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ABSTRACT

Found in the skins of red fruits, including grapes, resveratrol (RES) is a
polyphenolic compound with cancer chemopreventive activity. Because of this
activity, it has gained interest for scientific investigations. RES inhibits tumor growth
and progression by targeting mitochondria-dependent or -independent pathways.
However, further investigations are needed to explore the underlying mechanisms.

The present study is focused on examining the role of RES-induced, mitochondria-
mediated, caspase-independent apoptosis of prostate cancer cells, namely transgenic
adenocarcinoma of mouse prostate (TRAMP) cells. These cells were exposed to
RES for various times, and cell killing, cell morphology, mitochondrial membrane
potential (Aym), expression of Bax and Bcl2 proteins, the role of caspase-3, and DNA
fragmentation were analyzed.

TRAMP cells exposed to RES showed decreased cell viability, altered cell
morphology, and disrupted Aym, which led to aberrant expression of Bax and Bcl2
proteins. Furthermore, since the caspase-3 inhibitor, z-VAD-fmk (benzyloxycarbonyl-
valine-alanine-aspartic acid-fluoromethyl ketone), had no appreciable impact on
RES-induced cell killing, the killing was evidently caspase-independent. In addition,
RES treatment of TRAMP-C1, TRAMP-C2, and TRAMP-C3 cells caused an appreciable
breakage of genomic DNA into low-molecular-weight fragments.

These findings show that, in inhibition of proliferation of TRAMP cells, RES
induces mitochondria-mediated, caspase-independent apoptosis. Therefore, RES may
be utilized as a therapeutic agent to control the proliferation and growth of cancer
cells.

INTRODUCTION

In Western populations, prostate cancer is the
second leading cause of death (after heart disease) in men
older than 65 years of age [1-6]. It arises through the
change of pre-neoplastic lesions into adenocarcinomas,
and thereafter progresses to metastatic disease [6-9].
Recent advances have found genetic alterations that
enhance the probability of prostate cancer development
[10, 11]. To limit the growth of prostate cancer, high doses

of chemotherapeutic drugs and high-frequency radiation
have been used, but the limited efficacy and side effects
of these treatments raise a concern [12, 13]. Therefore,
it is desirable to find anti-cancer agents that are non-
toxic and effective in inducing apoptosis in cancer cells.
Previous studies have demonstrated that treatment with
anti-androgens is beneficial in the early stages of prostate
cancer development, suggesting that their growth may be
dependent on androgens [14—17]. In contrast, androgen-
independent prostate cancer cells do not undergo apoptosis
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[14-17]. In view of these results, advanced therapies that
target the proliferation of both androgen-dependent and
-independent prostate cancer cells are needed.

Compounds naturally occurring and present
in the human diet are generally nontoxic, and some
have beneficial effects on human health. Among these
dietary components, resveratrol (RES), a polyphenol
found in the skin of red fruits, exhibits anti-cancer,
anti-proliferative, anti-inflammatory, and anti-oxidative
effects [18, 19]. The anti-cancer properties of RES are
facilitated through various changes in apoptotic signaling,
metabolic pathways, and other signaling pathways that
regulate apoptosis, cell cycle progression, inflammation,
proliferation, metastasis, and angiogenesis [18, 20].
Furthermore, cells exposed to RES show inhibition
of PI3K/AKT signaling, which stimulates apoptosis
[21-29]. RES induces the death receptor (TRAIL/DR4
and TRAIL-R2/DRS5)-mediated apoptosis [7, 30-39],
and it is involved in mitochondrial-mediated apoptosis
[40—45]. Mitochondria are the primary provider of ATP
in most mammalian cells, they regulate both necrotic and
apoptotic cell death pathways [46]. Thus, apoptosis is
considered to be the most likely mechanism adopted by
cells after activation of death signals. Apoptosis may be
triggered intrinsically or extrinsically, depending on the
type of apoptotic signals [40, 41, 43—45].

In human lung adenocarcinoma cells, RES activates
the intrinsic apoptotic pathway by inducing release of
apoptosis-inducing factor (AIF) [47]. Intrinsic signals of
apoptosis function mainly through mitochondria [48]. In
healthy cells, the outer mitochondrial membrane expresses
the B-cell lymphoma-2 (Bcl-2) family of proteins, which
controls the release of pro-apoptotic factors from the inner-
membrane space in mitochondria [49-52]. In response to
internal damage to the cells, a Bcl-2 associated protein,
Bax, migrates to the mitochondrial membrane and inhibits
the action of Bcl-2, causing damage to the mitochondrial
membrane that in turn releases cytochrome-c [49-52].
Cytochrome-c binds with the apoptotic protease activator
factor-1 (Apaf-1) and forms a multimeric protein structure
called the “apoptosome.” The apoptosome activates
caspase-9, which triggers the activation of caspase-3 and
caspase-7 [53—59]. Their activation initiates proteolytic
activity that leads to cell death [53—-59]. The extrinsic
pathway of apoptosis, however, is triggered by external
signals that stimulate death receptors, such as ligands
Fas-L and TNF-a (tumor necrosis factor-a), which activate
caspase-8 [60]. This activated molecule initiates a cascade
of caspase activity, which facilitates cell death [60].

RES shows anti-cancer, anti-proliferative, anti-
inflammatory, and anti-oxidative properties, which are
involved in the mitochondrial pathway of apoptosis
[18, 20, 4044, 61, 62]. However, how RES-induced,
mitochondria-mediated, caspase-independent apoptosis
operates in controlling the progression of tumor cells is
not clear.

In the present effort, we examined the effects of
RES on mitochondria-mediated, caspase-independent
apoptosis in transgenic adenocarcinoma of mouse
prostate (TRAMP-C1, TRAMP-C2, and TRAMP-C3)
cells. TRAMP cells exposed to RES showed, in a time-
and dose-dependent manner, increased cell killing and
altered cell morphology. Furthermore, RES treatment
resulted in disrupted mitochondrial membrane potential
(Aym), which triggered disproportionate expression
of Bax and Bcl2 proteins. In addition, RES treatment
did not induce marked fragmentation of DNA into low-
molecular-weight segments. As determined by exposure
of cells to the caspase-3 inhibitor, z-VAD-fmk, caspase-3
was not involved in RES-mediated cell killing. Thus, these
findings indicate that RES induces mitochondria-mediated,
caspase-independent apoptosis and delays proliferation of
prostate cancer cells. Therefore, RES may be an agent for
treatment of prostate cancer.

