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Abstract
The Locally Linear Embedding (LLE) algorithm has proven useful for determining structure
preserving, dimension reducing mappings of data on manifolds. We propose a modification to
the LLE optimization problem that serves to minimize the number of neighbors required for
the representation of each data point. The algorithm is shown to be robust over wide ranges
of the sparsity parameter producing an average number of nearest neighbors that is consistent
with the best performing parameter selection for LLE. Given the number of non-zero weights
may be substantially reduced in comparison to LLE, Sparse LLE can be applied to larger
data sets. We provide three numerical examples including a color image, the standard swiss
roll, and a gene expression data set to illustrate the behavior of the method in comparison to
LLE. The resulting algorithm produces comparatively sparse representations that preserve the
neighborhood geometry of the data in the spirit of LLE.
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1 Introduction

The Locally Linear Embedding (LLE) algorithm is an unsupervised dimensionality reduction
algorithm that determines a mapping of data lying in a higher dimensional space to a lower
dimensional space while optimizing the maintenance of local spatial relationships [10]. Through
this map, the LLE algorithm uncovers a lower dimensional representation with the goal of
preserving the topology and neighborhood structure of the original high dimensional data.

The primary parameter of the LLE algorithm is K, the choice of the number of nearest
neighbors associated to each data point. This choice greatly affects the embedding results
as it determines the local and global representation of the high dimensional data in a lower
dimensional space. Furthermore, the LLE algorithm assumes that this value K is fixed for all
data points when, in practice, the ability to vary the number of nearest neighbors based on
the local features of the data is appealing. Others have observed that it can be difficult to
appropriately choose K, and methods have been introduced to aid in this task [9, 2, 8].
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Sparsity promoting regularization using the �1 norm is now a well-understood and widely
applied tool, see, e.g., [4, 5, 11]. The semi-norm �0 counts the number of non-zero components
of a vector, but given it is non-convex, it is not practical for the analysis of high-dimensional
data. The �1 norm is the closest convex approximation to the �0 semi-norm and is therefore
an attractive proxy for minimization problems [3]. The �1 norm has been used successfully in
a variety of applications such as compressed sensing, error correction, and matrix completion,
and it is known to produce sparsity in the decision variables of optimization problems when
used as a regularization term in the objective function.

In this paper, we propose a modification to the LLE optimization problem by using the �1
norm to promote sparsity in the weights used to represent data points by their neighbors. We
formulate this as a quadratic programming problem and solve using the primal dual interior
point algorithm. The resulting algorithm automatically selects an optimal number of nearest
neighbors for each data point. The net result is a greatly reduced number of non-zero weights
required to accomplish the dimension reduction using a sparse eigensolver. We apply the
algorithm to a color image, the prototype swiss role example, and the analysis of a biological
data set related to gene expression and the human immune system’s response to infection.

2 The Locally Linear Embedding Algorithm

We begin by briefly summarizing the LLE algorithm [10]. Given a data matrix, X, consisting
of p points each of dimension D, the LLE algorithm determines a representation of reduced
dimension d < D that retains the local topological structure of the data. This structure is
expressed by the relative positions of the data points and is captured by writing each point as the
weighted sum of its neighbors. Hence, the first step is to determine the set of neighboring points
associated to each of the high-dimensional data points. Typically, this is done by determining
a fixed number of nearest neighbors K using the Euclidean distance to measure proximity.

Given a set of K-nearest neighbors for each data point, the next step is to express each point
optimally in terms of these neighbors. If xi denotes the i

th point, and Ni denotes the index set
of its nearest neighbors, one seeks the values of wij that solve the optimization problem

minimize
wij

p∑
i=1

‖xi −
∑
j∈Ni

wijxj‖22

subject to
∑
j∈Ni

wij = 1

for each i where the nonzero weights are supported on Ni.
The algorithm then determines a new set of lower dimensional points yi which maintain

these relationships between each point and its neighbors by solving the optimization problem

minimize
yi

p∑
i=1

‖yi −
∑
j∈Ni

wijyj‖22

subject to
1

p

p∑
i=1

yiy
T
i = I,

p∑
i=1

yi = 0.

The solution to this optimization problem is given by the eigenvector problem

MY T = Y TΛ (1)
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where M = (I −W )
T
(I −W ), and W is the p × p matrix containing the weights wij . The

optimal solution is given by the eigenvectors associated with the smallest d non-zero eigenvalues.
The ith row of Y T corresponds to yi.

