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h i g h l i g h t s

� A semi-mechanistic model is proposed for pretreated corn stover saccharification.
� The model considers high-solid saccharification and washed or unwashed solids.
� A subset of identifiable parameters was found showing tight confidence intervals.
� Uncertainty in parameters estimates was used to predict bands for glucose yield.
� The model reliably describes the saccharification kinetics of corn stover’ glucan.
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Uncertainty associated to the estimated values of the parameters in a model is a key piece of information
for decision makers and model users. However, this information is typically not reported or the confi-
dence intervals are too large to be useful. A semi-mechanistic model for the enzymatic saccharification
of dilute acid pretreated corn stover is proposed in this work, the model is a modification of an existing
one providing a statistically significant improved fit towards a set of experimental data that includes
varying initial solid loadings (10–25% w/w) and the use of the pretreatment liquor and washed solids
with or without supplementation of key inhibitors. A subset of 8 out of 17 parameters was identified,
showing sufficiently tight confidence intervals to be used in uncertainty propagation and model analysis,
without requiring interval truncation via expert judgment.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The cell walls of plants comprising lignocellulosic biomass are a
complex and heterogeneous matrix composed primarily of the bio-
polymers: cellulose, hemicelluloses, and lignin (Chundawat et al.,
2011). These cell wall biopolymers offer the potential as feedstocks
for the sustainable production of renewable fuels, chemicals, and
biomaterials with a diverse range of biochemical, thermochemical,
and catalytic routes. One promising conversion route involves the
deconstruction of the cell wall polysaccharides into fermentable
monosaccharides by a pretreatment and polysaccharide hydroly-
sis, followed by biological conversion of sugars to fuels such as eth-
anol (Galbe and Zacchi, 2012). Cellulose hydrolysis of pretreated
lignocellulose can be performed using a cocktail of cooperative cel-
lulase enzymes containing glycosyl hydrolases (Lynd et al., 2002)
as well as a recently recognized class of lytic polysaccharide
monooxygenases (Harris et al, 2014) that are responsible for
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Nomenclature

aiad adsorption decreasing factor (kg/g)
bi activity decreasing factor (kg/g)
CI1�a confidence interval at a significance level
COV m�m covariance matrix
E1max maximum mass of enzyme that can be adsorbed onto a

unit mass of substrate: 0.06 (g/g)
E2max maximum mass of enzyme that can be adsorbed onto a

unit mass of substrate: 0.01 (g/g)
E1B bound concentration of CBH and EG (g/kg)
E2B bound concentration of b-glucosidase (g/kg)
E2F free concentration of b-glucosidase (g/kg)
ET total enzyme concentration (g/kg)
E1T concentration of CBH and EG (g/kg)
E2T concentration of b-glucosidase (g/kg)
f 2 fraction of b-glucosidase protein in Spezyme CP
f bG fraction of the maximum b-glucosidase activity
G glucose concentration (g/kg)
G2 cellobiose concentration (g/kg)
JðhÞ cost function for parameter estimation
K3M cellobiose saturation constant (g/kg)
K1ad dissociation constant for the enzyme adsorption–

desorption reaction: 0.4 (g/g)
K2ad dissociation constant for the enzyme adsorption–

desorption reaction: 0.1 (g/g)
KiIA inhibition constant for acetic acid (g/kg)
KiIG inhibition constant for glucose (g/kg)
KiIG2 inhibition constant for cellobiose (g/kg)

KiIX inhibition constant for five carbon sugars (g/kg)
kir reaction rate (g� kg�1 � h�1)
RS substrate reactivity
rCI1�a relative half confidence interval
S cellulose concentration (g/kg)
V n�m derivative matrix
W n� n diagonal matrix of weights

Indices and sets
m number of parameters
n number of experimental measures
h set of parameters
hf set of parameters with fixed values
K set of combinations of m parameters taken k at a time,

each row (K) represents a particular combination of k
parameters

Greek symbols
a significance level for t-test and F-test
dmin minimum acceptable parameter sensitivity
dmsqr sensitivity measure
cK collinearity index of parameter subset K

cCK collinearity index of complement of parameter subset K

cmax
K maximum allowable collinearity index

K0 matrix of elements of K showing cK 6 cmax
K
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depolymerizing cellulose. Some hemicellulose-retaining pretreat-
ments also require hemicellulose-depolymerizing enzymes to
maximize cellulose hydrolysis (Decker et al., 2008). The process
is complex due to the number of enzymes that take part and the
fact that reactions take place on the surface of a water-insoluble
crystalline polymer (i.e. cellulose hydrolysis) as well as reactions
in the liquid phase (i.e. cellobiose hydrolysis).

An extensive collection of kinetic models of cellulose enzymatic
hydrolysis for model cellulosic substrates and pretreated biomass
can be found in literature and have been recently reviewed
(Bansal et al., 2009). Models range from simple empirical or black-
box models to complex mechanistic models, which attempt to use
the current understanding of how the process works to derive cau-
sal hypotheses that are incorporated in the mathematical model.
While empirical models may have a small number of parameters
to adjust (although there are exceptions such as neural network
models), mechanistic models can involve a large number of param-
eters, which need to be found by fitting themodel to a large number
of purposely generated experimental data (Brun et al., 2001). Froma
model-based process design point of view; the use of either
empirical or mechanistic models depends on whether the user is
interested in testing conditionswithin the experimental data (inter-
polation), or in testing conditions that lie outside the experimental
conditions (extrapolation) where the mechanistic model provide a
rational basis for predicting the behavior of the system.

Due to the complexity of the enzymatic hydrolysis process, the
changing enzyme formulations made available by the major com-
mercial enzyme producers, as well as the strong influence that pre-
treatment and feedstock have over the outcome of enzymatic
hydrolysis, semi-mechanistic models with the smallest possible
number of parameters may be the most adequate choice from a
model-based development point of view, thereby reducing the
amount of experimental data required to estimate the parameters
values. Among the existing semi-mechanistic models, the one
developed by NREL researchers in 2004 (Kadam et al., 2004) has
been used in a number of biofuel production processes flowsheets
evaluation and alternatives comparison (Scott et al., 2013;
Morales-Rodriguez et al., 2011; Hodge et al., 2009) and it has been
subjected to an identifiability and uncertainty analysis (Sin et al.,
2010). Results indicate that only 6 out of 26 parameters are iden-
tifiable from the original data, and any attempt to identify a higher
number of parameters results in significant errors on their esti-
mates. This is evidenced by the wide confidence intervals for the
values of the parameters.

