—(T'))| < z(¢+(T)) when z is vertically positive. We also
recall that a trapezoidal 2—cell is said to be degenerate if its right side ¢ (T) consists of a single vertex (as
in Figure 8 of [DKL)]).

Proposition A.12. Given a primitive integral class u € D, there exists a flow-regular map 1, : X — S!
with ()« = u: G — m1(SY) = Z and a fiber ©,, = n;1(yo) for some yo € S such that
(1) ©, is a finite, connected topological graph such that i.(71(0,)) < ker(u), where v, is the homomor-
phism induced by the inclusion t: ©, — X,
(2) ©, is a section of ¥ dual to u, and
(3) ©, is F—compatible (and so the first return map f,: ©, — O, is an expanding irreducible train
track map by Proposition 7.7).

Remark A.13. We note that the sections produced by Proposition A.12 will generally not have all the
properties ensured by Theorem 5.11. Namely, for u € A the fiber ©,, as provided by Theorem 5.11, will
m1—inject into X and the first return map will be a homotopy equivalence. However, both of these properties
will fail whenever u € D lies outside of A.

Proof. By Proposition A.2, we can represent u € D by a vertically positive cocycle z € Z'(X®, R). Using
Lemma A.8, we may then pass to a trapezoidal subdivision of X© and a corresponding vertically positive
refinement of z with respect to which every vertex has zero depth. By Lemma A.10, we may pass to a
further subdivision Yy on which there is a refinement 2y € Z!(Yp;R) of 2 that is consistently signed. We
then considgli the sequence Y, of standard subdivisions with corresponding refinements z,, defined recursively
by Vo1 =Y, and 241 = Z,.

Let D,, denote the set of degenerate trapezoids in Y,. Notice that the cardinality of D, is constant
independent of n. Indeed, when a degenerate trapezoid T' of Y;, is subdivided, exactly one of the resulting
trapezoids 7" C T is degenerate, and its degenerate side ¢4 (7”) is equal to ¢4 (7). Thus if we define

Uv=J T and V,={((T)|TeD,}
TeD,

to be the union of degenerate trapezoids and the set of “degenerate sides” of trapezoids in Y,,, respectively,
then all of the the sets Vg, Vi, ... are equal. Furthermore, the infinite intersection N, U, is exactly V. This
follows from the fact that the union UnY750> is dense in every skew 1—cell of Yj, which is a consequence f being
an expanding irreducible train track map. Therefore, we may choose an index N such that all trapezoids in
Dy have disjoint closure. Set U = Uy

Let M > 0 denote the minimum of zx (o) over all vertical 1—cells of Y. By Lemma A.11, we may choose
n > N so that every skew 1—cell o of Y,, has |z,(c)| < M. Furthermore, as in the proof of Proposition
6.15 of [DKL], we additionally have z,(8) > M for every vertical 1-cell B of Y,, that is not contained in U.
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Therefore, every trapezoidal 2—cell T of Y;, that is not contained in U satisfies |z, (e_(T))| < z,(¢+(T)) and
is consequently unconstrained by z,

Set Y =Y, and by an abuse of notation let z = z,,. We now use this trapezoidal subdivision to construct
the desired map 7,: Y — S!. The construction proceeds largely as in the proof of [DKL, Lemma 6.16]:
Choose a maximal tree @ C Y and fix a vertex vy € Q to serve as a basepoint. Define a map #,: Q — R
so that 7, (vg) = 0 and so that for every 1-cell e in @ the restriction to e is a diffeomorphism onto its image
and so that

flu(t(e)) = fu(o(e)) = z(e).
While this equation may fail for 1—cells not contained in @, since z represents an integral cohomology class
we will still have

flu(t(e)) = fulo(e)) — 2(e) € Z
for such 1-cells. Therefore, the composition of 7, with 7: R — S may be extended to a map 7,: Y1) — St
with the property that for any 1-cell e, any lift 7],|.: ¢ — R is an injective local diffeomorphism for which

Tule(t(e)) = M,]e(o(e)) = z(e).