If a data set is a sufficiently dense sampling of a manifold, then a fundamental assumption
of the algorithm is that each data point and its nearest neighbors can be characterized by a
locally linear patch of the manifold. Therefore, in the second step of the algorithm, each xi is
approximated by a linear combination of its neighbors. Data points that are close together in
the original higher dimensional space should still be close together after being mapped to lie in
the lower dimensional space, thus preserving the topology of the original data set.

3 Selection of Nearest Neighbors

Implementation of the above algorithm quickly reveals that the choice of the number of nearest
neighbors K significantly impacts the solution. If K is chosen too large, then two distinct
pathologies may occur. As the result of the manifold’s curvature, the locally linear assumption
of the algorithm may be violated, i.e., the neighborhood is not flat, or points may be identified
as neighbors in Euclidean space even though their distance may be large when measured along
the manifold. For an example, see Figure 3(a), where points in oval A could potentially be
represented by nearest neighbors in oval B if K is chosen too large. Alternatively, for K chosen
too small, the local patches may be under-sampled and unable to capture the global structure
of the data as the manifold may not consist of a single connected component.

A variety of heuristics have been proposed to guide the selection of K. For example, it is
possible to check every value ofK up to some maximum value and pick an optimalK based on an
additional quality criterion, which is straightforward but computationally intensive [9]. Thus, a
hierarchical approach is proposed in [9] which implements the first and second steps of the LLE
algorithm for K ∈ [1,Kmax] where Kmax has been assigned, computes the reconstruction error
between the original high dimensional data and the linear combination of its nearest neighbors
for each value of K, and then, for every value of K that minimizes this error, the third step to
determine the embedding vectors is performed in order to calculate the residual variance. The
optimal K is selected as the one that minimizes the residual variance. This hierarchical method
is computationally less costly as the eigenvector problem, the most expensive computation, is
only performed for a small number of K values.

However, [2] suggests that the residual variance is not a good measure of the local geometric
structure of the data and instead proposes a new measure called Preservation Neighborhood
Error–which incorporates both the global manifold behavior and local geometry of the data. [2]
also suggests a method to select Ki for each point xi locally based on graph theory. Other work
by [8] indicates that an optimal K need not be selected, as often a range of K values produces
stable reconstructions. This claim is dependent on sampling density and manifold geometry.
We have not seen this to be the case for many of the data sets considered in our work.

We now propose a sparse representation of weights allowing for identification of the ‘true’
nearest neighbors of each data point and a more appropriate local reconstruction, which deter-
mines a neighborhood size Ki for each data point automatically.

4 Sparse Locally Linear Embedding

In the standard derivation of the algorithm, each data point xi will be represented by the num-
ber of nearest neighbors K selected, i.e., the weights wij used to represent the data point xi

3
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by its nearest neighbors {xj : j ∈ Ni} are nonzero. However, this feature does not necessarily
reflect the actual number of points needed for an optimal local representation. Allowing for the
neighborhood size to vary provides additional flexibility to the algorithm to match local com-
plexity e.g. noise, isolated points, holes in the data. The density and intrinsic dimensionality
may differ for the neighborhoods of each point [2], and thus, an appropriate number of nearest
neighbors should be selected for each point instead of a single value of K chosen for all points.

By using �1 regularization to modify the LLE algorithm, sparsity in the optimal decision
variables wij is induced, allowing for an automatic selection of the nearest neighbors. Therefore,
the ad hoc nature of the selection of K has been removed and each point xi will have its
own nearest neighbors, both location and number Ki, determined as part of the optimization
problem. To this end, we propose to solve the optimization problem

minimize
wij

λ
∑
j∈Ni

|wij |f(d(xi,xj)) + ‖xi −
∑
j∈Ni

wijxj‖22

subject to
∑
j∈Ni

wij = 1.
(2)

As with standard LLE before, there is one optimization problem to solve for each i.
We introduce a non-negative function f to afford more control over the level of sparsity in

the solution to the optimization problem. We have explored several options for f(d(xi,xj))
including f(d(xi,xj)) = ||xi −xj ||mp where d is assumed to be a metric. We employ m = 1 and
p = 2 in the remainder of this paper. The parameter λ allows one to tune the sparsity of the
local representations. Larger values of λ will drive more weights to zero.

