
Amulet: An Energy-Efficient, Multi-Application
Wearable Platform

Josiah Hester*, Travis Peters†, Tianlong Yun†, Ronald Peterson†, Joseph Skinner†,
Bhargav Golla*, Kevin Storer*, Steven Hearndon*, Kevin Freeman*,

Sarah Lord†, Ryan Halter†, David Kotz†, Jacob Sorber*
*Clemson University and †Dartmouth College

ABSTRACT
Wearable technology enables a range of exciting new applica-
tions in health, commerce, and beyond. For many important
applications, wearables must have battery life measured in
weeks or months, not hours and days as in most current de-
vices. Our vision of wearable platforms aims for long battery
life but with the flexibility and security to support multiple
applications. To achieve long battery life with a workload
comprising apps from multiple developers, these platforms
must have robust mechanisms for app isolation and developer
tools for optimizing resource usage.

We introduce the Amulet Platform for constrained wear-
able devices, which includes an ultra-low-power hardware
architecture and a companion software framework, including
a highly efficient event-driven programming model, low-power
operating system, and developer tools for profiling ultra-low-
power applications at compile time. We present the design
and evaluation of our prototype Amulet hardware and soft-
ware, and show how the framework enables developers to
write energy-efficient applications. Our prototype has battery
lifetime lasting weeks or even months, depending on the ap-
plication, and our interactive resource-profiling tool predicts
battery lifetime within 6–10% of the measured lifetime.

CCS Concepts
•Computer systems organization → Architectures;
•Human-centered computing → Ubiquitous and mobile
computing systems and tools; Interaction paradigms;

Keywords
Wearables, Mobile health, Energy, Low power

1. INTRODUCTION
Wearable wristbands are increasingly popular devices for

health and fitness sensing, and the increasing variety of
applications is driving the market from single-function devices
(like the Fitbit Flex) toward multi-application platforms (like
the Apple Watch or Pebble Time).
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SenSys ’16, November 14 - 16, 2016, Stanford, CA, USA
© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4263-6/16/11. . . $15.00

DOI: http://dx.doi.org/10.1145/2994551.2994554

Figure 1: Perspective and interior views of our open-
hardware wearable device, part of the open-source
Amulet Platform. The platform supports develop-
ment of energy-efficient, body-area-network sensing
applications on multi-application wearable devices.

These devices enable new sensing paradigms; they are worn
continuously, they can interact through a body-area network
with computers, smart phones, and other wearables, and they
can provide at-a-glance information to the wearer. Some
existing devices are flexible and full-featured, with supportive
development environments, but have inadequate battery life
(about a day). Most others are single-purpose devices with
better battery life that users cannot easily reprogram or
customize for different applications and conditions.

Although the line between “smartband” and “smartwatch”
products is blurring, we think of the former as having great
battery life but limited flexibility, and the latter as hav-
ing programmability but limited battery life. Battery life
is a critical feature for mobile and wearable devices – by
far the most-important feature as rated by users of today’s
smartphones and wearable gadgets [9, 42]. We aim to enable
devices that have the week-long or month-long battery life-
times of a smartband with the multi-application flexibility
and full-featured development environment of a smartwatch.

To support multiple applications, especially in critical do-
mains like health, the platform must also provide strong
security properties, including isolation between apps. To
realize these goals, wearables must effectively manage en-
ergy, share resources, and isolate applications on low-power
microcontrollers that cannot support hardware memory man-
agement units (MMUs).

In this paper, we present Amulet, a hardware and soft-
ware platform for developing energy- and resource-efficient
applications on multi-application wearable devices. This
platform, which includes the Amulet Firmware Toolchain,
the Amulet-OS Runtime, the ARP-View graphical tool, and
open reference hardware, efficiently protects applications
from each other without MMU support, allows developers
to interactively explore how their implementation decisions
impact battery life without the need for hardware modeling
and additional software development, and represents a new
approach to developing long-lived wearable applications.

We also aim to equip the health-behavior science com-
munity with a wearable platform researchers can field for
long-duration experiments on human subjects in a wide vari-
ety of studies, by providing the entire Amulet Platform as an
open-source, open-hardware alternative to the available com-
mercial platforms that have so far been used for wearables
research. We envision the Amulet Platform as being broadly
applicable to those in the sensing communities, as well as
domain scientists and practitioners in human-centered fields
like health and fitness. With the Amulet Platform, sensor
researchers can prototype new wearable devices and test new
sensing technology without building from scratch.

Contributions: The Amulet Platform enables developers
to write energy- and memory-efficient sensing applications
that achieve long battery life on a secure, open-source, multi-
application wearable device. Specifically, this paper makes
four contributions:

1. the Amulet Firmware Toolchain, a firmware-production
toolchain that guarantees application isolation (protect-
ing the system and applications from errant apps),

2. the Amulet-OS Runtime, a multi-application runtime
system for resource-constrained wearables that is built
on a low-power variant of the QP runtime [24],

3. a graphical tool called ARP-View that helps developers
predict Amulet battery lifetimes and understand how
their decisions affect those lifetimes, and

4. an open-source, open-hardware release of the Amulet
platform and its tools1.

Although the focus of our current implementation is on a
smartwatch form factor and on applications related to health
and wellness, these contributions can be generalized to any
embedded platform that needs to support multiple third-
party applications with extremely low power consumption.
Indeed, Amulet is not a single system – it is a novel approach
to developing long-lived wearable platforms that is suitable
for a wide spectrum of multi-application wearable devices.

2. BACKGROUND
Although the Amulet Platform has potential to support a

broad range of applications, we focus our design on mobile
health (mHealth) applications because they are increasingly

1The open-source, open-hardware release of the Amulet plat-
form and its tools can be found at
https://github.com/AmuletGroup/amulet-project

prevalent and their need for a robust, secure, long-lived
platform poses important design challenges. The current
generation of mHealth wearables, such as the Fitbit Flex
and the Withings Pulse, are single-application devices that
focus on specific health goals like physical activity or sleep
quality. These devices run one application, created by the
device developers; they cannot run multiple applications nor
be extended with applications from third-party developers.
Meanwhile, “smartwatches” like the Apple Watch and the
Microsoft Band are general-purpose wrist wearables that
support multiple applications and third-party developers.
Neither class of devices address our goals, for several reasons.

First, we are not convinced that all users want a general-
purpose large-screen smartwatch with a battery life measured
in hours. Our architecture aims to enable smaller wristbands
(and other constrained wearables) with battery lifetimes
measured in weeks or months and support for critical and
sensitive applications like those related to chronic disease
and behavioral health.

