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Abstract—Impairments such as time varying phase
noise (PHN) and carrier frequency offset (CFO) result in
loss of synchronization and poor performance of multi-relay
communication systems. Joint estimation of these impairments is
necessary in order to correctly decode the received signal at the
destination. In this paper, we address spectrally efficient multi-
relay transmission scenarios where all the relays simultaneously
communicate with the destination. We propose an iterative
pilot-aided algorithm based on the expectation conditional
maximization for joint estimation of multipath channels, Wiener
PHNs, and CFOs in decode-and-forward-based multi-relay
orthogonal frequency division multiplexing systems. Next, a new
expression of the hybrid Cramér-Rao lower bound (HCRB)
for the multi-parameter estimation problem is derived. Finally,
an iterative receiver based on an extended Kalman filter for
joint data detection and PHN tracking is employed. Numerical
results show that the proposed estimator outperforms existing
algorithms and its mean square error performance is close to
the derived HCRB at different signal-to-noise ratios for different
PHN variances. In addition, the combined estimation algorithm
and the iterative receiver can significantly improve average
bit-error rate (BER) performance compared with existing
algorithms. In addition, the BER performance of the proposed
system is close to the ideal case of perfect channel impulse
responses, PHNs, and CFOs estimation.

Index Terms— OFDM, multi-relay, channel estimation, phase
noise, carrier frequency offset, hybrid Cramér-Rao lower bound,
data detection.

I. INTRODUCTION
A. Motivation and Related Works

ULTI-RELAY systems have attracted considerable
research interests due to their potential to offer an effec-
tive solution to the issues faced by next generation (5G) cel-
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lular networks, such as significant path loss and shadowing at
millimeter-wave (mmWave) frequencies [1], [2]. By employ-
ing multiple relay, one can enhance the range of mmWave
links, while concurrently providing cooperative diversity to
overcome shadowing due to obstacles and humans [3], [4].
In contrast to single-input single-output (SISO) systems, which
may result in single phase noise (PHN) and carrier frequency
offset (CFO), the multi-relay networks have multiple distrib-
uted nodes and each one has its own local oscillator. Thus,
this gives rise to multiple phase noises (PHNs) and multiple
carrier frequency offsets (CFOs) at the destination.

The motivation of adopting the low-cost oscillators at
source, relays and destination, and providing high data rates
in gigabits per second or even higher lead to the distortion of
transmitted signal with different impairments such as CFO and
PHN. In addition, PHN has more pronounced effect on system
performance at higher frequencies, e.g., V-band/60 GHz and
E-band/70-80 GHz [5]. Thus, it is increasingly important
to develop efficient and accurate estimation algorithms for
compensating the channels, PHNs, and CFOs to achieve an
accurate synchronization amongst all communication nodes.

Orthogonal frequency division multiplexing (OFDM) is
employed in multi-relay systems to increase the transmission
bandwidth efficiency and mitigates the effect of frequency-
selective fading. However, the presence of multiple PHN
and CFO results in a common phase error (CPE) and inter-
carrier interference (ICI) at the destination node, and the
estimation of channel impulse response (CIR) for each link
becomes challenging [6]. On the other hand, accurate esti-
mation of CIRs in the presence of PHNs and CFOs is
required for coherent detection at the destination. OFDMA
technique can be used to assign different subcarriers to differ-
ent relays. However, as mentioned in [7], OFDMA is restricted
approach and may result in significant loss of spectral

efficiency.

Many algorithms for a joint channel, PHN and/or
CFO estimation in SISO and MIMO systems are
proposed in [8]-[17]. However, the system models

in [8]-[17] only consider a single oscillator at the transmitter
and the receiver and thus requires the estimation of single
PHN and/or single CFO parameter. In contrast, each relay
in multi-relay systems has its own local oscillator and the
received signal at the destination is affected by multiple
PHN and CFO parameters. Thus, the estimation algorithms
in [8]-[17] cannot be applied to estimate the required multiple
PHN and CFO parameters at the destination of a multi-relay
network.
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In [18], the authors have presented general issues that
need careful design for the successful implementation of
OFDMA-based multi-hop networks. However, no estimation
and detection algorithms are presented in [18]. In addition,
the effects of PHN are not studied in [18]. In [19], channel
estimation in the presence of CFOs is analyzed in decode-
and-forward (DF) and amplify-and-forward (AF) cooperative
systems. However, the authors in [19] do not take the effect
of PHN into account. In [20] and [21], CFO estimation is
investigated for DF and AF cooperative systems, respectively.
However, the proposed algorithms in [20] and [21] are based
on the assumption of perfect knowledge of channels. More-
over, in [21], a minimum mean square error (MMSE) equalizer
is used to equalize the ICI, which is computationally very
complex. In [22], channel estimation in the presence of PHN
is investigated. However, the effect of CFOs is not taken
into account. More importantly, [19]-[22] do not provide the
hybrid Cramér-Rao lower bound (HCRB) for joint estimation
of multiple impairments in multi-relay systems, which would
provide essential information about the absolute performance
of the estimation scheme and these bounds can be applied
to obtain lower bounds on the performance of multi-relay
network in the presence of imperfect CIR, PHN, and CFO
estimation. The problem of joint channel, CFO, and PHN esti-
mation is considered in the context of OFDM relay networks
in [5]. However, the relaying approach in [5] is based on a
single relay. In addition, the estimation approach in [5] is
based on the maximum a posteriori (MAP) criterion, which
is computationally very complex. Joint channel and CFO
estimation based on the expectation-conditional maximiza-
tion (ECM) approach was proposed in [23] for OFDMA uplink
systems. However, in [23], the authors do not take the effect
of multiple PHN parameters into account. In [7], the authors
designed optimal training sequences for multi-user multi-
input multi-output (MIMO)-OFDM systems and evaluated the
performance of training sequences in the presence of residual
PHN or residual CFO. However, the estimation approach
in [7] depends on the orthogonality between the training
sequences to reduce the effects of PHN or CFO. In addition,
the estimation method in [7] does not provide any means of
estimating or tracking multiple PHN and CFO parameters.
Recently, we consider the problem of joint channel, PHN,
and CFO estimation in OFDM AF and DF relay networks
in [24] and [25]. However, in [24] and [25], the system model
is based on time-division multiple-access (TDMA), which
leads to a significant loss in spectral efficiency since each
relay’s parameters are estimated turn by turn. Moreover, the
problem of joint data detection and PHN mitigation for multi-
relay systems is not presented in [24] and [25]. In addition,
the HCRB for joint channel, CFO, and PHN estimation, and
the computational complexity of the estimation and detection
for multi-relay networks are not addressed in [24] and [25].
Most recently, we consider the problem of joint PHN multi-
parameter estimation and data detection for light field video
transmission in MIMO-OFDM systems in [26]. However,
the proposed algorithm in [26] is based on the assumption
of accurate synchronization of CFOs. Moreover, the HCRB
for joint estimation of mutiple impairments is not derived
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in [26]. In addition, the effects of joint channels, PHNs, and
CFOs estimation on data detection is not addressed in [26].
Finally, in [27], a detection algorithm based on the Monte
Carlo technique and the Bayesian approach for multi-user
system in the presence of mutiple PHNs and CFOs has been
proposed. However, the estimation algorithm in [27] requires
the presence of multiple antennas at each transmitter and the
application of STBCs with special trasnsmission structure.
In our setup, that trasnmission is from multiple relays, where
single antenna is employed at each relay to ensure imple-
mentation simplicity. Thus, the particular algorithm proposed
in [27] is not applicable to our setup. In addition, no closed
form expressions to estimate the channel, PHN, and CFO
parameters are presented in [27]. More importantly, in [27],
the HCRB for joint estimation of multiple channel, PHN and
CFO parameters is not derived.

Given the time-varying nature of PHN, we need to track it
not only during the training interval but also during the data
transmission interval. Hence, following the training period, a
receiver structure for joint data detection and PHN mitigation
during the data transmission period is required. In the existing
literature, joint data detection and mitigation of multiple PHN
parameters is analyzed in [5] and [22]. However, the PHN
tracking in [5] and [22] requires the application of pilots
throughout an OFDM data symbol to compensate the CPE,
which adversely affects the bandwidth efficiency and data
detection performance. As will be explained in Section VII,
the data detection approach of using the pilots to track the
PHN over the data packet, as used in [5] and [22], has
poor BER and lower PHN estimation performance compared
to the extended Kalman filter (EKF) based detector in this

paper.

