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Abstract—Residual self-interference cancellation is an impor-
tant practical requirement for realizing the full potential of
full-duplex (FD) communication. Traditionally, the residual self-
interference is cancelled via digital processing at the baseband,
which requires accurate knowledge of channel estimates of the
desired and self-interference channels. In this work, we consider
point-to-point FD communication and propose a superimposed
signaling technique to cancel the residual self-interference and
detect the data without estimating the unknown channels. We
show that when the channel estimates are not available, data
detection in FD communication results in ambiguity if the
modulation constellation is symmetric around the origin. We
demonstrate that this ambiguity can be resolved by superimposed
signalling, i.e., by shifting the modulation constellation away from
the origin, to create an asymmetric modulation constellation.
We compare the performance of the proposed detection method
to that of the conventional channel estimation-based detection
method, where the unknown channels are first estimated and
then the data signal is detected. Simulations show that for the
same average energy over a transmission block, the bit error
rate performance of the proposed detection method is better than
that of the conventional method. The proposed method does not
require any channel estimates and is bandwidth efficient.

Index Terms—Full-duplex communication, symbol detection,
self-interference cancellation, superimposed signaling.

I. INTRODUCTION

For many years simultaneous signal transmission and re-

ception in the same frequency band, known as full-duplex

(FD) communication, was considered to be impractical due

to the large self-interference signal [1]. More recently, with

advanced multi-stage self-interference cancellation techniques,

FD communication is becoming a reality and it is expected to

be used by the next generation of wireless communication

systems [2], [3].

In FD communication systems, self-interference cancella-

tion is performed in two stages. In the first stage, which

is known as passive cancellation, the radio frequency (RF)

antennas are well-isolated to minimize the amount of inter-

ference [4]. In the second stage, which is known as active

cancellation, the residual interference signal from the previous
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stage is cancelled either at RF or at digital baseband [5]–

[8]. Due to channel estimation errors, the RF canceller cannot

completely remove the interference. Hence, the residual inter-

ference after the RF canceller is still higher than the receiver

noise floor and needs to be cancelled via digital processing

at baseband [4], [5], [9]. However, effective self-interference

cancellation at baseband requires accurate knowledge of the

digital channels, which are the channels observed by the

receiver at baseband after the passive and RF cancellation

stages [10]. Consequently, for reliable FD communication first

the digital channels are estimated and then the received signal

is processed for data detection [5], [6], [11]. However, the

digital channel estimation is not bandwidth efficient because

it requires pilot transmission.

In this paper, we focus on the received signal after the

passive and RF cancellation stages in a point-to-point FD

communication system. Different from existing works, we

propose a data detection technique based on superimposed

signaling which does not require any channel estimates. We

show that superimposed signaling can overcome the ambiguity

inherent in the data detection problem when channel estimates

are not used. The main contributions of this work are:

• We formulate a maximum a posterior (MAP) detector,

based on the posterior probability distribution (PDF)

function of the data, to detect the data symbols in

FD communication without any requirement of channel

estimation.

• We show that if the modulation constellation is symmetric

around the origin, the data detection in FD communica-

tion results in ambiguity when the channel estimates are

not available. We demonstrate that one simple method to

resolve this detection ambiguity is to use superimposed

signalling, i.e., to shift the modulation constellation away

from the origin and create an asymmetric modulation

constellation.

• We compare the bit error rate performance of the pro-

posed detection method to that of the conventional

channel estimation-based detection method, where the

unknown channels are first estimated and then the data

signal is detected, under the constraint of same average

energy over a transmission block. The results show
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that the proposed method outperforms the conventional

method. Since the proposed method does not require

any channel estimates, it enhances bandwidth and power

efficiency.

This paper is organized as follows. Section II presents

the system model. Section III formulates the MAP detector

for data detection in the absence of channel estimates and

illustrates the ambiguity problem associated with the MAP

detector. Section IV proposes a superimposing technique to

resolve the detection ambiguity problem. Section V presents

and discusses the simulation results. Finally, Section VI con-

cludes the paper.

Notations: The following notation is used in this paper.

Bold face lower case letters, e.g., x, are used for vectors. j �√
−1, and the real and imaginary parts of a complex quantity

are represented by �{·} and �{·}, respectively. x∗ and |x|
indicate scalar complex conjugate and the absolute value of

complex number x, respectively.
∑

∼i means summation over

all possible values except i. CN (µ, σ2) denotes a complex

Gaussian distribution with mean µ and variance σ2. Finally,

f(x) denotes the PDF of random variable x.