Second, developer tools for these wearables are in their in-
fancy. Battery lifetime (i.e., amount of time between battery
charges) is a critical concern for any wearable; although some
developer frameworks provide general guidelines for writing
efficient applications, developers are unable to accurately
predict how their applications will perform when deployed.
The Amulet Platform includes tools that forecast battery life-
times and an application’s resource usage. More importantly,
these tools help developers conceptualize how their design
decisions impact energy consumption and identify specific
opportunities for improvement.

Third, current solutions do not provide open-source hard-
ware and software; the Amulet Platform is fully open-source
and open-hardware, enabling new opportunities for innova-
tion by health and technology researchers alike.

3. SYSTEM OVERVIEW
We designed Amulet to support a multi-developer, multi-

application vision, aiming at four goals not faced by single-
purpose wearables, single-developer wearables, or power-
hungry platforms that need to be recharged daily.

Goal 1: Multiple applications. Amulet platforms enable
sensing applications written by third-party developers, even on
resource-constrained wearable devices. The Amulet Platform
masks the complexity of embedded-system development, and
supports a variety of internal and external sensors, actuators,
and user-interface elements. Since users are unlikely to wear
multiple single-function devices, the Amulet Platform aims
to support multiple concurrent applications.

Goal 2: Application isolation. Amulet platforms isolate
applications from each other and from the system. With mul-
tiple concurrent applications, sensitive user information must
be protected and applications must be prevented from inter-
fering with the system or other applications. Amulet uses
creative compile-time and run-time isolation mechanisms to
achieve these properties on ultra-low-power microcontrollers
that do not provide memory virtualization or memory pro-
tection. In this paper we focus on memory isolation and
resource management; later papers will address encryption,
key management, and related security aspects.

Goal 3: Long battery life. Amulet platforms enable wear-
able devices with battery life measured in weeks. Today’s

Board
Support

Amulet API

Core
Services

Hardware

App1 App2 … AppN

Logging Timer Crypto Power
Network Sensors

Serial SD Card Analog Bluetooth
GPIO ClocksWatchdog Interrupts

Core Interface

Board Interface

UI

Figure 2: The Amulet-OS software stack; applica-
tions access core services through the Amulet API
layer.

multi-application wearable devices have poor battery life,
including research devices like ZOE [23] and commercially
significant devices like the Apple Watch [7]. Even the longest-
lived commercial devices, like the Pebble [36], have lifetimes
measured in days. When wearables can run for weeks or
months, new applications are enabled and users are likely
to benefit from apps that support long-term 24/7 health
monitoring and interventional behavior change.

Goal 4: Resource-usage prediction. Amulet platforms
include tools that provide interactive analysis of resource
usage, including energy impact and memory usage for ap-
plications and the underlying system. Existing tools for
third-party application developers on wearable platforms are
very limited, focused on documenting best practices and
measuring resource usage of running applications; they do
not provide compile-time, app-developer tools for predicting
the battery impact of an app or combination of applications.

We next describe our initial implementation, focusing on
the above goals in two parts: the Amulet-OS and the Amulet
Firmware Toolchain (AFT).

3.1 Amulet-OS
The Amulet-OS software architecture (Figure 2) achieves

all the above goals by providing a low-power, event-driven
programming model, a rich API, and efficient app isolation
and optimization through compile-time techniques.

Event-driven programming: Many sensing-based apps,
including the health-oriented apps that motivate our work,
tend to remain idle waiting for user interaction or new sen-
sor data. Thus, Amulet uses an event-driven programming
model to simplify developer tasks and enable low-power op-
eration. Each application is represented as a state machine
with memory, that is, each app consists of a set of states
and transitions between states, and a small set of persis-
tent variables. Each transition is triggered by the arrival
of an event, which themselves result from expired timers,
user interactions like a button press, or data arriving from
internal and external sensors. Apps can specify optional
event handlers for each state and each event type. Handlers
are non-blocking functions that may consume data arriving
with the event, update app variables, call Amulet APIs, or
send events, in any combination.

This state-machine approach makes app state explicit, eas-
ing analysis and optimization. App code, state, and variables

are kept in persistent storage. Handlers run to completion,
so there are no threads with stack-based state information to
preserve between events, let alone across processor reboots.
The Amulet-OS leverages this simplicity for deep power sav-
ings; when there are no events to handle, the processor can
go into deep sleep or even shut off. The Amulet Firmware
Toolchain leverages this structure to enable the analysis and
profiling tools described in the next section. This approach
is also a major advantage over the alternative of running a
larger operating system, such as embedded Linux or a real-
time OS, in which applications are represented as processes
or threads with complex state and limited opportunity for
deep sleep. (For more info, see Section 8.)

Amulet API: Amulet-OS provides an application program-
mer interface (API) that allows for sensing, storage, signal
processing, communication, timing, and user interaction. As
with any OS, this API provides abstraction and resource
management. Amulet-OS simplifies data gathering by pro-
viding applications the ability to subscribe to internal and
external sensors; multiple applications can share a single
data stream, each receiving an event when new data arrives.
Amulet-OS also includes a logging API so apps can log sensor
information to files on an internal microSD card, and a timer
API so apps can arrange for an event in the future. Finally,
the API provides apps access to interface elements (display,
LEDs, buzzer, buttons, and capacitive touch, in our imple-
mentation) and multiplexes access across apps. These APIs
call into the Amulet-OS core services shown in Figure 2. All
such calls are non-blocking because event handlers must run
to completion; where needed, a response is delivered to the
app later as an event.

The Amulet-OS is more of a lightweight run-time system
than an operating system, but nonetheless supports multiple
applications on a low-power microcontroller without memory
protection or management. These challenges are the focus
of the Amulet Firmware Toolchain.

3.2 Amulet Firmware Toolchain
The Amulet Firmware Toolchain (AFT), shown in Figure 3,

manages the analysis, translation, and compilation of firmware.
Here, we focus on two critical AFT roles: application isola-
tion and resource profiling. First, the AFT ensures that apps
can only access Amulet hardware by sending a well-formed
request to the Amulet-OS core via the Amulet API, and
prevents malicious or buggy apps from reading or modifying
the memory of either the OS or another app. Second, with
the AFT’s profiling tools an app developer can predict her
app’s resource usage.