Since the trapezoids contained in U may not be unconstrained by z, we must take care to ensure that 7,, can
be extended to a flow-regular map. Let T" be a trapezoidal 2—cell contained in U. Flowing the bottom arc of T’
onto the top using ¢ gives a homeomorphism hr: e_(T) — e4(T") which is orientation preserving with respect
to the T—orientation on ey (T). Consider any lift 77}, |or of the restriction of 1], to OT. Since z is consistently
signed, this maps the arcs e (T") homeomorphically onto intervals Iy = 7. |ar(e+(T)) C R which we equip
with orientations so that these identifications ey (7T") — I1 are orientation preserving. Let A: I, — I_ be
the unique orientation preserving (with respect to the above orientations) affine homeomorphism from 7 to
I_. We now redefine 7,, on the 1—cell e_(T") by declaring

Nyle_(ry =m0 Ao, |or o hy.

Notice that this agrees with the original value of 1], on the endpoints of e_(T"). Since the interior of e_(T')
is disjoint from the closure of every other trapezoid contained in U (this follows from the choice of N) we
may freely make these adjustments on the bottom arcs of all trapezoids in U without conflict. Let us denote
the resulting (adjusted) map by 7,: Y — S!. Then for any trapezoid T contained in U and any lift
Tulor: 0T — R, we have

(A.14) Nulor(§) < Nulor (hr(£))

for every interior point £ € e_(T). In fact, since all other trapezoids are unconstrained by z, this property
holds for every trapezoid of Y.

Choose a point yy € S! \nu(Y(O)). Since the vertex leaves of F are dense in X, after adjusting 7, by a
(small) homotopy rel Y(°)| maintaining all of the properties above, we may assume that (1,) " (yo) € Y}
consists of a finite set of points lying on vertex leaves of F.

We now extend n,, over the 2—cells of Y. Consider any trapezoid T and a lift 7, |so7: 0T — R of n,|or to
the universal cover. As in the proof of [DKL, Lemma 6.16], we may identify T with the Euclidean trapezoid
provided by [DKL, Proposition 4.20] and then extend 7, |97 over T in such a way that the fibers are straight
lines (Euclidean) lines. Equation (A.14) then ensures that each fiber has nonvertical slope and is thus
transverse to the foliation of T by vertical flowlines. We then extend 7, to the interior of T' by declaring it
to equal 7 o 77, |7 on T. Extending in this way over every 2—cell of Y, we obtain a map n,: ¥ — S.

Since the fibers of 7, are transverse to the foliation of X by flowlines, we see that 7, is flow-regular on
the interior of each 2—cell. However, since 7, was extended to the various 2—cells independently, it need not
be flow-regular on a neighborhood of Y (1), Nevertheless, adjusting by a homotopy rel Y1), we may smooth
out and “straighten” the fibers of 7, in a neighborhood of Y(!) so that 7, : ¥ — S! is flow-regular on all of
Y.

The map 71,: Y — S! now satisfies all of the conclusions of the proposition. By construction the fiber
©, = n;(yo) C X is a connected topological graph which, since 7, is flow-regular, is necessarily a cross
section dual to (7). Indeed, Lemma A.5 explicitly shows that every flowline hits ©,, infinitely often, and
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Proposition 5.5 ensures that ©,, is connected. Moreover, our choice of 19 € S! guarantees that ©, N Y is
contained in vertex leaves of F and thus that ©,, is F—compatible. Finally, the desired relationship (7,). = u
follows from the fact that for each 1—cell e of Y, any lift of the restriction 7,|. maps e homeomorphically
onto an interval whose endpoints differ by z(e). This in turn implies that t.(71(0,)) < ker(u). d

APPENDIX B. LOCAL BOUNDEDNESS OF THE STRETCH FUNCTION

Our goal in this appendix to prove Proposition 3.7 and thereby show that the stretch function A: @E(G) —
R, defined in §3.2 is locally bounded. To this end, let u; € H!(G;R) be a primitive integral point that lies
in ¥(G). Letting G = By, be an HNN-extension compatible with u; (that is, with B < ker(u1) a finite rank
free group and ¢1 = @, |p: B — B an injective endomorphism), we then have A(u;) = A(¢1) by definition.