II. SYSTEM MODEL

We consider the data detection problem for the single-input

single-output (SISO) FD communication system, as shown in

Fig. 1. Nodes a and b each have a pair of antennas, which

is used for simultaneously transmit and receive on the same

frequency band. Due to the inherent symmetry of the problem,

we only investigate the data detection problem for node a, as

identical results are expected for node b.

The received signal at node a is given by

ya = haaxa + hbaxb +wa, (1)

where, ya � [ya1
, · · · , yaN

]T is the N × 1 vector of received

symbols, xa � [xa1
, · · · , xaN

]T is the N × 1 vector of self-

interference symbols, xb � [xb1 , · · · , xbN ]T is the N×1 vector

of desired communication symbols, wa � [wa1 , · · · , waN
]T is

the N × 1 vector of independent identically distributed (IID)

Gaussian noise with zero mean and variance σ2, i.e., wai ∼
CN (0, σ2).

We make the following assumptions in this paper:

• Since the digital channels are the channels observed

after the passive and RF cancellation stages, the di-

rect line-of-sight (LoS) components of these channels

have already been canceled and the residual components

are due to the scatterers [4], [5]. Consequently, similar

to [12], [13], we assume haa and hba are flat-fading and

Rayleigh distributed with zero mean and variance one,

i.e., haa, hba ∼ CN (0, 1).
• The transmitted symbols are modulated using the modula-

tion set A = {A1, A2, ..., AM}, with size M . Modulation

set A contains all constellation points of any given stan-

dard modulation constellation, such as M -ary phase shift

keying (MPSK) modulation, and the transmitter is likely

to send each constellation point with equal probability.

III. DATA DETECTION IN FD COMMUNICATION WITHOUT

KNOWLEDGE OF CHANNEL ESTIMATES

In this section, we first derive a MAP symbol detector

for the FD communication system. Then we show that this

detector suffers from the detection ambiguity problem because

of the symmetry of conventional modulation constellations

around the origin.

A. MAP detector

The main results in this section are presented in the follow-

ing propositions.

Proposition 1: The maximum MAP symbol detector for the

SISO FD communication system presented in Section II is

given by

x̃bi = max
xbi

f(xbi |ya). (2)

where the marginal probability distribution f(xbi |ya) is pro-

portional to

f(xbi |ya) ∝
M∑

jN=1

· · ·
M∑

j1=1
︸ ︷︷ ︸

∼ji

1

λ
exp

( |ξ|2
λσ2

)

, (3)

where M is the size of modulation set A, N is the length of

the transmitted vector, i.e., number of transmitted symbols in

a transmission block, and

λ �

N∑

n=1,n �=i

|Ajn |2 −
1

γ

∣
∣
∣
∣
∣
∣

N∑

n=1,n �=i

x∗
an
Ajn + x∗

ai
xbi

∣
∣
∣
∣
∣
∣

2

+ |xbi |2 + σ2 ,

(4a)

ξ �

N∑

n=1,n �=i

yan
A∗

jn
+ yai

x∗
bi

− 1

γ

N∑

n=1

yan
x∗
an

⎛

⎝

N∑

n=1,n �=i

x∗
an
Ajn + x∗

ai
xbi

⎞

⎠

∗

, (4b)

γ �

N∑

n=1

|xan
|2 + σ2. (4c)

Proof: See Appendix A.

Note that the proportionality in (3) does not depend on

the residual self-interference symbol xbi and, hence, does not

affect the decision in (2).

Remark 1: The posterior PDF f(xbi |ya) is independent

of both the self-interference and communication channels,

i.e., haa and hba. Hence, the MAP detector as proposed by

Proposition 1 is independent of the channel estimates. In

other words, the symbols can be detected without requiring

the interference or communication channel to be estimated.

The MAP detector also directly detects the symbols without

requiring a separate self-interference cancellation stage.

Proposition 2: We call A a symmetric modulation set, if and

only if for xk ∈ A, there exists −xk ∈ A, ∀k. The posterior
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Fig. 1: Full Duplex System with single transmit and receive

antenna. The single antenna at each node is shown separately

for the transmission and reception for ease of illustration.

PDF f(xbi |ya) does not have a unique maximum if and only

if xbi in (3) comes from a symmetric modulation set A.

Proof: See Appendix B.