B. Contributions

In this paper, a computationally efficient algorithm based
on the ECM approach for joint estimation of channels, PHNs,
and CFOs in OFDM-based DF relaying systems is presented.
In the presence of time-varying PHN, an iterative data detec-
tion algorithm is also proposed to detect the data symbols. The
major contributions of this paper are summarised as follows:

1) This paper addresses spectrally-efficient multi-relay
transmission scenarios where the relays simultaneously
send their signals to the destination, then the impairment
parameters are estimated using an iterative pilot-aided
algorithm based on the ECM algorithm at the desti-
nation. The proposed algorithm can estimate multiple
unknown channel gains, PHNs and CFOs. In addition,
we drive a closed-form estimator to obtaining the CFO
and channel parameters. Based on simulation results, the
proposed estimator is found only need few iterations to
estimate the multiple impairments over the transmission
packet.

2) We derive the HCRB for joint CIRs, PHNs, and CFOs
estimation in DF-based multi-relay OFDM systems.
Simulation results show that the mean square error
(MSE) of the proposed algorithm is closer to the HCRB
at different signal-to-noise ratios (SNRs).
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Fig. 1. The system block diagram for the multi-relay communication network.
OFDM Packet
Source to relays Relays to destination| @~ |  ceeeeiiiiiieinnn.
+———— OFDMtraining ————— ¢« OFDM data -+ + OFDM data -+
symbols (d) symbol 1 (d) symbol S (d)
Fig. 2. Timing diagram for transmission of training and data symbols within an OFDM packet.

3) An iterative data detection algorithm based on the EKF
for tracking the unknown time-varying PHNs throughout
the OFDM data packet is presented. Simulations are
carried out to investigate the performance of the pro-
posed estimator and detector. Comparing with existing
algorithms, the simulation results demonstrate that the
combined estimation and detection algorithms signifi-
cantly improve the MSE and the bit error rate (BER)
performance. In addition, the BER performance of the
proposed system is closer to the ideal case of perfect
CIRs, PHNs, and CFOs estimation.

C. Notation

Superscripts (-)*, ()%, and (-)7 denote the conjugate, the
conjugate transpose, and the transpose operators, respectively.
Bold face small letters, e.g., X, are used for vectors, bold face
capital alphabets, e.g., X, are used for matrices, and [X],
represents the entry in row x and column y of X. Iy, Ox « x, and
1x«x denote the X x X identity, all zero, and all 1 matrices,
respectively. The notation X(nj : np,mp : mp) is used to
denote a submatrix of X from row n; to row np and from
column mj to column my. | - | is the absolute value operator,
|x| denotes the element-wise absolute value of a vector x, and
diag(x) is used to denote a diagonal matrix, where the diagonal
elements are given by vector x. X > X indicates that matrix
(X=X) is positive semi-definite. X, %, and £ represent the esti-
mate matrix, vector, and element, respectively. E, y[-] denotes
the expectation over x and y. N{-} and J{-} denote the real and
imaginary parts of a complex quantity, respectively. Vx and
AY represent the first and the second-order partial derivatives
operator, i.e., Vx = [%,~~ , afN]T and A} = Vy x vr.
N(u,0?) and cA(u, %) denote real and complex Gaussian
distributions with mean x and variance o2, respectively. ®
denotes circular convolution. Finally, z denotes the Jacobian
of z.

D. Organization

The rest of this paper is organized as follows: Section II
describes the system model, the scenario under consideration,

and the assumptions in this work, Section III derives hybrid
Cramér-Rao lower bound. Section IV derives the proposed
estimator, Section V presents the joint data detection and PHN
mitigation, Section VI illustrates complexity analysis of the
proposed system while Section VII provides simulation results
that investigate the performance of the proposed estimator
and detector. Finally, Section VIII concludes the paper and
summarizes its key findings.

II. SIGNAL MODEL

We consider a half-duplex space-division multiple-access
(SDMA) SISO multi-relay communication system with one
source node, S, M relays, Ry, ..., Ry, and a single destina-
tion node, D, as shown in Fig. 1. An OFDM packet of (S+2)
symbols as shown in Fig. 2 is considered, which consists
of two training symbol and S data symbols. The training
symbols are known by the relays and destination, while the
data symbols consist of modulated data, where no pilots are
included. The two training symbols are used to separately
estimate the unknown CIRs and CFOs in the presence of
unknown PHN for both transmission phases of the source
to relays and relays to destination. As shown in Figs. 1 and
2, during the training period, the source node broadcasts the
training symbol in the first transmission phase to M relays,
then the CIR and CFO in the presence of PHN are estimated
at each relay. In the second transmission phase, M relay nodes
simultaneously transmit the training symbols to the destination
node and the estimation of multiple CIR and CFO parameters
in the presence of multiple PHN parameters is performed at
the destination node. Next, during the data period, the data
symbols are transmitted from the source to M relays in the first
transmission phase, then M relays simultaneously decode, re-
encode, and forward the source information to the destination
node during the second transmission phase. The constant CIR
and CFO are compensated by using their estimates obtained
during the training phase, while during the data transmission,
we track the time varying PHN and decode the data. Therefore,
in order to guarantee the advantages of multi-relay diversity,
there is a need to estimate the channel gains, time varying
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PHN, and CFO parameters for the received signals at the
destination node during both transmission phases.
In this paper, the following set of assumptions are adopted:

Al. The channels are modeled as quasi-static Rayleigh
fading channels, i.e., they are constant and unknown
over the OFDM packet duration but change from
packet to packet,

CFO is modeled as an unknown deterministic para-
meter over a packet and is assumed to change from
packet to packet.

The time-varying PHN is assumed to change from
symbol to symbol and is modeled by a Wiener
process, i.e., §,(n) = 0,(n — 1) + d(n), ¥V n and
q €1{S, Ry, D}, where 0,(n) is the PHN at the nth
instant, d(n) ~ A((0, 0(52) is PHN innovation and 052
is the variance of the innovation process.

The training symbol is assumed to be known at the
relays and destination.

The timing offsets are assumed to be perfectly esti-
mated. Hence, it is not considered.

Note that assumptions Al, A2, A3, A4, and A5 are in line
with previous studies and channel, PHN and CFO estimation
algorithms in [6], [19]-[22], and [28]-[30]. Assumption A3
is also reasonable in many practical scenarios to describe
the behavior of practical oscillators [6], [28]. In addition,
assumption A4 is adopted in the IEEE 802.11ac/ad standards
to estimate channel and CFO in [6] and [31]-[34].

The time-invariant composite CIR between any pair of
nodes a and b is modeled as h, (7)) = le‘:_ol hap(1)o(r —
[Ty), where h, (l) is the channel gain for the /th tap, Jd(x)
denotes the unit impulse function, and a,b € {S, R, D}.
L is the channel order, and 7y = 1/B, where B rep-
resents the total bandwidth. The channel order L is the
same for any pair of nodes. For brevity, we define h,;, =
[ha,b(0), hap (1), ... hep(L — D] and the channel gains
hap(l) are modeled as complex Gaussian zero-mean random
variables. The input data bits are first mapped to the complex
symbols drawn from a signal constellation such as phase-shift
keying (PSK) or quadrature amplitude modulation (QAM).
Next, the source node, S, transmits the modulated training
symbol vector d £ [d(0),d(1),...,d(N —1)]T to the desti-
nation during two transmission phases. Note that, in this paper
as shown in Fig. 2, a symbol, d, is used to indicate the training
vector at the relays during training period, while d is used to
indicate the decoded data vector at the relays, that is transmit-
ted further to the destination during data transmission period.

A2.

A3.

A4.

AS.