B.1. An expanding representative. Let f;: R — R be a regular, irreducible expanding graph map on a
rose R with an identification B 2 m1(R) so that (f1)« = ¢1. To simplify the discussion, we assume (as we
may) that the transition matrix is not only irreducible, but is in fact positive. Let vg be the wedge point of
R and for K > 0 set

K
Ve={J fifw) and V=[]V
k=1 k>0
Since fi has a positive transition matrix, Vg nontrivially intersects in the interior of every 1-cell of R for
every K > 1.

Lemma B.1. For any K > 0,0 <k < K + 1, and any arc e in the complement of Vi, the restriction of
fE to e is locally injective.

Proof. The map f; is locally injective on the interior of every edge of R since f; is regular. It follows that
local injectivity of fZ can fail only at points f; Y(vg) = V1; hence f? is locally injective on any arc in the
complement of V;. As compositions of locally injective maps are locally injective, it follows by induction that
failure of locally injectivity of fF can only occur at points of V;_1, and there are no such points in e. |

For technical reasons which will be clear later, we give each 1-cell e of R an auxiliary linear structure
determined by a characteristic map [0, 1] — e which maps the rational points bijectively onto V., Ne. This
is possible because both are countable dense sets (for V,, this is because f; is expanding and irreducible).
Furthermore, we assume, as we may, that the new linear structure and the original linear structure define
the same smooth structure on the edges. It follows that for any arc « of an edge e with endpoints in V., a
linear map [0, 1] — « also sends QN [0, 1] onto Vs N« (since such a linear map differs from the restriction
of [0,1] — e by a rationally defined affine map of R — R).

B.2. The mapping torus and its cell structure. Let Y be the mapping torus of f;, and let 1) denote
the suspension semi-flow. By van Kampen’s Theorem, m(Y) = G. For a map : Y — S! = R/Z or to
R, if the composition of any flowline z — 4(x) with 7 is smooth, we will say that 7 is ¥ —smooth, and
the map ¥(n): Y — R, defined as the derivative of n with respect to the flow-parameter will be called the
P—derivative.

For any K > 1, we define a cell structure on Y, denoted Yy, as follows. We embed R into Y as R x {0}
in R x [0,1]. The O—cells are the image of Vi by this embedding R — Y. The 1-cells are the edges of the
resulting subdivision of R (viewed in Y) together with the following arcs of flowlines

U ’(/}S(U)

<s<
Oss<l vEVK

We refer to these two types of 1—cells as skew and vertical, respectively. We give the skew 1—cells the linear
structure induced from the auxiliary linear structure on R, and the vertical 1-cells the linear structure for
which the flow parameter is linear. The complement of the 1-skeleton Y1(<1) is a union of topological disks
which we define to be the 2—cells of Yx. Whenever we write Y we will assume it is given the cell structure
Y1, unless otherwise stated.
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Lemma B.2. For any K > 1, let a: (0,1) — Yk be an arc contained in (the interior of ) a 2—cell, transverse
to 9. Let Hy: (0,1) X [0, K) = Y be given by Hy(t,s) = ¢s(a(t)). Then Hy, is locally injective.

Proof. The bottom of the 2—cell is a skew 1—cell of Yy, and we let o: (0,1) — R C Yk be a characteristic map
for this cell. We can similarly define H, : (0,1)x[0, K+1) — Y, which is locally injective by Lemma B.1. Note
that H, “factors through” H, in the sense that there is an embedding h: (0,1) x [0, K) — (0,1) — [0, K +1)
so that H, o h = H,. Since H, is locally injective, so is H,. O

For any K > 1, the boundary of each 2—cell of Yk is a union of two vertical 1—cells, a single skew 1—cell
on the “bottom”, and a finite union of skew 1-cells on the “top”. Note that the interior of the bottom and
top are each contained in a single one of the original edges of R, and with respect to the auxiliary linear
structure, the flow identifies the bottom and top by a diffeomorphism. We use this, together with the flow
parameter, to define a smooth structure on each 2—cell of Y, viewed as a product.