Corollary 1: Since conventional modulation constellations

are symmetric around the origin, data detection in FD commu-

nication with no channel estimation will result in ambiguity.

IV. SUPERIMPOSED SIGNALING FOR RESOLVING THE DATA

DETECTION AMBIGUITY IN FD COMMUNICATION

In this section we present a superimposed signalling tech-

nique to tackle the inherent ambiguity problem in data detec-

tion with no available channel estimates.

A. Why Superimposed Signalling?

The rationale for using superimposed signalling is as fol-

lows. From Proposition 2, the data detection ambiguity in FD

communication in the absence of channel estimates, arises

because of the symmetry of the modulation constellation

around the origin. Consequently, an obvious approach to

resolve the data detection ambiguity is to alter the symmetry

of the modulation constellation around the origin and create a

suitable asymmetric modulation constellation.

One simple way to achieve an asymmetric modulation

constellation around the origin is to add (superimpose) a

constant known signal to the transmitted signal.2 We call

this approach superimposed signalling. For illustration, Fig. 2

shows the effect of superimposed signalling with constant P

on the constellation of an M = 4-PSK modulation set. Once

the M -PSK constellation is shifted, then the new constellation

is asymmetric around the origin and can be used for ambiguity-

free MAP detection with no need for channel estimation.

B. Modified System Model

If both nodes a and b superimpose a common constant and

known signal P to the transmitted symbols, then (1) can be

written as:

ya = haa(xa + P ) + hba(xb + P ) +wa. (5)

2The design of optimum asymmetric modulation constellations is outside
the scope of this paper and is the subject of future work [14].

Shifted M -PSKConventional M -PSK

P

Fig. 2: Effect of superimposed signalling on the modulation

constellation of M = 4-PSK.

It is again clear from (5) that the effect of superimposed

signalling with constant signal P is the same as shifting the

modulation constellation by P along the horizontal axis.

C. Power Normalization

As illustrated above, superimposed signalling increases the

average energy per symbol of the modulation constellation.

Conventional (symmetric) modulations operate under an av-

erage transmit power constraint, which places limits on the

average energy per symbol. A fundamental question regarding

superimposed signaling is, therefore, how to choose a fair

value of the extra power which is required to superimpose

a known signal on the data symbols to shift the modulation

constellation.

If the channels were perfectly known there would be no

need to allocate power for channel estimation. However, in

reality the channels are unknown and hence it is inevitable

to expand extra power for channel estimation. The proposed

superimposed signalling approach is similar in spirit to super-

imposed training in the literature, which has been extensively

used as a bandwidth-efficient channel estimation technique

in half-duplex (HD) communication systems [15], [16]. In

superimposed training, the extra power in the superimposed

pilots is used for channel estimation. In our case, we do not

use the extra power for channel estimation. Rather, we use

it only for achieving an asymmetric modulation constellation.

Consequently, to ensure that the proposed method does not

exceed the average transmit power constraint, we shift the

modulation by P �
√

Ep, where Ep is the average energy

used for channel estimation in conventional pilot based chan-

nel estimation systems.

V. SIMULATION RESULTS

In this section, we present the simulation results. First we

demonstrate that detection without channel estimation, using

symmetric modulation constellation can result in ambiguity.

Then we show that this ambiguity is resolved once the

modulation set is shifted to a asymmetric modulation set, i.e.,

a known signal is superimposed on the data signal. We find
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(a) Symmetric BPSK modulation. (b) Asymmetric BPSK modulation.

Fig. 3: Posterior function f(xbi |ya) at Eb

No

= 15 dB.

(a) β = 0.1 (b) β = 0.001 (c) β = 0.00001

Fig. 4: Posterior function f(xbi |ya) for different values of β

the minimum power required for superimposed signaling to

resolve the ambiguity problem. Finally, we investigate the BER

performance of the proposed detector. Throughout this section

we make the following assumptions:

• Channel and noise: For each run of the simulation, the

random channels haa and hba are generated according

to a Rayleigh distribution and are assumed constant for

blocks of N symbols, i.e. block fading. We assume

independent block fading for simulation purposes which

means channels are independent from block to block, i.e.,

quasi-static.

• Modulation: For the sake of simplicity, we only present

the result for binary shift keying (BPSK) modulation.

Consequently, the modulation set A has two elements.

• Noise and shift powers: We assume the average bit energy

of the modulation is Eb and noise power is N0 = 1.