A. First Transmission Phase

The received signal at the mth relay, R,,, is given by
2y = Es g, Ps g, F"Hs g, d + Vi,
. Zn(N=D]T

(1

where z,, £ [z ©0), zm(1),... isan N x 1 vector,

Es & L diag([e(j%res,Rm/N)xO, o e(j27res,Rm/N)x(Nfl)]T)
is the N x N CFO matrix, €g,, denotes the
normalized CFO between S — R,, Pgg, =
diag([ejﬁs,km O ejﬁs,Rm(l), o, e0s.km (N—l)]T) is the

N x N PHN matrix, 0sg,(n) = 6Os(n) + Og,(n) for
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n = 0,...,N — 1 is the PHN at the nth instant
between S —> R,, Hgg, = diag(F hgg,) =
diag(Hs g, [01, Hs g,[11, ..., Hs g, [N — 1]) is the N x N

frequency-domain channel coefficient matrix, F; is an
N x L DFT matrix, ie., F; £ F(1 : N,1 : L), F is an
N x N DFT matrix, ie., [Fl;, 2 (1//N)e /G0N
for v,/ = 0,1,---,N — 1. Note that Hgg,(n) =
e0s.kn O Hg g, (n), and Os g,,(n) £ 05 g, () — Os &, (0), this
model helps to distinguish between the phase disturbance
caused by PHN and the channel phase for the first
sample, which in turn resolves the phase ambiguity in
the joint estimation problem as indicated in Section IV,
D £ diagd), d = [d(0),d(1),...,d(N — D]T is the
N x 1 modulated training vector during training period
and data vector during data transmission period, and
Vi = [0m(0), 0, (1), ..., 0m(N — 1)]T is AWGN vector at
the mth relay, R,,.

The estimation and detection problem between S — R,
can be solved using source-to-relay estimation and detection
techniques proposed for OFDM SISO systems in [35] and is
not presented here to avoid repetition.

B. Second Transmission Phase

As shown in Fig. 2, in this phase, the relays apply the
DF protocol on the received signals and forward them to the
destination while the source is silent. ' The received signal at
the destination, D, for the training period can be defined as

M
r= Z Eg,..0Pr,.0F"D,Frhg, p + W, (2)
m=1
where 1 = [r(0),r(1),...,7r(N —1)]7 is an N x 1 vector,
Eg,.p 2 diag([eV27€hn. /N)x0 ,eU2ern.p/N)

e(fzﬂme p/N)x(N=I1TYy is an N x N CFO matrlx €R,,.
denotes the normalized CFO between R,, — D, Py, p
diag([e/%%n.0O)  i0kn.0() engmaD(N’l)]T) is the N x N
PHN matrix, O, p(n) e O, (n)+0p(n) forn =0,..., N—1,
is the PHN at the nth instant between R,, — D,
hg,.p = [hg,,p(0), g, p(1),...,hg, p(L — DIT is a
L x 1 CIR vector between R,, — D, D,, £ A,D is
an N x N matrix, D £ diag(d) is an N x N training
matrix, d is an N x 1 training symbol vector from the relay,
A, = diag(l, ej27r(L+1)m/N, o ej27r(L+1)(N—1)m/N) is an
N x N frequency modulation matrix and can be viewed as a
frequency modulation and used to achieve the orthogonality
between the training sequences at the destination [7]. w is an
N x 1 AWGN vector at the destination.
Equation (2) can be rewritten as follows

Hl>w

r=[¥,%,,...,¥y]| hgp+w, (3)

w
where ¥ £ [\Ill, Wy, ..., \IIM] is an N x ML matrix, ¥,, £
Eg, DPr,, DF D,,F; is an N x L matrix, form =1, ..., M,

h? T'isa ML x 1 CIR vector.

and hR D = [h RM,D]

R,D> ">

IThe relays can also apply a precoding or beamforming approach at this
stage to further enhance the system performance, but such approaches are
beyond the scope of this work.
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III. DERIVATION OF THE HYBRID CRAMER-RAO BOUND

In this section, the HCRB for joint estimation of channel,
PHN, and CFO parameters is presented. Since the overall
parameters of channel , hg p, PHNS, 0 p, and CFOs, €g p,
need to be estimated, the parameter vector of interest, A, is
given by

“)

where A comprises of both random and deterministic
. T a T
parameters, ie., PHNs, 0%, £ [0R1 pr--s 0k, pl
01Te,,,, p = [<9Rm p©0),...,0r, p(N — 1)]T are random, while
CIRs, hg p = [h} p,...,hE ;17 and CFOs, €} , =
[€R,,Ds---» eRM,D]T, are deterministic parameters. Thus, the
HCRB instead of standard CRB is needed to be derived. The
accuracy of estimating A is lower bounded by the HCRB (£2)

as [36, pp. 1-85]
- X)T] > Q

Er,oR,DIhR,D,fR,D [(X(I‘) — L) (A(r)
Let us define = B~!. Here, B is an M(N + 2L) x
M(N + 2L) hybrid information matrix (HIM), which is
determined according to the following theorem.
Theorem 1: The closed-form HIM for joint estimation of
CIR, PHN, and CFO is given by

A =1[0} p Rihgp}' Sthep)’ €p 1",

)

By Bz Biz By

By By By By
B=—N s 6
o2 "]|Bst Bz B By ©)

By By By By

where By} £ (){1(—)1 + A is the M(N — 1) x M(N — 1)
HIM for the estimation of Oz p, Qi = [<I>1,...,<I>M],
®, £ ®,(2:N,2:N), &, = jdiag(Eg, pFD,,FLhg, p)

form=1,...,M, Aisan M(N—l)xM(N—l) tridiagonal
matrix with dlagonal elements given by [1 2,...,2,1]
and off-diagonal elements given by ;T‘zz%[l,...,l],
By = leQz is an ML x ML information matrix for
the estimation of real part of hg p, Q2 = [yl,...,yM],
Ym = Egr,pFD,Fy form = 1,...,M, B3z = Q¥Q,

is an ML x ML information matrix for the estimation
of imaginary part of hgp, Bu = QFQs represents

the information for the estimation of CFOs, €g p,
Q? = [ﬁl,“ ] ﬂm = ERmDFHDmFLhRmD’ ERmD £
diag ([0, 12” e(ﬂneRmD/N) .”,we(jZEERmD/N)X(N*I)]T)
for m = 1,....M, B, = Bé’l £ —j(_)f’(_)z,
QZ = [}_’1""’}_’M]’ )-’m :_ ym(2 Nl L) for
m=1 MB13—B31—01027B14—B41—Q Q3»

[ﬁl,.. ] Bn=P8,2:N)form=1,....,M,
1323 = BY 2 jQ¥Qa, Byy = BH, £ ng’Qy and

B3, = B = Q4 Qs.
Proof: The proof is given in Appendix A.

Finally, the HCRB, €, is given by the inverse of the HIM.
ie, ® = B~!. Note that the HCRB of the channel, hg p,
is obtained by adding the HCRB for real and imaginary
parts of channels, i.e., HCRB{hg p} = HCRB{Ji{hg p}} +
HCRB({3{hg p}} [37].

IV. ITERATIVE ESTIMATION

The parameter vector of interest in (4) can be rearranged
into groups , ie, A = I, AT]T, where AL £
[01Te,,,,Da hITe,,, s €k, 01T, form = {1, ..., M}. During the esti-
mation procéss using ECM, each group, A, is updated while
keeping the remaining groups fixed at their latest updated
values. 2 In addition, for each group a hidden data set is
selected [38]. In this case, the hidden data set denoted by y,,
for A,, is given by

Ym = Eg,, pPr, pF'D,,Frhr, p + Wy, @)
where w,, is the N x 1 AWGN vector. The updating process
for A, at the ith iteration in the proposed ECM estimator
consists of the E- and M-Steps.

