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High-Rate and Low-Complexity Space-Time Block Codes
for 2 x 2 MIMO Systems

Vida Vakilian, Member, IEEE, and Hani Mehrpouyan, Member, IEEE

Abstract—The main design criteria for space-time block codes
(STBCs) are the code rate, diversity order, coding gain, and
low decoder complexity. In this letter, we propose a full-rate
full-diversity STBC for 2 x 2 multiple-input multiple-output
(MIMO) systems with a substantially lower maximum likelihood
(ML) detection complexity than that of existing schemes. This
makes the implementation of high-performance full-rate codes
feasible for practical systems. Our numerical evaluation shows
that the proposed code achieves significantly lower decoding com-
plexity while maintaining a similar performance compared to that
of existing rate-2 STBCs.

Index Terms—Multiple-input multiple-output (MIMO), space-
time coding, decoding complexity.

I. INTRODUCTION

PACE-TIME block codes (STBCs) mitigate the effect of

fading in wireless channels by introducing spatial and tem-
poral diversity [1]-[3]. There are numerous studies on design-
ing STBCs for multiple-input multiple-output (MIMO) systems
[4]-[7]. Many of these STBCs suffer from rate loss, e.g. the
Alamouti scheme transmits 1 symbol per channel use which is
only half the maximum rate possible with two transmit anten-
nas. In order to compensate the low transmission rate of the
Alamouti code, a rate-2 STBC referred to as Matrix C was
developed in [8]. The Matrix C code is a threaded algebraic
space-time code [9], which is known as one of the well-
performing STBCs that is already incorporated in the IEEE
802.16e-2005 specifications. Although the Matrix C benefits
from full-diversity and full-rate properties, its detection com-
plexity grows as the fourth power of the signal constellation
size, and this makes it impractical for low-cost wireless user
terminals. In [10], the authors proposed a new high-rate STBC
called maximum transmit diversity (MTD) code that is designed
based on the linear combination of two Alamouti codes. The
MTD code has an ML detection complexity of O(M?). where
M is the cardinality of the signal constellation, and O(-) denotes
the big omicron. Due to the non-orthogonal structure of the
MTD code, its ML detection complexity increases quadratically
with the constellation size. Recently, in [11], the authors pro-
posed a2 x 2 full-rate and linear-receiver (FRLR) STBC whose
decoding complexity is of order O(M) for the ML decoder.
However, the FRLR code shows a satisfactory performance for
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only BPSK and 4-QAM constellations and does not perform
well for high-order QAM constellations which are essential to
attain high spectral efficiency.

The decoding complexity is very critical for practical
employment of MIMO systems. Therefore, the development
of low complex decoding algorithms while providing optimal
performance is always a necessity for wireless communica-
tion systems. In this letter, we propose a full-diversity full-rate
STBC for a 2 x 2 MIMO system. Due to the orthogonal struc-
ture of the proposed code, the decoding complexity is reduced
to O(M), which has significant impact on the energy con-
sumption of the receiver especially for higher order modulation
schemes. As our numerical evaluation indicate, the proposed
code not only achieve significantly lower decoding complexity
but also provides a similar or better bit-error-rate performance
compared to that of existing rate-2 STBCs.

Notation: Throughout this letter, we use capital, X, and
lower, x, boldface letters, for matrices and vectors, respec-
tively. ()7, ()%, || - ||F, det(-), and Re{-} denote the transpose,
conjugate, Frobenius norm, determinant, and real operators,
respectively.

II. PROPOSED SPACE-TIME BLOCK CODE

We consider a single-user 2 x 2 MIMO system. We construct
every 2 x 2 codeword matrix from four information symbols
{s1, 52, 53, s4} that will be sent during 7 = 2 time slots from
two antennas. A 2 x 2 block code, which consists of four sym-
bols, is transmitted by two transmit antennas during 7 = 2 time
slots, i.e.,

sl e
X= ﬁ[q(z) 02(2)]
_ ﬁ[

SIYL— S3M1 S3Y2 — Sy )
—s3Y2 +sam2 s{yr —san |’

where P is the transmit power per antenna, y; = sin(6;), n; =
cos(6;), for i € {1,2}. These choices for y; and n; ensure
that there is no transmit energy increase, i.e., yl.z + 771'2 =1.To
simplify the analysis and implementation issues with regard
to the proposed code, we consider only a real-valued y; and
n;. However, our design procedure can be generalized to a
complex-valued y; and n; as well.

