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High-Rate and Low-Complexity Space-Time Block Codes
for 2 × 2 MIMO Systems

Vida Vakilian, Member, IEEE, and Hani Mehrpouyan, Member, IEEE

Abstract—The main design criteria for space-time block codes
(STBCs) are the code rate, diversity order, coding gain, and
low decoder complexity. In this letter, we propose a full-rate
full-diversity STBC for 2 × 2 multiple-input multiple-output
(MIMO) systems with a substantially lower maximum likelihood
(ML) detection complexity than that of existing schemes. This
makes the implementation of high-performance full-rate codes
feasible for practical systems. Our numerical evaluation shows
that the proposed code achieves significantly lower decoding com-
plexity while maintaining a similar performance compared to that
of existing rate-2 STBCs.

Index Terms—Multiple-input multiple-output (MIMO), space-
time coding, decoding complexity.

I. INTRODUCTION

S PACE-TIME block codes (STBCs) mitigate the effect of

fading in wireless channels by introducing spatial and tem-

poral diversity [1]–[3]. There are numerous studies on design-

ing STBCs for multiple-input multiple-output (MIMO) systems

[4]–[7]. Many of these STBCs suffer from rate loss, e.g. the

Alamouti scheme transmits 1 symbol per channel use which is

only half the maximum rate possible with two transmit anten-

nas. In order to compensate the low transmission rate of the

Alamouti code, a rate-2 STBC referred to as Matrix C was

developed in [8]. The Matrix C code is a threaded algebraic

space-time code [9], which is known as one of the well-

performing STBCs that is already incorporated in the IEEE

802.16e-2005 specifications. Although the Matrix C benefits

from full-diversity and full-rate properties, its detection com-

plexity grows as the fourth power of the signal constellation

size, and this makes it impractical for low-cost wireless user

terminals. In [10], the authors proposed a new high-rate STBC

called maximum transmit diversity (MTD) code that is designed

based on the linear combination of two Alamouti codes. The

MTD code has an ML detection complexity of O(M2). where

M is the cardinality of the signal constellation, and O(·) denotes

the big omicron. Due to the non-orthogonal structure of the

MTD code, its ML detection complexity increases quadratically

with the constellation size. Recently, in [11], the authors pro-

posed a 2 × 2 full-rate and linear-receiver (FRLR) STBC whose

decoding complexity is of order O(M) for the ML decoder.

However, the FRLR code shows a satisfactory performance for
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only BPSK and 4-QAM constellations and does not perform

well for high-order QAM constellations which are essential to

attain high spectral efficiency.

The decoding complexity is very critical for practical

employment of MIMO systems. Therefore, the development

of low complex decoding algorithms while providing optimal

performance is always a necessity for wireless communica-

tion systems. In this letter, we propose a full-diversity full-rate

STBC for a 2 × 2 MIMO system. Due to the orthogonal struc-

ture of the proposed code, the decoding complexity is reduced

to O(M), which has significant impact on the energy con-

sumption of the receiver especially for higher order modulation

schemes. As our numerical evaluation indicate, the proposed

code not only achieve significantly lower decoding complexity

but also provides a similar or better bit-error-rate performance

compared to that of existing rate-2 STBCs.

Notation: Throughout this letter, we use capital, X, and

lower, x, boldface letters, for matrices and vectors, respec-

tively. (·)T , (·)∗, || · ||F , det(·), and Re{·} denote the transpose,

conjugate, Frobenius norm, determinant, and real operators,

respectively.

II. PROPOSED SPACE-TIME BLOCK CODE

We consider a single-user 2 × 2 MIMO system. We construct

every 2 × 2 codeword matrix from four information symbols

{s1, s2, s3, s4} that will be sent during T = 2 time slots from

two antennas. A 2 × 2 block code, which consists of four sym-

bols, is transmitted by two transmit antennas during T = 2 time

slots, i.e.,

X =
√

P

[

c1(1) c2(1)

c1(2) c2(2)

]

=
√

P

[

s1γ1 − s∗
2η1 s3γ2 − s∗

4η2

−s∗
3γ2 + s4η2 s∗

1γ1 − s2η1

]

, (1)

where P is the transmit power per antenna, γi = sin(θi ), ηi =
cos(θi ), for i ∈ {1, 2}. These choices for γi and ηi ensure

that there is no transmit energy increase, i.e., γ 2
i + η2

i = 1. To

simplify the analysis and implementation issues with regard

to the proposed code, we consider only a real-valued γi and

ηi . However, our design procedure can be generalized to a

complex-valued γi and ηi as well.