Analysis and Translation: Our approach leverages compiler-
based translation and static analysis: application developers
pass their code to the Amulet Firmware Toolchain, which
translates and analyzes the source code, rejecting any code
that is either not well formed or violates the isolation princi-
ple. App designers implement Amulet state machines using
a simple variant of the C programming language, “Amulet C,”
which offers programmers familiar programming constructs
and facilitates efficient code generation, while excluding many
of C’s riskier features (Section 5). These modifications, and
the addition of loop invariants and automatic annotations by
the AFT, allow rigorous analysis of an application’s memory
safety. The AFT uses static-analysis tools to examine the
code to identify memory-safety violations and present the

Analyzer
& Translator

Compiler

App 1 App N…

Linker

Installer

Analyzer
& Translator

Resource
Profiler

Resource
Profiler

App
Merger

custom
code

existing tool

QM File with
Amulet C

Step 1: Verify
compliance with
Amulet C. Insert
runtime checks
(array bounds,
access control)C code

C code

Step 2: Analyze
resource usage

Step 3: Visualize
usage; Merge
apps

Step 4: Compile and
link with the runtime
system and libraries

Step 5: Install image
on device

C code

binary code

firmware image

AmuletOS

Libraries

ARP-View

Energy
model

device profile

Figure 3: Architecture of the Amulet Firmware
Toolchain, showing the steps in producing the
firmware image for a given Amulet device.

developer with compile-time errors. The AFT inserts run-
time validation code where static analysis is inconclusive; for
example, the AFT inserts code for array-bounds checking
when the array index is not computable at compile time.

The Translator also implements authorization policies that
define which applications can access which resources. For
example, these policies may say that a fall-detecting app may
subscribe to data from the accelerometer, that an emergency-
response app may write a file to the SD card, or that the EMA
app may use the buttons and the display. By addressing
these policies at the time of app translation and analysis, the
AFT can flag illegal access at compile time, and insert run-
time checks only when needed. The resulting code is smaller,
faster, and safer. We omit description of the authorization
policy module in this paper, for lack of space.

Resource Profiler: Although our experiments in Section 6
characterize the performance of the Amulet hardware and
software under a representative app workload, and those
results show it is possible to develop efficient applications
for the Amulet hardware, new app developers may not have
access to the inner Amulet hardware or to our measurement
infrastructure. With effective compile-time tools that predict
an app’s resource usage, developers can effectively manage
critical resources and protect the user’s experience even when
combining apps from many developers.

The Amulet Resource Profiler (ARP) tool leverages the
other modules in the Amulet Firmware Toolchain to predict
an application’s resource usage; here, we focus on memory
and energy. Profiling these resources gives insight into the
app’s impact on battery lifetime, and the app’s impact on
constrained, shared, device computing resources. Lifetime
is the most important consideration for a wearable device;
thus, giving developers insight on how their design decisions
affect lifetime is of great value to the developer and the
user. ARP captures information about each app’s code
space and memory requirements, using a combination of

Figure 4: Screenshot of the ARP-View tool. A se-
lected application is rendered on the screen where
the transitions have been annotated with both the
estimated cost of executing that transition and the
rate at which the transition executes. The sliders
along the right-hand side of the window allow the
developer to adjust the rate of specific transitions.
The bottom area of the screen displays information
about an application’s impact on the overall battery
lifetime per week and memory usage. To view a
full-size interactive demo of ARP-View, please visit
https://arpview.herokuapp.com/.

compiler tools and static analysis. To profile energy, ARP
builds a parameterized model of the application’s energy
consumption, as described in the next section. The results
are then exported for use by ARP-View.

ARP-View. This interactive tool presents developers a
graphical view of the resource profile and sliders that allow
them to immediately see the battery-life impact when they
adjust application parameters. The tool guides developers
towards a better understanding of their application and
enables them to explore trade-offs of different design decisions.
See Figure 4 for a snapshot of the ARP-View in action.2

In ARP-View, developers are presented with an annotated
visualization of their application that resembles their original
finite-state machine. Annotations on edges (representing
state transitions) provide immediate feedback about the rate
in which that event handler executes and the energy usage
of that particular event handler. In addition, the ARP-View
consists of a set of ‘knobs’ that can be individually scaled to
simulate a particular handler running more/less frequently
(Rt); this allows developers to evaluate the impact of specific
application activities on the overall battery lifetime.

For perspective, ARP-View imports the device profile for
information about the device (such as battery and memory
capacity) obtained earlier by the Profiler; see the next section
for more details.

Merge, Compile, Link: The next step in producing a
final firmware image, referring back to Figure 3, is for the
AFT to merge the desired set of applications, then compile
and link them with the Amulet-OS code. For Amulet we
leverage an event-driven programming framework (QP) that
automatically generates the C code for state transitions from
each app’s state diagram. The AFT Merger combines this C
code with the translated application code (now in C), and the

2We acknowledge that this snapshot may be too small to
read without zooming. Readers are encouraged to visit our
interactive demo.

Table 1: Model notation
Device profile
Md storage capacity of data memory
Mc storage capacity of code memory
EB energy capacity of full battery
E` average energy consumed by a line `
Ef average energy consumed by one call to API function f
P0 baseline power draw
Ps average power draw for subscription to sensor s
S the set of all sensors on this device
F the set of all API functions available in Amulet-OS

Application parameters
A the set of all applications on this device
a an application in the set of all applications; a ∈ A
f a function in the set of all Amulet API functions; f ∈ F
Fa the set of all API functions used by application a; Fa ⊆ F
s a sensor in the set of all sensors; s ∈ S
Sa the set of sensors used by application a; Sa ⊆ S
t transition t in the set of all application transitions, T
Ta the set of all transitions in application a; Ta ⊆ T
L the set of all lines of code outside Amulet-OS
` line of code in the set of all lines of code; ` ∈ L

N`,t number of times line ` is executed by transition t
Nf,t number of times function f is called in transition t
Rt rate transition t executes (transitions per second)

Energy estimates
Et estimated energy of each occurrence of transition t
Ea estimated energy consumed by application a
EA estimated energy consumed by set of applications A

underlying event-driven application framework, into a single
C file. This file is compiled and linked with the Amulet-OS
code, incorporating only the system components needed for
this particular set of applications. (We anticipate users will
select apps for their personal Amulet device from a store
hosting apps from many developers and which compiles a
custom firmware image comprising their selected apps.)

4. RESOURCE MODEL
As noted above, the Amulet Resource Profiler (ARP) con-

structs a predictive energy and memory model for each appli-
cation. In doing so, the ARP proceeds in four phases, with
reference to the notation in Table 1.

Phase I: Import device profile. The ARP imports a
device profile, specific to the target Amulet model but in-
dependent of any particular application. The device profile
lists the amount of energy consumed for each API call and
for other fundamental operations, based on empirical mea-
surements collected earlier on a given hardware and system
software configuration; a device profile would be prepared
and provided by the Amulet manufacturer with each new
hardware and Amulet-OS release. (The AFT can assist by
automatically producing the code to create this profile by
generating a specially instrumented Amulet Device Profiler
app that exhaustively tests each of the Amulet API func-
tions that draw significant amounts of energy, for example,
sampling the Gyro, writing to the SD card, or turning on
the radio. Using simple monitoring hardware, Amulet man-
ufacturers can gather these statistics once and distribute
the profile to application developers for their own testing.
Similar to current Android manufacturer practice [4].)