A. E-Step

In this step, a hidden data set is calculated from the received
signal, r, in (2) and depends on the latest CIR, PHN, and CFO
estimates obtained from the previous iteration. Thus, while

setting Ay = ):Ej], V¢ # m, the expectation of the log-likelihood
functton (LLF ) of the hidden data set for the parameter A,

N(kmlkg ) is determined as

2] ~li] [i]
N(xmm’)AE[logp(ymum,{x;} )| x;], ®)
{#m
where
~li]
PWalkn {1} )= plhn)
{#m
1 Iym — Er,,.pPr,,.pF D, Frhg, pl?
— —exp - .(9)
7Z'O'w O'w

Substituting (9) into (8), we obtain

NG
1 Al
=C - U—QE{nym —Eg, . pPr, . pF"D,Frhg, pl?|r. i/ ]
w
1 2
=C - o i”y[l] Eg,.oPr,.0F"D,Frhg, p| ]
U)
(10)
where C| = log(mf ) is a constant and
. /\[] A A A
Yyl 2R {lel', A } = Eg, pPg, pF”D,Frhg, p
M
+ (r - ZER[,DPRF,DFHDKFLhRF,D)
=1
M
r— > &Y PE FDFRY . an

=1
m

2The convergence is analyzed later.
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B. M-Step
In this step, the CIR, CFO, and PHN parameters between
the mth relay and the destination are estlmated ie.,

0Rm D,hR,,, D> €R,,.D- Ay in the (i 4+ 1)th iteration, k
determined as

e r
x,[jf I arg max N(kmlk[l])
_ 2
= argmin b — ER,.0P,.0F ' DyFhg, p
(12)

In order to further reduce the complexity associated with
the M-step of the EM algorithm, the ECM scheme [39] is
applied in this section, where the cost function in (12) is
minimized with respect to one of the parameters of interest
while keeping the remaining parameters at their most recently
updated values [39], [40]. The steps of the ECM approach as
follows. o

1) PHN Estimation: In this step, 95? L]) can be determined

as follows. The nth symbol of the signal vector, y,[n] (n) in (1 1),
is first multiplied by e —j2n&, pn/N forn=1{0,1,...,N—1},
where é%’]n p is the latest CFO estimate obtained from the pre—
vious iteration. Next, the signal u,, (n) £ e (n)

is used to estimate the PHN vector. The signal u,,(n) can be
written as

]ZEnERm D/N

. i1 o
e jz”"SR'"’D/Ny,[,i] (I’l)

— ejZMA@Rm,D/Nej@Rm,D(n)sr[’;'](n) +am(n), (13)

Um(n)

where sm (n) is the nth symbol of the vector, sEn]

FADF by . Aég,.p 2 €ryp — € o dm(n)

712711165?] p/N

L
L

om(n)e and o, (n) is the nth symbol of the
overall noise vector, o,,. o, is the result of thermal noise
and residual interference from the relays and as shown
in [23], it is nearly Gaussian distributed with zero-mean and
some variance a . For the proposed problem, the state and
observation equations at time n are given by

Or,..p(n) = Or,, p(n — 1)+ g, .p(n),
U (1) = gn(n) + o (n) = e/%%nL M, () + Gy (n),
(15)

(14)

respectively. Since the observation equation in (15) is a non-
linear function of the unknown state vector g, p, the EKF is
used instead of a simple Kalman filter. Based on Taylor series
expansion, the EKF can linearize the non-linear observation
equation in (15) about the current estimates [41]. Thus, the
Jacobian of g, (n) is evaluated by computing the first order
partial derivative of g, (n) with respect to Og, . p(n) as

08m(Or,,.p(n))
00R,.D() gy 1 n)=0k,y.p(nln—1)

jg@r, pnln — 1)) = je/Pmp =g o) (16)

gm (l’l) =

where g, denotes the Jacobian of g,, evaluated at g, p(n).
The first and second moments of the state vector at the
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(i + Dth iteration denoted by 6 l+1] plnin—1) and
MU+ (n|n — 1), respectively, are given by

(9[1+ 1) — (9[1+D(n

1) = M,g;“ (n —

1n— 1), (17)
ln—=1) 405 ., (18)

D(n|n
M,g;“ (nln —

repectively. Given the observation u,,(n), the Kalman gain
K, (n), posteriori state estimate 6 l+1] p(nin), and the filtering

error covariance, M,[,§+1 (n|n) are glven by
My (nln — D Os.r,p(nln — 1)
X (gm(HRﬂhD(nm—l)) X M,g;“ (n—1n—1)

Kn(n) =
2 —1
X Or,.p0ln = 1) +02) (19)

O pln) = Ot (nln — 1)

+ Ko (1) (s () — &P D= DI )Y,

(20)
M (nln) = ®R{ME (nln — 1)
— K (n)gm (Or,,.p(n|n — 1))
x MET (nin — 1)}, (1)

respectively. Before starting the EKF recursion (16)-(21),
9EJ’D(1|O) and My, (1/0) are initialized by 6] ,(1]0) = 0
and M (1|0) = 06 , respectively.

Note that the EKF based estimation works regardless of the
selected PHN model. This is because the choice of a different
PHN model only changes the generatlon of PHN vector.

2) CFO Estimation: In this step, e ’H] can be determined
as follows By settlng 0 Ry, D and hR,,,, D to their latest updated

+1
values, 0 R, [], and hl!! R,,.p> fespectively, the updated value of

€R,,,p at the (i 4 1)th iteration, E%_H[]), can be determined as
pli+1]
€Ru,D
2
= arg min —ER,.pPr,, DF D, Frhg, p plit]
me D Rm, Rm,D
l‘lRm Dzhlé,]-,, D

N—1
R . Ali41] R
— arg min > | 551(n) — &2 Rn0n/N o0k D3l 1) |
€Rm.D n=0

N-1

= arg max z 9%{(51,[71;](n))*3‘,[,i] (n)el 2™ €rm.on/ Ny (22)
Rm-D n=0

where Sil(n) = o0 b 5] Lil(n). In order to handle the

nonlinearity of (22), Taylor series expansion can be used to

approximate the term e/27<#n.0"/N around the pervious CFO

estimate, eEe] D> up to the second order term as

ej27l'€Rm,Dn/N

T 2w
eJZEGRW,D"/N + (ERm b — ER D) (]—I’l)
s N
jarelll n/N 2 2 :
w /2T €Rm,D + — (eRm D—ER D) Nn

x 127k p1/N. (23)
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Ali+1]

Substituting (23) into (22), €R,.D is given by

A[l+1]
€Rw.D

N-1
. iz elil
= arg max z %{(y[’](n))*S,[,’,J“l](n)efzﬂfkm,D”/N
R n=0

+(€r,.p — € 1) Z R ) *SEH (n)
2r jorell N Ali] \2
]Wn e m. }+§(6RWD—6R"“D)
N 2 2]
i’l) ejanRm,Dn/N}].

> n{hley S e (/57
(24)

n=0

Taking the derivative of (24) with respect to €g,.p and
equating the result to zero, the estimate of €g,, p at the (i+1)th
iteration is given by

AliH1] _ i
€Rp,D = €Ry,D

ol ali in g li]
N zn —0 n\S{(yr[,ll](n))*S[lJrl]( )ej27l'€R D”/N}

e Zn =0 nzih{(ym (n))*S[’Jrl (n)e J2MR Dn/N}
(25)

3) CIR Estimation: In this step, h 1$+ g can be determined

as follows. By setting O g, p and €g,, p to their latest updated

ALi+1] N .
values, 0 Ry D and e%Jr p- respectively, the updated value of

hr, p at the (i + 1)th iteration, h”r g is calculated. The
negative log likelihood function for mth relay can be written
as

= C2 + Hy%] - E%:}] P l+1] r hRm,

log p(Ym; €r,,,D)
(26)

where T, £ FPD,,F; and C, is a constant. By taking the

derivative of negative LLF in (26) with respect to hg,, p, the

estimate of hg, p at the (i + 1)th iteration, h%HD is given by

hit') = (o lr,) o HpE TR gL 27)
where EUH] = diag([e(ﬂ”A[R; p/N)X0, (jzﬂA%r:IJD/N) -
(’2’“!“] IN)x(N- M7, and e’+1] is obtained from (25),
B 2 dag(0 DO -ty
and B 2 (011 (0), 0’“](1) ’+”(N D17 are

obtained from (20)

Using (20), (25), (27) and reapplying the above algorithm,
for m = {1, ..., M}, estimates channel gains, multiple PHN,
and CFO parameters for all the relays can be obtained at the
destination. The iterations stop when the difference between
LLFs of two iterations is smaller than a threshold ¢, i.e.