Here, we present the methodology for selecting the param-

eters θ1 and θ2 to maximize the diversity and coding gains of

the proposed MIMO system. Let us denote two distinct sets

of symbols by {s1, s2, s3, s4} and {u1, u2, u3, u4} and construct

two distinct STBC codewords X and U using (1). Applying the

approach in [12], we find the optimal value for θi by forming

the following optimization problem that maximizes the coding

gain and guarantees full diversity
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{θo
1 , θo

2 } = argmax
θ1,θ2 ∈ [0,π/2]

min
X�=U

|det [(X − U)]|

= argmax
θ1,θ2 ∈ [0,π/2]

min
X�=U

∣

∣

∣
|d1|2γ 2

1 + |d2|2η2
1 + |d3|2γ 2

2

+|d4|2η2
2 − 2Re{d1d2γ1η1} − 2Re{d3d4γ2η2}

∣

∣

∣
, (2)

where dm = sm − um , for m ∈ {1, 2, 3, 4}. Similar to [10], we

introduce the constraint that θ1 + θ2 = π/2. We then define

f = max
θ1

min
X�=U

|det [(X − U)]|

= min
X�=U

max
θ1

∣

∣

∣
(|d1|2 + |d4|2) sin2(θ1)

+ (|d2|2 + |d3|2) cos2(θ1)

− (Re{d1d2} + Re{d3d4}) sin(2θ1)| . (3)

By differentiating (3) with respect to θ1 and setting the result to

zero, the solution for (2) is given by

θo
1 = 1

2
arctan

2(Re{d1d2} + Re{d3d4})
(|d1|2 + |d4|2) − (|d2|2 + |d3|2)

. (4)

By substituting (4) in (3), we get

f = min
d1,d2,d3,d4

∣

∣

∣
(|d1|2 + |d4|2) sin2(θo

1 )

+ (|d2|2 + |d3|2) cos2(θo
1 )

− (Re{d1d2} + Re{d3d4}) sin(2θo
1 )

∣

∣ . (5)

Remark 1: Minimizing (5) with respect to dm , for m ∈
{1, 2, 3, 4}, one can find the optimum rotation angle, θo

1 , that

maximizes the coding gain. Note that this optimization problem

requires an exhaustive search over M8 possible constellation

points and can be carried out once offline and not in real-time.

The optimal value for θo
1 is 63.4◦ for the 4-QAM constellation

and 76◦ for the 16-QAM constellation.

III. REDUCED ML DECODING METHOD

In this section, we formulate the ML decoding problem for

the proposed code. The received signal at the i-th antenna, yi �

[yi (1), yi (2)]T , for i = 1, 2, can be written as

yi =
√

P

[

s1γ1 − s∗
2η1 s3γ2 − s∗

4η2

−s∗
3γ2 + s4η2 s∗

1γ1 − s2η1

]

hi + zi , (6)

where hi � [hi,1, hi,2]T is the channel vector, and zi �

[zi (1), zi (2)]T represents the noise vector with independent

identically distributed (i.i.d) elements from CN(0, N0). The

decoder in Fig. 1, receives the signals y1 and y2 during T = 2

time slots as shown in (6). Assuming perfect CSI at the receiver,

the joint ML decoder is given by

(ŝ1, ŝ2, ŝ3, ŝ4) = argmin
s1,s2,s3,s4

2
∑

i=1

||yi − Xhi ||2F . (7)

The ML decoder in (7) requires an exhaustive search over

s1, s2, s3, s4 and consequently has a computational complex-

ity of order O(M4). Next, we show that the structure of the

proposed code allows us to reduce the ML detection complexity

to O(M2).

Fig. 1. Block diagram of 2 × 2 MIMO using the proposed low-complexity

detection technique.

The received signal in (6) can be rewritten as follows:

[

yi (1)

y∗
i (2)

]

=
√

P

[

hi,1 hi,2

h∗
i,2 −h∗

i,1

] [

s1γ1 − s∗
2η1

s3γ2 − s∗
4η2

]

+
[

zi (1)

z∗
i (2)

]

.

(8)

Note that the two columns of the channel matrix in (8) are

orthogonal. By using this orthogonality property, we are able

to decouple the symbols transmitted from different antennas.

