
Double DIP: Re-Evaluating Security of Logic Encryption
Algorithms

Yuanqi Shen
Department of Electrical Engineering and

Computer Science
Northwestern University

Evanston, IL 60208
yuanqishen2020@u.northwestern.edu

Hai Zhou
Department of Electrical Engineering and

Computer Science
Northwestern University

Evanston, IL 60208
haizhou@eecs.northwestern.edu

ABSTRACT

Logic encryption is a hardware security technique that uses
extra key inputs to lock a given combinational circuit. A
recent study by Subramanyan et al. shows that all existing
logic encryption techniques can be successfully attacked. As
a countermeasure, SARLock was proposed to enhance the
security of existing logic encryptions. In this paper, we re-
evaluate the security of these approaches. A SAT-based at-
tack called Double DIP is proposed and shown to success-
fully defeat SARLock-enhanced encryptions.

1. INTRODUCTION

The active participation of external entities in the design
and manufacturing of ICs has produced numerous hard-
ware security issues. Among all the hardware security prob-
lems, the counterfeiting, piracy, and unauthorized overpro-
duction of electronic components have become a major chal-
lenge for government and industry [6, 14]. Most leading-
edge design houses have outsourced their fabrication to the
offshore foundries for the sake of lower labor and manufac-
turing cost. However, many offshore foundries are hard to be
trusted since they may be in a country without consummate
enforcement law for IP protection [13]. The economic im-
pacts and security hazards of hardware piracy are not apt to
be neglected compared to software, but is even more severe.
The loss due to global hardware piracy has now reached the
level of billions per month, with a major share in almost all
electronic devices [1]. It was reported by the Alliance for
Gray Market and Counterfeit Abatement that about 10% of
the start-of-the-art technology products available on market
are counterfeits [6].

Logic encryption is a technique proposed to thwart coun-
terfeiting, piracy, and unauthorized overproduction of elec-
tronic components [3, 7–10]. It inserts extra gates called key
gates into IC design to hide its original functionality. The
key inputs are connected to a tamper-proof memory, and
the IC only produces all correct input-output pairs if key in-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GLSVLSI ’17, May 10-12, 2017, Banff, AB, Canada.

c© 2017 ACM. ISBN 978-1-4503-4972-7/17/05. . . $15.00.

DOI: http://dx.doi.org/10.1145/3060403.3060469

puts are correct key values. In that case, even though the
foundry is able to access the netlist, and attackers can either
steal the netlist from the foundry or reverse engineering the
netlist from layout and mask information [12], they will not
get functional circuit without loading the correct key value.

Various logic encryption techniques have been exploited.
Rajendran et al. [9] propose a logic encryption algorithm that
inserting XOR/XNOR gates and Multiplexers based on fault
analysis. Dupuis et al. [4] propose a rare value based logic
encryption technique and insert AND/OR gates to balance
the probability of a signal between 0 and 1. Wendt et al. [15]
use multiplexers to select paths in the netlist, and the signal
of selection depends on the output of a PUF. The input of the
PUF is counted as key inputs. Rajendran et al. [8] analyze the
netlist and carefully insert the key gates by assigning weights
to key gates. Alkabani et al. [2] replicate a few states of the
finite state machine (FSM), and key values control the flow
of state transitions.

It should be mentioned that after the procedure of logic en-
cryption, the inserted key gates can be further obfuscated so
that it is hard for untrusted foundry and attackers to directly
remove them from the netlist [5].

However, almost all existing (combinational) logic encryp-
tions techniques have been decrypted by a SAT-based attack
proposed by Subramanyan et al. [11]. It utilizes advanced
SAT solver to narrow down the scope of correct key values.
Then a work by Yasin et al. called SARLock successfully
thwarts SAT-based decryption algorithm by rendering the
attack effort exponential in the number of bits in the secret
key [17].

This paper develops a new SAT-based decryption tech-
nique called Double DIP, which can be used to attack SAR-
Lock technique. Contributions of this paper are as follows:

1. We present a new logic decryption algorithm called
Double DIP. Double DIP excludes at least two wrong
keys each iteration, ensuring wrong keys in the part
of traditional logic encryption being excluded without
taking exponential iterations.

2. We evaluate the correctness and efficiency of Double
DIP comparing with SAT attack. Double DIP takes a
small number of iterations to find key values K , and
the encrypted circuit with K will behave the same as
the correct one except for one or very limited numbers
of inputs.

3. If traditional logic encryption key value K 1 is not
unique, Double DIP may take similar number of iter-

ations as SAT attack. However, we demonstrate that
Double DIP can still efficiently thwart SARLock tech-
nique if K 1 and SARLock key K 2 can be separated.

The rest of the paper is organized as follows. Section 2 pro-
vides a brief overview of SAT attack and SARLock. Section
3 describes the mechanism of Double DIP and why Double
DIP can be treated as a successful attack. Section 4 compares
the efficiency of SAT attack and Double DIP to solve bench-
marks encrypted by the combination of traditional logic en-
cryption and SARLock technique. Section 5 discusses the
influence if the key of traditional logic encryption is not
unique, and Section 6 concludes the paper.