Uncertainty in parameter estimates can arise from a number of
sources, including insufficiently informative experimental data, i.e.
the model is not sensitive to some of the parameters to be esti-
mated over the experimental data set (Raue et al., 2009) and
parameters that are correlated, i.e. parameters are mathematically
related to each other through some implicit function (Li and Vu,
2013; Raue et al., 2009). Furthermore, to be used in model-based
process development, a cellulose hydrolysis kinetic model should
incorporate as many aspects controlling the process behavior as
possible. Among them, initial solids loading is a key factor since
the higher the concentration of substrate the higher the ethanol
titer in the fermentation stage, which decreases the energy needs
in the recovery stage. However, it is known that high solid loadings
affect the final glucan conversion (Wang et al., 2011; Kristensen
et al., 2009; Hodge et al., 2008). Usage of the liquor generated dur-
ing pretreatment is desirable from a technical and economical
point of view, since no capital-intensive separation equipment is
required and the sugar oligomers released during pretreatment
can be hydrolyzed by the action of enzymes in the saccharification
stage, however, enzymes are known to be inhibited by soluble
sugar monomers, dimers, and oligomers (Teugjas and Väljamäe,
2013; Qing et al., 2010), organic acids (Hodge et al., 2008), and
phenolic compounds (Tejirian and Xu, 2011) contained in the
pretreatment liquor. Despite these inherent difficulties and
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complexities in modeling cellulose enzymatic saccharification,
process engineers and decision-makers do not only require a single
point estimate of model parameters, but also a measure of the
uncertainty associated with them. If available, information regard-
ing parameter uncertainty (in the form of confidence intervals) can
be approximately translated into prediction confidence intervals
using suitable methods (Kreutz et al., 2012; Sin et al., 2010), or it
can be directly used for optimal process design under uncertainty
(Rooney and Biegler, 2001). However, to be useful, confidence
regions and confidence intervals need to be physically realizable
and as tight as possible.

This works aims to identify the parameters of a semi-mechanis-
tic model allowing prediction of enzyme hydrolysis of lignocellu-
losic materials at several initial solid loadings, which is capable
of simulating the effect of the pretreatment liquor and with feasi-
ble (whitout negative or zero elements) conventional parameters
confidence intervals. Additionally, the bounds of the confidence
region are calculated based on a more appropriate method for
non-linear models. To our knowledge, this is the first work
addressing kinetic modeling of enzymatic hydrolysis of lignocellu-
losic material when the pretreatment liquor is present in the reac-
tion mixture, at high solid loadings and focusing on obtaining tight
confidence intervals.
2. Methods

2.1. Experimental data

The experimental data used in this study has been reported pre-
viously (Hodge, 2005; Hodge et al., 2008) along with a thorough
description of the experimental setup, hence, only a brief descrip-
tion will be given here. Additionally, the experimental measure-
ments are reported in the Supplementary Material accompanying
this article. The substrate for enzymatic hydrolysis corresponds
to corn stover pretreated by dilute sulfuric acid in NREL’s continu-
ous pilot-scale vertical reactor as reported elsewhere (Schell et al.,
2003). Once diluted to the target solid fraction, the resulting pre-
treated corn stover solids and slurry compositions are shown in
Table 1. Spezyme CP from DuPont-Genencor (lot#301-04075-
054) without b-glucosidase supplementation was used as the cel-
lulase preparation throughout these studies with a protein content
of 106 mg/ml, measured using the enhanced BCA protocol (Pierce
Biotechnology, Rockford, IL) and 59 FPU/ml.
Table 1
Summary of experimental conditions used for the estimation of models parameters.

Tag Commentsa SFb Glucan(%)c ET
d

EXP1 F 0.15 63.2 25.0
EXP2 F 0.15 63.2 8.2
EXP3 W 0.10 60.1 9.6
EXP4 F 0.10 60.1 9.6
EXP5 F 0.15 63.2 9.6
EXP6 W + Ac. A 0.15 63.2 9.6
EXP7 W 0.15 63.2 9.6
EXP8 W + Sug. 0.15 63.2 9.6
EXP9 W 0.13 60.1 9.6
EXP10 W + G 0.10 53.2 5.4
EXP11 W 0.25 53.2 16.2
EXP12 W 0.25 53.2 5.4

Initial soluble solids content [g/kg]: G20, cellobiose; G0, glucose; X0, xylose; Ar0, arabino
a F: full slurry; W: washed solids; Ac. A: acetic acid; Sug: sugar stock solution: G: glu
b Solid fraction as weight percent of insoluble solids.
c Glucan content in solids.
d Enzyme dosage in FPU per gram of glucan.
In order to address the proposed objectives, the set of
experimental data contains data on hydrolysis of washed solids,
full slurry (pH conditioned hydrolyzate and solids); washed solids
mixed with a concentrated stock solutions of hydrolyzate sugars,
and, finally washed solids with supplemental acetic acid. The ini-
tial insoluble solids content in the hydrolysis experiments range
from 10% to 25% (weight to total weight). All enzymatic hydrolysis
experiments were performed at 45 �C and initial pH of 5.0 in shake
flasks.