Here, we present the methodology for selecting the param-
eters 1 and 6, to maximize the diversity and coding gains of
the proposed MIMO system. Let us denote two distinct sets
of symbols by {s1, 52, 53, 54} and {u1, ua, usz, us} and construct
two distinct STBC codewords X and U using (1). Applying the
approach in [12], we find the optimal value for 8; by forming
the following optimization problem that maximizes the coding
gain and guarantees full diversity
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{67,609} = argmax min |det [(X — U)]|
01,0, €[0,7/2] X#U
= argmax min |d1|2y12 + Idzlzn% + |d3|2y22

01.6, €[0,7/2] X#U
+1d4)*n} — 2Re{diday1m1} — 2Rel{dsdayama}|,  (2)

where d,;, = s, — u,,, form € {1, 2, 3, 4}. Similar to [10], we
introduce the constraint that 0; 4+ 6, = /2. We then define

= in |det[(X — U
f ma?xgigle[( )|

= min max |(|d1|* + |d4|?) sin®(6))
X£U 6
+ (|daf? + |d3|) cos® (61)
— (Re{dida} + Re{dsda}) sin(20)] . 3)
By differentiating (3) with respect to 61 and setting the result to
zero, the solution for (2) is given by
1 2(Re{dd Re{dsd.
0y = —arctan 2( et 122}+ 6{23 4D 5 “)
2 (Id11* + 1dal”) — (Id2|* + |d3|%)

By substituting (4) in (3), we get
f =

min
dy,da,d3,dy

+ (lda|* + |d3|*) cos*(67)
— (Re{did>} + Re{dsds}) sin(267)] . )

(Id11* + |da]?) sin*(67)

Remark 1: Minimizing (5) with respect to d,,, for m €
{1,2,3,4}, one can find the optimum rotation angle, 67, that
maximizes the coding gain. Note that this optimization problem
requires an exhaustive search over M3 possible constellation
points and can be carried out once offline and not in real-time.
The optimal value for 07 is 63.4° for the 4-QAM constellation
and 76° for the 16-QAM constellation.

III. REDUCED ML DECODING METHOD

In this section, we formulate the ML decoding problem for
the proposed code. The received signal at the i-th antenna, y; =

[y; (1), yi(2)]7, fori = 1, 2, can be written as

yi:ﬁ[

SIYL=S301 $372 = sy |y
P+ 1z, 6
—siy2tsam sivi—som | ©)

where h; £ [hi1, h,‘,z]T is the channel vector, and z; £
[zi (1), zi(2)]" represents the noise vector with independent
identically distributed (i.i.d) elements from CN(0, Ny). The
decoder in Fig. 1, receives the signals y; and y, during 7 = 2
time slots as shown in (6). Assuming perfect CSI at the receiver,
the joint ML decoder is given by

2
(31,82, 83, 84) = argmin Y |ly; = Xhill7. ()

51.52,83.84 )

The ML decoder in (7) requires an exhaustive search over
S1, 82, 53, 84 and consequently has a computational complex-
ity of order O(M*%). Next, we show that the structure of the
proposed code allows us to reduce the ML detection complexity
to O(M?).
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Fig. 1. Block diagram of 2 x 2 MIMO using the proposed low-complexity
detection technique.

The received signal in (6) can be rewritten as follows:

yih) ] _ hix hip [ sy — s;“m} [Zi(l)]
|:yz'*(2)] B ﬁ[h;k,z _h;‘,1:| [537/2 —S;m - 7@ ]
(3

Note that the two columns of the channel matrix in (8) are
orthogonal. By using this orthogonality property, we are able
to decouple the symbols transmitted from different antennas.
To do so, let us define

[aim] a [h?‘,l hi Hy,-(n]
ai2) |~ Lk, —hia [Lyi@ ]

Aﬁ'lhi||2|:Slyl_S;nli|+|:wi(l)i|y (9)

$3Y2 — 8,1 w; (2)

where w; (1) = hiyzi(1) + hi2z7(2) and w;(2) £ hiyzi(1) —
hi,1z}(2). Then, the sufficient statistics of (s1y; —s3n1) is
given by