To do so, let us define

[

ai (1)

ai (2)

]

�

[

h∗
i,1 hi,2

h∗
i,2 −hi,1

] [

yi (1)

y∗
i (2)

]

,

�
√

P||hi ||2
[

s1γ1 − s∗
2η1

s3γ2 − s∗
4η2

]

+
[

wi (1)

wi (2)

]

, (9)

where wi (1) � h∗
i,1z1(1) + hi,2z∗

1(2) and wi (2) � h∗
i,2z1(1) −

hi,1z∗
1(2). Then, the sufficient statistics of (s1γ1 − s∗

2η1) is

given by

r1 = 1√
4

2
∑

i=1

ai (1) =
√

P

4
||H||2F (s1γ1 − s∗

2η1) + z̃1 (10)

where H � [h1, h2] is the channel matrix and z̃1 �
(

h∗
1,1z1(1) + h1,2z∗

1(2) + h∗
2,1z2(1) + h2,2z∗

2(2)

)

/
√

4.

Similarly, the sufficient statistics of (s3γ2 − s∗
4η2) is

r2 = 1√
4

2
∑

i=1

ai (2) =
√

P

4
||H||2F (s3γ2 − s∗

4η2) + z̃2 (11)

where z̃2 �

(

h∗
1,2z1(1) − h1,1z∗

1(2) + h∗
2,2z2(1) − h2,1z∗

2(2)

)

/
√

4. It can be seen from (10) and (11) that the signals r1 and

r2 are either dependent on (s1, s2) or (s3, s4), which reduces

the ML decoding complexity to O(M2). Moreover, as it can be

seen from (10) and (11), the transmit symbols are multiplied

by a positive coefficient ||H||2F , which enables us to use a

low complexity threshold comparator in combination with

conditional ML decoding [5] to further reduce the decoding

complexity. To apply the conditional ML decoding, let us

compute the following intermediate signals for a given value of

the symbol s2i , e.g. sm
2i , as

r̃m
i = ri −

√

P

4
||H||2F (−(sm

2i )
∗ηi ), for i = 1, 2 (12)

where m is one of the M constellation point. Signals r̃1 and r̃2

can be used as inputs to a low complexity threshold compara-

tor to get the ML estimate of the symbol s1 conditional on s2

and the symbol s3 conditional on s4, respectively. As a result,
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Algorithm 1. Conditional ML Decoding

for i = 1 to 2 do

for m = 1 to M-cardinality of signal constellation-do

Step 1: Select sm
2i from the signal constellation set.

Step 2: Compute r̃m
i via (12)

Step 3: Supply r̃m
i to a monotone detector to obtain

the estimate of s2i−1 conditional on sm
2i , denoted by

s M L
2i−1|sm

2i
.

Step 4: Compute the cost function in (14) for s M L
2i−1|sm

2i

and sm
2i .

end for

Step 5: s M L
2i−1|sm

2i
and sm

2i , m ∈ [1 · · · M], that correspond

to the minimum cost function value are estimates of s2i−1

and s2i .

end for

instead of minimizing the cost function in (7) over all possible

pairs (s2i−1, s2i ), for i = 1, 2, we first obtain the estimate of

s2i−1 using a threshold comparator or look up table, denoted by

s M L
2i−1|sm

2
, and then compute the cost function for (s M L

2i−1|sm
2i
, sm

2i ),

for m = 1, 2, · · · , M . The optimal solution can be obtained as

ŝ2i = argmin
m

f
(

s M L
2i−1|sm

2i
, sm

2i

)

, for i = 1, 2 (13)

where

f
(

s M L
2i−1|sm

2i
, sm

2i

)

=
∣

∣

∣

∣

∣

ri −
√

P

4
||H||2F

(

s M L
2i−1|sm

2i
γi −

(

sm
2i

)∗
ηi

)

∣

∣

∣

∣

∣

2

.

(14)

Algorithm 1 summarizes the conditional ML approach.

To summarize, we reduced the detection complexity to

O(M2) since the search needs to be carried out over two

symbols simultaneously. Moreover, the application of the con-

ditional ML further reduces the complexity of the detector for

the proposed code1. More specifically, if we determine the

ML detection complexity for the proposed code, which uses

conditional ML, we note that 39M or O(M) arithmetic opera-

tions are needed (26M multiplications and 13M additions). In

comparison, the MTD approach in [10] already uses the condi-

tional ML decoding to reach a decoding complexity of O(M2).

Moreover, the Matrix C approach in [8] requires searching

simultaneously for four symbols and cannot take advantage

of the conditional ML, since it requires the application of a

monotone receiver in both the in-phase and quadrature paths.