The non-differentiable term in the objective function can be moved into the constraints by
the approach of introducing nonnegative variables w+

ij and w−
ij such that wij = w+

ij − w−
ij and

|wij | = w+
ij + w−

ij . Our decision variables can be represented as w, the 2K-dimensional vector

of weight terms associated to point xi, with w = (w+,w−).
Each optimization problem can be rewritten as a quadratic program of the form

minimize
w

1

2
wTQw+ cTw

subject to Aw = b,w ≥ 0.
(3)

Removing the constant term will not affect the optimal solution. Equation (3) is in n = 2K
variables with equality constraint, Aw = b, an m × n system where m = 1. Note that Q can
be written as an outer product and is thus positive semi-definite. Therefore, Equation (3) is
a convex optimization problem where any local optimum is also a global optimum [3, 13]. We
solve this problem using the Primal Dual Interior Point method by reducing it to a sequence of
linear, equality constrained problems and then applying Newton’s method; see [13].

The computational complexity of Sparse LLE is as follows: The first step of Sparse LLE is
equivalent to the first step of standard LLE to determine the nearest neighbors. This scales
in the worst case as O(Dp2) where D is the ambient dimension of our input data and p is
the number of data points but for certain data distributions can scale as O(p log p). Standard
LLE can determine the weights by solving a least squares problems to determine the K weights
associated to the nearest neighbors of each point which scales as O(DpK3). In Sparse LLE,
the number of decision variables is 2K and there is a single equality constraint. Therefore, the
number of operations required to solve for all of the weights is O(Dp(4K + 1)3h), where h is
the average number of iterations required to solve each problem. This problem can be trivially
parallelized. Although this is more computationally intensive than standard LLE, Sparse LLE

4
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has the benefit that nearest neighbors are chosen appropriately for each nearest neighbor. The
most computationally expensive step in LLE is to solve the dense eigenvector problem which
scales as O(dp2) where d is the dimension of the embedding data. Methods to solve sparse
symmetric eigenproblems, however, reduce complexity to subquadratic in p. Sparse LLE can
dramatically increase the sparsity (see for example, Section 6.2) which improves computational
time in this final step.

5 The Algorithm

Here we provide the implementation details of the proposed algorithm. First, one must choose
Kmax, an upper bound for the number of nearest neighbors. In practice, the algorithm appears
to be insensitive to this parameter,provided it is large enough. The number of nearest neighbors
selected is generally much smaller than this bound. It is tempting to select Kmax = p − 1.
While this works, we advocate smaller values to speed up computations. As described above,
the sparsity parameter λ can be adjusted to force more weights to zero. Sparsity is admittedly
a tradeoff with accuracy. Generally, a value of λ = 0.01 seems to work well if Kmax > D.1

The resulting automatic selection of a small number of nearest neighbors i.e. fewer non-zero
weights, has potentially significant ramifications for the sparse eigensolvers which are used to
solve (1). The parameter ε is used to threshold weights that are close to zero. A choice of
ε = 10−4 worked well in our experiments.

Sparse LLE Algorithm

1. Select Kmax, λ and ε.

2. Find Kmax nearest neighbors to each point xi.

3. Find the sparse weights used to write each point as a linear combination of its nearest
neighbors xj by solving Equation (3) for each point xi. If wij < ε, set wij = 0.

4. Determine lower dimensional embedding vectors by solving the sparse eigenvector
problem given by Equation (1) for Y .

6 Numerical Experiments

We now present three numerical experiments to illustrate the behavior of the proposed Sparse
LLE algorithm. We illustrate its ability to locally select an optimal number of nearest neighbors
and to preserve the topological structure of the high-dimensional space.

6.1 Color Image

For our first example, we consider the 3-dimensional color data from a square 41 × 41 color
image, Figure 1(a). For this example, we illustrate the sparsity induced on the weights using
Sparse LLE focusing on the central pixel within the image to illustrate the characteristics of
the algorithm. In the spirit of selecting far more nearest neighbors than is required to represent
this data in R3, we set Kmax = 20.