2. PRELIMINARIES

In this section, we will introduce SAT attack and SARlock
techniques. SAT attack is a SAT-based technique to attack
logic encryptions [11]. SARLock is a logic encryption en-
hancement against SAT attack [17], and the SAT attack needs
an exponential number of iterations to exclude all wrong
keys after the circuit is encrypted by SARLock.

2.1 SAT attack

As we already discussed in the previous section, an en-
cryption of a circuit is to modify the circuit into another one
with some extra key inputs such that the input-output rela-
tion is the same as the original one only when the correct key
value is applied. Fig. 1 presents a simple logic encryption
example. Fig. 1(a) is an original circuit with AND/OR/XOR
gates. Fig. 1(b) inserts AND/OR key gates into netlist, and
correct key inputs value is 01. Fig. 1(c) inserts XOR/XNOR
key gates and correct key inputs value is 10.

The attack model assumes that the logic of modified cir-
cuit (denoted as locked circuit) is known, and the original
circuit could be bought and accessed as a black-box. A re-
cent work by Subramanyan et al. [11] has attracted lots of
attention in hardware security. They proposed a SAT attack
to (combinational) logic encryptions, and found that almost
all of encrypted circuits of all existing logic encryption ap-
proaches [3, 4, 8–10] have been corrupted by their approach.
The SAT attack works as Algorithm 1.

Algorithm 1 SAT Attack Algorithm

Input: C and eval .

Output: K c.

1: i = 1
2: F 1 = C (X ,K 1,Y 1) ^ C (X ,K 2,Y 2)
3: while sat [Fi ^ (Y1 6= Y2)] do
4: X i = sat_assignmentX (F i ^ (Y 1 6= Y 2))
5: Y i = eval(X i)
6: F i+1 = F i ^ C (X i ,K 1,Y i) ^ C (X i ,K 2,Y i)
7: i = i + 1
8: end while
9: K c = sat_assignmentK1(F i)

It iteratively finds the assignment to the following CNF
(Conjunctive Normal Form) until it is unsatisfiable:

C (X ,K 1,Y 1) ^ C (X ,K 2,Y 2) ^ (Y 1 6= Y 2),

where C (X ,K ,Y) is the CNF of the locked circuit with input
X , key K , and output Y . Each time when X i as an assign-
ment of X is generated, its corresponding output Y i from

the original circuit is found, and they are used to further con-
strain K 1 and K 2 by adding

C (X i ,K 1,Y i) ^ C (X i ,K 2,Y i)

to the existing CNF. The X i generated in each iteration is
called DIP (Differentiating Input Pattern), since it is the in-
put that differentiates two possible keys under existing con-
straints. The iteration will stop when the CNF is no longer
satisfiable, which means that there exists no input that can
differentiate possible keys. Therefore, any key that satisfies
the current constraints is the correct key, which can be com-
puted by SAT on the constraints.

After the publication of the SAT attack on logic encryption,
quickly there were many approaches being proposed to en-
hance logic encryption against the SAT attack. Ideas include
either to increase the complexity of the locked circuit such
that finding a DIP cannot be easily solved by SAT, or to in-
crease the number of iterations in the process. There is no
solid proposal in the first direction, since even though SAT is
in general NP-hard, creating a hard instance is generally an
unsolved problem.

One of the reasons that the SAT attack has been successful
is that it needs to use only a small number of DIPs to exclude
all wrong keys for a locked circuit. This means that some
DIPs in the iterations exclude a substantial number of wrong
keys. Therefore, in the second direction, one way to increase
the number of necessary iterations in SAT attack is to make
sure that there are substantially large number of wrong keys
requesting similarly large number of DIPs to exclude.

2.2 SARLock

SARLock is a logic encryption enhancement against SAT
attack proposed by Yasin et al. [17]. The idea of SARLock is to
make sure that each wrong key can only be excluded by one
DIP. Therefore, the SAT attack needs an exponential number
of DIPs to exclude all wrong keys. The simplest design is
to have the output flipped only when the key is equal to the
input, unless the key is the correct one. As we can see, only
the same input can exclude a given wrong key.

Of course the simple design might be easily broken by an
attacker, for example, by just picking a random key and flip-
ping the output when the input is the same as the key. To
secure against this, they proposed to add the SARLock with
a key K 2 on top of any traditional logic encryption with a
key K 1. They also proposed to scramble K 1 and K 2 together
(e.g., by XORing them) and then apply the simple SARLock
on it. Fig. 2 shows the schematic of the combination of tradi-
tional logic encryption and SARLock. The circuit is initially
encrypted by a traditional logic encryption with a key K 1.
Then K 1 is scrambled with SARLock key inputs K 2, and the
scrambled result is compared with inputs to generate a flip
signal, which is used to flip the output of encrypted circuit
when they are equal. This flip signal is 1 when inputs are
equal to the scrambled result of K 1 and K 2, and this scram-
bled result is not equal to the scrambled result of correct K 1

and correct K 2. The mask guarantees when K 1 and K 2 are
correct key values, the output of encrypted circuit will not be
flipped.

As we can see, the SARLock part can ensure that the
SAT attack needs to take exponential time while the tradi-
tional logic encryption part can ensure security against sim-
ple guess attacks.