2.2. High solids cellulase binding to dilute acid pretreated corn stover

Dilute acid pretreated corn stover (PCS) was graciously
provided by Dan Schell (National Renewable Energy Laboratory).
To remove solubles for the binding studies, the PCS insoluble solids
were subjected to multiple cycles of centrifugation, decanting, and
resuspension in distilled water until a pH of greater than 4 was
reached. The moisture content of washed and decanted PCS
insoluble solids was determined and biomass was stored sealed
at 4 �C to prevent moisture loss. Next, approximately 1–4 g of
wet biomass was placed into 15 mL centrifuge tubes. Volumes of
enzyme (Accellerase 1500, DuPont Danisco Cellulosic Ethanol
LLC, Itasca, IL, USA), Na-citrate buffer (pH 5.0, 1 M), and water were
calculated and added to yield final solids loadings of 5%, 10%, 15%
and 20% (weight to total weight) and protein loadings (according
to the Bradford Assay) at 2.5, 5, 7.5 and 10 mg/g dry biomass for
each solids level. Duplicate sets of samples were subsequently vor-
texed and subjected to mixing at 4 �C by end-to-end rotation
(Revolver Rotator, Labnet International, Inc., Edison, NJ, USA) for
22 h in a walk-in refrigerator. Following incubation, free protein
was determined colorimetrically using the Bradford Assay and
fraction bound protein was determined as reported in our previous
work (Williams and Hodge, 2014). Following sampling for binding,
samples were hydrolyzed by rotary incubation at 50 �C with
periodic sampling to determine hydrolysis yields.

2.3. Parameter estimation and fitting evaluation

The predicted values of the state variables Xi ¼ ðS;G2;GÞTi , with
G2 (cellobiose), G (glucose) and S (cellulose), for a particular exper-
imental condition i in Table 1 are calculated by solving a set of
algebraic and ordinary differential equations, Eqs. (5) and (6).
Where f is a vector of reaction rates ðr1; r2; r3ÞT defined in
Eqs. (9)–(11) and g stands for Eqs. (12)–(15).
G20 G0 X0 Ar0 Ac0

1.26 24.07 63.87 10.57 12.20
1.26 24.17 64.20 10.57 12.20
0.00 0.00 0.00 0.00 0.00
1.57 16.47 44.14 7.01 8.16
1.26 24.05 64.44 10.57 12.20
0.00 0.00 0.00 0.00 12.20
0.00 0.00 0.00 0.00 0.00
1.26 24.05 64.44 10.57 0.00
0.00 0.00 0.00 0.00 0.00
0.00 153.05 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00

se; Ac0, acetic acid.
cose.



Fig. 1. Identifiable Subsets Search Algorithm (ISSA).
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dXi

dt
¼ f ðXi; h; tÞ ð1Þ

gðXi; hÞ ¼ 0 ð2Þ

Estimation of h, the m-size vector of model parameters, is achieved
by weighted least squares, being the least square estimator h�

defined as the value minimizing the objective function
JðhÞ ¼ �TW�. Where � is the n-size vector formed by the difference
between model outputs and experimental values. Entries in the
n� n diagonal matrix of weightsW ¼ diagðw1;w2;wnÞ, were chosen
to provide an adequate scaling of the measured values in different
experimental conditions. A thorough description is given in Supple-
mentary Material S1. The 1� a marginal confidence interval (CI1�a)
for an individual parameter hj is calculated as (Seber and Wild,
1989):

CI1�a ¼ hj � ta=2n�p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
COVj;jðh�Þ

q
ð3Þ

where ta=2n�p is the upper a=2 quantile for Students t distribution with
n� p degrees of freedom and COVj;j are the diagonal elements of the
covariance matrix:

COVðh�Þ ¼ Jðh�Þ
n�m

ðVðh�ÞTWVðh�ÞÞ
�1

ð4Þ

with, V the n�m derivative matrix of model outcomes respect to
parameters evaluated at h�. Throughout this work the relative (half)

confidence interval, defined as rCI1�a ¼ ðta=2n�p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
COVj;jðh�ÞÞ

q
=h�j , is used.

Due to the curvature of the non-linear model, the above defined
confidence intervals might be misleading (Seber and Wild, 1989).
Hence, a method based on the F distribution and in the contours
of Jðh�Þ will be used as comparison, the confidence region for joint
parameters is described by the following equation (Seber and
Wild, 1989):

h :
JðhÞ � Jðh�Þ

Jðh�Þ 6
p

n� p
Fap;n�p

� �
ð5Þ

where Fap;n�p is the upper a critical value of the Fp;n�p distribution.
This region is commonly considered exact since it does not rely
on any approximation of the covariance matrix; however, deter-
mining the region for more than three parameters is computation-
ally time consuming. Hence only the axis aligned extreme values of
the region will be calculated by solving the following optimization
problem:

min
h

mhj

s:t: JðhÞ�Jðh�Þ
Jðh�Þ 6

p
n�p F

a
p;n�p

ð6Þ

If m ¼ 1, then the smallest value of hj satisfying Eq. (5) is found. On
the other hand, if m ¼ �1 then the solution of the optimization
problem gives the largest value of hj that satisfies Eq. (5). The
confidence intervals calculated by using Eq. (6) will be denoted as
CI1�aF .

2.4. Collinearity analysis and identifiable subsets detection

An algorithmic adaptation of the ideas published in the work of
Brun et al., 2001 is used in this work to find an identifiable subset
K � K of size k of the m parameters in a model, being K the
combinations of m parameters taken k at a time. The procedure
is thoroughly described in Supplementary Material S1. The
Identifiable Subsets Search Algorithm (ISSA) is designed to identify
a subset of identifiable parameters among the set of model param-
eters and proceeds as shown in Fig. 1. The algorithm requires the
calculation of a sensitivity index (dmsqr

j ) and a collinearity index
(cK). Sensitivity is defined as follows:
dmsqr
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

s2i;j

vuut ð7Þ

with si;j ¼ v i;j
hj
wi
; i ¼ 1;2; . . . ;n and j ¼ 1;2; . . . ;m. v i;j is an element of

V , the n�m derivative matrix, and wi an element of the scaling
matrix W . While collinearity index is defined as cK ¼ 1=

ffiffiffiffiffi
kk

p
, where

kk is the smallest eigenvalue of ~ST
K
~SK with ~SK being the subset of the

K columns of the matrix ~S with entries ~sj ¼ sj= sj
�� �� and

j ¼ 1;2; . . . ;m. According to experiences reported in literature, for
a set to be deemed as identifiable,cK must be lower than a threshold
value of 10–15 (Brun et al., 2002; Sin et al., 2010).
2.5. Comparison of model using the F ratio test

Models with a large number of parameters will always be able
to fit the experimental data at least as well (and generally better)
as a model with just a few parameters. Hence, a procedure to
determine whether it is worthwhile to use more parameters to
decrease Jðh�Þ is required to discriminate among models with dif-
ferent number of parameters. In this work, the F ratio test is used
for this purpose. Consider two competing models 1 and 2 having
p1 and p2 parameters respectively, with p2 > p1, and with weighted



F. Scott et al. / Bioresource Technology 177 (2015) 255–265 259
residual sum of squared Jðh�1Þ and Jðh�2Þ with Jðh�1Þ P Jðh�2Þ. The F
ratio can be calculated as:

F ¼ Jðh�1Þ � Jðh�2Þ
p2 � p1

� �
Jðh�2Þ
n� p2

� ��1

ð8Þ

Assuming that the F ratio is approximately F-distributed since the
sample size is large, and under the null hypothesis that model 2
does not provide a significantly better fit than model 1, the null
hypothesis is rejected if the calculated F ratio is greater than the
critical value of the F-distribution with (p2 � p1;n� p2) degrees of
freedom for some desired false rejection probability (in this work,
0.05 was considered).