B.3. Maps to S*. Let n10: Y — S' = R/Z be the projection onto the second coordinate, plus 1/2. Then
the preimage of 0 is identified with R x {1/2} = R. We perturb 7, o outside R x {1/2} to a map n; so that
e the restriction to the 1—cells of R is affine and nonconstant and sends vertices to rational points,
i.e. points of Q/Z
e 7 is a local diffeomorphism on each flow-line with t¢—derivative in the interval (.9,1.1), and
e 7)1 is smooth on each 2—cell of Y5.
We use 1; to prescribe a preferred orientation on every edge by requiring 7; to be orientation preserving.
The map 71 determines a rational cellular 1-cocycle z; € Z1(Y; Q) that is positive on each 1-cell of Y.
Next, let 29, ..., 2, be rational cellular cocycles, so that [z1],...,[zs] is a basis for the integral lattice in
HY(G;R) = H'(Y;R). For each z;, i =2,...,b, define a map n;: Y — S! representing z; so that
e the restriction to each 1—cell is affine, and sends vertices to rational points,
e 7); is ®y—smooth with ¢—derivative bounded above and below, and
e 7); is smooth on each 2—cell of Y.
Now for any integer b—tuple a = (ay,...,a;) we have a map
b
(B.3) nazzaim:Y%SH
i=1
and this determines a 1-cocycle z,. Let r > 0 be such that if a; > TZ?:z |a;|, then z, is positive and the
Y—derivative of 1)(na) = >, a;9(n;) is bounded below by . Consequently, 7, is flow regular and so

b b
Y, = { [Zaizl} € HY(Y;R) | a; € R, ay >7“Z|ai}

i=1 i=2
is a cone in H'(Y;R) for which every integral element is represented by the flow regular map 7, as in (B.3)
that is linear on the 1—cells of Y3, smooth on the 2—cells of Y5, and defines a positive cocycle z,. Furthermore,
we take r even larger if necessary so that any integral point in [z,] € Y, with a = (aq,...,a) # (1,0,0,...,0)
has a1 > 2.

Lemma B.4. For any integral b—tuple a with [za] € Y, and any skew 1—cell e, n71(0) Ne C Vaoo. (Where
here we use the identification of R with R x {0} to view Vo inside Y.)

Proof. The 1—cell e is the image of a 1—cell in the subdivision of R along V. Because of our choice of linear
structure, the characteristic map o: [0,1] — e has ¢(Q N [0,1]) C V4. Compose this with 1, to produce a
map o, = 75 © 0, and choose a lift to R

Ga: [0,1] > R.
Because each 7; was assumed affine with vertices sent to rational points, it follows that

Ga(r) = cx +d,
where ¢, d € Q. Suppose 1,(o(z)) = 0. Then cx+d € Z, and hence = € Q so that () € Vo as required. O
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B.4. Reparameterized semi-flow and first return maps. Fix an integral b—tuple a with [z,] € T,.. We
reparameterize the semiflow v as 1 so that the composition of a flowline with 7, is a local isometry to S*.
The first return map of 3 (or equivalently of 1?) to O := n;1(0) is then the restriction of the time 1 map,
1%, and we denote this by fa: ©a — O,.

Next, let Z =0,N YQ(I) be the intersection of ©, with the 1-skeleton of Y5, which is a finite set of points.
From Lemma B.4, every point of Z flows forward into vy, and we let Z, be the intersection of ©, with the
flow lines starting at Z. This is also a finite subset of ©,, and fa(Za) C Za by construction.

Proposition B.5. Given an integral b—tuple a with ©,, Za, ¥® and fa be as above. Then O, is a graph
with vertex set Zy and fa: Oa — O is a regular graph map. Furthermore, fa is expanding and irreducible.

Proof. The complement of Z, in O, is a collection of arcs, each contained in a 2—cell, transverse to v since

fa is flow-regular, thus ©, is a graph. We have already observed that fa(Za) C Za. Next we prove that the

restriction of f, to any edge e of ©, is locally injective. If a = (1,0,0,...,0), then this fo = f: R = R,

with R subdivided at Vs, and we’re done. So, we assume that a # (1,0,0,...,0), and hence ay > 2.
Choose a parameterization «: (0,1) — e, and consider the two maps

H2: (0,1) x [0,1] = Y and H,: (0,1) x [0,2) — Y

given by H2(t,s) = ¢®(a(t)) and Hu(t, s) = ¢s(a(t)). Because the ¢—derivative of 7, is at least 2 > 2 =1,
it follows that the reparameterization at any point z is defined by a monotone function h, : [0, 00) — [0, 00), so
that 2 (x) = 1, (s)(2) with h, < 1. In particular, there is an embedding hq: (0,1) x [0,1] = (0,1) x [0, 2) so
that H2 = H,ohg. According to Lemma B.2, H, is locally injective, and therefore, so is HZ. Consequently,
fa = ¢¥}|o, is locally injective on e, and since e was arbitrary, f, is regular.