RESULTS

RES Kills tumor cells

To test the effect of RES on TRAMP cells, a cell-
killing assay was performed. First, we determined the
optimal time and concentration of RES needed to kill
TRAMP cells. Annexin V-FITC™ and double positive
(FITC", PT) cells showed sign of early and late apoptosis
respectively; however, PI+ cells considered as dead cells
as shown in representative Figure 1A. We established
that 16 hours was the optimal time for maximum killing
(Figure 1B). These experiments were repeated 5 times
independently in triplicates. Data are represented as mean
values £SEM (Standard Error of the Mean) in Figure 1B.
We also conducted experiments at 24 hours and 48 hours
but did not find any significant difference in RES-mediated
cell killing (data not shown). Cells incubated with 50 pM
or 100 uM of RES showed a concentration-dependent
increase in the percent of cells killed (Figure 1B). Further
analysis revealed that RES (100 pM) treatment resulted in
a significantly greater (*P<0.001) killing of TRAMP-C3
cells (43+5%) as compared to TRAMP-CI1 (21+5%)
and TRAMP-C2 (6+£5%) cells (Figure 1B). In addition,
TRAMP cells were incubated with RES in the presence
or absence of Nec-1, a necroptosis blocker, to confirm
whether RES-mediates apoptosis or necroptosis. We found
that RES exhibited a similar pattern of cell killing in the
presence or absence of Nec-1 (Supplementary Figure 1A;
TRAMP-C1, Supplementary Figure 1B; TRAMP-C2, and
Supplementary Figure 1C; TRAMP-C3).

RES treatment alters cell morphology

To evaluate the impact of RES on cell morphology,
phase contrast microscopy was conducted. Cells were
treated with 100 uM of RES for 16h exhibited altered
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cell morphology in a concentration-dependent manner
(Figure 1C). Furthermore, cells exposed to 100 uM of
RES showed more prominent morphological alterations in
TRAMP as compared to cells treated with 50 uM of RES
(Figure 1C). Additionally, TRAMP-C3 cells were more
sensitive to 100 uM of RES as compared to TRAMP-C1
and TRAMP-C2 cells (Figure 1C). TRAMP-C3 cells
showed more oval shapes as compared to TRAMP-C1 and
TRAMP-C2 cells, suggesting loss of adherence and loss
of cell-to-cell contact.

RES induces mitochondrial membrane potential

To examine the effect of RES on mitochondria, the
Aym was measured using fluorescence microscopy and
flow cytometry. TRAMP cells treated with RES (50 or 100
uM) showed disrupted Aym as compared to appropriate
control (Figure 2A). Observed under a fluorescence
microscope, DePsipher-stained TRAMP cells exhibited
a distinct fluorescence color: red, green, or an overlap of
green and red that results in orange/yellow. Cells with red
fluorescence were considered to be healthy and normal;
cells with green fluorescence were considered to have
disrupted Aym, indicating apoptosis. Cells with orange/
yellow fluorescence were considered to have collapsed
mitochondria. Most of the treated TRAMP cells showed
green and orange/yellowish color, indicating that these cells

had disrupted Aym (Figure 2A); however, TRAMP-C3
cells showed significantly disrupted Aym as compared to
TRAMP-C1 and TRAMP-C2 cells (Figure 2A).

Further, the Aym was validated by flow cytometric
analysis of TRAMP cells treated with 100 pM RES
as demonstrated in representative Figure 2B. In this
figure, three cell populations were evident: (i) TRAMP
cells showing only green fluorescence (FL1: 488/530
nm) corresponding to those with disrupted (low) Aym
following apoptosis as compared to control cells. (ii)
Cells with different intensities of green and red or
yellow/orange were also considered to have intermediate
disrupted Aym. (iii) Cells emitting red fluorescence (FL2:
488/585nm) were considered to demonstrate high Aym.
Further analysis revealed that, with exposure to 100 uM
RES, the percentages of TRAMP-C3 cells showing green
fluorescence, that is, with disrupted Aym, were higher
relative to TRAMP-C1 and TRAMP-C2 cells (Figure 2C).
This experiment was performed 5 times independently
in triplicates; the sum of all experimental data (+ SEM)
is shown in the histogram Figure 2C (¥p<0.05 and
**p<0.01).

RES modulates the expression of Bax and Bcl2

Western blots were performed to investigate
the effect of RES on the expression of Bax and Bcl2
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Figure 1: RES kills TRAMP cells in a dose- and time-dependent manner. TRAMP cells were treated with RES (50 uM or
100 uM), and cell killing and cell morphology were examined. A. Representative figure of gating strategies to study percent cell killing after
RES treatment using a flow cytometer. B. Mean average values with =SEM of cell death at 0, 2, 4, 8, 12, and 16 hours. C. Morphological
changes in cells due to RES treatment (* indicates p<0.05 and ** indicates p<0.01).
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proteins. It was found that RES treatment modulated
the expression of Bax and Bcl2 proteins in TRAMP-C1,
TRAMP-C2 and TRAMP-C3 cells as compared to the
control (Figure 3A). Further, densitometric analysis
revealed that treatment with 50 pM or 100 pM of
RES resulted in significantly high expression of Bax
in TRAMP-C1 (*p<0.02), TRAMP-C2 (*p<0.001)
and TRAMP-C3 (*p<0.001) cells when compared to
the respective control (Figure 3C). In contrast to Bax,
Bcl2 expression repressed significantly in TRAMP-C2
(*p<0.03) and TRAMP-C3 (*p<0.02) cells after 100 uM
of RES treatment (Figure 3B). In addition, TRAMP-CI
(#p>0.05) cells did not show a significant difference
in the expression of Bcl2 protein in comparison to the
control (Figure 3B).

RES induces caspase-independent cell killing

To evaluate the role of caspase-3 in RES-mediated cell
killing, caspase-3 activation was blocked with an inhibitor
(z-VAD-fmk). RES treatment with and without z-VAD-fmk
induced RES-mediated cell killing (Figure 4A). TRAMP-C3
cells exposed to 100 uM of RES with or without z-VAD-
fmk showed significantly (**p<0.001) higher percentage
of cell death as compared to TRAMP-C1 (*p<0.05) and
TRAMP-C2 (¥p<0.05) cells (Figure 4A). However, there
was no significant difference in TRAMP cells treated with
either RES or with RES plus z-VAD-fik (Figure 4A).
There were corresponding results when cells were analyzed
morphologically under a phase contrast microscope
(Figure 4B: resultant morphology of TRAMP cell after
100uM of RES+z-VAD-fmk treatment). In addition,
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Figure 2: RES disrupts Aym. Cells were treated with 100 uM of RES for 16 hours, and Aym was examined by using DePsipher
dye. A. Fluorescence microscopy of TRAMP cells. B. Representative gating of cells. (i) cells with disrupted (low) Aym are indicated as
DePsipher-monomers (34.52%), (ii) cells with intermediate Aym (4.26%), and (iii) cell with high Aym indicated as DePsipher-aggregates
(11.89%). C. Percent of cells with disrupted Aym. Data represented as mean values = SEM (* indicates p<0.05 and ** indicates p<0.01).
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treatment with Nec-1 (an inhibitor of necroptosis) did not
change RES-mediated cell killing in the presence or in the
absence of z-VAD-fmk (Supplementary Figure 2). Thus,
in TRAMP-C1, TRAMP-C2, and TRAMP-C3 cells, the
caspase-3 inhibitor, z-VAD-fmk, and Nec-1, had negligible
effects on RES-mediated apoptosis (Supplementary Figure
2A; TRAMP-C1, Supplementary Figure 2B; TRAMP-C2,
and Supplementary Figure 2C; TRAMP-C3 cells).