2.6. Implementation, software and computational tools

The equality equations in the original DAE (Eqs. (1) and (2))
were removed via algebraic manipulations to yield a system of dif-
ferential equations (ODE). MATLABTM was used to perform all cal-
culations in this work. To solve systems of ODEs, the MATLABTM

built-in ODE45 algorithm based on explicit Runge–Kutta formula
was used. The sensitivity matrix V was calculated via forward sen-
sitivity analysis; i.e., by simultaneous solution of the ODEs shown
in Eq. (1), and the forward sensitivity equations obtained by apply-
ing the chain rule of differentiation over h to the original ODEs
described in Eq. (1).

Parameters minimizing JðhÞ were estimated using OPTI (Currie
and Wilson, 2012), a MATLABTM toolbox and interface for building
and solving optimization problems using open source and aca-
demic solvers. The problem was formulated as a Dynamic System
Parameter Estimation problem in OPTI, and is automatically con-
verted into a standard Nonlinear Least Squares problem and solved
using the Intel MKL Trust Region solver. The optimization problem
posed in Eq. (6) was solved using the interior point method built-in
in MATLABTM

fmincon routine.
3. Results and discussion

3.1. Suitability of an existing model for fitting the experimental data

The 2004 NRELmodel for the enzymatic hydrolysis of dilute acid
pretreated corn stover (Kadam et al., 2004) was used as a starting
point to fit the experimental data to a suitable kinetic model. A total
of 12 parameters were adjusted using the values reported by Sin
et al. (2010) as a starting point (h0) and bounds for the estimated
Table 2
Solution of the parameter estimation problem for Kadam et al., 2004 model. Values for cK
removing K2IG2. Cells marked with f correspond to parameters whose values were fixed to

Subset K-S0 K-S1

Parameter h� rCI95% dmsqr h�

K1IG2 0.002 513.7 26.75 0.003
K2IG2 91.07 5881 0.020 f
K1IX 6.118 826.5 0.020 6.040
K2IX 0.001 1027 0.020 0.132
K3IX 320.1 43.70 0.360 f
K2IX 84.86 513.7 26.79 f
k1r 8.229 658.9 0.020 7.511
K1IG 0.586 98.90 8.680 5.682
k2r 0.202 94.40 8.460 f
K2IG 93.29 114.7 28.32 f
k3r 855.5 113.8 28.27 560.4
K3M 5.195 4.904 24.43 f
Jðh�Þ 139.7 – – 215.9
cK – – – 6.0
cCK – – – 63.1
parameters were set as 0:001h0 and 1000h0. The solution of the
parameters estimation problem is shown in Table 2 (subset K-S0),
as it can be seen, the size of the relative 95% confidence interval
for some parameters is a thousand times the parameter value for
subset K-S0, large enough to include negative values for the param-
eters, which is non-realizable in themodel. Moreover, some param-
eters are non identifiable as evidenced by the correlation
coefficients in the correlation matrix (see Supplementary Material
S2, Table S13). This means that the effect of a change in the value
of a parameter over the sum of squared errors can be compensated
by changing the value of another parameter. Hence, it is not possi-
ble to find a unique estimate for these correlated parameters, but
rather one can calculate sets of parameter values showing the same
fit to the experimental values. It is possible to reduce the correlation
between parameters and, as a consequence, the parameter uncer-
tainty to levels acceptable for engineering purpose by: (i) altering
the model structure by eliminating parameters; (ii) increasing the
information content of experimental data by using an adequate
design of experiments, and (iii) by setting the values of a subset
of the parameters to an a priori value, thus obtaining a subset of
parameters showing less correlation which can be reliably esti-
mated from the available experimental data. Table 3, shows the
minimum value of collinearity index for parameters subsets of dif-
ferent number of parameters. These subsets are calculated by tak-

ing k out of m parameters at a time to create m
k

� �
combinations.

Thus, the dimensions of a particular subset K of combinations of

parameters are k columns and m
k

� �
rows. As it can be seen, for sub-

sets with more than 8 parameters out of 12, the minimum collin-
earity index is larger than the threshold value of 15 where the
subsets can be considered as identifiable. Hence, in order to reduce
the confidence interval of the estimated parameters by reducing the
collinearity of the parameters subset, only 7 parameters will be
estimated while the remaining 5 will be left fixed. However, to do
so it is necessary not only to find a subset of parameters with
reduced collinearity index (cK) but also the collinearity index of
the complement of this subset (the fixed parameters), cCK , needs to
have a high collinearity index to avoid a conditional or biased esti-
mate (Brun et al., 2001). In order to reduce this potential depen-
dency between both sets, the collinearity index for the set of
parameters must be lowwhile the collinearity index for its comple-
ment needs to be as high as possible. Table 3 shows the minimum
collinearity index (cK) for subsets of different number of parameters
and the value of the collinearity index for the complement of the
and cCK are shown for subsets of size 6, this is the subsets of size 7 in Table 3 after
the ones reported by Sin et al., 2010.