2
ZElé_H] P[z+1 T, hz+1]

=¢ (29

r—ZE[’] P mDrmﬁ%ij

C. Initialization and Convergence

The appropriate initialization of CFOs and CIRs,
ie, & 0] = [é ~[0 g[O] A[O] ]T nd hlo] _
¢ RD = R[()D’ Ry,D>* > €Ry,D R,D —
[hggl] D> hE?Z] po oo hp D]T can help the proposed estimator

to obtain the CIRS PHNS and CFOs parameters in a few
iterations. The initialization process can be summarized as
follows:

o The initial channel estimate, hEQ]D’ is obtained by
hl', (WHONOh) 1y HOlp  Here, w0l 2
[\II[IO],\II[O],...,\IIES]], \I:E,?] £ EY F7D,F, and
EEE’] D= ER,,,,Dl =0 g

o The initial CFO estlmate of mth relay is obtained by
applying an exhaustive search for the value of eg, p
that maximizes the function, Fm(FH m)” 1FH Q-
Here, Fm £ ERm DF D FL, and q £
Z[ 1 ER, pFID FLth p with keeping the remaining

{#m

r —

parameters, i.e., €g, p and hR,,D for £ % m on the most
recently updated values. Note that this exhaustive search
needs to be only carried out at the system start up to
initialize the estimation process. Simulations in Section
VII indicate that an exhaustive search with a coarse step
size of 1072 is sufficient for the initialization of the
proposed estimator. This coarse step size significantly
reduces the overall complexity.

o Using ég p for m = 1,...,M, the initial
channel estimate, hE?]D, is obtained by
A[O] H[0] gy [01\—1g H[O (0] _
hj (W AN~ @ HOle - Here, Ep , =
ER,,,,DI A[0]

ERm,D=CR, 1

Simulation results in Section VI show that at SNR of 20 dB
or higher the proposed ECM-based estimator always converges
to the true estimates in only 2 iterations.

Remark 1: The convergence of proposed ECM algorithm to
the global solution cannot be analytically shown [38]. How-
ever, in general, the ECM algorithm monotonically increase
the LLF at every iteration and converge to a local maximum.
Moreover, estimated parameters converge monotonically to
the global solution, if the algorithm is initialized in a region
suitably close to the global solution [38]. Based on the
equivalent system model in (1) and the simulation results
in Section VII, it can be concluded that the proposed ECM
algorithm converges globally when the PHN vector @ p

o ~[0] .
is initialized as GR,D = [On—1x1,O0n—1x1s--->0n_1x1]".
—_— — —

m=1 2 M
Note that the initialization of PHN with zero vector because
from initial training, the phase of the estimated channels
incorporates the phase introduced from PHN.

V. JOINT DATA DETECTION AND PHN MITIGATION

In order to decode the received signal at D in the presence
of PHNs and CFOs, an iterative detector based EKF for multi-
relay cooperative systems is proposed.

At first, using the estimates of CIRs and CFOs, lAlR, D,
€R.D, the received signal, r in (2), passes through an iterative
algorithm of data detection and PHN mitigation. We propose
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to use an EKF to track the PHN samples, 6, p, over the data
symbols. The PHN estimation is similar to that in (16)-(21)
and is not presented here to avoid repetition. However, instead
of training-based PHN tracking, the process of PHN estimation
is followed in decision-directed fashion for the received data
symbols. In other words, the estimate of the data symbol in

the previous iteration, d[l 1 , 1s used to update the symbol s
PHN estimate at the current iteration 0 R _p- Particularly, shil

in (15), is calculated as sl = FHD[Z]FLhRm p. where hg, p
is the CIR vector estimate obtained from the ECM estlmator
during the training interval, and Dl £ Apdiag(dlil). Next,
the data vector estimate is updated for the ith iteration.
Following [29] and based on the received signal in (2), the
negative LLF for the received signal, r, can be written as

M
log p(r, d, 0 p) = C+— e = Er,.0Pr,.pTnd |’
m=1
+ f I d | +log p(Or,p), (29)
Vyhere 'i'm £ FHfIRm,DAm is an N x N matrix,
Hg, p = diag(F hg, p) is an N x N matrix of
estimated channel frequency response, Eg, p =
diag([e(ﬂ”ngaD/N)XO, o e(j27r€Rm,D/N)><(N—1)]T) is
the N x N estima}ed CFO matrix of mth relay,
Pr,.p 2  diag([e/0rn.0O) efeRmD(N D17y is  the

N x N estimated PHN matrix, d = d(O), d(N -’
the N x N estimate vector of the modulated data vector, and
&4 is the average transmitted symbol power and normalized
to 1.

Taking the derivative of (29) with respect to d and equating
the result to zero, the estimate of d at the ith iteration, d[! is
given by

. . 2 -1 .
e ~H ~ ~H
d! = (sz gl +5—: ) &y, (30)
~ [i] N N N
Where Sl l é ZM 1 ER,,,,DP%] DTm El P%L,D é
Alil

(Ajl[,a]g( O, p@ ¢ O, oD e %kn. D(N 1)] ), and
Or,p = 91[;3, p(0), 0 D(l) D(N DT are

obtained via the EKF based estlmator

Using the EKF set of equations (16)-(21) and (30), the
proposed algorithm iteratively updates the PHN and data
estimates, respectively, and stops when the difference between
likelihood functions of two iterations is smaller than a thresh-
old ¢, i.e.,

M 2
‘ ro > B, pPU T,
m=1
N-1 M Nk
-2 | Z w 0P, pTmd| < G
n=0 m=1

Let d'¥ denote the initial estimate of the transmitted data
vector. Appropriate initialization of d[°! results in the proposed
iterative detector to converge quickly. In our algorithm, the
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Algorithm 1 Proposed Estimation and Detection Algorithms
E%TIMATION 0
o)) D(1|0) =0 and MY ,(1]0) = of.
and h D using an exhaustwe search with coarse step size
ie., 1072

> and obtain 6[0]

2
. M wli+l] pli+1] [l+1
while |ir — > Ep " ,Pp" by — |r -
2
St Bl pPR b =(do
form=1,...,.M do _ .
YL;] =r— 26’ 1 ERf DP[ll,DFHDf’FLh%,D
forn=0,1,. —1do
a7 — (21)
end for
for n =0,1, —1do "
g[i+l] B g[i] N z” - n‘i{(fm( ))*S[H—”( Ye ]ZIEER Dn/N}
R}‘I‘I;D - R}115D 2 7[5[ n
v " N w{ ey S e 0"}
end for

h[z+1 _(rHrm) 1FHP1$’11])HE%:1I])H Efl]

S Rl — gt i Ali+1]
hRm,D_hR D’ 0R ,D = 0R;11,D’ Rw.D = €R,.D
end for
end while
DATA DETECTION
for j=1,..., o
2 H[j—11A[j—1] 1]

2 ~ N 2 ~H[i—
Obtain a9 = (@@ 4 2ir) 10"y, and
Replace d[°! by its hard decision.
li+1] H2

while ‘ Hr — > Bg, pPR )Y ,d

A 22
pYmd| | < do

> Hr— > Eg,.oP%
for m =1, , M do
y,[,;]_r—zg IER/DPR DT dti!

Using the EIZ&F set of equation in Section IV to
estimate the PHN parameters,

end for
d[i+1] (flmi]fl[i] + %I;\/)i1 QH[i]r, and Replace
dli+1 by its hard decision.
d[l] d [i+1]
end while
end for

A H[j—1] Alji—1
1r11t1al data estimate is obtalned usmg d[o] (2 Ll ]Sl[j ]—i—

o—11 =1 & 5li—11<
UI ) 1Q r, where Sl 2 Zm:1 ERm,DPEQJm’[ngv
and PR D is the PHN matrix estimate obtained from the

previoué OFDM symbol. Simulation results in Section VII
indicate that at SNR= 20 dB the proposed detector, on
average, converges after 2 iterations. The overall estimation
and detection algorithm is summarized in Algorithm 1.

It is worth mentioning that the proposed estimation and
detection algorithms in this paper can be extended to a more
complicated system setup such as multi-user MIMO-OFDM
systems. If we assume that multiple antenna at each user are
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fed by a single oscillator, as generally considered in MIMO
setup [8]-[10], [27], the received signal at the BS, during
uplink transmission, is affected by multiple PHN and CFO
parameters. Therefore, the proposed algorithm in our paper
can be easily modified and applied to a multi-user MIMO-
OFDM setup, where BS can estimate multiple CFO and
PHN parameters by employing our estimation and detection
algorithms.