As such, the Matrix C approach has an overall complexity of

O(M4). Table I summarizes the rate, diversity, and complexity

comparison.

IV. SIMULATION RESULTS

Here, we present simulations to demonstrate the performance

of the proposed STBC and compare it to the Matrix C [8],

MTD [10], Ren et al. [13], FRLR [11], and Alamouti codes [1].

In order to simulate a wireless channel with different degrees

1Note that application of conditional ML does not impact the system

performance.

TABLE I

RATE AND DECODING COMPLEXITY COMPARISON

Fig. 2. BER performance of the proposed code with spectral efficiency of 4 and

8 bpcu.

of scattering richness, the channel response is modeled as a

sum of line-of-sight (LoS) and non-line-of-sight (NLoS) com-

ponents. For example, in a purely scattering environment, the

LoS component vanishes and only NLoS component constitutes

the entire channel response. The channel coefficient between

transmit antenna i and receive antenna j is given [15]

hi, j =
√

K ( fc)

s

(

d0

d

)γ
(

√

K R

K R + 1
hL

i, j +
√

1

K R + 1
hN

i, j

)

,

where

• K ( fc) � ( λ
4πd0

)2, λ = c
fc

is the wavelength, c is the

speed of light, fc is the carrier frequency, d0 is the ref-

erence distance, d is the distance between transmitter and

receiver, and γ is the path loss exponent.

• s is a log-normally distributed random variable with

mean µs and standard deviation σs which models the

shadowing effect.

K R is the Rician factor expressing the ratio of powers of

the free-space signal and the scattered waves.

• hN
i, j and hL

i, j denote random and the deterministic compo-

nents, respectively. The former accounts for the scattered

signals with its entries being modeled as an independent

and identically distributed (i.i.d) complex Gaussian ran-

dom variable with zero mean and unit variance. The latter,

hL
i, j , models the LoS component.

In all experiments, we consider a 2 × 2 MIMO structure. The

distance between transmitter and receiver is set to 25 meters,

while the carrier frequency is set to fc = 60 GHz, path loss

exponent is set to γ = 4, and the shadowing effect parame-

ter is assumed to have mean µs = 0 and variance σs = 9 dB

[15]. The results are given in terms of bit error rate (BER) ver-

sus Es/N0, where Es is the symbol energy and N0 is the noise

power spectral density.
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Fig. 3. BER performance of the proposed code with spectral efficiency of 4, 8

and 12 bpcu.

Fig. 4. BER performance of the proposed code with spectral efficiency of 4

bpcu in Rayleigh fading channels.

Fig. 2 illustrates the BER performance of the proposed code

in comparison with the performance of the Alamouti, Matrix C,

Ren et al. and MTD schemes with K-factor equal to 5 dB for

spectral efficiency of 4 and 8 bits per channel use (bpcu)2. As

it can be seen from this figure, the performance of the proposed

code is very close to that of Ren et al. and Matrix C while out-

performing the MTD approach. This performance is achieved

with a significantly lower ML detection complexity compared

to MTD, Ren et al. and Matrix C.

Fig. 3 compares the BER performance of the proposed code

with the FRLR code [12]. As shown in this figure, the pro-

posed code achieves the same performance as the FRLR code

for QPSK modulation. However, for higher order modulation

like 16-QAM or 256-QAM, the proposed coding performs sig-

nificantly better than the FRLR. In particular, at a bit error

rate of 10−1, the proposed code outperforms the FRLR [12]

by nearly 5 dB when the bandwidth efficiency is 8 bpcu. The

FRLR code suffers from the lack of the non-vanishing deter-

minant property that is a key parameter in designing a full-rate

STBC across QAM constellation. This performance improve-

ment demonstrates the superiority of our proposed scheme for

high-order QAM constellations which are essential to achieve

high spectral efficiency.

Fig. 4 compares the BER performance of the proposed code

with the FRLR [11], MTD [10], and the Golden code using

the ML [4] and near-ML [14] decoding schemes. As it can be

2For 4 bpcu case, we use 16-QAM for Alamouti and QPSK for the rest of

the codes. For 8 bpcu case, we use 256-QAM for Alamouti and 16-QAM for

the rest of the codes.

seen from this figure, the proposed coding scheme has marginal

performance loss compared to the Golden code. Since the

decoding complexity order of Golden code with ML decoder

is O(M4) and with near-ML decoder is O(M2) and our code is

O(M), this performance loss can be viewed as a small penalty

to be paid for the complexity reduction.