K-S2 K-S3

rCI95% h� rCI95% h� rCI95%

0.493 0.007 0.386 f –
– f – f –
155.5 5.939 57.16 8.580 9.230
0.817 0.0009 108.65 0.001 31.26
– f – f –
– f – 2.112 0.385
113.6 7.522 42.05 11.03 7.066
0.266 1.592 0.833 f –
– f – 0.019 0.842
– f – f –
0.494 f – f –
– 0.545 0.274 0.543 0.272
– 140.9 – 142.4 –
– 5.6 – 5.6 –
– 6682.6 – 6620.3 –



Table 3
Minimum collinearity index of all possible combinations of parameters subsets of
different sizes when using the NREL 2004 model. Complement’s collinearity index
(cKC ) is also shown for the parameters combination having the minimum collinearity
index. Additionally, the minimum and maximum values of cK0C are shown, this is the
complement’s collinearity index of combinations of parameters having a collinearity
index lower than a threshold value of 15.

dim (K)a min ðcK Þ cKC min ðcK0C Þ max ðcK0C Þ dim ðK0Þa

(220, 3) 1.559 9947 99.63 60,502 (172, 3)
(495, 4) 2.561 8171 94.45 56,837 (295, 4)
(792, 5) 3.897 8233 71.84 52,264 (316, 5)
(924, 6) 4.802 7631 66.02 7631 (207, 6)
(792, 7) 13.03 6274 59.33 6845 (76, 7)
(495, 8) 14.62 2932 54.01 2932 (12, 8)
(220, 9) 99.63 2.826 – – (0, 9)
(66, 10) 1145 2.697 – – (0, 10)
(12, 11) 10,055 1.000 – – (0, 11)
(1, 12) 63,463 – – – –

a Dimension of set (rows: number of parameters combinations in the set, col-
umns: number of parameters to estimate)
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particular combination showing the minimum cK . Additionally,
Table 3 shows theminimumandmaximumvalues for the collinear-
ity index of the complement for combinations of parameters show-
ing cK lower than the threshold value of 15, this is cCK for elements in
K0. If 7 out of 12 parameters need to be estimated, fixing the value of
the remaining 5 to pre-established values, then there are 792 pos-
sible combination for the parameters. Among them, there is one
combination showing a minimum cK of 13.03 and simultaneously
a value of 6274 for cCK . In the set of combinations of 7 parameters
showing cK less than 15 (setK0) there are 76 elements whose values
for cCK range from 59.33 to 6845. As it can be seen, the value of cCK for
the combination of 7 parameters showing the minimum collinear-
ity index is close to the maximum value of cCK for the elements in K0,
however there is no guarantee that this will always be the case.
Hence in order to maintain the independence between the set of
parameters that needs to be estimated and its complement, the
Identifiable Subsets Search Algorithm (ISSA) looks for the row of
K0 showing the largest value of cCK . In order to illustrate the impor-
tance of selecting a subset of parameters showing a value of cK
below the identifiability threshold and with high cCK value, three
subsets of 7 parameters with different combinations of cK and cCK
were used as shown in Table 2.

Subsets K-S2 and K-S3 correspond to subsets with near minimal
collinearity index and with a high value of collinearity index for its
complement while subset K-S1 shows low collinearity index for
both the set itself and its complement. Parameter K2IG2 presents
the lowest sensitivity of all 12 parameters to be estimated. Hence,
although all of the subsets with acceptable collinearity index con-
tained K2IG2, this parameter is still non-identifiable, since large
changes in their values will only slightly change the models output.
For this reason, it is convenient to exclude them from the identified
subsets leaving subsets with size 6 (see ISSA in Fig. 1).

Parameters values for the low collinearity index subsets shown
in Table 2 were estimated by fixing the remaining 6 parameters to
reported values (Sin et al., 2010). Since the optimal values shown
in Table 2 (Subset K-S0) do not match the reported ones, one might
expect an important lack of fit when 6 of the parameters are fixed
to those values. However, only a minor increase in the objective
function value Jðh�Þ was found for subsets having a large collinear-
ity index for the complement of the subset (K-S2 and K-S3). On the
other hand, when 6 parameters where set to the reported values
(Sin et al., 2010) in subset K-S1, the objective function augments
1.5 times indicating an important worsening in fit. As shown in
Table 2, the most important difference between subsets K-S1 to
K-S3 lies in their (cCK ) values. For those sets whose (cCK) value is
high, only a small worsening in the value of Jðh�Þ was calculated
after fixing 6 parameters, indicating the relevance and convenience
of maintaining the independence of both sets as high as possible.

As it can be seen in Table 2 the relative confidence intervals for
the estimated parameters diminished substantially, especially for
subset K-S3 where the larger relative confidence interval, corre-
sponding to parameter K2IX , was calculated to be 31.26, an impor-
tant decrease when compared to values in Table 2 (Subset K-S0),
however these values still represent an unacceptably large confi-
dence interval for assessing the effect of parameters uncertainty
in model output.

3.2. A modified semi-mechanistic model to fit the experimental data

As shown in Fig. 4, NREL’s 2004 model (Kadam et al., 2004) does
not completely fit the experimental data used in this study, espe-
cially for experiences made at 10% w=w solid loading where a
lower glucose production is observed when compared to the
experimental data. Unlike previous work, where the solid loading
is fixed or low values are used (Kadam et al., 2004; Ruiz et al.,
2012), in this study a model is presented that represents the enzy-
matic hydrolysis of lignocellulosic materials at solid loadings rang-
ing between 10% and 25% w=w. Additionally, experiments
including inhibitors from the hydrolysate such as glucose, xylose,
xylo-oligomers (unquantified) and acetic acid where included by
using unwashed solids or washed solids supplemented with inhib-
itors (Table 1).