2
1 P
r=—= Y a()=\/<lH}En —ssn) +Z (10)
\/Z i=1 4

where H £ [hi,hy] is the channel matrix and Z; £
(W 121D + 1227 @) + 13 22(D) + 2075 2) ) VA
Similarly, the sufficient statistics of (s3y2 — s;12) is

2
1 P -
n=— > ai2) = ZIHIEGsy —sim) + 2 (1)
4 i=1

where 7, £ (hT,zZl(l) —h1,121(2) + h3 ,z2(1) — hz,lZﬁ(Z)) /

V4. Tt can be seen from (10) and (11) that the signals r and
ro are either dependent on (s, s2) or (s3,s4), which reduces
the ML decoding complexity to ©O(M?). Moreover, as it can be
seen from (10) and (11), the transmit symbols are multiplied
by a positive coefficient [|H||2, which enables us to use a
low complexity threshold comparator in combination with
conditional ML decoding [5] to further reduce the decoding
complexity. To apply the conditional ML decoding, let us
compute the following intermediate signals for a given value of
the symbol so;, e.g. sg’l'., as

5 P
= — \/Z||H||2F<—<s3}>*n,~), for

where m is one of the M constellation point. Signals 7 and 7
can be used as inputs to a low complexity threshold compara-
tor to get the ML estimate of the symbol s; conditional on s2
and the symbol s3 conditional on s4, respectively. As a result,

i=1,2 (12)
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Algorithm 1. Conditional ML Decoding

fori =1to2do
for m = 1 to M-cardinality of signal constellation-do
Step 1: Select s5; from the signal constellation set.
Step 2: Compute 7} via (12)
Step 3: Supply 7" to a monotone detector to obtain
the estimate of sp;_; conditional on S21’ denoted by

s2i7] |z
Step 4: Compute the cost function in (14) for sé‘;’ fl | st
m
and 57
end for
Step 5: Szl—1|vm and s%;, m € [1--- M], that correspond
to the minimum cost function value are estimates of sy; |
and s»;.
end for

instead of minimizing the cost function in (7) over all possible
pairs (s2;—1, 52i), for i = 1,2, we first obtain the estimate of
s2;—1 using a threshold comparator or look up table, denoted by
sé‘;’ f] |s»2n, and then compute the cost function for (sé‘f _Ll |S5',’- , sg’}),

form =1,2,---, M. The optimal solution can be obtained as
foi = argmin f <s21_1|s '"), for i=1,2 (13)
where
B 2
F (801 s3) = fre = IR (s8E0gvs — (530) )
(14)

Algorithm 1 summarizes the conditional ML approach.

To summarize, we reduced the detection complexity to
O(M?) since the search needs to be carried out over two
symbols simultaneously. Moreover, the application of the con-
ditional ML further reduces the complexity of the detector for
the proposed code!. More specifically, if we determine the
ML detection complexity for the proposed code, which uses
conditional ML, we note that 39M or O(M) arithmetic opera-
tions are needed (26 M multiplications and 13M additions). In
comparison, the MTD approach in [10] already uses the condi-
tional ML decoding to reach a decoding complexity of O(M?).
Moreover, the Matrix C approach in [8] requires searching
simultaneously for four symbols and cannot take advantage
of the conditional ML, since it requires the application of a
monotone receiver in both the in-phase and quadrature paths.
As such, the Matrix C approach has an overall complexity of
O(M*). Table I summarizes the rate, diversity, and complexity
comparison.

IV. SIMULATION RESULTS

Here, we present simulations to demonstrate the performance
of the proposed STBC and compare it to the Matrix C [§],
MTD [10], Ren et al. [13], FRLR [11], and Alamouti codes [1].
In order to simulate a wireless channel with different degrees

INote that application of conditional ML does not impact the system
performance.
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TABLE 1
RATE AND DECODING COMPLEXITY COMPARISON

Scheme Rate | Decoding complexity

Proposed Code 2 O(M)

MTD [10] 2 O(M?)
FRLR [11] 2 O(M)

Ren et al. [13] 2 0(M?)

Matrix C [8] 2 oM

Golden (ML) [4] 2 oM

Golden (near-ML) [14] || 2 O(M?)