The fact that f, is expanding and irreducible follows, just as in §7.1, from the assumption that fi: R = R
is expanding and irreducible: any arc aq contained in an edge ey of ©, flows forward by v onto a non-
degenerate arc a; contained in an edge e; of R. This in turn eventually flows forward onto all of R (since
f1 is expanding and irreducible), and consequently can be flowed further forward to hit any point of ©,. O

B.5. Bounding the stretch factor. Note that T, C H!(Y;R) = H!(G;R) is an open cone containing
up. For any primitive integral b—tuple a with [za] € T, consider the graph O, and first return map fa.
By construction O, is a cross section of ¢ and is dual to the class [za]. Since [za] is primitive integral,
Proposition 5.5 ensures that ©, is connected. Van Kampen’s theorem therefore gives G = 7r1(®a)*( fa)-
and so just as in the train track case (§7.2) we may write G = Qa*g,, where ¢, is the descent to the
stable quotient Qa of (fa)«: M1 (©a) — 71(Oa). In particular, this proves that u, = [za] € @E(G) and
that A(ua) = A(¢a). Furthermore log(A(ua)) is bounded from above by the log of the Perron-Frobenius
eigenvalue of the transition matrix of f,, which is the entropy h(fa):

(B.6) log(A(ua)) = log(A((fa)«)) < h(fa)-

For any integer k > 0, h(fra) = £h(fa), so that a — h(fa) naturally extends by degree —1 homogeneity to
the rational rays as well, and hence (B.6) holds for all rational points in T,.

Proposition B.7. For any rational u = [z,] € T, C HY(G;R), there is a neighborhood of U C Y, of u and
a constant R > 0 so that A < R on all rational points of U.

Since every point of @(G) is contained in such an open cone neighborhood Y., this proves Proposition 3.7.

Proof. From (B.6), it suffices to prove that the assignment [za] — h(fa) extends continuously (and hence
homogeneously with degree —1) to all of T,. For this we can repeat the arguments given in Section 8 of
[DKL], essentially verbatim. We sketch this here, but refer the reader to [DKL] for the details.

Continuity follows by first passing to the natural extension of (Y,%), which we denote (Y',¥). Here ¥
is an honest flow, and there is a projection 7: Y’ — Y which is equivariant with respect to R, that is
7(Wy(x")) = s(m(a’)) for all 2’ € Y’ and s > 0. The preimage of a section ©, is a section O/, = 771(0,) of
U, and 7 conjugates the associated first return map f.: ©, — O, to fa. Moreover, the entropies are equal
h(fa) = h(f}), and so it suffices to prove [za] — h(f}) extends continuously.
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For this, we proceed as in [DKL]: Applying the Variational Principal and Abramov’s Theorem, we conclude
that for any integral class [za] € T,
= inf Ha(Y") ,
hfa) o hu(P)
where ;1 ranges over all W-invariant probability measures on Y”, h,(¥) is the measure theoretic entropy of
U with respect to p, and p, is an auxiliary measure associated to p and a via a measure jig on the section

©); see [DKL] for details. The key property here is that given integral classes [za], [2b] € T+,

Ha + b = Hatb-

This follows from the fact that na + 7b = atb, as in [DKL].
For each p, this shows that [za] — pa(Y’) extends from the integral points of T,., to a linear function
us: HY(G;R) — R. Consequently, we obtain a continuous, concave, positive function on all of Y, given by

YN
W ([za]) = inf 5= 5%

()
where the infimum is over all U—invariant probability measures on Y’. Thus [za] = 1/W ([za]) is the desired
continuous extension of [za] — h(fa) to all of T,. O
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