Several attempts have been made in previous years to establish
the causes of the diminishing conversion observed at high solid
loadings even at constant enzyme-to-substrate ratios, see
Fig. 2(C). Hodge et al., 2008, found that conversion did not decrease
until a threshold solid loading is achieved. Clearly, this threshold
value depends on the reaction’s time; being close to 25% w=w for
typical hydrolysis times of 128–168 h. Authors hypothesize that
this decrease in conversion might be caused by mass transfer lim-
itations. However, Kristensen et al. (2009) performed a series of
experiment to test whether the observed decrease in conversion
was caused by product inhibition, the decrease in water activity
as solid loading increases, lack of mixing or a decrease in the frac-
tion of adsorbed enzyme. In this study, it was found that neither of
the above mentioned factors could explain the decrease in conver-
sion observed at high solid loadings except the decrease in enzyme
adsorption. Specifically, it was found that the ratio between
enzymes adsorbed to the solid after 22 h of reaction and the total
enzyme content also decreases as solid loading increases (results
supported by our experiments, Fig. 2(B)). In the 2004 NREL model,
cellulases are assumed to adsorb to cellulose following a Langmuir
type equation. Fig. 2(A) shows the protein bound to the substrate
using Accellerase 1500 at enzyme loadings between 2.5 and
10 mg per gram of solid substrate for initial solid contents of 5%,
10%, 15% and 20%. Since, the analysis is restricted to the fraction
of CBH/EG fraction of Accellerase 1500, it was assumed that this
fraction represents 55% of the protein content (Nagendran et al.,
2009). Using the adsorption parameters previously reported
(Kadam et al., 2004), the calculated bound enzyme is shown in
Fig. 2(A) and (B). It can be seen that the Langmuir model used in
the 2004 NREL model, not only does not fit the experimentally
measured adsorbed enzyme, but fails to predict the observed
decrease in the fraction of bound enzyme as the insoluble solid
fraction increases.

These observations suggest that the original 2004 NREL model
needs to be modified to produce a decrease in the fraction of
enzymes adsorbed when solid loading increases (or a decrease in
enzyme activity bonded to the solid fraction). In order to do so,
two possibilities were investigated: (i) modifying the activity of
the adsorbed enzymes by introducing the linear decreasing terms
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Table 4
Solution of the parameter estimation problem for Model 2. Estimated parameters and confidence intervals for subsets of size 16, 14, 11 and 8 along with confidence intervals for
the calculated parameter values.

Subset S0 (size 16) S1 (size 14) S2 (size 11) S3 (size 8)

Parameter h� rCI95% dmsqr h� rCI95% h� rCI95% h� CI95% CI95%F

K1IG2 0.055 122.1 6.523 0.043 110.6 0.041 111.1 0.041(f) – – – –
K2IG2 1.912 7.233 17.19 3.332 4.002 4.264 3.403 4.264(f) – – – –
K1IX 0.503 121.4 4.823 0.418 110.0 0.397 110.5 0.395 0.184 0.607 0.173 3.472
K2IX 2.147 6.503 3.556 4.858 3.002 5.758 2.468 5.877 3.152 8.601 1.108 15.02
k1r 26.89 121.4 11.70 27.14 110.1 28.638 110.6 28.65 22.42 34.88 18.07 43.07
K1IG 21.18 126.5 0.035 21.26 114.8 22.658 113.0 22.658(f) – – – –
k2r 0.630 6.187 27.33 0.525 2.969 0.422 2.400 0.422 0.322 0.522 0.239 0.652
K2IG 246.0 13.78 0.794 241.4 6.729 1 – 1 – – – –
k3r 310.7 4.605 28.33 128.4 – 128.4(f) – 128.4(f) – – – –
K3M 0.024 1620 23.55 0.301 – 0.301(f) – 0.301(f) – – – –
K3IG 0.014 1617 23.54 0.612 – 0.612(f) – 0.612(f) – – – –
K1IA 1.055 123.8 0.388 2.145 110.6 1 – 1 – – – –
K2IA 0.607 6.613 2.136 2.452 2.814 2.892 2.372 2.970 0.938 5.002 0.542 20.68
K3IA 19.52 3067.4 0.003 56.73 201.4 1 – 1 – – – –
b1 6.869 0.043 6.650 6.821 0.040 6.817 0.038 6.822 6.567 7.078 6.097 7.000
b2 6.183 0.130 65.57 6.377 0.063 6.376 0.059 6.376 6.014 6.738 5.301 6.872
f bG – – – 0.756 0.248 0.770 0.201 0.766 0.639 0.892 0.528 1.107
Jðh�Þ 62.9 – – 66.53 – 67.50 – 67.49 – – – –
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ð1� b1SoÞ and ð1� b2SoÞ (Model 2) or, (ii) modifying the amount of
enzyme that can be adsorbed to the substrate (EiB) by introducing
the linear decreasing terms ð1� aiadSoÞ in the original adsorption
equations (Model 3). Both modifications create a parabolic shape
in the fraction of adsorbed enzyme (activity for Model 2 and per-
centage of protein in Model 3) as a function of the initial solid load-
ing. This occurs because, when a constant enzyme dosage per gram
of substrate is adopted, the total concentration of protein increases
with increasing solid loading. As shown in Fig. 2, the proposedmod-
ifications yield a closer representation of the trends in the experi-
mental data. Additional modifications to the 2004 NREL model
include the incorporation of parameters KiIA accounting for the
inhibitory effect of acetic acid found in Hodge et al. (2008) and
the elimination of the inhibitory effect of xylose on b-glucosidase
activity as this is not supported by published data (Xiao et al., 2004).

r1 ¼ ð1� b1SoÞ
k1rE1BRsS

1þ G2=K1IG2 þ G=K1IG þ C5=K1IX þ A=K1IA
ð9Þ

r2 ¼ ð1� b2SoÞ
k2rðE1B þxE2BÞRsS

1þ G2=K2IG2 þ G=K2IG þ C5=K2IX þ A=K2IA
ð10Þ
r3 ¼
f bGk3rE2FG2

K3Mð1þ G=K3IG þ A=K3IAÞ þ G2
ð11Þ

EiB ¼ ð1� aiadSoÞ
EimaxKiadEiFS
1þ KiadEiF

ð12Þ

With Rs ¼ S=So. Moreover, the way the different enzyme fractions
are accounted for is different from the 2004 NREL model. In this
work, the total protein in the enzymatic preparation (ET ) is distrib-
uted in a cellulolitic fraction (E1: CBH/EG) and a cellobiose hydro-
lyzing fraction (E2 : b-glucosidase) according to Eqs. (14) and (15),
being f 2 the fraction of b-glucosidase protein in the preparation.
This fraction is calculated considering an activity of 16.277 UI/mg
for pure b-glucosidase at 50 �C (Chauve et al., 2010) and 16.5 UI/
ml in 123 mg/ml of protein in Spezyme CP. The specific b-glucosi-
dase activity was calculated from a reported value (Pryor and
Nahar, 2010) considering a constant FPU to CBU ratio and a mea-
sured filter paper activity of 59 FPU/ml. Using these values f 2 was
calculated as 0.0083.