The device profile includes information about the device
capacity (memory, battery) as well as empirically derived
measures of average energy consumed Ef for each Amulet
API function f ; the average energy consumed E` for exe-
cuting a specific line of C code `; and the average power
draw Ps for a subscription to sensor s (see Table 1). En-

ergy is measured in joules (J); power draw is measured in
watts (J/s).

Phase II: Analyze code. The ARP examines the appli-
cation’s state diagram – a graph in which nodes represent
states and directed edges represent transitions from one state
to another. The result is a set of transitions Ta for appli-
cation a. For each transition t ∈ Ta the ARP identifies all
non-system code executed when transition t occurs (using
static analysis to count the number of executions N`,t of each
line of code `, summing across loop iterations and recursively
examining code in helper and library functions). That is, N`,t

counts the number of times line ` will be executed during the
handling of transition t, accounting for loops and function
calls.3 Similarly, for each transition t the ARP determines
the number of times the code for transition t will invoke each
Amulet API function f , which we denote Nf,t. Finally, the
ARP examines the sensor-related API calls to identify the
set of sensors Sa to which application a subscribes. The con-
straints of Amulet C (no recursion, no pointers, no dynamic
memory allocation) make this static analysis feasible.

Phase III: Construct model. The ARP constructs a
parameterized model of the total energy cost for the app. For
each transition t, it estimates the average energy consumed
Et for an occurrence of that state transition, incorporating
the cost of executing the code and API calls in that transition:

Et =
∑
`∈L

N`,tE` +
∑
f∈F

Nf,tEf (1)

If the app subscribes to any sensors to feed it sensor data, we
must also account for their average power draw:

∑
s∈Sa

Ps.
Finally, the Amulet hardware incurs a baseline power

draw when it is inactive; we use P0 to represent the average
power draw of the baseline system (the microcontrollers, the
display, and the input devices). Because Amulet-OS has no
background activity, this baseline power draw represents all
of the Amulet-OS power draw not captured in the above
equations.

To estimate the total energy consumption for application
a, the ARP needs to know how often each transition t will
occur. While some of these rates may be discerned from
static analysis on the code, for others the ARP needs advice
from the developer – which the developer provides through
annotations on the app’s state machine. These rates Rt are
the ‘knobs’ for the energy model – knobs the developer can
tweak to explore the power draw for various design options
(for example, the period of a timer that duty-cycles a key
part of the application behavior). The total energy consumed
for application a, over a time period τ , is thus predicted from
the baseline power and the above equations, factoring in the
rate of every transition t:

Ea(τ) = τP0 +
∑
s∈Sa

τPs +
∑
t∈Ta

τRtEt (2)

Over a week, then, application a consumes a fraction of the
total battery capacity, Ea(ω)/EB , where ω = 1 week; we
leverage this calculation in our evaluation below.

Phase IV: Count memory usage. Every application

3We count lines of code as a proxy for code complexity;
to improve accuracy we could use the code generator to
count instructions of assembly. Since instruction execution
has a relatively small impact on power consumption, our
implementation assumes E` to be the same for all lines of
code; we focus on modeling the API calls and sensor usage.

requires memory for storage of its code and its data; like
any embedded system, low-power wearable platforms have
severely limited memory space. After parsing the applica-
tion’s code and generating its firmware image, ARP reports
the amount of memory to store the application’s code and
determines an upper bound on the amount of data memory
consumed by the application. These numbers are presented
as fractions of Mc and Md. An application’s data memory
comprises global variables and local variables (on the stack).
Amulet C does not allow dynamic memory allocation, so
ARP easily counts the size of all global variables; Amulet C
does not allow recursion, so ARP can compute the maximum
stack depth (including local variables).

Multiple applications. The ARP is also capable of esti-
mating the energy consumption for some mix of applications
A. (The view shows one app’s state diagram along with
total energy consumption for all apps.) To estimate the
total energy consumed by A, we cannot simply sum the
energy consumed by all of the individual applications. That
is, the total is not simply

∑
a Ea, because we need to avoid

double-counting the baseline power draw as well as the sensor
subscriptions (which are shared across all apps). Instead,
we need to account for the union of all sensors used by the
mix of apps: SA =

⋃
a∈A Sa. The total energy consumed for

the application mix A is therefore estimated by a variant of
Equation 2:

EA(τ) = τP0 +
∑
s∈SA

τPs +
∑
a∈A

∑
t∈Ta

τRtEt (3)

5. IMPLEMENTATION
We developed a Amulet reference device and implemented

the Amulet-OS and Amulet Firmware Toolchain software
described above. In this section we describe the details of
each, as well as nine applications we wrote to demonstrate
and evaluate our Framework.

Amulet device prototype. The Amulet wearable proto-
type shown in Figure 1 is mostly a single-board system. The
main board, battery, haptic buzzer, and secondary storage
board are all housed in a custom-designed 3D-printed case
that fits a standard 22mm off-the-shelf watchband. The
hardware architecture of the prototype is shown in Figure 5.

A Texas Instruments (TI) MSP430FR5989 microcontroller
with 2 KB of SRAM and 128 KB of integrated FRAM serves
as the main computational device. The wearable is equipped
with internal sensors for use by developers: an Analog Devices
(AD) ADMP510 microphone, an Avago Tech APDS-9008
light sensor, a TI TMP20 temperature sensor, an STMi-
croelectronics L3GD20H gyroscope and an AD ADXL362
accelerometer. The board includes a Nordic nRF51822 used
as a modem for communicating with peripheral BLE devices
(such as a heart-rate monitor); the MSP430 communicates
with this radio chip over a SPI bus. The board’s GPIO and
ADC ports connect the microcontroller to two buttons, three
capacitive touch sensors, a haptic buzzer, and two LEDs
embedded in the case. The small secondary storage board
holds a microSD card reader. The board also includes a USB
battery charger (MCP73831) that can recharge the 110 mA h
battery.4 A Sharp LS013B7DH03 display with 128x128 reso-
lution is mounted on the backside of the PCB opposite the

4A survey of popular smartwatches [39] shows an average
battery capacity in today’s smartwatches of about 350 mA h

Amulet
Prototype

Light

Temp

Sound

USB

BLE MCU
(nRF51822)

Antenna

Accel.