RES modulates the y-H2A.X expression

To test the effect of 50 and 100uM of RES treatment
on the expression of y-H2A.X in TRAMP cells. The
expression of y-H2A.X was examined using western
blot analysis which demonstrated significantly (*p<0.05)
higher expression in TRAMP-C2 and TRAMP-C3 cells
when compared to the control (Figure 5A and 5B).
However, in TRAMP-CI1 cells, y-H2A.X expression
was not significant (#p>0.05) as compared to the control
(Figure 5A and 5B). These findings suggest that RES

treatment sensitizes DNA damage which further leads to
apoptosis of TRAMP cells.

DISCUSSION

Resistance to anti-cancer therapies is facilitated
through an array of mechanisms that vary across tumor
types [63, 64]. In the present study, we demonstrated
that RES modulates mitochondria-mediated, caspase-
independent apoptosis in murine prostate cancer cells.
These results reveal that dietary compounds such as
RES may play a critical role in inducing mitochondria-
dependent apoptotic pathway(s) in murine prostate cancer
cells (Figure 6).

Dietary compounds can be used to target
mitochondria-mediated, caspase-independent apoptosis.
This pathway is characterized by changes in Aym and
by maintenance of an optimal ratio of Bcl2/Bax [65].
A high Aym and a high Bcl2/Bax ratio are believed to
promote cell proliferation and enhanced cell survival,
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Figure 3: RES modulates the expression of Bax and Bcl2. Results indicated altered expression of Bax and Bcl2 in TRAMP cells
after Res treatment. A. Representative western blot of Bax, Bcl-2 and B-actin for the respective doses of RES in TRAMP-C1, TRAMP-C2
and TRAMP-C3 cells. B. Expression of Bcl-2 relative to the control. C. Expression of Bax relative to the control. Results are representative
of three independent experiments (* indicates p<0.05 and # indicates p>0.05).

www.impactjournals.com/oncotarget

Oncotarget



thereby contributing to cancer progression. Dietary
compounds such as RES inhibit cell growth in several
types of human cancers, including prostate cancers [8,
66—70]. Consistent with results of previous studies, our
data demonstrate that RES treatment results in enhanced
cell killing in a time and dose-dependent manner. As
cell viability decreases, altered cell morphology, a
characteristic of apoptosis, increases [71]. RES induces
cellular morphological changes similar to those caused
by other anti-cancer drugs [40—45, 61, 62, 72]. To
confirm our preliminary results relating to viability,
we determined the effect of RES on the expression of
Bcl2 and Bax proteins, Aym, caspase-3 activity, and
DNA fragmentation. TRAMP-C3 and TRAMP-C2
cells exhibited significant difference in Bax expression
as compared to control at 50 pM and 100 uM of RES;
however, TRAMP-C1 showed significant difference at
100 uM of RES, not at 50 uM when compared to the
control (Figure 3C). In contrast to Bax, Bcl2 expression
in TRAMP-C1, TRAMP-C2 and TRAMP-C3 was

observed altered as compared to control at both 50 uM
and 100 uM of RES (Figure 3B). Additionally, Bcl2 was
found significantly repressed at 50 uM and 100 uM of
RES in TRAMP-C2 and TRAMP-C3 when compared to
control (Figure 3B). Furthermore, RES treatment also
caused disrupted Aym, which is associated with apoptosis
[73]. Most TRAMP-C3 cells showed decreased Aym
relative to TRAMP-C1 and TRAMP-C2 cells. Thus, RES
treatment induced killing of TRAMP cells in a caspase-3-
independent manner, for the caspase-3 inhibitor (z-VAD-
fmk), failed to prevent RES-mediated cell killing.
Therefore, apoptosis of TRAMP cells induced by RES
apparently acts through the mitochondrial mediated,
caspase-independent pathway (Figure 6).

Changes in Aym are evident in mitochondria-
mediated, caspase-independent apoptosis [74, 75]. As
shown in the present effort, RES treatment decreases
Aym in TRAMP-C3 cells compared to TRAMP-C1 and
TRAMP-C2 cells. However, RES induces apoptosis of
colon cancer cells independently of the tumor suppressor
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pS3 via epithelial differentiation and mitochondrial
membrane collapse [76, 77]. The present data correspond
with these findings, which suggest that RES treatment
induces a collapse of Aym [76, 77].

Proteins of the Bcl2 family, particularly Bel2 and
Bax, are involved in mitochondria-mediated apoptotic
pathways [65]. After treatment of HCT-116 colon
carcinoma cells with RES, Bax is involved in alteration of
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Figure 5: RES treatment induced DNA fragmentation in TRAMP cells. TRAMP cells were incubated with 50 uM and 100 uM
of RES to examine the expression of y-H2A.X in TRAMP cells. The resulting western blots of y-H2A.X showed that the expression of
v-H2A.X was found significantly higher in TRAMP-C2 and TRAMP-C3 cells when compared to the control. Furthermore, TRAMP-C1
cells, did not show a significant difference in y-H2A.X expression when compared to the control (* indicates p<0.05 and # indicates p>0.05).
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mitochondrial membrane permeability [78—80]. However,
by up-regulation of Bcl2 and inhibition of p53 and Bax,
RES reverses cadmium chloride-induced testicular damage
and subfertility [79]. In bladder cancer cells, RES also
induces apoptosis by down-regulating the expression of
Bcl2 proteins [81, 82]. However, the current results show
that RES modulates the expression of Bax and Bcl2 in
TRAMP-C1, TRAMP-C2, and TRAMP-C3 cells compared
to the control cells; however, in TRAMP-C1 cells Bax at
50 uM of RES and Bcl2 at 50 uM and 100 uM of RES
were found insignificant. These findings corroborated with
other reports [65, 81, 82].

RES decreased cell viability and Aym, and
modulated the expression of Bax and Bcl2 proteins in
TRAMP-C1, TRAMP-C2, and TRAMP-C3 cells. In an
investigation of the involvement of caspase-3 in RES-
mediated cell killing and DNA fragmentation, we found
that RES treatment with or without the caspase-3 inhibitor,
z-VAD-fmk, resulted in similar cell killing. This result was
supported by morphological examination of the cells after
DePsipher staining. The mechanism of action, however,
is not yet defined. RES induces apoptosis by depolarizing
the mitochondrial membranes in a caspase-independent
manner [73] [48, 83, 84]. Nevertheless, in U937 cells,
overexpression of Bcl2 attenuates RES-mediated apoptosis
by blocking caspase-3 activation [53]. Moreover, RES
induces caspase-dependent and -independent apoptosis in
various cancer cells [85—87]. In colon cancer cells, RES
induces caspase-2 activation that subsequently triggers
Bax-Bak-dependent and -independent cell death [79].
In human lung adenocarcinoma cells, RES stimulates
mitochondria-mediated and caspase-dependent cell death
[88]. Conversely, in primary mouse fibroblasts, RES
exhibits a cytoprotective effect by acting against caspase-3
[89]. The present results show that, for TRAMP cells, the
caspase-3 inhibitor, z-VAD-fmk, and Nec-1, which blocks
necroptosis, had a negligible effect on RES-mediated
cell killing. Thus, in these cells, RES induces caspase-
independent apoptosis.