1In the case when it is not possible to choose Kmax > D, a larger value of λ must be selected to place more
emphasis on sparsity rather than reconstruction. The final example illustrates this.
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The computational complexity of Sparse LLE is as follows: The first step of Sparse LLE is
equivalent to the first step of standard LLE to determine the nearest neighbors. This scales
in the worst case as O(Dp2) where D is the ambient dimension of our input data and p is
the number of data points but for certain data distributions can scale as O(p log p). Standard
LLE can determine the weights by solving a least squares problems to determine the K weights
associated to the nearest neighbors of each point which scales as O(DpK3). In Sparse LLE,
the number of decision variables is 2K and there is a single equality constraint. Therefore, the
number of operations required to solve for all of the weights is O(Dp(4K + 1)3h), where h is
the average number of iterations required to solve each problem. This problem can be trivially
parallelized. Although this is more computationally intensive than standard LLE, Sparse LLE

4

Sparse Locally Linear Embedding Ziegelmeier, Kirby and Peterson

has the benefit that nearest neighbors are chosen appropriately for each nearest neighbor. The
most computationally expensive step in LLE is to solve the dense eigenvector problem which
scales as O(dp2) where d is the dimension of the embedding data. Methods to solve sparse
symmetric eigenproblems, however, reduce complexity to subquadratic in p. Sparse LLE can
dramatically increase the sparsity (see for example, Section 6.2) which improves computational
time in this final step.

5 The Algorithm

Here we provide the implementation details of the proposed algorithm. First, one must choose
Kmax, an upper bound for the number of nearest neighbors. In practice, the algorithm appears
to be insensitive to this parameter,provided it is large enough. The number of nearest neighbors
selected is generally much smaller than this bound. It is tempting to select Kmax = p − 1.
While this works, we advocate smaller values to speed up computations. As described above,
the sparsity parameter λ can be adjusted to force more weights to zero. Sparsity is admittedly
a tradeoff with accuracy. Generally, a value of λ = 0.01 seems to work well if Kmax > D.1

The resulting automatic selection of a small number of nearest neighbors i.e. fewer non-zero
weights, has potentially significant ramifications for the sparse eigensolvers which are used to
solve (1). The parameter ε is used to threshold weights that are close to zero. A choice of
ε = 10−4 worked well in our experiments.

Sparse LLE Algorithm

1. Select Kmax, λ and ε.

2. Find Kmax nearest neighbors to each point xi.

3. Find the sparse weights used to write each point as a linear combination of its nearest
neighbors xj by solving Equation (3) for each point xi. If wij < ε, set wij = 0.

4. Determine lower dimensional embedding vectors by solving the sparse eigenvector
problem given by Equation (1) for Y .

6 Numerical Experiments

We now present three numerical experiments to illustrate the behavior of the proposed Sparse
LLE algorithm. We illustrate its ability to locally select an optimal number of nearest neighbors
and to preserve the topological structure of the high-dimensional space.

6.1 Color Image

For our first example, we consider the 3-dimensional color data from a square 41 × 41 color
image, Figure 1(a). For this example, we illustrate the sparsity induced on the weights using
Sparse LLE focusing on the central pixel within the image to illustrate the characteristics of
the algorithm. In the spirit of selecting far more nearest neighbors than is required to represent
this data in R3, we set Kmax = 20.

1In the case when it is not possible to choose Kmax > D, a larger value of λ must be selected to place more
emphasis on sparsity rather than reconstruction. The final example illustrates this.
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Figure 1: Illustration of the sensitivity of LLE to the choice of number of nearest neighbors K.
The figures are the original image, the pixel data plotted in R3, and the associated manifold
coordinates in R2 using various choices of the parameter K.
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Figure 2: (a) Plot of weights associated to Sparse LLE with Kmax = 20 nearest neighbors and
varying λ. Note λ = 0 is standard LLE. (b) Plot of the number of nonzero weights associated
to nearest neighbors of the central pixel versus λ. (c) Pareto optimal curve showing the value of
the sparsity (risk) term

∑
j∈Ni

|wij |f(d(xi,xj)) versus the reconstruction error (reward) term

‖xi −
∑

j∈Ni
wijxj‖22 as parameterized by λ. Blue corresponds to smaller and red to larger λ.

A simple experiment illustrates the sensitivity of LLE on the selection of the number of
nearest neighbors K. The original image is shown in Figure 1(a), and a plot of the points
residing in R3 extracted as the RGB pixel information is displayed in 1(b). We observe that
the choice of the fixed number of nearest neighbors K significantly impacts the data structure
in the reduced space of R2, see Figures 1(c)-1(e).