EiT ¼ EiF þ EiB ð13Þ
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E1T ¼ ð1� f 2ÞET ð14Þ

E2T ¼ f 2Et þ E2S ð15Þ

Summarizing, 2004 NREL model is represented by Eqs. (9)–(12)
with b1 ¼ b2 ¼ 0;KiIA ¼ 1; j ¼ 1;2;3;x ¼ 1 and aiad ¼ 0 with
i ¼ 1;2. Models 2 and 3 involve Eqs. (9)–(15) withx ¼ 0. For Model
2, aiad ¼ 0; i ¼ 1;2 while for model 3 bi ¼ 0; i ¼ 1;2. Models 2 and 3
have 16 parameters that need to be estimated. Model 3, including
parameters a1ad and a2ad, result in a minimum weighted sum of
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Fig. 4. Models fit to experimental data. Comparison of NREL’s 2004 model with subset K-S
Circles and squares correspond to cellobiose and glucose experimental measurements r
squared error Jðh�Þ of 83.27 while this fitting indicator for Model
2, including a linear decrease in activity with increasing solid load-
ings, was calculated as 62.9. Although both models show an
improved fit to the experimental data when compared with the
NREL 2004 model (with Jðh�Þ equal to 139.7), Model 2 was selected
for further analysis due to its improved fit.
3.3. Model 2, enzymatic activity decreases linearly with initial solid
loading

Table 4 shows the solution of the parameter estimation prob-
lem for Model 2 with 16 estimated parameters (Subset S0).
AlthoughModel 2 and the original 2004 NREL model share a subset
of parameters, their values differ as shown in Table 2 and 4. This
can be explained by the modifications made to the model and
because of the high correlation between parameters that prevents
finding a unique estimate of the parameters values. At this point it
is convenient to evaluate whether the increase in the number of
parameters from 12 in NREL model to 16 in model 2 is worthwhile.
Using the number of parameters and the calculated JðhÞ values for
NREL model and Model 2, the F ratio statistic was calculated as
42.9 while the critical value of the F-distribution with (16 – 12,
156 – 16) degrees of freedom (F0:05

4;140) is equal to 2.43. Hence, the
improvement in fit by Model 2 is statistically significant at a false
rejection probability of 0.05. However, from the analysis of the rel-
ative 95% confidence intervals, most parameters are far from being
deemed as identifiable. In order to reduce the uncertainty in
parameters values, a subset of sensitive parameters with low col-
linearity index needs to be found. Furthermore, parameters
k3r ;K3M and K3IG are highly correlated as evidenced by their entries
0 50 100 150 200
0

10

20

30

40

50

Time [h]

G
lu

co
se

, C
el

lo
b

io
se

 g
/k

g

EXP3

0 50 100 150 200
0

10

20

30

40

50

60

Time [h]

G
lu

co
se

, C
el

lo
b

io
se

 g
/k

g
EXP4

0 50 100 150 200
0

20

40

60

80

Time [h]

G
lu

co
se

, C
el

lo
b

io
se

 g
/k

g

EXP7

0 50 100 150 200
0

20

40

60

80

Time [h]

G
lu

co
se

, C
el

lo
b

io
se

 g
/k

g

EXP8

0 50 100 150 200
0

20

40

60

80

100

120

Time [h]

EXP11

0 50 100 150 200
0

20

40

60

80

Time [h]

G
lu

co
se

, C
el

lo
b

io
se

 g
/k

g

EXP12

3 of reestimated parameters (dashed lines) and Model 2 with subset S3 (solid lines).
espectively.



F. Scott et al. / Bioresource Technology 177 (2015) 255–265 263
in the correlation matrix (see Supplementary Material S2,
Table S14) and hence needs to be fixed to the optimal values
shown in Table 4 or to parameters calculated from dedicated
experiments. The second alternative was adopted and the values
reported by Chauve et al. (2010) were used. The value of k3r used
represents the maximum catalytic activity of an Aspergillus niger
b-glucosidase enzyme (11.9 UI/mg at 45 �C). However, considering
the extended reaction times, the maximum catalytic activity might
be reduced due to inactivation. In order to account for this phe-
nomena, a new parameter needs to be introduced (f bG) represent-
ing the average fraction of the maximum catalytic activity attained
during the reaction course. So far, three parameters are known to
be included in the subset of fixed values and their values do not
match with the ones presented in Table 4 (Subset S0); hence the
value of the remaining parameters needs to be re-estimated. After
solving the parameter estimation problem, a value of Jðh�Þ = 66.5
was obtained (Table 4, Subset S1). Results suggest that eliminating
K1IA;K3IA and K2IG would not importantly worsen the objective
function, since their values are already high (when compared to
the measured concentrations of acetic acid and glucose) and the
objective function sensitivity toward these parameters is low as
evidenced by their dmsqr values.

As it can be seen in Table 4, Jðh�Þ value of subset S2 is only 7.3%
higher than the best value found when all parameters were used,
even after eliminating 3 parameters and fixing the values of
Fig. 5. Uncertainty analysis of the outputs (predictions) of Model 2 using the experim
corresponds to outputs calculated using the optimized parameters values (h�) in Table 4 fo
obtained by performing 5000 Monte Carlo Simulations. Grey lines and shaded regions co
confidence intervals calculated using conventional method, Eq. (3). Dashed lines (blue
intervals obtained using Eq. (6). Green lines and green shaded regions correspond to mod
ratio. Filled and non-filled circles correspond to experimental measurements (15% solid)
(B) cellobiose predictions, (C) glucose predictions and (D) histogram of glucose conversion
to colour in this figure legend, the reader is referred to the web version of this article.)
k3r ;K3M and K3IG to previously reported values. After these changes,
a reduction in the relative confidence interval of some parameters
can be appreciated (compare subsets S0 and S1 in Table 4). How-
ever, some parameters still have relative confidence intervals of
hundreds of times its estimated value. In order to further reduce
these values, the second part of the algorithm outlined in Fig. 1
was applied, consisting in the identification of a subset of parame-
ters with a collinearity index lower than a pre-established value
and with a large collinearity index for the subset of fixed parame-
ters. As shown in Fig. 3, if a threshold value for the collinearity
index of 10 is used, then the larger subset of parameters that can
be estimated contains 9 elements. However, as evidence by its
dmsqr value, the objective function shows a very low sensitivity
towards K1IG at h�. This means that, even if K1IG is not collinear with
other parameters, it is not possible to obtain a narrow uncertainty
interval because large variation in the value of K1IG only produces
small changes in JðhÞ. Attending to the preceding argument, K1IG