The present results show that RES treatment to
TRAMP cells caused significant cleavage of genomic
DNA, which was accomplished by the expression of
v-H2A.X, an evolutionary conserved variant of histone
H2A, has been identified as one of the key histones
to undergo various post-translational modification in
response to double stranded DNA breaks [90, 91]. DNA
damage caused by radiation, UV light, or anti-cancer
agents results in phosphorylation of Histone y-H2A.X at
ser-139 by PI3K-like kinases, including ATM, ATR, and
DNA-PK [92-94]. The DNA damage response during
DNA fragmentation is required for DNA-damage response
proteins including DNA-PK that phosphorylates y-H2A.X
[95, 96]. Phosphorylation of y-H2A.X at Tyr142 inhibits
the recruitment of DNA repair proteins and promotes
binding of pro-apoptotic factors such as JNK1 [97, 98].
Thus, y-H2A.X expression was significantly higher in

TRAMP-C2 and TRAMP-C3 cells after 50 and 100uM
of RES treatment as compared to the control. However, in
TRAMP-C1 cells, y-H2A.X expression was not significant
as compared to the control. These findings are consistent
with the previous results, which show RES-mediated
caspase-independent cell killing. Furthermore, previous
studies have demonstrated that RES induces apoptosis
and DNA fragmentation in several types of cancer cells
[99-102]. These properties of RES suggest that it could be
used as a therapeutic agent to treat prostate cancer.

Our results demonstrate that, for TRAMP-CI,
TRAMP-C2, and TRAMP-C3 cells, RES increases cell
killing in a dose- and time-dependent manner, induces
morphological alterations, and triggers apoptosis. In
these cells, RES causes a disrupted Aym that leads
to modulated expression of Bax and Bcl2 proteins.
Additionally, caspase-3 is not involved in RES-mediated
cell killing, showing that, in TRAMP cells, RES induces
caspase-independent apoptosis. In these cells, RES
treatment contributed to DNA fragmentation which
enhanced y-H2A .x expression in treated TRAMP-C2 and
TRAMP-C3 cells, but not in TRAMP-C1 when compared
to the control, indicating the sign of DNA damage after
RES treatment [92]. Therefore, RES may be a promising
dietary compound for the treatment of prostate cancer.
However, further investigations are necessary to uncover
the underlying mechanisms.

MATERIALS AND METHODS

Cell lines and culture conditions

TRAMP-C1, TRAMP-C2, and TRAMP-C3 cells
were obtained from American Type Culture Collection
(www.ATCC.org) and were maintained at 37° C under
5% CO, in Dulbecco’s Modified Eagle Medium (DMEM)
supplemented with 10% fetal bovine serum (FBS) (v/v),
bovine insulin (0.005 mg/ml), dehydroisoandrosterone (10
nM), and antibiotics/antimycotics (1%).

Cell killing assay

To assess percentages of cell death, 70-80%
confluent cells were harvested by trypsinization, counted,
and seeded (10%) in 24-well plates in 1 ml of culture
medium. Cells were treated with 50 uM or 100 uM of RES
and were analyzed by flow cytometry at 0, 2, 4, 8, 12, and
16 hours. They were stained with annexin V-propidium
iodide (PI) as directed by manufacturer. Briefly, into
each tube, annexin V (5 pl of 600 pg/ml) and PI (5 pl
of 30 pg/ml) were added, and tubes were then incubated
for 15 min at 4°C. Cells were washed with Dulbecco’s
phosphate buffered saline (DPBS) and centrifuged.
For flow cytometric analysis, the cells were suspended
in 200-500 pl of annexin V binding buffer. Data were
acquired by use of a 13-color flow cytometer (Novocyte,
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Acea Biosciences, San Diego, CA). PI*, Annexin V*, and
Annexin V* PI" cells were counted as dead populations;
PI/Annexin V FITC: cells were counted as live cells. All
experiments were performed in triplicate.

Assessment of cell morphology

Cells were exposed to 50 uM or 100 uM of RES for
16 hours. Media were removed, and after media removal,
cells were washed with DPBS and then suspended in 50
ul of DPBS. To assess morphological changes, cells were
observed under a phase-contrast microscope (Life Tech,
Grand Island, NY).

Assessment of mitochondrial membrane
potential

To examine Aym, cells in DMEM supplemented
with 10% FBS were exposed to RES (50 uM or 100
uM) for 16 hours. After incubation, cells were harvested,
washed, stained with the mitochondria-specific dye,
DePsipher (Trevigen, Gaithersburg, MD) and flow
analyzed as suggested by the manufacturer. DePsipher, a
cationic dye (5,5°6,6’-tetrachloro-1,1’,3,3’-tetracthylbenz
imidazolylcarbocyanine iodide) stains both healthy cells
and cells with disrupted Aym. The dye enters into healthy
mitochondria and, in its multimeric form, fluoresces
red. However, in apoptotic cells, the dye remains in the
cytoplasm and fluoresces green while in its monomeric
form. Thus, cells with disrupted mitochondria can be
differentiated from healthy cells. Cells were observed
under a fluorescent microscope for morphology (Nikon
ECLIPSE Ti, Melville, NY).

Western blotting

Total protein was extracted from TRAMP cells
(10°) treated with RES (50 uM or 100 uM) by use of
2x radioimmunoprecipitation assay buffer (RIPA). The
concentrations of total proteins in lysates were estimated
according to Bradford et al. [57], using bovine serum
albumin as the standard. Estimated concentration of total
proteins (30-40 pg/well) was run on 12% SDS-PAGE.
Protein complexes were then transferred to nitrocellulose
membranes, which were blocked in 5% skimmed milk
and then incubated overnight with mouse anti-Bax (1:500)
or anti-Bcl2 (1:100) monoclonal antibodies (Trevigen,
Gaithersburg, MD and Thermo Scientific, NY, respectively).
After repeated washing, the membranes were treated with
a goat anti-mouse secondary antibody (1:1000) for 1 hour
at room temperature. Proteins on the membranes were
detected using an ECL-liquid substrate system (BioRad,
Hercules CA). As an internal control, -actin antibody
(Grand Island, NY) was used to measure B-actin.