As discussed above, the main parameter dependence in the proposed sparse algorithm is
connected to λ. By increasing λ, we observe that sparsity is induced in the weights.2 Figure
2(a) displays the numerical values of the 20 weights associated to the central pixel for three
choices of parameter λ. There are 20 nonzero weights when λ = 0, 4 when λ = 0.02, and 3
when λ = 0.1. The weights plotted are the actual output of the algorithm, i.e., there has been
no thresholding. Figure 2(b) shows how the number of non-zero weights changes as a function
of λ. Notice that almost immediately as λ is increased, a small number of non-zero weights
result and further, that this number is not very sensitive to changes in λ. Given the raw data
lives in R3, it makes sense that 3 or 4 nearest neighbors would be necessary to reconstruct each
data point, remembering that the weights associated to these nearest neighbors must sum to 1.

The sparse LLE optimization problem (2) involves the balancing of the sparsity term∑
j∈Ni

|wij |f(d(xi,xj)) with the reconstruction error ‖xi −
∑

j∈Ni
wijxj‖22. As more emphasis

is placed on the first term, the solution’s sparsity increases at the expense of the reconstruction

2Note that standard LLE is a special case of Sparse LLE with sparsity parameter λ = 0.
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error. Thus, there is a balancing act between these two terms analogous to the efficient frontier
in the risk-reward analysis of investments. Thus, sparsity may be tuned as a parameter in a
manner similar to how risk is tuned for an investment. This balancing act is captured in the
pareto optimal curve shown in Figure 2(c). The optimal values of each term in the objective
function are displayed, parameterized by λ.

In summary, we observe that small λ induces sparsity in the weights associated to nearest
neighbors. Further increasing λ produces a more sparse solution at the expense of increasing
the reconstruction error, yet the number of nearest neighbors is robust over a large scale of λ.

6.2 Swiss Roll Example

Now, consider the canonical swiss roll example widely used as an illustrative data set for non-
linear dimensionality reduction algorithms; see, e.g., [10, 2]. The topological structure of this
data is not captured with a linear dimensionality reduction technique such as PCA or MDS. It
is, however, unraveled by nonlinear techniques such as LLE. The data consists of 2000 random
points along the swiss roll in R3, see Figure 3(a).

Given that the ambient dimension of the data set is three, one might be tempted to set
K = 4 for the number of nearest neighbors in the standard LLE algorithm. However, this
choice produces a poor embedding in R2 and does not reflect the topological structure of the
data; see Figure 3(b). In fact, this choice disconnects the data, as evidenced by the eigenvalues
of the Laplacian matrix M defined in Equation (1). The source code on the LLE homepage
instead selects K = 12 [1]. This choice of K yields a much better embedding; see Figure 3(c).

(a) Data set.

LLE

(b) LLE K = 4.

LLE

(c) LLE K = 12.

Sparse LLE

(d) SLLE Kmax = 20.

Figure 3: Points sampled from the swiss roll embedded into R2 using LLE and Sparse LLE
(SLLE) with ε = 10−4, and λ = 0.01.

We now illustrate how the Sparse LLE algorithm automatically determines an appropriate
value of Ki for each point xi on the swiss roll. As above, we select Kmax = 20 for the maximum
number of nearest neighbors allowed and the sparsity parameter λ = 0.01. Figure 3(d) was
generated by zeroing out those entries less than ε = 10−4 inW and using the remaining ‘nonzero’
entries inW in the sparse eigenvector problem. The histogram of the number of nonzero weights
associated to each swiss roll point using Sparse LLE with threshholding ε = 10−4 is shown in
Figure 4(a). For the sparsity parameter λ = 0.01 only 2 to 6 weights are nonzero for each data
point using Sparse LLE even though Kmax = 20 nearest neighbors were allowed. Thus, the
Sparse LLE algorithm requires less than one-third the number of weights required by LLE.

The algorithm is repeated for several values of Kmax and λ. The results appear robust
as shown in Figure 4(b). Observe that for very small λ approximately 12 ± 4 neighbors are
selected. This number is consistent with the value of K = 12 nearest neighbors recommended
for standard LLE for this data. For λ > 0.01 the solution is robust and indicates that 4 ± 1
neighbors are needed to represent the data.
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Figure 1: Illustration of the sensitivity of LLE to the choice of number of nearest neighbors K.
The figures are the original image, the pixel data plotted in R3, and the associated manifold
coordinates in R2 using various choices of the parameter K.
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varying λ. Note λ = 0 is standard LLE. (b) Plot of the number of nonzero weights associated
to nearest neighbors of the central pixel versus λ. (c) Pareto optimal curve showing the value of
the sparsity (risk) term
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|wij |f(d(xi,xj)) versus the reconstruction error (reward) term

‖xi −
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j∈Ni
wijxj‖22 as parameterized by λ. Blue corresponds to smaller and red to larger λ.