Buttons/Display/Touch

GyroµSD

Power/Data

FRAM MCU
(MSP430)

LED

Battery

Haptic

Figure 5: The hardware architecture of our two-
processor Amulet prototype: the MSP430 runs ap-
plications, and the nRF51822 manages communica-
tion.

components. In batches of 1000, including all components
(except the enclosure and wristband), PCB fabrication, and
assembly, we estimate the cost of a Amulet wearable
to be only $54.85.

Ultra Low Power Operation: We use a variety of tech-
niques to achieve low power operation. The MSP430 runs
Amulet-OS and is responsible for running applications. The
MSP430 spends most of its duty cycle in a low-power deep
sleep (3 µA); it wakes from sleep when action is triggered
by the user interface, a timer, or inbound message from the
BLE radio chip. The MSP430 gates power to high-powered
components (like the microSD card, and BLE radio) using
on-board MOSFETs. Thus, when these components are not
in use by applications, they can be completely “turned off”
to reduce power consumption. Always-on components like
the display draw only 6 µW.

Amulet-OS. We implemented the Amulet-OS run-time sys-
tem on top of the QP event-driven framework [24]. As
shown in Figure 2 the Amulet architecture (and our imple-
mentation) has three major layers: 1) a board-support layer,
running directly on the hardware and abstracting some of
the hardware-dependent nuances; 2) a set of core services
that provide core functionality like networking, time, logging,
and power management; and 3) a set of application services
accessible through a thin set of functions in the Amulet
API. The AFT static-analysis tools recognize Amulet API
functions and verify an app’s authorization to use specific
application services (much as Android uses the Manifest file
to determine app permissions).

Recalling Section 3.1, the event-driven Amulet-OS has no
processes or threads, and no context-switching overhead.
Quick interrupt and event handlers allow the system to stay
in low-power sleep mode most of the time. For the purposes
of our experiments below, and to support the Amulet De-
vice Profiler app, Amulet-OS can to toggle GPIO pins when
executing app event handlers, Amulet API functions, or inter-
rupt handlers; our external measurement chassis (Section 6)
monitors these pins to derive detailed energy and temporal
measurements about application and system modules.

with a low of 250 mA h and a high of 570 mA h. Our 110 mA h
battery is much smaller.

Figure 6: Screenshots of six of the nine applications
presented in this paper.

Amulet apps. We implemented nine applications to demon-
strate and evaluate the Amulet Platform. Amulet application
developers construct their applications using the QP event-
based programming framework. Following QP, each app is
defined as a finite-state machine; for each possible state, the
app can respond to a set of events by providing a handler
function for each type of event. We used vanilla QP with
the non-preemptive kernel (version 5.3), and required ap-
plications to use the Amulet API to request services from
Amulet-OS. Screenshots of six apps are shown in Figure 6.

The QP framework exports the application in the XML-
based QM format, which embeds all of the programmer-
supplied C code along with information about the applica-
tion’s finite state machine.

Amulet C. As mentioned earlier, app isolation is an impor-
tant goal of the Amulet Platform. To achieve app isolation
without the support of memory-management hardware, and
without incurring excessive run-time overhead, the AFT con-
ducts most app isolation at compile time. Applications (that
is, their handler functions) are written in a custom variant
of C that removes many of C’s riskier features: access to ar-
bitrary memory locations (pointers), arbitrary control flows
(goto statements), recursive function calls, and in-line assem-
bly. Since array access in C is implemented using equivalent
pointer operations, we modified the array syntax so that ar-
rays can be passed to functions explicitly ‘by reference’ (not
as pointers). In Amulet C, arrays also have an associated
length that allows for run-time bounds checking whenever
access behaviors cannot be adequately checked statically. Al-
though this approach imposes some effort on the developer
(to adapt their code for Amulet C) it allows us to estimate
the runtime of code executed in the state machine, giving
tighter bounds on energy predictions made by the Amulet
Resource Profiler.

Amulet Firmware Toolchain. We implemented the AFT
as a series of programs that translate, analyze, validate, and
profile apps. Each app includes 1) a state machine, 2) event
handlers (written in Amulet C), and 3) attributes specifying
the app’s global variables. The QP framework combines
application information into XML-formatted QM files. AFT
tools are written in Java and use its built-in XML libraries to
parse the submitted apps. Our tools translate the Amulet C
code to safe C code using a modified C grammar and the
ANTLR parser generator [6]. Violations against Amulet C

coding rules and non-authorized requests to the core API
trigger AFT compile-time errors.

After all these steps, applications are merged together
in a single QM file, which is then converted to C using
QP. Immediately before the merge, all app resources (e.g.,
variables, handlers, helper functions) are isolated by mapping
them to a unique namespace based on the application’s
name (no two apps installed on the system can have the
same name). This code is then compiled and linked using
Texas Instrument’s open-source GCC for MSP430. This
firmware image can then be installed onto the application
chip (MSP430) of our Amulet device prototype.

Resource Profiler. We implemented the Amulet Resource
Profiler (ARP) in Java and integrated it with the other tools
of the Amulet Firmware Toolchain (AFT). After validation
and translation, the ARP uses an ANTLR-generated parser
to extract model parameters from the application’s code and
QM file. Specifically, from the application code it extracts
estimates of lines executed per transition (N`,t), sensor sub-
scriptions (Sa), and Amulet API calls (Fa and Nf,t). From
the QM file it extracts the state machine and its transitions
(Ta), and the developer’s annotations about transition rates
(Rt). From the firmware’s symbol table it extracts the code
size for both the application and the core, and the amount
of FRAM memory used by the application and the core.

Separately, the ARP uses the Amulet Device Profiler app,
and the measurement chassis described in the next section,
to extract the parameters for the device profile (Table 1).
The Device Profiler app also informs ARP about the scaling
factors for certain operations, allowing for fine-grained esti-
mates of function cost (for example, assigning lower energy
costs to drawing a 2x2 rectangle as opposed to drawing a
128x128 rectangle). The Resource Profiler combines these
measurements to build a parameterized model of the energy
cost for each application, following Equation 2. Our proto-
type hardware has two kinds of internal memory: SRAM
used for the execution stack and local data, and FRAM used
for code and global data; thus our ARP implementation
reports on SRAM and FRAM usage (rather than code and
data usage as in Section 4).