Next, in a separate experiment, estimated
concentration of total proteins (20-40pg/well) were

electrophoresed on 10% SDS-polyacrylamide gels. Protein
complexes were transferred on nitrocellulose membranes
(cat#162-0112: BioRad, CA, USA) and incubated with
rabbit anti-y-H2A.X polyclonal antibody (cat#2595: Cell
signaling technology, MA, USA). Membranes were washed
and incubated with goat anti-rabbit secondary antibody
(cat#31460: Thermoscientific, NY, USA). Protein blots
were visualized using super signal west femto ECL western
blotting detection system (cat#34095: Thermoscientific,
NY, USA), equal amount of proteins loading were tested
by reprobing with anti-b-actin antibody (cat#3700S: Cell
signaling technology, MA, USA).

Assessment of caspase-independent cell death

To determine the role of caspases in RES-mediated
cell death, cells were exposed to RES (100 uM) with or
without 10 uM of z-VAD-fmk (a broad-spectrum caspase
inhibitor) (Thermo Fisher Scientific, Grand Island, NY)
for 16 hours. After incubation, caspase-independent cell
death was determined. To accomplish this, cells were
stained with annexin V (5 pl of 600 pg/ml) and PI (5 pl
of 30 pug/ml) for 15 min at 4°C. Cells were washed with
DPBS and suspended in 200-500 pl of annexin V buffer
for flow cytometric analysis. Data were acquired by use of
a 13-color flow cytometer (Novocyte, Acea Biosciences,
San Diego, CA).

Statistical analysis

Statistical significance of data was determined using
Student’s ¢ test to determine the p value. For comparison of
differences among the groups, single factor or multifactor
one-way analysis of variance (ANOVA) followed by
post hoc Bonferroni and Tukey test was used. Data were
considered statistically significant at value p<0.05.
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[14-17]. In view of these results, advanced therapies that
target the proliferation of both androgen-dependent and
-independent prostate cancer cells are needed.

Compounds naturally occurring and present
in the human diet are generally nontoxic, and some
have beneficial effects on human health. Among these
dietary components, resveratrol (RES), a polyphenol
found in the skin of red fruits, exhibits anti-cancer,
anti-proliferative, anti-inflammatory, and anti-oxidative
effects [18, 19]. The anti-cancer properties of RES are
facilitated through various changes in apoptotic signaling,
metabolic pathways, and other signaling pathways that
regulate apoptosis, cell cycle progression, inflammation,
proliferation, metastasis, and angiogenesis [18, 20].
Furthermore, cells exposed to RES show inhibition
of PI3K/AKT signaling, which stimulates apoptosis
[21-29]. RES induces the death receptor (TRAIL/DR4
and TRAIL-R2/DRS5)-mediated apoptosis [7, 30-39],
and it is involved in mitochondrial-mediated apoptosis
[40—45]. Mitochondria are the primary provider of ATP
in most mammalian cells, they regulate both necrotic and
apoptotic cell death pathways [46]. Thus, apoptosis is
considered to be the most likely mechanism adopted by
cells after activation of death signals. Apoptosis may be
triggered intrinsically or extrinsically, depending on the
type of apoptotic signals [40, 41, 43—45].

In human lung adenocarcinoma cells, RES activates
the intrinsic apoptotic pathway by inducing release of
apoptosis-inducing factor (AIF) [47]. Intrinsic signals of
apoptosis function mainly through mitochondria [48]. In
healthy cells, the outer mitochondrial membrane expresses
the B-cell lymphoma-2 (Bcl-2) family of proteins, which
controls the release of pro-apoptotic factors from the inner-
membrane space in mitochondria [49-52]. In response to
internal damage to the cells, a Bcl-2 associated protein,
Bax, migrates to the mitochondrial membrane and inhibits
the action of Bcl-2, causing damage to the mitochondrial
membrane that in turn releases cytochrome-c [49-52].
Cytochrome-c binds with the apoptotic protease activator
factor-1 (Apaf-1) and forms a multimeric protein structure
called the “apoptosome.” The apoptosome activates
caspase-9, which triggers the activation of caspase-3 and
caspase-7 [53—59]. Their activation initiates proteolytic
activity that leads to cell death [53—-59]. The extrinsic
pathway of apoptosis, however, is triggered by external
signals that stimulate death receptors, such as ligands
Fas-L and TNF-a (tumor necrosis factor-a), which activate
caspase-8 [60]. This activated molecule initiates a cascade
of caspase activity, which facilitates cell death [60].

RES shows anti-cancer, anti-proliferative, anti-
inflammatory, and anti-oxidative properties, which are
involved in the mitochondrial pathway of apoptosis
[18, 20, 4044, 61, 62]. However, how RES-induced,
mitochondria-mediated, caspase-independent apoptosis
operates in controlling the progression of tumor cells is
not clear.

In the present effort, we examined the effects of
RES on mitochondria-mediated, caspase-independent
apoptosis in transgenic adenocarcinoma of mouse
prostate (TRAMP-C1, TRAMP-C2, and TRAMP-C3)
cells. TRAMP cells exposed to RES showed, in a time-
and dose-dependent manner, increased cell killing and
altered cell morphology. Furthermore, RES treatment
resulted in disrupted mitochondrial membrane potential
(Aym), which triggered disproportionate expression
of Bax and Bcl2 proteins. In addition, RES treatment
did not induce marked fragmentation of DNA into low-
molecular-weight segments. As determined by exposure
of cells to the caspase-3 inhibitor, z-VAD-fmk, caspase-3
was not involved in RES-mediated cell killing. Thus, these
findings indicate that RES induces mitochondria-mediated,
caspase-independent apoptosis and delays proliferation of
prostate cancer cells. Therefore, RES may be an agent for
treatment of prostate cancer.

RESULTS

RES Kills tumor cells

To test the effect of RES on TRAMP cells, a cell-
killing assay was performed. First, we determined the
optimal time and concentration of RES needed to kill
TRAMP cells. Annexin V-FITC™ and double positive
(FITC", PT) cells showed sign of early and late apoptosis
respectively; however, PI+ cells considered as dead cells
as shown in representative Figure 1A. We established
that 16 hours was the optimal time for maximum killing
(Figure 1B). These experiments were repeated 5 times
independently in triplicates. Data are represented as mean
values £SEM (Standard Error of the Mean) in Figure 1B.
We also conducted experiments at 24 hours and 48 hours
but did not find any significant difference in RES-mediated
cell killing (data not shown). Cells incubated with 50 pM
or 100 uM of RES showed a concentration-dependent
increase in the percent of cells killed (Figure 1B). Further
analysis revealed that RES (100 pM) treatment resulted in
a significantly greater (*P<0.001) killing of TRAMP-C3
cells (43+5%) as compared to TRAMP-CI1 (21+5%)
and TRAMP-C2 (6+£5%) cells (Figure 1B). In addition,
TRAMP cells were incubated with RES in the presence
or absence of Nec-1, a necroptosis blocker, to confirm
whether RES-mediates apoptosis or necroptosis. We found
that RES exhibited a similar pattern of cell killing in the
presence or absence of Nec-1 (Supplementary Figure 1A;
TRAMP-C1, Supplementary Figure 1B; TRAMP-C2, and
Supplementary Figure 1C; TRAMP-C3).