Fig. 2. BER performance of the proposed code with spectral efficiency of 4 and
8 bpcu.

of scattering richness, the channel response is modeled as a
sum of line-of-sight (LoS) and non-line-of-sight (NLoS) com-
ponents. For example, in a purely scattering environment, the
LoS component vanishes and only NLoS component constitutes
the entire channel response. The channel coefficient between
transmit antenna i and receive antenna j is given [15]

Kr |

K(fo) (do)” 1w
hi = _— ——  hE. —h ],
o \/ s <d> Ket 1o T Kg 1

where

° K(fc) = (47”10)2 A= fi is the wavelength, ¢ is the
speed of light, f, is the carrier frequency, dy is the ref-
erence distance, d is the distance between transmitter and
receiver, and y is the path loss exponent.

e 5 is a log-normally distributed random variable with
mean iy and standard deviation o; which models the
shadowing effect.

K is the Rician factor expressing the ratio of powers of
the free-space signal and the scattered waves.

° hN and hL] denote random and the deterministic compo-
nents respectively. The former accounts for the scattered
signals with its entries being modeled as an independent
and identically distributed (i.i.d) complex Gaussian ran-
dom variable with zero mean and unit variance. The latter,
hL models the LoS component.

In all expenments we consider a 2 x 2 MIMO structure. The
distance between transmitter and receiver is set to 25 meters,
while the carrier frequency is set to f. = 60 GHz, path loss
exponent is set to y =4, and the shadowing effect parame-
ter is assumed to have mean g = 0 and variance oy =9 dB
[15]. The results are given in terms of bit error rate (BER) ver-
sus E /Ny, where Ej is the symbol energy and Nj is the noise
power spectral density.
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Fig. 3. BER performance of the proposed code with spectral efficiency of 4, 8
and 12 bpcu.

|
-5 0 5 10 15 20 25
B./No (dB)

Fig. 4. BER performance of the proposed code with spectral efficiency of 4
bpcu in Rayleigh fading channels.

Fig. 2 illustrates the BER performance of the proposed code
in comparison with the performance of the Alamouti, Matrix C,
Ren et al. and MTD schemes with K-factor equal to 5 dB for
spectral efficiency of 4 and 8 bits per channel use (bpcu)?. As
it can be seen from this figure, the performance of the proposed
code is very close to that of Ren et al. and Matrix C while out-
performing the MTD approach. This performance is achieved
with a significantly lower ML detection complexity compared
to MTD, Ren et al. and Matrix C.

Fig. 3 compares the BER performance of the proposed code
with the FRLR code [12]. As shown in this figure, the pro-
posed code achieves the same performance as the FRLR code
for QPSK modulation. However, for higher order modulation
like 16-QAM or 256-QAM, the proposed coding performs sig-
nificantly better than the FRLR. In particular, at a bit error
rate of 10~!, the proposed code outperforms the FRLR [12]
by nearly 5 dB when the bandwidth efficiency is 8 bpcu. The
FRLR code suffers from the lack of the non-vanishing deter-
minant property that is a key parameter in designing a full-rate
STBC across QAM constellation. This performance improve-
ment demonstrates the superiority of our proposed scheme for
high-order QAM constellations which are essential to achieve
high spectral efficiency.

Fig. 4 compares the BER performance of the proposed code
with the FRLR [11], MTD [10], and the Golden code using
the ML [4] and near-ML [14] decoding schemes. As it can be

2For 4 bpcu case, we use 16-QAM for Alamouti and QPSK for the rest of
the codes. For 8 bpcu case, we use 256-QAM for Alamouti and 16-QAM for
the rest of the codes.
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seen from this figure, the proposed coding scheme has marginal
performance loss compared to the Golden code. Since the
decoding complexity order of Golden code with ML decoder
is O(M*) and with near-ML decoder is O(M?2) and our code is
O(M), this performance loss can be viewed as a small penalty
to be paid for the complexity reduction.

V. CONCLUSION

We proposed a full-rate full-diversity STBC for 2 x 2 MIMO
systems. Due to the structure of the proposed code, we reduce
the ML decoding complexity to O(M), which has significant
impact on the the delay and energy consumption of the receiver
especially for higher order modulations. Our simulations indi-
cate that the proposed scheme outperforms FRLR [11], and
maintain almost a similar performance as that of Ren ez al. [13],
Matrix C [8] and MTD [10], which have a decoding complex-
ity of O(M 2y, O(M*) and O(M?), respectively. Future research
directions can be defined as the extension of the proposed code
for more than two antennas and its analytical evaluation.
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