Resource Profiler Developer View. Our developer-
facing tool, ARP-View, leverages the ARP’s fine-grained
data about the structure and behavior of applications to
1) give developers insight into how certain user actions, sam-
pling rates, and blocks of code consume energy, enabling
developers to make concrete the links between certain parts
of code and energy draw; and 2) provide meaningful battery-
lifetime estimates for an application or suite of applications.
The ARP-View currently presents a wealth of information
including system and OS level details (e.g., FRAM avail-
able and its usage), sliders to adjust event frequency and
view results in real-time, and the battery impact (percent-
age of battery consumed per week) and lifetime in days for
a selected application as well as an entire suite of applica-
tions. Our implementation provides real-time feedback to
the developer regarding application impact on the battery by
running a daemon process that monitors application files and
re-profiles applications upon detecting changes to those files;
note that application translation, analysis, validation, and
profiling all happens prior to actually compiling the source
code and, thus, runs fast even on common laptop and desktop
machines. Providing memory stats to the developer via the

Table 2: Amulet applications used for evaluation

Name Description

Clock Display time of day and temperature
Fall Detection Detect falls using the accelerometer
Pedometer Record number of steps walked
Sun Exposure Monitor exposure to light over time
Temperature Monitor ambient temperature over time
Heart-rate Monitor and display HR from BLE sensor
Battery Logger Monitor, display, and log battery statistics
Heart-rate Logger Monitor, display, and log HR statistics
EMA Deliver surveys to users with touch input

ARP-View requires compiling all of the application/system
code and parsing the resulting binary, which incurs a no-
ticeable – but small – amount of time (approximately 1-2
seconds) on common laptop and desktop machines.

6. EVALUATION
In this section we evaluate the performance of Amulet-OS

and the Amulet Firmware Toolchain against the goals from
Section 3. Goal 1 (Multiple applications) and Goal 2 (Ap-
plication isolation) are met by design of Amulet-OS and the
Amulet Firmware Toolchain. We thus focus on an experi-
mental evaluation of Goal 3 (Long battery life) and Goal 4
(Resource-usage prediction). First, though, we describe the
experimental infrastructure that allowed us to collect precise
controlled measurements of the Amulet system (and its apps)
without incurring measurement artifacts or overhead on the
Amulet itself.

Measurement chassis: For detailed measurements under
controlled conditions, we built a chassis comprising multi-
ple ARM breakout boards equipped with 12-bit DACs and
16-bit ADCs (to control and monitor signals on the proto-
type Amulet), MOSFETs to gate power to the prototypes
(allowing repeatable testing by power cycling), and INA225
auto-ranging current-sense circuits to gather power readings.
This programmable chassis allowed us to stimulate the user
interface and trigger state changes in the applications under
test. Thus, we could automatically and repeatably test the
Amulet prototype under controlled and consistent conditions.

Applications: We developed nine apps for use in the evalu-
ation of Amulet (Table 2), selected to represent a range of
compelling applications and exercise many of the features
available in the current prototype. Three of the apps were
used in the pilot study described in Section 7.

Event automation: We used the measurement chassis
along with minor modifications to the core code to partially
automate the state transitions of the applications running on
our prototype Amulet devices. User sessions can be simulated
by providing an interaction script that defines the interaction
(specifically the named state transitions), and the delay be-
tween these transitions. This method was minimally invasive
to the Amulet software and hardware (one dedicated I/O
pin and a small portion of RAM). By executing interaction
scripts multiple times, the full functionality of an application
can be tested repeatably and without human involvement.
We refer to this program as the “Event Automator”.

6.1 Battery lifetime
In this section we quantify the average power draw of our

Amulet prototype for multiple loads. We represent this power

233
days

209
days

140
days

214
days

192
days

54
days

17
days

14
days

67
days

39
days

0.0

0.5

1.0

1.5

C
lo

ck
F
al

l D
et

ec
t

P
ed

om
et

er
S
un

 E
xp

os
ur

e
T
em

pe
ra

tu
re

H
ea

rt
ra

te
B
at

te
ry

 L
og

H
R

 L
og

	E
M

A
C

lo
ck

+H
R

+F
al

l

P
o

w
e

r
(m

W
)

Figure 7: Average power draw for each app on the
current prototype. The expected lifetime with the
110mAh battery is shown above each bar.

draw in terms of battery lifetime using the 110 mA h battery
currently encased in the prototype. (Larger batteries up to
570 mA h are used in current smartwatch products [39].) We
acknowledge that the accuracy of battery lifetime estimates
depends heavily on battery wear, quality, leakage, and other
factors. These estimates serve to place the actual measured
power draw in an understandable form.

For our first experiment, we installed a firmware image
containing a single application and measured the average
power draw using the measurement chassis. We used the
Event Automator to emulate user sessions, where a ‘session’
lasted as long as it took to exercise states in the critical
path of an application. We repeated this experiment for each
of the nine applications, for a single session, determining
average power by summing the energy of the session and
dividing by the time. The results of this experiment are
shown in Figure 7. This figure shows the power draw of an
app was highly dependent on the hardware components used,
and the frequency of their use, further motivating the use of
ARP-View. Lifetimes for all of the apps exceeded two weeks.

On our current prototype, an application load compris-
ing Clock, Fall Detection, Pedometer, Sun Exposure and
Temperature would allow an Amulet battery to last over
four months. With constant BLE communication to the
heart-rate sensor (we used commercial Zephyr and Mio heart-
rate sensors) our Amulet’s power draw allows for nearly a
two-month battery life. Two energy-hungry applications
(Battery Log and HR Log) used significant amounts of en-
ergy logging data to the microSD card, drastically reducing
battery life.

To determine the effect multiple applications have on the
device lifetime, we assembled a firmware image that included
three applications (Clock, Heartrate, and Fall Detection),
and measured the steady-state power draw as above. With
this configuration, using the accelerometer, Bluetooth com-
munication, and updating the display, the expected lifetime
was 39 days. In summary, an Amulet with applications
using on-board sensors will last for many months, an Amulet
using an external BLE sensor feeding regular heart-rate data
will last for 1-2 months, and applications making heavy use
of the logging operations or capacitive touch features will

Table 3: ARP battery-%impact predictor.

App Name Obs. Pred. Error Error
(µW) (µW) (µW) (%)

Clock 72.73 77.45 4.72 6.1
Fall Detect 81.20 89.21 8.01 9.0
Pedometer 120.47 129.98 9.51 6.3
Sun Exposure 79.19 85.13 5.94 7.0
Temperature 88.37 92.89 4.52 4.9
Heart rate 316.16 320.34 4.18 1.3
Battery Log 984.10 1089.63 105.53 9.7
HR Log 1223.11 1318.68 95.57 7.2
EMA 253.07 265.05 11.98 4.5
Multi 430.01 438.86 8.85 2.0

last for a few weeks. This lifetime enables long-term usage
for many application domains.

6.2 Resource Profiler
Recall that the ARP tool predicts the effect of an app

on the battery lifetime of an Amulet device. Specifically,
ARP predicts the app’s total energy cost per week, which
can be used to determine the impact an application has
on the battery lifetime. To evaluate the accuracy of these
predictions, we compared the ARP battery-impact prediction,
for each app, with the actual battery impact computed from
the measured average power draw presented in Figure 7.