RES treatment alters cell morphology

To evaluate the impact of RES on cell morphology,
phase contrast microscopy was conducted. Cells were
treated with 100 uM of RES for 16h exhibited altered
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cell morphology in a concentration-dependent manner
(Figure 1C). Furthermore, cells exposed to 100 uM of
RES showed more prominent morphological alterations in
TRAMP as compared to cells treated with 50 uM of RES
(Figure 1C). Additionally, TRAMP-C3 cells were more
sensitive to 100 uM of RES as compared to TRAMP-C1
and TRAMP-C2 cells (Figure 1C). TRAMP-C3 cells
showed more oval shapes as compared to TRAMP-C1 and
TRAMP-C2 cells, suggesting loss of adherence and loss
of cell-to-cell contact.

RES induces mitochondrial membrane potential

To examine the effect of RES on mitochondria, the
Aym was measured using fluorescence microscopy and
flow cytometry. TRAMP cells treated with RES (50 or 100
uM) showed disrupted Aym as compared to appropriate
control (Figure 2A). Observed under a fluorescence
microscope, DePsipher-stained TRAMP cells exhibited
a distinct fluorescence color: red, green, or an overlap of
green and red that results in orange/yellow. Cells with red
fluorescence were considered to be healthy and normal;
cells with green fluorescence were considered to have
disrupted Aym, indicating apoptosis. Cells with orange/
yellow fluorescence were considered to have collapsed
mitochondria. Most of the treated TRAMP cells showed
green and orange/yellowish color, indicating that these cells

had disrupted Aym (Figure 2A); however, TRAMP-C3
cells showed significantly disrupted Aym as compared to
TRAMP-C1 and TRAMP-C2 cells (Figure 2A).

Further, the Aym was validated by flow cytometric
analysis of TRAMP cells treated with 100 pM RES
as demonstrated in representative Figure 2B. In this
figure, three cell populations were evident: (i) TRAMP
cells showing only green fluorescence (FL1: 488/530
nm) corresponding to those with disrupted (low) Aym
following apoptosis as compared to control cells. (ii)
Cells with different intensities of green and red or
yellow/orange were also considered to have intermediate
disrupted Aym. (iii) Cells emitting red fluorescence (FL2:
488/585nm) were considered to demonstrate high Aym.
Further analysis revealed that, with exposure to 100 uM
RES, the percentages of TRAMP-C3 cells showing green
fluorescence, that is, with disrupted Aym, were higher
relative to TRAMP-C1 and TRAMP-C2 cells (Figure 2C).
This experiment was performed 5 times independently
in triplicates; the sum of all experimental data (+ SEM)
is shown in the histogram Figure 2C (¥p<0.05 and
**p<0.01).

RES modulates the expression of Bax and Bcl2

Western blots were performed to investigate
the effect of RES on the expression of Bax and Bcl2
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Figure 1: RES kills TRAMP cells in a dose- and time-dependent manner. TRAMP cells were treated with RES (50 uM or
100 uM), and cell killing and cell morphology were examined. A. Representative figure of gating strategies to study percent cell killing after
RES treatment using a flow cytometer. B. Mean average values with =SEM of cell death at 0, 2, 4, 8, 12, and 16 hours. C. Morphological
changes in cells due to RES treatment (* indicates p<0.05 and ** indicates p<0.01).
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proteins. It was found that RES treatment modulated
the expression of Bax and Bcl2 proteins in TRAMP-C1,
TRAMP-C2 and TRAMP-C3 cells as compared to the
control (Figure 3A). Further, densitometric analysis
revealed that treatment with 50 pM or 100 pM of
RES resulted in significantly high expression of Bax
in TRAMP-C1 (*p<0.02), TRAMP-C2 (*p<0.001)
and TRAMP-C3 (*p<0.001) cells when compared to
the respective control (Figure 3C). In contrast to Bax,
Bcl2 expression repressed significantly in TRAMP-C2
(*p<0.03) and TRAMP-C3 (*p<0.02) cells after 100 uM
of RES treatment (Figure 3B). In addition, TRAMP-CI
(#p>0.05) cells did not show a significant difference
in the expression of Bcl2 protein in comparison to the
control (Figure 3B).

RES induces caspase-independent cell killing

To evaluate the role of caspase-3 in RES-mediated cell
killing, caspase-3 activation was blocked with an inhibitor
(z-VAD-fmk). RES treatment with and without z-VAD-fmk
induced RES-mediated cell killing (Figure 4A). TRAMP-C3
cells exposed to 100 uM of RES with or without z-VAD-
fmk showed significantly (**p<0.001) higher percentage
of cell death as compared to TRAMP-C1 (*p<0.05) and
TRAMP-C2 (¥p<0.05) cells (Figure 4A). However, there
was no significant difference in TRAMP cells treated with
either RES or with RES plus z-VAD-fik (Figure 4A).
There were corresponding results when cells were analyzed
morphologically under a phase contrast microscope
(Figure 4B: resultant morphology of TRAMP cell after
100uM of RES+z-VAD-fmk treatment). In addition,
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Figure 2: RES disrupts Aym. Cells were treated with 100 uM of RES for 16 hours, and Aym was examined by using DePsipher
dye. A. Fluorescence microscopy of TRAMP cells. B. Representative gating of cells. (i) cells with disrupted (low) Aym are indicated as
DePsipher-monomers (34.52%), (ii) cells with intermediate Aym (4.26%), and (iii) cell with high Aym indicated as DePsipher-aggregates
(11.89%). C. Percent of cells with disrupted Aym. Data represented as mean values = SEM (* indicates p<0.05 and ** indicates p<0.01).
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treatment with Nec-1 (an inhibitor of necroptosis) did not
change RES-mediated cell killing in the presence or in the
absence of z-VAD-fmk (Supplementary Figure 2). Thus,
in TRAMP-C1, TRAMP-C2, and TRAMP-C3 cells, the
caspase-3 inhibitor, z-VAD-fmk, and Nec-1, had negligible
effects on RES-mediated apoptosis (Supplementary Figure
2A; TRAMP-C1, Supplementary Figure 2B; TRAMP-C2,
and Supplementary Figure 2C; TRAMP-C3 cells).

RES modulates the y-H2A.X expression

To test the effect of 50 and 100uM of RES treatment
on the expression of y-H2A.X in TRAMP cells. The
expression of y-H2A.X was examined using western
blot analysis which demonstrated significantly (*p<0.05)
higher expression in TRAMP-C2 and TRAMP-C3 cells
when compared to the control (Figure 5A and 5B).
However, in TRAMP-CI1 cells, y-H2A.X expression
was not significant (#p>0.05) as compared to the control
(Figure 5A and 5B). These findings suggest that RES

treatment sensitizes DNA damage which further leads to
apoptosis of TRAMP cells.