V. CONCLUSION

We proposed a full-rate full-diversity STBC for 2 × 2 MIMO

systems. Due to the structure of the proposed code, we reduce

the ML decoding complexity to O(M), which has significant

impact on the the delay and energy consumption of the receiver

especially for higher order modulations. Our simulations indi-

cate that the proposed scheme outperforms FRLR [11], and

maintain almost a similar performance as that of Ren et al. [13],

Matrix C [8] and MTD [10], which have a decoding complex-

ity of O(M2), O(M4) and O(M2), respectively. Future research

directions can be defined as the extension of the proposed code

for more than two antennas and its analytical evaluation.

REFERENCES

[1] S. M. Alamouti, “A simple transmit diversity technique for wireless com-
munications,” IEEE J. Sel. Areas Commun., vol. 16, no. 8, pp. 1451–1458,
Aug. 1998.

[2] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-time block
codes from orthogonal designs,” IEEE Trans. Inf. Theory, vol. 45, no. 5,
pp. 1456–1467, Jul. 1999.

[3] H. Jafarkhani, “A quasi-orthogonal space-time block code,” IEEE Trans.

Commun., vol. 49, no. 1, pp. 1–4, Jan. 2001.
[4] J.-C. Belfiore, G. Rekaya, and E. Viterbo, “The golden code: A 2 x 2 full-

rate space-time code with non-vanishing determinants,” IEEE Trans. Inf.

Theory, vol. 51, no. 4, pp. 1432–1436, Apr. 2005.
[5] S. Sezginer and H. Sari, “Full-rate full-diversity 2 x 2 space-time codes

of reduced decoder complexity,” IEEE Commun. Lett., vol. 11, no. 12,
pp. 973–975, Dec. 2007.

[6] J. Paredes, A. B. Gershman, and M. Gharavi-Alkhansari, “A 2× 2 space-
time code with non-vanishing determinants and fast maximum likelihood
decoding,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process.

(ICASSP), Apr. 2007, vol. 2, pp. II-877–II-880.
[7] V. Abbasi, M. G. Shayesteh, and M. Ahmadi, “An efficient space time

block code for LTE-A system,” IEEE Signal Process. Lett., vol. 21,
no. 12, pp. 1526–1530, Dec. 2014.

[8] IEEE Standard for Local and Metropolitan Area Networks Part 16: Air
Interface for Fixed and Mobile Broadband Wireless Access Systems
Amendment 2: Physical and Medium Access Control Layers for
Combined Fixed and Mobile Operation in Licensed Bands, IEEE
802.16e-2005, Feb. 2006.

[9] M. O. Damen, H.El Gamal, and N. C. Beaulieu, “Linear threaded alge-
braic space-time constellations,” IEEE Trans. Inf. Theory, vol. 49, no. 10,
pp. 2372–2388, Oct. 2003.

[10] P. Rabiei, N. Al-Dhahir, and R. Calderbank, “New rate-2 STBC design
for 2 TX with reduced-complexity maximum likelihood decoding,” IEEE

Trans. Wireless Commun., vol. 8, no. 4, pp. 1803–1813, Apr. 2009.
[11] S. Bidaki, S. Talebi, and M. Shahabinejad, “A full-rate full-diversity 2x2

space-time block code with linear complexity for the maximum likeli-
hood receiver,” IEEE Commun. Lett., vol. 15, no. 8, pp. 842–844, Aug.
2011.

[12] H. Jafarkhani, Space-Time Coding: Theory and Practice. Cambridge,
U.K.: Cambridge Univ. Press, 2005.

[13] T. P. Ren, Y. L. Guan, C. Yuen, Y. Zhou, and E. Y. Zhang, “Optimization
of fast-decodable full-rate STBC with non-vanishing determinants,”
IEEE Trans. Commun., vol. 59, no. 8, pp. 2063–2069, Aug. 2011.

[14] S. Kundu, S. Chamadia, D. A. Pados, and S. N. Batalama, “Fastest-known
near-ML decoding of golden codes,” in Proc. IEEE Int. Workshop Signal

Process. Adv. Wireless Commun. (SPAWC), Toronto, ON, Canada, Jun.
2014 pp. 209–213.

[15] T. S. Rappaport, R. W. Heath, R. C. Daniels, and N. Murdock, Millimeter-

Wave Wireless Communications. Englewood Cliffs, NJ, USA: Prentice-
Hall, 2014.