VI. COMPLEXITY ANALYSIS

In this section, the computational complexities of the
proposed ECM algorithm and iterative receiver for data
detection in multi-relay cooperative systems are analyzed.
Throughout this section, computational complexity is defined
as the number of complex additions plus number of multi-
plications [5]. Let us denote the computational complexity,
from S - R — D, of the ECM algorithm by Cgst =

C][EAS/["I]" + C][;é]T + CI[EAS/I% + CI[{;]T. The notations CI[EAS/I% and CI[{;]T
—— —— —— ——

S—R S—R R—-D R-—D

are used to denote the number of complex multiplications

and additions, respectively. Since the link from S — R, is

similar to a SISO system, then by following [35, eqs. (28)

and (29)], the C}[EAS/I% and C][Egll" of the ECM estimator from
——

——
S—R S—R
S — R, are determined, reslgectively, and not presented here
to avoid repetition. The C][ES% and CI[%]T from R — D, are
—— ——
. R—D R—D
determined as
[M]
Cist
——
R—D

= M[(M — D[N?GN + L)+ NL]+[ N + 5N
an 16 (19
+ 2N + 2N + 7N +LN(@2N +1)
~ " ~ ——
Q) @) @5
+ N(N? + L(N + 1)) Jteem
Suin(15)
+ (M — 1)[N(N* + L(N + 1))]

@7

an=r—3_ | Bg, pFHD,FLhg, p
{#m

+ M*L>(ML + N> + N) 4+ MLN

ﬁ&?’JD:(\[IHlOJ\I’[OJ)*l\IIH[OJr
+[LP+ LA(N + 1)+ NQL + 1)

QT (THT,) T H g

+ NQ@N+1L) ]tinitializei|~ (32)
—— ——
| él%Rm ,DFHDm FL
[A]
CEsT
R—D
= M[ (M — 1)[N(N —1)(3N + L)+ N(L — 1) + N|

an

+[ N + N +2N+ N 42N+ 1+ L(N —1)2N + 1)

(18) (19 (o) @) (25 ©7)
+ N(N — )(L+1)+N(L — 1) |tgcm
smin(15)

+ (M — D[N(N — 1)(L+2N) + NL)]

an=t—>"Y_| Eg, pFHD,Fhg, p
t#m

+ M3L3 + ML(N — 1)(ML + 1)+ MNL(ML — 1)

ﬁ%)JD:(\I,H[OJ\I,lOJ)—I\I;HlOJr
+[LP+(N=1D@L*+L+1)+ (L —-1)(N+L)

qf’T,(THT,)~'THq,

+ N(N-1D(L+2)+NL-1) ]tinitialize:|~ (33)

| P él%Rm ,DFHDmFL

where fgcym is the number of iterations required by the
ECM algorithm and fipjialize 1S the number of iterations need
for coarse estimation step to obtain the initial estimates of
the CFOs. Similarly, the computational complexity of the
proposed EKF based data detection algorithm is denoted by

M A M A M
Cper = Cl[)E']F+ Cl[)E]T—}- Cl[)E]T + Cl[)ET , where Cl[)E]T and
—— =\ = ==
S—R S—R R—D R-D

C][:)’?;]T denote the number of complex multiplications and

additions used by the detector. Following [35, eqs. (30) and

3], Cl[)ﬂé]T and CI[D?E]T are determined and not presented here
—— ——

S—R S—R
to avoid repetition. C][:)AQ“ and C][:)‘?S]T are determined as
S—— S——
R—D R—D
[M]
Cper
——
R—D

= M|:(M —D[N*BN + L)+ NL|+[ _N_+ 5N
) 16 (19
+ 2N + 2N +N(N?> 4+ 2L — 1)(N + 1))

~—~— ~—~—

(20) (21) smin(15)
+ N2BN + 1)+ N + 4N°
—_— 7T —_

5 lil - Sl
(30) @ =3l By 0P, p T

+ NQ@L-1) Jmer
—_—

Ym :FHI:IRm ,DAm

+ AN+ N’BN+1D+N (34)

2 AH[j—1] A[j—1 2 ~H[j—1

dol=(© Lj ]Q[J ]+%IQIN)*1Q Lj ]f
[A]
CDET
N———
R—D

=M|:(M—1)[N(N—1)(3N+L)+N(L—1)+N]
an
+[ N + N +2N + N
—_ = = =~
(18) (19) (20) (21)
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Fig. 3. Average number of iterations and the computational complexity of proposed algorithms with the comparison with the approach in [5] for phase noise
variance ag = [10_4, 10_5] radz, L =4, M =2 relays, and 16-QAM modulation.

+ N(N = 1)(L+1)+N(L—1)

Smin(ls)
+(N=DIN?+ N+ 4NN - 1)
—_— . —
(30) Q=M kg, pPY T
+ N(L-1) ]l‘DET:|
N—

Ym :FHI:IRm ,DAm

+ 4N*(N — 1)+ (N — 1)(2N?> + N). (35)

J=1lgli=1]

="V g i-Ng

+%IN)’ISAZH[

where fpgr is the number of iterations required by the
proposed data detection algorithm. It can be observed from the
results in Fig. 3-(a) that: (i) at low SNR, i.e., SNR < 20 dB,
on average, the proposed detector converges after fpgr more
than 2 iterations, (ii) the number of iterations decreases to
tecm = tper = 2 at SNR > 20 dB, and (iv) the proposed
ECM algorithm converges to the true estimates when the
CFO estimates are initialized with a step size of 1072, ie.,
finitialize = 107 Using these values for the number of iterations,
we get the computational complexity of the proposed algo-
rithms for multi-relay networks with M = 2 relays as shown in
Fig. 3-(b). The results in Fig. 3-(b) show that (i) at low
SNR, i.e., SNR < 20 dB, the computational complexity
of the proposed algorithms dependent on the variance of
the PHN process, since at low SNR the performance of
the performance of the proposed estimator and detector is
dominated by AWGN and PHN variance, while at moderate-
to-high SNR, i.e., SNR > 20 dB the performance of the system
is limited by residual PHN and CFO, (ii) at moderate-to-high
SNR compared to low SNR, the proposed estimation and data
detection algorithms are computationally more efficient. These
results are anticipated, since the proposed estimation and data
detection algorithms require few iterations at moderate-to-high
SNRs as shown in Fig. 3-(a). In Fig. 3-(c), we compare the
proposed algorithms with the one in [5]. It is worth noting
in [5] performs the estimation and detection using a single
relay. Hence, for fairness, we compare the estimation and
detection by using a single relay, i.e., M = 1, and the
that of [5]. We observe from Fig. 3-(c) that for different
SNRs, the computational complexity of the proposed algo-
rithms outperforms [5], which maybe of practical interest for

multi-relay applications with stringent performance require-
ments.

VII. SIMULATION RESULTS AND DISCUSSIONS

In this section, we present simulation results to evaluate the
performance of the proposed estimation and data detection
algorithms. A multipath Rayleigh fading channel with a delay
of L = 4 taps and an exponentially decaying power delay
profile is assumed between each pair of nodes. A training
symbol size of N = 64 subcarriers is used, where each
subcarrier is modulated using quadrature phase-shift keying
(QPSK) scheme. The Wiener PHN is generated in each node
with different PHN variances, e.g. 052 = [1074, 10~3]rad?.
Note that, 0(52 = 10~* rad?, corresponds to a high phase noise
variance [22]. Since carrier frequency offsets from source
to relays, €s g,, are carried over to the destination, €g g,
and eg, p have the range (—0.25,0.25) in order to limit
the total frequency offset from source to destination, €s p
to the range (—0.5, 0.5). The data symbols are drawn from
normalized 4, 16, or 64 quadrature amplitude modulation
(QAM). The simulation results are averaged over 1 x 10°
Monte Carlo simulation runs. Finally, the mean-square error
(MSE) performance of ECM estimator and the bit error rate
(BER) performance of the overall multi-relay network.

A. Estimation Performance

In this subsection, we compare the performance of the
proposed ECM estimator with the HCRB in Theorem 1 and
the estimation approach based on MMSE-optimal training
sequences in [7]. Fig. 4 plots the HCRB and MSE for
estimating the CIR, PHN, and CFO, respectively, using the
proposed algorithm.

The results lead to the following observations:

1) The HCRB and the proposed estimatorA’s MSE are
dependent on the variance of the PHN process and are lower
for a lower PHN variance;

2) The results in Fig. 4 show that CIRs, CFOs and PHNs
estimation performances suffer from an error floor, which is
directly related to the variance of the PHN process. This
follows from the fact that at low SNR the performance of
the system is dominated by AWGN, while at high SNR the
performance of the proposed estimator is limited by PHN and
the resulting ICI;
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Fig. 4.
with M =2.

3) Fig. 4-(a) shows at different SNRs, the proposed estima-
tor significantly outperforms the estimator in [7]. This result is
anticipated, since the orthogonality of the training sequences
proposed in [7] could not be achieved in the presence of PHN
and CFO. Therefore, the estimation approach in [7] may not
be used in the presence of PHN and CFO;

4) The results in Fig. 4 show that the MSEs of the proposed
estimator are close to their HCRLBs at moderate-to-high
SNRs.