DISCUSSION

Resistance to anti-cancer therapies is facilitated
through an array of mechanisms that vary across tumor
types [63, 64]. In the present study, we demonstrated
that RES modulates mitochondria-mediated, caspase-
independent apoptosis in murine prostate cancer cells.
These results reveal that dietary compounds such as
RES may play a critical role in inducing mitochondria-
dependent apoptotic pathway(s) in murine prostate cancer
cells (Figure 6).

Dietary compounds can be used to target
mitochondria-mediated, caspase-independent apoptosis.
This pathway is characterized by changes in Aym and
by maintenance of an optimal ratio of Bcl2/Bax [65].
A high Aym and a high Bcl2/Bax ratio are believed to
promote cell proliferation and enhanced cell survival,
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after Res treatment. A. Representative western blot of Bax, Bcl-2 and B-actin for the respective doses of RES in TRAMP-C1, TRAMP-C2
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thereby contributing to cancer progression. Dietary
compounds such as RES inhibit cell growth in several
types of human cancers, including prostate cancers [8,
66—70]. Consistent with results of previous studies, our
data demonstrate that RES treatment results in enhanced
cell killing in a time and dose-dependent manner. As
cell viability decreases, altered cell morphology, a
characteristic of apoptosis, increases [71]. RES induces
cellular morphological changes similar to those caused
by other anti-cancer drugs [40—45, 61, 62, 72]. To
confirm our preliminary results relating to viability,
we determined the effect of RES on the expression of
Bcl2 and Bax proteins, Aym, caspase-3 activity, and
DNA fragmentation. TRAMP-C3 and TRAMP-C2
cells exhibited significant difference in Bax expression
as compared to control at 50 pM and 100 uM of RES;
however, TRAMP-C1 showed significant difference at
100 uM of RES, not at 50 uM when compared to the
control (Figure 3C). In contrast to Bax, Bcl2 expression
in TRAMP-C1, TRAMP-C2 and TRAMP-C3 was

observed altered as compared to control at both 50 uM
and 100 uM of RES (Figure 3B). Additionally, Bcl2 was
found significantly repressed at 50 uM and 100 uM of
RES in TRAMP-C2 and TRAMP-C3 when compared to
control (Figure 3B). Furthermore, RES treatment also
caused disrupted Aym, which is associated with apoptosis
[73]. Most TRAMP-C3 cells showed decreased Aym
relative to TRAMP-C1 and TRAMP-C2 cells. Thus, RES
treatment induced killing of TRAMP cells in a caspase-3-
independent manner, for the caspase-3 inhibitor (z-VAD-
fmk), failed to prevent RES-mediated cell killing.
Therefore, apoptosis of TRAMP cells induced by RES
apparently acts through the mitochondrial mediated,
caspase-independent pathway (Figure 6).

Changes in Aym are evident in mitochondria-
mediated, caspase-independent apoptosis [74, 75]. As
shown in the present effort, RES treatment decreases
Aym in TRAMP-C3 cells compared to TRAMP-C1 and
TRAMP-C2 cells. However, RES induces apoptosis of
colon cancer cells independently of the tumor suppressor
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pS3 via epithelial differentiation and mitochondrial
membrane collapse [76, 77]. The present data correspond
with these findings, which suggest that RES treatment
induces a collapse of Aym [76, 77].

Proteins of the Bcl2 family, particularly Bel2 and
Bax, are involved in mitochondria-mediated apoptotic
pathways [65]. After treatment of HCT-116 colon
carcinoma cells with RES, Bax is involved in alteration of
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Figure 5: RES treatment induced DNA fragmentation in TRAMP cells. TRAMP cells were incubated with 50 uM and 100 uM
of RES to examine the expression of y-H2A.X in TRAMP cells. The resulting western blots of y-H2A.X showed that the expression of
v-H2A.X was found significantly higher in TRAMP-C2 and TRAMP-C3 cells when compared to the control. Furthermore, TRAMP-C1
cells, did not show a significant difference in y-H2A.X expression when compared to the control (* indicates p<0.05 and # indicates p>0.05).
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mitochondrial membrane permeability [78—80]. However,
by up-regulation of Bcl2 and inhibition of p53 and Bax,
RES reverses cadmium chloride-induced testicular damage
and subfertility [79]. In bladder cancer cells, RES also
induces apoptosis by down-regulating the expression of
Bcl2 proteins [81, 82]. However, the current results show
that RES modulates the expression of Bax and Bcl2 in
TRAMP-C1, TRAMP-C2, and TRAMP-C3 cells compared
to the control cells; however, in TRAMP-C1 cells Bax at
50 uM of RES and Bcl2 at 50 uM and 100 uM of RES
were found insignificant. These findings corroborated with
other reports [65, 81, 82].

RES decreased cell viability and Aym, and
modulated the expression of Bax and Bcl2 proteins in
TRAMP-C1, TRAMP-C2, and TRAMP-C3 cells. In an
investigation of the involvement of caspase-3 in RES-
mediated cell killing and DNA fragmentation, we found
that RES treatment with or without the caspase-3 inhibitor,
z-VAD-fmk, resulted in similar cell killing. This result was
supported by morphological examination of the cells after
DePsipher staining. The mechanism of action, however,
is not yet defined. RES induces apoptosis by depolarizing
the mitochondrial membranes in a caspase-independent
manner [73] [48, 83, 84]. Nevertheless, in U937 cells,
overexpression of Bcl2 attenuates RES-mediated apoptosis
by blocking caspase-3 activation [53]. Moreover, RES
induces caspase-dependent and -independent apoptosis in
various cancer cells [85—87]. In colon cancer cells, RES
induces caspase-2 activation that subsequently triggers
Bax-Bak-dependent and -independent cell death [79].
In human lung adenocarcinoma cells, RES stimulates
mitochondria-mediated and caspase-dependent cell death
[88]. Conversely, in primary mouse fibroblasts, RES
exhibits a cytoprotective effect by acting against caspase-3
[89]. The present results show that, for TRAMP cells, the
caspase-3 inhibitor, z-VAD-fmk, and Nec-1, which blocks
necroptosis, had a negligible effect on RES-mediated
cell killing. Thus, in these cells, RES induces caspase-
independent apoptosis.

The present results show that RES treatment to
TRAMP cells caused significant cleavage of genomic
DNA, which was accomplished by the expression of
v-H2A.X, an evolutionary conserved variant of histone
H2A, has been identified as one of the key histones
to undergo various post-translational modification in
response to double stranded DNA breaks [90, 91]. DNA
damage caused by radiation, UV light, or anti-cancer
agents results in phosphorylation of Histone y-H2A.X at
ser-139 by PI3K-like kinases, including ATM, ATR, and
DNA-PK [92-94]. The DNA damage response during
DNA fragmentation is required for DNA-damage response
proteins including DNA-PK that phosphorylates y-H2A.X
[95, 96]. Phosphorylation of y-H2A.X at Tyr142 inhibits
the recruitment of DNA repair proteins and promotes
binding of pro-apoptotic factors such as JNK1 [97, 98].
Thus, y-H2A.X expression was significantly higher in

TRAMP-C2 and TRAMP-C3 cells after 50 and 100uM
of RES treatment as compared to the control. However, in
TRAMP-C1 cells, y-H2A.X expression was not significant
as compared to the control. These findings are consistent
with the previous results, which show RES-mediated
caspase-independent cell killing. Furthermore, previous
studies have demonstrated that RES induces apoptosis
and DNA fragmentation in several types of cancer cells
[99-102]. These properties of RES suggest that it could be
used as a therapeutic agent to treat prostate cancer.