A simple experiment illustrates the sensitivity of LLE on the selection of the number of
nearest neighbors K. The original image is shown in Figure 1(a), and a plot of the points
residing in R3 extracted as the RGB pixel information is displayed in 1(b). We observe that
the choice of the fixed number of nearest neighbors K significantly impacts the data structure
in the reduced space of R2, see Figures 1(c)-1(e).

As discussed above, the main parameter dependence in the proposed sparse algorithm is
connected to λ. By increasing λ, we observe that sparsity is induced in the weights.2 Figure
2(a) displays the numerical values of the 20 weights associated to the central pixel for three
choices of parameter λ. There are 20 nonzero weights when λ = 0, 4 when λ = 0.02, and 3
when λ = 0.1. The weights plotted are the actual output of the algorithm, i.e., there has been
no thresholding. Figure 2(b) shows how the number of non-zero weights changes as a function
of λ. Notice that almost immediately as λ is increased, a small number of non-zero weights
result and further, that this number is not very sensitive to changes in λ. Given the raw data
lives in R3, it makes sense that 3 or 4 nearest neighbors would be necessary to reconstruct each
data point, remembering that the weights associated to these nearest neighbors must sum to 1.

The sparse LLE optimization problem (2) involves the balancing of the sparsity term∑
j∈Ni

|wij |f(d(xi,xj)) with the reconstruction error ‖xi −
∑

j∈Ni
wijxj‖22. As more emphasis

is placed on the first term, the solution’s sparsity increases at the expense of the reconstruction

2Note that standard LLE is a special case of Sparse LLE with sparsity parameter λ = 0.
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error. Thus, there is a balancing act between these two terms analogous to the efficient frontier
in the risk-reward analysis of investments. Thus, sparsity may be tuned as a parameter in a
manner similar to how risk is tuned for an investment. This balancing act is captured in the
pareto optimal curve shown in Figure 2(c). The optimal values of each term in the objective
function are displayed, parameterized by λ.

In summary, we observe that small λ induces sparsity in the weights associated to nearest
neighbors. Further increasing λ produces a more sparse solution at the expense of increasing
the reconstruction error, yet the number of nearest neighbors is robust over a large scale of λ.

6.2 Swiss Roll Example

Now, consider the canonical swiss roll example widely used as an illustrative data set for non-
linear dimensionality reduction algorithms; see, e.g., [10, 2]. The topological structure of this
data is not captured with a linear dimensionality reduction technique such as PCA or MDS. It
is, however, unraveled by nonlinear techniques such as LLE. The data consists of 2000 random
points along the swiss roll in R3, see Figure 3(a).

Given that the ambient dimension of the data set is three, one might be tempted to set
K = 4 for the number of nearest neighbors in the standard LLE algorithm. However, this
choice produces a poor embedding in R2 and does not reflect the topological structure of the
data; see Figure 3(b). In fact, this choice disconnects the data, as evidenced by the eigenvalues
of the Laplacian matrix M defined in Equation (1). The source code on the LLE homepage
instead selects K = 12 [1]. This choice of K yields a much better embedding; see Figure 3(c).

(a) Data set.

LLE

(b) LLE K = 4.

LLE

(c) LLE K = 12.

Sparse LLE

(d) SLLE Kmax = 20.

Figure 3: Points sampled from the swiss roll embedded into R2 using LLE and Sparse LLE
(SLLE) with ε = 10−4, and λ = 0.01.

We now illustrate how the Sparse LLE algorithm automatically determines an appropriate
value of Ki for each point xi on the swiss roll. As above, we select Kmax = 20 for the maximum
number of nearest neighbors allowed and the sparsity parameter λ = 0.01. Figure 3(d) was
generated by zeroing out those entries less than ε = 10−4 inW and using the remaining ‘nonzero’
entries inW in the sparse eigenvector problem. The histogram of the number of nonzero weights
associated to each swiss roll point using Sparse LLE with threshholding ε = 10−4 is shown in
Figure 4(a). For the sparsity parameter λ = 0.01 only 2 to 6 weights are nonzero for each data
point using Sparse LLE even though Kmax = 20 nearest neighbors were allowed. Thus, the
Sparse LLE algorithm requires less than one-third the number of weights required by LLE.