Each app’s event frequencies were set to match the event
frequencies used by the Event Automator in collecting the
measurements that resulted in in Figure 7. For some apps,
specifically Clock, Temperature, and Sun Exposure, these
event frequencies were gathered from the developer’s code.
These apps sense intermittently, on a timer whose value is set
by the developer inside the code for a transition. These apps
only respond to the timer, not to user or environmental input,
so their energy impact depends completely on the timer value.
Event frequencies were set carefully for Apps like Pedometer
and Fall Detection, but their energy impact was dominated
by the Amulet’s baseline energy, paired with the number
of times they compute over a series of acceleration values.
Table 3 presents the predicted (and observed) percent impact
on battery life, for each application, along with the percent
error in the ARP prediction. (We quantify the error as
the difference between expected average power draw and
observed average power draw.) The results indicate that our
Resource Profiler was reasonably accurate at estimating the
battery life for these applications.

Applications can have different battery lifetimes depending
on the amount of user interaction, the data rates or sens-
ing schedules, the environment, and of course, the choices
the developer makes in implementation. We capture four
types of events in ARP: 1) User interaction, 2) Data deliv-
ery, 3) Timers, and 4) Programmer defined. While data
delivery events are static (sensor subscription schedules are
determined beforehand in our current system), each of the
other three can be modified by the developer to explore the
effect on battery lifetime. The ARP predictions are heavily
dependent on the accuracy of the underlying device profile.
Small measurement errors in generating the device profile can
compound as event frequency increases. ARP has trouble
quantifying certain types of operations. For instance, the
energy required for microSD card writes is heavily dependent
on the size of the write. ARP does not currently account for
parameter length in SD writes, contributing to the higher

error for applications that use SD functions (Battery Log,
HR Log). Nonetheless, in our experiments, the highest error
rate was only 9.7%, and we expect it will improve.

However, most developers will not care if their application
is predicted to last 90 days and instead lasts 80 or 100 days;
they care about how the code they write, and the frequency of
events, proportionally affect the lifetime. Of course, further
tests ‘in the wild’, with a wider variety of apps, will be
necessary to generalize this conclusion.

6.3 ARP-View User Study
We claim that ARP-View helps developers reason about

how different parts of their code, and their decisions, map
to energy costs of the application. To test this claim, we
conducted a preliminary study of 10 computing students
(Sophomore to Graduate) who all had some experience with
low-power embedded systems.Each subject was asked to
consider developing an embedded application that required
sensing temperature at an undefined frequency. Subjects
were asked to decide how frequently to take temperature
readings, and to calculate the fictional application’s energy
usage given their chosen frequency. To assist in this process,
subjects were first provided the QM IDE and a data sheet
containing relevant information about the temperature sensor
being used. Subsequently, each subject was provided ARP-
View, and asked to repeat the same tasks as above. Each
subject went through a structured interview at the end of
the study.

We found that ARP-View helps developers better under-
stand the relationship between event frequency and energy
use. Prior to using ARP-View, only 2 subjects reported
considering energy consumption as a determining factor in
deciding how many events to use, while 9 in 10 subjects
reported accounting for energy in their decision-making pro-
cess when using ARP-View. Additionally, ARP-View made
event-frequency decisions easier for developers: 7 of 10 sub-
jects reported their decision-making process was less difficult
when using ARP-View. Further, after using both tools, 8 in
10 subjects indicated they would not consider using the QM
IDE and a data sheet to aid in their future application devel-
opment, if able to use ARP-View instead. We believe these
findings indicate there is room for further exploration into de-
veloper understanding of resource use on constrained devices,
and tools like ARP-View can assist in their reasoning.

6.4 Overhead
Runtime: Energy consumption is significantly impacted by
the fraction of time the application microcontroller (MSP430)
is active; the rest of the time it can be in a low-power deep
sleep mode. The MSP430 is active whenever it is running
application code (handler) or system code (Amulet-OS and
QP system code). The latter time is overhead, from the
application’s point of view. To measure this overhead, we
instrumented the Amulet-OS to trigger I/O pins whenever
it 1) puts the system to sleep, 2) was active and executing
Amulet-OS code, and 3) was active and executing application
code. We then used our measurement chassis to obtain
precise measurements of the time spent in each mode, for
each of our applications, as shown in Table 4. For each
application listed, we ran three short sessions while the
application was conducting its normal duty cycle, but not
being triggered by user-interface events. For all apps this
meant polling sensors, and waking up for timer events. The

Table 4: Temporal overhead.

Application %Sleep %OS %App

Clock 98.1 0.9 1.0
EMA 98.2 1.0 0.8
Heart rate 91.1 0.9 8.0
Pedometer 93.8 2.2 4.0
Pedometer+HR 87.5 1.9 10.6
Pedometer+HR+Clock 85.4 2.8 11.8

low temporal overhead of 0.9-2.8% confirms the efficiency of
our approach.

Memory: Amulet-OS uses a portion of the limited memory
space available to applications, limiting the quantity and
size of apps that can be installed in a single firmware image.
In our prototype, applications and the OS must share the
limited FRAM memory space (128 KB). For a firmware
image comprising five applications that used most of the
functionality available, Amulet-OS consumed 55.91 KB of
the 128 KB available FRAM code space, while applications
consumed 14.48 KB; the OS consumes nearly half of the
current FRAM. Meanwhile, Amulet-OS claims 1.078 KB of
SRAM, leaving 0.922 KB of SRAM for applications; recall
that apps use SRAM only for their execution stack, and only
when actively executing an event handler; only one app is
active at a time. Moreover, FRAM and SRAM are continuous
on the MSP430; we anticipate making larger blocks of FRAM
available (to be treated as RAM) to the application.

The memory and runtime overhead of our Amulet imple-
mentation – while sufficient to develop multiple interesting
apps on constrained hardware – could be improved. Memory
limitations could be sidestepped by adding 256KB of external
FRAM on a secondary storage board to “swap” applications.
We expect runtime overhead to further improve as we tune
the display driver, which dominates the system overhead.

7. PILOT STUDY: MHEALTH
We conducted a preliminary pilot study with the Ecological

Momentary Assessment (EMA) application in collaboration
with our School of Medicine.EMA tools are often used in
behavioral medicine research. These tools allow participants
to report on symptoms, affect, behavior, and experiences at
the time of action, and in the participants’ natural environ-
ment. This preliminary study was intended to evaluate user
acceptance of the Amulet wearable, and technical feasibility
of multi-source data collection with an mHealth EMA appli-
cation. This type of application can be used in both clinical
and research settings for tracking stress, cravings, sleeping
and eating habits, and other events in a non-intrusive way.