Our results demonstrate that, for TRAMP-CI,
TRAMP-C2, and TRAMP-C3 cells, RES increases cell
killing in a dose- and time-dependent manner, induces
morphological alterations, and triggers apoptosis. In
these cells, RES causes a disrupted Aym that leads
to modulated expression of Bax and Bcl2 proteins.
Additionally, caspase-3 is not involved in RES-mediated
cell killing, showing that, in TRAMP cells, RES induces
caspase-independent apoptosis. In these cells, RES
treatment contributed to DNA fragmentation which
enhanced y-H2A .x expression in treated TRAMP-C2 and
TRAMP-C3 cells, but not in TRAMP-C1 when compared
to the control, indicating the sign of DNA damage after
RES treatment [92]. Therefore, RES may be a promising
dietary compound for the treatment of prostate cancer.
However, further investigations are necessary to uncover
the underlying mechanisms.

MATERIALS AND METHODS

Cell lines and culture conditions

TRAMP-C1, TRAMP-C2, and TRAMP-C3 cells
were obtained from American Type Culture Collection
(www.ATCC.org) and were maintained at 37° C under
5% CO, in Dulbecco’s Modified Eagle Medium (DMEM)
supplemented with 10% fetal bovine serum (FBS) (v/v),
bovine insulin (0.005 mg/ml), dehydroisoandrosterone (10
nM), and antibiotics/antimycotics (1%).

Cell killing assay

To assess percentages of cell death, 70-80%
confluent cells were harvested by trypsinization, counted,
and seeded (10%) in 24-well plates in 1 ml of culture
medium. Cells were treated with 50 uM or 100 uM of RES
and were analyzed by flow cytometry at 0, 2, 4, 8, 12, and
16 hours. They were stained with annexin V-propidium
iodide (PI) as directed by manufacturer. Briefly, into
each tube, annexin V (5 pl of 600 pg/ml) and PI (5 pl
of 30 pg/ml) were added, and tubes were then incubated
for 15 min at 4°C. Cells were washed with Dulbecco’s
phosphate buffered saline (DPBS) and centrifuged.
For flow cytometric analysis, the cells were suspended
in 200-500 pl of annexin V binding buffer. Data were
acquired by use of a 13-color flow cytometer (Novocyte,
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Acea Biosciences, San Diego, CA). PI*, Annexin V*, and
Annexin V* PI" cells were counted as dead populations;
PI/Annexin V FITC: cells were counted as live cells. All
experiments were performed in triplicate.

Assessment of cell morphology

Cells were exposed to 50 uM or 100 uM of RES for
16 hours. Media were removed, and after media removal,
cells were washed with DPBS and then suspended in 50
ul of DPBS. To assess morphological changes, cells were
observed under a phase-contrast microscope (Life Tech,
Grand Island, NY).

Assessment of mitochondrial membrane
potential

To examine Aym, cells in DMEM supplemented
with 10% FBS were exposed to RES (50 uM or 100
uM) for 16 hours. After incubation, cells were harvested,
washed, stained with the mitochondria-specific dye,
DePsipher (Trevigen, Gaithersburg, MD) and flow
analyzed as suggested by the manufacturer. DePsipher, a
cationic dye (5,5°6,6’-tetrachloro-1,1’,3,3’-tetracthylbenz
imidazolylcarbocyanine iodide) stains both healthy cells
and cells with disrupted Aym. The dye enters into healthy
mitochondria and, in its multimeric form, fluoresces
red. However, in apoptotic cells, the dye remains in the
cytoplasm and fluoresces green while in its monomeric
form. Thus, cells with disrupted mitochondria can be
differentiated from healthy cells. Cells were observed
under a fluorescent microscope for morphology (Nikon
ECLIPSE Ti, Melville, NY).

Western blotting

Total protein was extracted from TRAMP cells
(10°) treated with RES (50 uM or 100 uM) by use of
2x radioimmunoprecipitation assay buffer (RIPA). The
concentrations of total proteins in lysates were estimated
according to Bradford et al. [57], using bovine serum
albumin as the standard. Estimated concentration of total
proteins (30-40 pg/well) was run on 12% SDS-PAGE.
Protein complexes were then transferred to nitrocellulose
membranes, which were blocked in 5% skimmed milk
and then incubated overnight with mouse anti-Bax (1:500)
or anti-Bcl2 (1:100) monoclonal antibodies (Trevigen,
Gaithersburg, MD and Thermo Scientific, NY, respectively).
After repeated washing, the membranes were treated with
a goat anti-mouse secondary antibody (1:1000) for 1 hour
at room temperature. Proteins on the membranes were
detected using an ECL-liquid substrate system (BioRad,
Hercules CA). As an internal control, -actin antibody
(Grand Island, NY) was used to measure B-actin.

Next, in a separate experiment, estimated
concentration of total proteins (20-40pg/well) were

electrophoresed on 10% SDS-polyacrylamide gels. Protein
complexes were transferred on nitrocellulose membranes
(cat#162-0112: BioRad, CA, USA) and incubated with
rabbit anti-y-H2A.X polyclonal antibody (cat#2595: Cell
signaling technology, MA, USA). Membranes were washed
and incubated with goat anti-rabbit secondary antibody
(cat#31460: Thermoscientific, NY, USA). Protein blots
were visualized using super signal west femto ECL western
blotting detection system (cat#34095: Thermoscientific,
NY, USA), equal amount of proteins loading were tested
by reprobing with anti-b-actin antibody (cat#3700S: Cell
signaling technology, MA, USA).

Assessment of caspase-independent cell death

To determine the role of caspases in RES-mediated
cell death, cells were exposed to RES (100 uM) with or
without 10 uM of z-VAD-fmk (a broad-spectrum caspase
inhibitor) (Thermo Fisher Scientific, Grand Island, NY)
for 16 hours. After incubation, caspase-independent cell
death was determined. To accomplish this, cells were
stained with annexin V (5 pl of 600 pg/ml) and PI (5 pl
of 30 pug/ml) for 15 min at 4°C. Cells were washed with
DPBS and suspended in 200-500 pl of annexin V buffer
for flow cytometric analysis. Data were acquired by use of
a 13-color flow cytometer (Novocyte, Acea Biosciences,
San Diego, CA).

Statistical analysis

Statistical significance of data was determined using
Student’s ¢ test to determine the p value. For comparison of
differences among the groups, single factor or multifactor
one-way analysis of variance (ANOVA) followed by
post hoc Bonferroni and Tukey test was used. Data were
considered statistically significant at value p<0.05.
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