The algorithm is repeated for several values of Kmax and λ. The results appear robust
as shown in Figure 4(b). Observe that for very small λ approximately 12 ± 4 neighbors are
selected. This number is consistent with the value of K = 12 nearest neighbors recommended
for standard LLE for this data. For λ > 0.01 the solution is robust and indicates that 4 ± 1
neighbors are needed to represent the data.
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Figure 4: (a) Histogram of the number of nonzero weights associated to each point on the swiss
roll using SLLE with Kmax = 20 and λ = 0.01. (b) Mean and standard deviation of the number
of nonzero weights associated to nearest neighbors of points in the swiss roll as both λ and
Kmax are varied in Sparse LLE.

Through this experiment, we see that Sparse LLE is not only able to preserve the topological
structure of this highly nonlinear data set but also automatically chooses an appropriate number
of nearest neighbors for each point in an efficient way, requiring approximately 33% of the
number of nearest neighbors used by standard LLE.

6.3 Gene Expression Influenza Data

The final data set that we consider is gene expression data from the Influenza Challenge de-
scribed in [12]. In this study, 17 volunteers were exposed to the H1N1 virus, and 19 volunteers
were exposed to the H3N2 virus. Blood samples were collected every 8 hours from each subject
and then analyzed for gene expression levels. Each measurement consists of expression levels of
12023 distinct genes. In total, the data set consists of 108 points in R12023. Additionally, each
subject either became symptomatic or not, i.e., some individuals had an immune response that
effectively suppressed symptoms while others felt very sick. For both strains of virus about
half of all subjects produced symptoms while others remained asymptomatic. Genes associated
with biological pathways that are active in fighting infection express differently depending on
the subject’s ability to fight the infection.

Geometrically, we envision a very high-dimensional vector space where symptomatic H1N1
and H3N2 subjects are clustered away from the asymptomatic subjects. Since we cannot vi-
sualize this data set, we reduce the dimension to R2 using both LLE and Sparse LLE. In this
case, unlike in our other analyses, any choice of nearest neighbors will be much less than the
dimension of our ambient space, i.e. K < D, and thus, our data points will be unable to be
perfectly reconstructed by their nearest neighbors.3 However, Sparse LLE is still able to remain
robust across the choice of nearest neighbors for an appropriately large λ.

We perform a parameter space search using standard LLE with K = 4, . . . , 40, and observe
once again that reconstructions are highly dependent upon this choice. We consider the “op-
timal” embedding K = 10 as symptomatic and asymptomatic subjects appear to have fairly

3This is also true for standard LLE.
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Figure 5: Application of sparse LLE to the gene expression data produced by the influenza
challenge.

good separation in this reconstruction. A similar analyses is performed with Sparse LLE. Figure
5(a) shows the average number of nonzero weights as well as the standard deviation of varying
both Kmax and λ in Sparse LLE. The curves appear to level off at 10 ± 3 nearest neighbors.
Therefore, Sparse LLE automatically identifies 10 as the mean number of nearest neighbors,
consistent with the best result found with LLE. We observe in Figure 5(b) that SLLE, like LLE,
reveals good separation between symptomatic and asymptomatic subjects at this level. In fact,
SLLE has a broad range of λ values for which varying Kmax does not significantly affect the
output reconstructions.

7 Conclusion

We have proposed a modification to the optimization problem associated with the Locally Linear
Embedding algorithm that computes the weights used to reconstruct each data point from its
neighbors. The result is a constrained quadratic program with a sparsity parameter on the
weights. By varying this parameter away from zero, the number of nearest neighbors required
to characterize each point is determined automatically. In the standard LLE algorithm, the
structure of the embedding appears highly dependent on the selection of K. We have provided
evidence in three examples that Sparse LLE behaves robustly to parameter selection over a
wide range of the sparsity parameter. The number of nonzero weights in standard LLE is fixed
to be the number of points times the (constant) number of nearest neighbors. In contrast, as
illustrated in examples, Sparse LLE may require substantially fewer non-zero weights. This
permits the embedding of potentially larger data sets when a sparse eigensolver is used. We
have limited our direct comparisons to the addition of the sparsity promoting term in LLE
since other non-sparse variations on LLE have been widely published. For instance, it may
be interesting to consider how the approach presented here could be adapted to the Hessian
LLE algorithm proposed in [6]. We note that another approach, similar in spirit to ours, also
employs an �1 optimization problem for solving the nearest neighbor selection problem [7]. In
future work we will explore a comparison of these two methodologies.
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Figure 4: (a) Histogram of the number of nonzero weights associated to each point on the swiss
roll using SLLE with Kmax = 20 and λ = 0.01. (b) Mean and standard deviation of the number
of nonzero weights associated to nearest neighbors of points in the swiss roll as both λ and
Kmax are varied in Sparse LLE.