A. Symmetric Modulation Set

In this section we highlight the result of Proposition 2

through simulations.

For symmetric BPSK modulation the posterior function

f(xbi |ya) takes two discrete values. Fig. 3(a) shows the

posterior function at Eb

No

= 15 dB when symmetric BPSK

modulation is used. It is clear from Fig. 3(a) that when this

modulation constellation is used the posterior function does

not have a unique maximum and hence the MAP detector

of (2) results in ambiguity. This ambiguity is seen as equal

probability for the elements of modulation set A in Fig. 3(a).

Fig. 3(b) shows the posterior function at Eb

No

= 15 dB when

the modulation constellation is shifted by P �
√
Eb. It is

clear that in this case, the posterior function has only one

maximum and consequently the MAP detector as proposed

by Proposition 1 results in no ambiguity. This is because now

the elements of modulation set A have different probabilities,

hence, the detector can determine which element is more likely

to be transmitted given the received data.

B. Minimum Required Energy for Superimposed Signalling

Although Fig. 3(b) shows that the ambiguity of the MAP

detector is resolved by shifting the modulation constellation,

this comes at the cost of increasing the transmit power by

the shift power (|P |2 � Eb). We are interested in the

minimum required power for ambiguity-free MAP detector.

Consequently, for 0 < β < 1, we set the shift to P �
√
βEb

and numerically investigate the minimum value for β.

Fig. 4 shows the posterior function f(xbi |ya) for different

values of β. Clearly, as β decreases, the difference between

the maximum and minimum value of the posterior function

increases, such that for β = 0.00001, the posterior function

does not have a unique maximum. Fig. 4(b) shows that β =
0.001 is sufficient enough for ambiguity-free MAP detection.

However, our simulation results show that for the FD system
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Fig. 5: BER performance of FD communication system with

different availability of channel estimates.

under consideration to have a stable detection performance for

different channel realizations, the minimum value for β is 0.1.

C. Bit error rate (BER) Performance

In this section we investigate the BER performance of the

proposed detector. For simplicity, we only present the results

for BPSK modulation in the presence of a self-interference

signal which is as strong as the desired signal. We also set

the shift to P �
√
0.1Eb. The BPSK BER with perfect

channel knowledge is plotted as a reference. The performance

of the proposed detector is compared with a conventional chan-

nel estimation-based detection method, assuming the channel

estimation uses the same extra power as the superimposed

signal for channel estimation. In the channel estimation-based

detection method, the channels are first estimated using the

same extra energy as the superimposed signal and then these

estimates are used for data detection.

Fig. 5 shows that when the modulation constellation is

symmetric around the origin and no channel estimates are

available, then the detector fails to detect the symbols, i.e., all

the possible outcomes are equally likely for the transmitted

symbols (c.f. Fig. 3(a)). However, shifting the modulation set

to an asymmetric modulation set resolves the ambiguity. In

addition, the performance of the proposed detection method is

better than the conventional pilot-based detection method.

VI. CONCLUSION

In this paper, we demonstrated that the detection of symbols

in FD communication systems with no channel estimation

results in ambiguity. We proposed a solution to this ambiguity

problem using superimposed signaling, which involves shifted

modulation constellations. We proposed a MAP detector to

be used with the shifted modulation constellation in FD

communication system for data detection without channel

estimation. Our results showed that the proposed detection

method has better BER performance, compared to conven-

tional channel estimation-based detection method. The pro-

posed method is bandwidth efficient and can be used in any

system model where the self-interference signal is known, such

as in two-way relay networks and multi-hop one way relay

networks [17], [18].

APPENDIX A

PROOF OF PROPOSITION 1

We start the proof by deriving the conditional density
function f(ya|xb) as follows

f(ya|xb) =

∫
haa

∫
hba

f(ya|xb, haa, hba)f(haa, hba) dhaadhba,

=

∫
haa

∫
hba

f(ya|xb, haa, hba)f(haa)f(hba) dhaadhba.

(A.1)

where in (A.1),

f(ya|xb, haa, hba) =

1

(πσ2)N

N∏

i=1

exp

(

−|yai
− haaxai

− hbaxbi |2
σ2

)

, (A.2)

f(haa) =
1

π
exp

(

− |haa|2
)

, (A.3)

f(hba) =
1

π
exp

(

− |hba|2
)

. (A.4)

Rewriting (A.1), we arrive at

f(ya|xb) =
1

(πσ2)Nπ2

∫

hba

exp
(

− |hba|2
)

×
∫

haa

exp

(

−
N∑

i=1

|yai
− haaxai

− hbaxbi |2
σ2

)

× exp
(

− |haa|2
)

dhaadhba. (A.5)

Note that in performing the integration in (A.5), we can use the

fact that the total probability of a complex Gaussian random

variable is one.