Note that since the PHN vector is initialized with zeros, the
MSE of phase noise estimation of first sample represents the
MSE of channel phase estimation.

B. Impact of PHN on the Cooperative Performance

In the following, we examine the combined estimation and
data detection performance in terms of the BER. The following
system setups are considered for comparison:

(i) Cooperative systems that applied the proposed estimation
and data detection algorithms (labelled as “Proposed Est. and
Data Det.”).

(ii) The data detection based on pilots in [5] and [22]
(labelled as “Data Det. based Pilots [5,22]”).

(iii) As a lower-bound on the BER performance, a sys-
tem assuming perfect channels, PHNs, and CFOs estimation
(labelled “Perf. CIRs, PHNs & CFOs est.”).

Note that the BER performance of proposed algorithm is
compared with that one in [5] and [22] since the detection
approach based on pilots in [5] and [22] could be used to
mitigate the PHNs by estimating the CPE which is similar to
all subcarriers. Moreover, no BER compersion with other basic
relevant works is presented in the paper since the system model
in our paper considers multiple PHN and CFO parameters
estimation and the existing system models only consider a
single PHN and CFO parameter estimation.

Fig. 5 shows the BER performance with M = 2 for PHN
variance, 0(52 [10~%,1077] rad? and 16-QAM modulation.
The following observations can be made from Fig. 5:

1) The BER performance using the proposed algorithm
significantly outperforms the existing data detection based
on pilots in [5] and [22] at different SNRs. This result
is anticipated, since the detection method in [5] and [22]
depends on the pilots, which are effected by the ICI and

(b) MSE of phase noise estimation

20 25 30 35 40 0 5 10 15 20 25 30 35 40
SNR(dB) SNR(dB)

(c) MSE of frequency offset estimation

MSE of CIRs, PHNs, and CFOs estimation for the proposed estimator compared to HCRB for phase noise variance 052 = [107%,1077] rad?

107!

BER

~+0- Data Det. based Pilots [5, 22] ¢=10"
— & — Data Det. based Pilots [5, 22] ¢2=10"
—=o— Proposed Est. and Data Det. (r§=10'4
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SNR(dB)

102 H

1073
40

Fig. 5. BER performance for PHN variance, a(g = [10*4, 10*5] rad? and
16-QAM modulation with M =2.

the interference signals between the antennas. Therefore, the
detection approach in [5] and [22] maybe only used for
cooperative systems with a single relay as in [5] or for multi-
relay systems based on TDMA transmission as in [22]. Thus,
the pilot approach for data detection in [5], [22] may not be
used for the joint estimation and data detection for multi-relay
systems based on SDMA transmission.

2) Compared to an ideal case of perfect CIR, PHN and
CFO estimation, the BER performance using the proposed
algorithms is close to ideal case of perfect CIR, PHN and CFO
estimation when 052 = 1079 rad?. However, at high PHN vari-
ance, i.e., ("62 = 10~% rad?, the BER performance suffer from
an error floor at high SNR. This result is anticipated, since at
high PHN variance, the performance of a cooperative OFDM
system is dominated by PHN, which cannot be completely
eliminated.

C. Impact of Increase Number Relays on Cooperative
Performance

In this subsection, we examine the performance of the
proposed algorithms compared to “Perf. CIRs, PHNs & CFOs
est.” performance with the increase of number of relays and
subcarriers in the multi-relay network. Moreover, we compare
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Fig. 8. BER performance at different number of relays at SNR = 35 dB for
PHN variance, o7 = [1074,107] rad? and 16-QAM modulation.

the performance of multi-relay systems with a single relay
equipped with mutiple antennas (Ng).

Figs. 6, 7, 8, and 9 respectively show (i) the BER per-
formance at different number of relays, M = [1,2,4],
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Fig. 9. BER performance at different number of subcarriers at SNR = 35 dB
for M = 2, PHN variance, o7 = [1074, 1073] rad? and 16-QAM modulation.

(ii) the BER performance of the multi-relay systems and a
single relay equipped with multiple antennas (Ng), (iii) dif-
ferent number of relays, M = [1,2,4, 6], and SNR = 35 dB,
and (iv) different number of subcarriers, N = [64, 128, 256],
and SN R = 35 dB, for PHN variance, 052 =[10%, 1075] rad?
and 16-QAM modulation. The following observations can be
made from Figs. 6, 7, 8, and 9:

1) The results in Figs. 6 and 8 show that at low PHN
variance, i.e., 0(52 = 1075 rad?, the multi-relay systems
using the combination of the proposed estimation and data
detection algorithms outperforms a single relay system. More
importantly, the BER performance improves as the number
of relays increases. For instance, at BER = 1072, the SNR
gain for the multirelay systems is almost 3 dB compared to
the performance of a single relay system. In addition, the
performance of multi-relay is closer to the ideal case of perfect
CIRs, PHNs, and CFOs estimation. For example, in Fig. 6, a
performance gap of 1.6 dB at BER = 1072,

2) In Fig. 6, at high PHN variance, i.e., ("62 = 1074 rad?, the
BER performance degrades with increase of number of relays.
This result is anticipated, since at high PHN variance, the
proposed ECM estimator demonstrate poor performance due
to the considerable residual PHN and CFO estimation error
from source to relays, which is forwarded to the destination.
Therefore, in the presence of high PHN variance, the coopera-
tive system can achieve significant BER performance by com-
bining the proposed estimation and data detection algorithms
and using few relays. However, this approach maintains higher
BER performance at the expense of a loss in the range of
network links which could be enhanced by using multi-relay to
overcome the blockage issues in some communication systems
such as mmWave systems [42]. Therefore, in the presence
of PHN and CFO, the increasing of number of relays could
enhance the network range at the expense of degradation in
the BER performance.

3) We can see from Figs. 6 and 7 that a single relay network
outperforms a multi-relay diversity network in the presence
of strong phase noise variance, which implies that relay
selection may outperform the multi-relay diversity network
in the presence of strong phase noise variance. However, as
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Fig. 10. BER performance for a multi-relay system at different modulations,
4-QAM, 16-QAM, and 64-QAM, PHN variance, ¢ = [107%,1075] rad?
and M =2.

clearly mentioned to motivate the importance of our proposed
algorithm, if a relay is badly blocked due to shadowing, our
distributed system is the best option to achieve the relay
diversity compared to a single relay since the other relays
can still make a link to the receiver. Note that blockage
is not such a major issue in 4G where omni directional
antennas are used for the user and access point terminals.
However, as we migrate to 5G and beyond and use more
directional antennas blockage can more easily happen between
the channel estimation instances.

4) The results in Fig. 8 show that at moderate PHN variance,
ie., 062 = 107 rad®, a multi-relay system has better BER
performance than a single relay system. As per expectation
from general multi-relay system which assumes perfect CFO,
PHN, and CHN estimation, the diversity gain is achieved by
adding relays. Our particular contribution is that even in the
presence of multiple impairments and moderate PHN variance
(107> rad?), the application of our proposed estimation and
detection algorithms succeed to achieve the diversity gain.
However, at high PHN variance, i.e., 0(52 = 107% rad?, the
BER performance deteriorates as we increase the number
of relays. This implies that presence of strong phase noise
hinders the achievement of multi-relay diversity gain. This
result leads to a very important research opening as millimeter
wave communication technology in 5G expects strong phase
noise due to high frequency transmission. Our findings show
that millimeter wave communication cannot easily enjoy the
multi-relay diversity gain unless very sophisticated phase noise
estimation and tracking algorithm is employed.

5) Fig. 9 shows that BER performance deteriorates by
increasing the number of subcarriers due to decrease in the
effective subcarrier spacing.

D. Impact of Modulation on Cooperative Performance

Fig. 10 evaluates the BER performance of the multi-relay
system at different modulations, i.e., 4-QAM, 16-QAM and
64-QAM. The following observations can be made from
Fig. 10:

1) Even for denser constellation, i.e., 64-QAM, the proposed
estimation and data detection algorithms achieve BER perfor-

mance that is closer to the ideal case of perfect CIRs, PHNSs,
and CFOs estimation. For example, as shown in Fig. 10, at
BER of 1072 and a PHN variance of 107 rad? and 64-QAM,
the performance of multi-relay system is close with 2.5 dB to
the ideal case of perfect CIRs, PHNs, and CFOs estimation.