Through this experiment, we see that Sparse LLE is not only able to preserve the topological
structure of this highly nonlinear data set but also automatically chooses an appropriate number
of nearest neighbors for each point in an efficient way, requiring approximately 33% of the
number of nearest neighbors used by standard LLE.

6.3 Gene Expression Influenza Data

The final data set that we consider is gene expression data from the Influenza Challenge de-
scribed in [12]. In this study, 17 volunteers were exposed to the H1N1 virus, and 19 volunteers
were exposed to the H3N2 virus. Blood samples were collected every 8 hours from each subject
and then analyzed for gene expression levels. Each measurement consists of expression levels of
12023 distinct genes. In total, the data set consists of 108 points in R12023. Additionally, each
subject either became symptomatic or not, i.e., some individuals had an immune response that
effectively suppressed symptoms while others felt very sick. For both strains of virus about
half of all subjects produced symptoms while others remained asymptomatic. Genes associated
with biological pathways that are active in fighting infection express differently depending on
the subject’s ability to fight the infection.

Geometrically, we envision a very high-dimensional vector space where symptomatic H1N1
and H3N2 subjects are clustered away from the asymptomatic subjects. Since we cannot vi-
sualize this data set, we reduce the dimension to R2 using both LLE and Sparse LLE. In this
case, unlike in our other analyses, any choice of nearest neighbors will be much less than the
dimension of our ambient space, i.e. K < D, and thus, our data points will be unable to be
perfectly reconstructed by their nearest neighbors.3 However, Sparse LLE is still able to remain
robust across the choice of nearest neighbors for an appropriately large λ.

We perform a parameter space search using standard LLE with K = 4, . . . , 40, and observe
once again that reconstructions are highly dependent upon this choice. We consider the “op-
timal” embedding K = 10 as symptomatic and asymptomatic subjects appear to have fairly

3This is also true for standard LLE.
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good separation in this reconstruction. A similar analyses is performed with Sparse LLE. Figure
5(a) shows the average number of nonzero weights as well as the standard deviation of varying
both Kmax and λ in Sparse LLE. The curves appear to level off at 10 ± 3 nearest neighbors.
Therefore, Sparse LLE automatically identifies 10 as the mean number of nearest neighbors,
consistent with the best result found with LLE. We observe in Figure 5(b) that SLLE, like LLE,
reveals good separation between symptomatic and asymptomatic subjects at this level. In fact,
SLLE has a broad range of λ values for which varying Kmax does not significantly affect the
output reconstructions.

7 Conclusion

We have proposed a modification to the optimization problem associated with the Locally Linear
Embedding algorithm that computes the weights used to reconstruct each data point from its
neighbors. The result is a constrained quadratic program with a sparsity parameter on the
weights. By varying this parameter away from zero, the number of nearest neighbors required
to characterize each point is determined automatically. In the standard LLE algorithm, the
structure of the embedding appears highly dependent on the selection of K. We have provided
evidence in three examples that Sparse LLE behaves robustly to parameter selection over a
wide range of the sparsity parameter. The number of nonzero weights in standard LLE is fixed
to be the number of points times the (constant) number of nearest neighbors. In contrast, as
illustrated in examples, Sparse LLE may require substantially fewer non-zero weights. This
permits the embedding of potentially larger data sets when a sparse eigensolver is used. We
have limited our direct comparisons to the addition of the sparsity promoting term in LLE
since other non-sparse variations on LLE have been widely published. For instance, it may
be interesting to consider how the approach presented here could be adapted to the Hessian
LLE algorithm proposed in [6]. We note that another approach, similar in spirit to ours, also
employs an �1 optimization problem for solving the nearest neighbor selection problem [7]. In
future work we will explore a comparison of these two methodologies.
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