Using the Bayes’ rule

f(xb|ya) =
f(ya|xb)f(xb)

f(ya)
, (A.6)

where f(xb) =
(

1
M

)N
since the transmitted symbols come

from a equiprobable modulation set, i.e., f(xbi) = 1
M

and

f(ya|xb) is given in (A.5). Substituting and simplifying, we

can obtain the result in (3).

APPENDIX B

PROOF OF PROPOSITION 2

To prove Proposition 2, we first define permutation Π(·) as

a one-to-one and onto function on the index set of modulation

set A, i.e., K � {1, 2, · · · ,M}. If xk ∈ A, then, xΠ(k) ∈ A′,

∀k ∈ K, where A′ is one possible permutation of original

modulation set A. Without loss of generality, we further

assume that both A and A′ are ordered set and Ak and A′
k

are the kth elements of A and A′, respectively.
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For simplicity of analysis, we show the proof for constant

power M -PSK modulation sets in here. The extension to QAM

modulation is straightforward and omitted here [14].

Lemma 1: For the ith transmitted symbol, the posterior

function f(xbi |ya) does not have a unique maximum if and

only if for the modulation set A there exists a permuted set

A′ for which xk

xΠ(k)
= −1, ∀k ∈ K.

Proof: For the first part of the proof we assume that

the permutation π(·) that satisfies the condition of the lemma

exists and then for a permuted set A′, for which xk

xΠ(k)
= −1,

∀k ∈ K, we assume that x′
bi

= xΠ(k) = A′
Π(k) and

xbi = Ak maximizes the posterior density. Then f(xbi |ya)
can be rewritten as

f(xbi = Ak|ya) ∝
M∑

jN=1

· · ·
M∑

j1=1
︸ ︷︷ ︸

∼ji

1
∑N

n=1,n �=i |Ajn |2 − ϑ+ |Ak|2 + σ2

exp

⎛

⎝
|ξ|2

(
∑N

n=1,n �=i |Ajn |2 − ϑ+ |Ak|2 + σ2
)

σ2

⎞

⎠ ,

(B.1)

where,

ϑ �
|Ak|2
γ

∣
∣
∣
∣
∣
∣

N∑

n=1,n �=i

x∗
an

Ajn

Ak

+ x∗
ai

∣
∣
∣
∣
∣
∣

2

. (B.2)

It is easy to see from (B.1) that the posterior PDF of x′
bi
=

A′
Π(k) differs from the posterior PDF of xbi only in the term ϑ

as the rest of the terms depend on the power of the modulation

constellation, which is constant for M -PSK modulation set.

We define

ϑ′ �
|A′

Π(k)|2
γ

∣
∣
∣
∣
∣
∣

N∑

n=1,n �=i

x∗
an

A′
Π(jn)

A′
Π(k)

+ x∗
ai

∣
∣
∣
∣
∣
∣

2

. (B.3)

To prove the lemma we need to show that

f(xbi = Ak|ya) = f(x′
bi
= A′

Π(k)|ya), (B.4)

and hence no unique maximum. (B.4) holds true if and only

if

ϑ = ϑ′. (B.5)

Finally, (B.5) holds true if and only if

Ajn

Ak

=
A′

Π(jn)

A′
Π(k)

. (B.6)

Since we know that xk

x′

Π(k)
= Ak

A′

Π(k)
= −1 ∀k, conse-

quently, (B.6) is valid, which in turn means (B.4) holds true

and the posterior function does not have a unique maximum.

For the second part of the proof, it is clear that when no

permutation exists to satisfy the condition of the lemma then

ϑ can never be equal to ϑ′ and consequently, the lemma holds

if and only if such a permutation exists.

It is easy to see that the condition of Lemma 1 is met

if and only if the modulation constellation is symmetric

around the origin. This is because with symmetric modulations

around the origin if xk ∈ A so is −xk ∈ A. Consequently,

there always exists a permutation for which the condition

of Lemma 1 holds. Therefore, the posterior function does

not have a unique maximum if and only if the modulation

constellation is symmetric around the origin.

This concludes the proof of the proposition.
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