2) The results in Fig. 10 of 64-QAM modulation in the
presence of strong PHN variance of 10~* rad”> show that even
at high SNRs where the channel noise could be neglected,
the overall BER performance of a multi-relay system suffers
from an error floor which is higher than 10~2. This is because
the subcarriers in 64-QAM become closely spaced and more
sensitive to the noise caused by the residual PHN. Meanwhile,
at high PHN, ie., 0} = 1074, the application of 16-QAM
modulation still yield high BER since the BER is affected by
the ICI from the residual PHN which cannot be completely
eliminated.

3) The proposed algorithm achieves an overall BER per-
formance lower than 10~2 at SNR > 20 dB if the modulation
order is reduced to 4-QAM. This is anticipated since 4-QAM
has lower sensitivity to the noise caused by the channel and
ICL

VIII. CONCLUSION

In this paper, we address the joint estimation of unknown
multiple channel, phase noise (PHN), and carrier frequency
offset (CFO) parameters for DF-relaying cooperative OFDM
systems. A new iterative estimator is proposed and found
to be computationally efficient since it estimate the desired
parameters in few iterations. Simulation results show that the
performance of the proposed estimator is close to the derived
HCRB at different signal-to-noise ratios (SNRs). Next, an
iterative algorithm for joint data detection and PHN mitigation
is proposed for the OFDM data symbols. The proposed
algorithm employs an EKF based approach to track the time-
varying PHN parameters throughout the OFDM data symbols.
Numerical results show that the combination of proposed ECM
based estimator and the iterative data detection algorithm can
enhances the performance of cooperative systems to be closer
to the ideal case of perfect CIRs, PHNs and CFOs estimation
in terms of BER. The performance analysis for the multi-relay
OFDM system in the presence of multiple PHN, CFO and
channel estimation is an open future research problem. It is
observed that in the presence of high PHN varaiance, relay
selection scheme may provide better diversity gains. However,
addressing the specific relay selection problem in the presence
of multiple impairments is outside the scope of this paper and
can be considered for future work.

APPENDIX
DERIVATION OF THE HCRB

The hybrid information matrix B can be written as [36, pp.
1-85]

B=Ep+ Ep,

Ep £  E¢[¥Orp,N{hr ), 3{he p}, €rD)]
WO, p, Nihg pl, Sthe pl €r D) £

(A1)

where
with
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[<i>1, s <i>M]H, isan MN x N matrix, (A; =0g p)
out . [}71,...,)7M]H, is an ML x N matrix, A; = N{hgp)) (Ad)
OA; i[71,-- Pm]"s isan ML x N matrix, (A; = S{hg,p}) )
[Bl,. ,BM]H, is an M x N matrix, (A; = €g.p)
Epy Epp, Eps &p,
Zp = B [-ALlog plh, | 2 | ZP1 Zre Era Sn
=P =Py =P §P34
§ Pyy § Py § Py3 § Pyy
Eg [-ASlogp@®)]  Eo|—A)"10gp@)| Eo|-A,™logp®)| Eo[-A5logp®)]
| Eo [~y logp®)| Eo — Ay log p8) | Eg|— Ay log p(0) | Eg [—ASy, log p(6) e
| By —A% 4, log p() | Ep |—ANG logp(®)| Ep|—A3h logp®)| Eg|—A§y logp®)] | (A0
By [-Allogp@)] o |-A™logp®)| Eo|-A"logp@)|  Eo[-Allogp(6)]

Erio g.p,9h.0). 30z pher o [ Ay log p(rifr,p, {hr,p},

Sthg,p}. €r.p)l, Rihr p}, S{hr.p}, €r D] denot-
ing the Fisher’s information matrix (FIM)
and  Ep = Egaheo)dheolero| A} log
p(Or.pl, %hg ), S{hr p}, €r.p)l, €r.p] is the prior

information matrix with p(6r plhg p,€r,p) denoting the
prior distribution of PHN vector given the CIR and CFO.

Thus, we first obtain expressions for matrices Ep and Z p.

A. Computation of Ep = Eg[¥(0r,p, %{hg,p}, S{hg,pl,
€r.p)|

To compute FIM, first, the likelihood function
p(rl0g p, Nthg p}, Sthg p}, €r p) is given by

p(r|0g.p, N{hg p}, S{hg p},€r D)

= Cexp [—zl(r - - u)} , (A2)
O-U)

where C £ (mfl%)*N. Given Og p, hgp, and €rp, T
is a complex Gaussian vector with mean vector u
SM Eg, pPr,.pF"D,Frhg, p and covariance matrix
0'112)11\/. The FIM, \I’(OR,D,m{hR,D},;NS{hR,D},GR,D), will be
M(N + 2L) x M(N + 2L) matrix for joint estimation
of M(N — 1) PHNs parameters 0z p, 2ML channels
parameters R{hg p} and J{hg p} and M CFOs parame-
ters €g p. Using (A.2), the (i, j)th entry of ¥ can be
written as [41]

(A.3)

where @, diag(Eg,, pF" D, FLhg,p)ai, 7,
Er, pPr,pF"D,Frer, B, = ErmpPr,pF'DyuFrhgup,
a; = [O,lei_l,jeng’Df,leN_,‘]T for i 1,...,N — 1,
e = [O1xi—1,1,01x.-117 for I = 1,...,L, Ernp 2
diag ([0, %e(jZWERmD/N), o ,we(ﬂﬂfmw/i\/)ﬂl\’—l)ﬂ),

andm=1,..., M.

Substituting (A.4), as shown at the top of this page, into
(A.5), and calculating the explicit expectation over 6 r_p, the
matrix Zp is obtained as

[x]

D

Q_{’Q_l —-jQfQ, QfQ: QFQs
_ 2190 QfQ:  jQJQ: jQJQs
o2 Q/Q1 —jQYQ: QYQ2 Qfqs ||’
Q¥Qr —-jQYQ: QFfQ: QFQ;
(A.5)
where Q = [®1,...,®y], &, = ®,(2 : N,2 : N),
®, = jdiag(Eg,pF”D,Frhg,p). Q2 = [y1.....¥ul:

Ym = Er, 0F"DuFr, Q2 = [P1, ... Pu]s P = 72 :
N,1:L), Qs = [B1.--. Byl By = ErmpF"DyFrhpup.
Qs ﬂla""ﬂM]» ﬂm = ﬂm(2 N)7 ErmbD £

diag([0, jT”e(jzﬂmeD/N)’ o we(jthmD/N)x(Nfl)]T),
andm=1,..., M.

B. Computation of
Ep £ Eojhgp.ern[— A} 10g pOr pIhR, D, €R.D)IMR. D, €R. D]
The second factor in HIM, defined in (A.1), can be written
as: where p(0) is the prior distribution of 6.
1) Computation of E p, £ Fy [—Az log p(0)]: From [43,
eq. (19)], we obtain the M(N — 1) x M(N — 1) matrix
Eg [—Af log p(8)] as

M —1 1 0 0
. 1 -2 1 0
Zr=—7| 0 0| (D
05

2) Computation of remaining terms in (A.6): Since CFO
is a deterministic parameter and no prior knowledge of h is
= - =T _ = -

assumed, we have Ep, = Ep, = OpN—1)xML>, Bpy =
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=T _ = - - = - =

=Py OM(N—l)XML» =Py = =Pz = =Pz = =P3p —
— -T — -T

OpLxmr, Epy Ep, = Omwv-nxi, Epy Ep, =
—_ =T —_ =T

Oprxm, Epy = Ep, = Epy Ep, = Omrxm, and

Epy =0uxm.

Using the above results, we can evaluate the HIM in (6),
shown at the top of the previous page, since Bj; = Ep,,
Epy, B = Ep,, + Epy, = Ep,,, B3z = Epy; + Epyg
Epy, Bas = Epy + Epy = Epyy, B2 = Bgll = Epp,
Ep, = Epy, Bz = Bﬁ = Ep;+ Ep; = Epy;, Bos
BS% = Epy + Epy = Epyy, B = Bﬁ =Epy+Epy

—_ H r— r— — H
= Digs Boy = B24 = Epy + Epy = EDys and B3y = B43 =

as

o+

EDy + B py = Epy.
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