must belong to the set of fixed parameter hf . As it can be seen in
Fig. 3, the combinations of parameters identified are (generally)
different from the combination that shows the minimum cK value
for each subset. This is caused by the requirement that the param-
eter combination set must not only have a cK value lower than a
certain threshold, but also must have the maximum possible cCK
value in order to reduce the potential dependency between both
sets (K and its complement KC). In particular, although certain
ental conditions of EXP7 (washed pulp, 9.6 FPU/g of glucan, 15% solids). Red lines
r subset S3. Calculated bounds for predictions correspond to 5% and 95% percentiles
rrespond to the outputs of the base enzyme cocktail (Spezyme CP) and parameters
lines and shaded regions) correspond to scenarios calculated using the confidence
el outputs calculated using a b-glucosidase supplemented cellulase at a 2.5 CBU/FPU
using Accellerase 1500 at 7.5 and 5 mg/g solid respectively (A) cellulose predictions,
. Squares show the experimental data for EXP7. (For interpretation of the references
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elements of the set of elements of size 9 show values of cK below
the threshold value, all of these combinations include a low sensi-
tivity parameter (K1IG), hence no combination satisfies all the
requirements imposed by ISSA. For subsets of size 8 and lower,
ISSA successfully identifies candidate combinations of parameters
that satisfy the imposed constraints.

The solution of the parameter estimation problem for a subset
with 8 parameters out of 17 (Subset S3) is shown in Table 4 and
a comparison of the model fit to experimental data, for both the
2004 NREL model and Model 2, is presented in Fig. 4. Finally, after
eliminating the low sensitivity parameter K1IG and those parame-
ters that were correlated in Subset S2, the relative 95% confidence
intervals were drastically reduced. In fact, the maximum rCI95% is
equal to 0.68 for K2IA. Considering these promising results, the
more reliable method for calculation of confidence intervals of
nonlinear models (Eq. (6)) was applied to Subset S3 in order to
investigate whether significant differences can be found. As shown
in Table 4, none of the estimated parameters have infeasible confi-
dence intervals (i.e. there are no negative values within the confi-
dence interval). Moreover, the results obtained by applying Eq. (6)
show that the approximate method for confidence intervals calcu-
lation (Eq. (3)) underestimate its values and produces symmetric
intervals, a result not supported by the values of CI95%F in Table 4.

3.4. Propagation of parameters uncertainty to model outputs

A common situation in parameter estimation of enzymatic pro-
cesses is to calculate large confidence intervals. Since is not possi-
ble to calculate the model output for infeasible parameters (e.g.
negative reaction rates), commonly expert judgment is used to
derive reasonable bounds (Helton and Davis, 2003) or intervals
are truncated to make them feasible. In this work this was unnec-
essary since the calculated confidence intervals are tight and feasi-
ble. Fig. 5 shows the results of propagating the calculated
confidence intervals to model outputs using 5000 Monte Carlo sce-
narios and Latin hypercube sampling, using both calculated confi-
dence intervals for subset S3 in Model 2. It can be seen that, the
confidence intervals calculated with Eq. (6) produced a less sym-
metrical output compared with propagation of conventional confi-
dence intervals. As shown in Fig. 5(C) and (D), the distributions are
skewed to highest glucose concentrations and yields.

Fig. 5 also shows the predicted result of increasing b-glucosi-
dase activity as to achieve a ratio of cellulase activity (FPU) to b-
glucosidase (CBU) equal to 2.5 (labeled as b-glucosidase supple-
mented cellulase with green panels and lines in Fig. 5) compared
with the base enzymatic preparation used in this work (Genencor
Spezyme CP). Increasing b-glucosidase activity greatly increases
total glucose conversion by alleviating inhibition by cellobiose;
this is in agreement with experimental results utilizing enzyme
preparations with high CBU to FPU ratios (McMillan et al., 2011)
and with the experimental conversions found in this work when
Accellerase 1500 was used to saccharify washed solids at 15% load-
ing. Another interesting observation is that, albeit a uniform distri-
bution for the random values of parameters was used, when the b-
glucosidase supplemented cellulase preparation was used in the
model, not only the maximum glucose yield increases but the also
the distribution of the conversion yields for the random scenarios
changes. In fact it is narrow and skewed towards higher yields
(Fig. 5(C) and (D)). Hence augmenting the CBU to FPU ratio
increases the final glucose yield and the probability of achieving
high glucose yield despite the uncertainty in the value of parame-
ters. This result is an example of the importance of model-based
process design and analysis (in this case the analysis of the compo-
sition of the enzyme preparation). However, it remains unclear if
the model will be able to predict the effect of b-glucosidase supple-
mentation at higher FPU to CBU ratios. Since the model already
slightly over predicts glucose conversion at a 2.5 CBU/FPU ratio
and no provision was taken in model formulation to account for
a nonlinear effect in b-glucosidase supplementation, the model
must be used only for small increases in the CBU to FPU ratio.
Despite this limitation, the model presented in this work can be
used to assess new process configurations and to guide the search
for improved operating conditions like initial solid loading or
enzyme dosage in an economic optimization framework.
4. Conclusion

This work shows that the Langmuir model, commonly used to
account for enzyme adsorption onto lignocellulosic substrates,
was unable to predict the observed decrease in the fraction of
bound enzyme as the insoluble fraction increases. Modifications
made to the original model provide a statistically significant
improved fit towards a set of experimental data that extends the
range of conditions where the model can be used for engineering
purposes. Despite a subset of parameters with tight confidence
intervals was identified, care should be taken when attaching a
physical meaning to the model parameters due to the identifiabil-
ity issues detected.
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