An EMA tool needs to be non-invasive to the users’ daily
routine. A wrist-worn EMA device is better positioned than
a mobile phone to facilitate a quick, unobtrusive response to
an EMA prompt. Moreover, a wearable with long battery
life allows for continuous, un-interrupted monitoring, does
not burden the user with the need to recharge the device,
and is less likely to be left behind or misplaced.

For this preliminary study, we recruited six participants
(medical students) to simulate the behavior and user inter-
actions of the target population (habitual cigarette smokers
over the age of 18). Each participant wore the Amulet pro-
totype and an external heart-rate sensor (a Mio LINK) for
5–10 hours of a normal workday. We loaded their Amulet

Table 5: Data gathered during pilot deployment.

Packets Battery drain Duration Mio BLE
received per hour worn disconnect

P1 13,381 3.2% 9.3 hr 62.0 min
P2 15,526 2.1% 9.6 hr 0.2 min
P3 10,267 2.0% 6.6 hr 0.3 min
P4 10,893 1.9% 7.3 hr 0.2 min
P5 12,709 2.4% 8.7 hr 42.5 min
P6 8,645 1.7% 5.4 hr 0.0 min

with the Clock, Heart-rate Logger, and EMA applications.
The EMA application asked participants about their tobacco
use at random intervals during the day, prompting them to
answer a few multiple-choice questions using the buttons and
capacitive-touch slider. A screen shot of the EMA app start-
ing one of these surveys is shown in Figure 6. Participants
returned both devices at the end of the day, and then filled
out a short usability survey.

Data Gathered: we logged EMA responses, heart-rate
data from the Mio LINK HRM sensor, and battery-status
analytics to the microSD card throughout the study. Amulet
prototypes were worn for a total of 47.8 hours, and gathered
over 71,421 heart-rate readings. Table 5 shows statistics
for each participant. The amount of time the Mio was
disconnected correlates strongly with the amount of energy
used; whenever a connection was lost, the Amulet prototype
goes into a high-power discovery mode attempting to re-
establish connection. The battery drain was higher than
expected; we identified after the study that the capacitive
touch sensors were drawing a continuous 1400 µW during the
deployment, reducing the battery much faster than expected.
These sensors were not exposed to the developer API or ARP
at the time of development. After the pilot, we added API
functions to allow developers to enable and disable the touch
sensors. As these user-input elements are only needed when
the user is presented with EMA questions, this duty cycling
will significantly increase lifetime. (We used this newer EMA
application for Figure 7.)

Usability Results: Each participant filled out the System
Usability Survey after their session [12]. The participants
all thought the Amulet prototype was a bit bulky and un-
comfortable, but a majority did not consider it a nuisance
and thought it was easy to use, while a plurality noted that
they learned something about themselves by using the sen-
sor. The biggest problem identified was the small size and
difficult placement of the buttons. All of the participants
enjoyed the real-time feedback about their heart rate. We
have since addressed these usability issues with a smaller,
more comfortable case (and larger buttons).

This preliminary deployment demonstrated the feasibility
of the Amulet prototype for EMA, and for continuous moni-
toring applications on human subjects. Indeed, we now plan
further studies with more subjects and for longer durations.

8. RELATED WORK
The collection of software and hardware techniques in

Amulet draw extensively from the wireless sensor network
literature. In this section we address related work in software
architectures for sensor-focused devices and other constrained
devices (including wearables); approaches for isolating the

execution of application code; and techniques for modeling
an application’s energy and resource usage.

Open wearable platforms. Current commercial plat-
forms such as Pebble, Android Wear, and Apple watchOS
only document best practices and measure resource usage of
running applications [3, 8, 35], and are closed source, closed
hardware, or both. However, many open platforms have
been developed concurrently with Amulet as the wearable
hardware ecosystem has evolved; many are not yet available
to users or developers, or do not address one or more of the
Amulet goals. BLOCKS [43], ZWear [48], Angel Sensor [5]
and Sony’s Open SmartWatch Project [40] are all in devel-
opment. Little information about their developer tools are
available; none of them appear to provide compile-time, app-
developer tools for predicting battery life for a given app or
combination of apps, and none are engineered to give battery
lifetime measured in months. Hexiwear [19] is completely
open source and open hardware built for the mbed plat-
form. However, it lacks comprehensive developer tools that
allow application isolation and evaluation of energy costs.
Hexiwear was not built specifically for low power operation
like Amulet. The choice of high powered components like
a color OLED screen and ARM Cortex-M4 make lifetimes
significantly less than the Amulet.

Wearable platform such as ZOE [23] Mercury [27] and
Opo [20] have been designed by the research community
to address specific sensing problems, or to explore specific
research areas (like BodyScan [16]).

In contrast, Amulet provides open-source hardware and
software in a general platform allowing wearable system
designers to innovate at both the operating system and ap-
plication level – importantly, Amulet provides a tool that
gives application developers insight into the tradeoffs be-
tween energy and utility. The Amulet Firmware Toolchain
and Resource Profiler provide novel capabilities essential to
app development for long-running multi-application multi-
developer wearables.

Software architectures. Software architectures and op-
erating systems exist for sensor networks and the Internet of
Things, including TinyOS [25], Contiki [15], RIOT OS [10],
and mbed OS [29]. SafeTinyOS [14] allows for the static anal-
ysis of code to improve reliability and programmer confidence
in a solution for single TinyOS applications. Amulet uses
similar static analysis techniques to provide application isola-
tion and energy prediction for multiple applications. All but
RIOT OS are event-driven (like Amulet), and only one (mbed
OS) provides application isolation and access control. The
mbed OS provides app isolation using the target processor’s
Memory Protection Unit (MPU) – a capability not available
on the ultra-low-power microcontrollers targeted by Amulet.

Amulet’s architecture combines high- and low-power com-
ponents to achieve our lifetime, performance, and availability
goals. This design is similar to other hierarchical power-
management systems [1,11,41] that seek to provide resource-
rich computing platforms with wide dynamic power ranges,
by combining a hierarchy of functional “tiers” into a sin-
gle integrated platform. None of the other IoT frameworks
in development appear to offer the multi-application and
app-isolation features of Amulet.

Application isolation. Traditionally, hardware memory
management units (MMUs) prevent applications from in-
terfering with each other and with core system functions.
Software fault-isolation techniques extend the MMU by isolat-

ing malicious code and been implemented for x86 and ARM
architectures [37,46,47] or require hardware (MMU) support.
These approaches require hardware (MMU) support not avail-
able on low power processors, and incur significant runtime
overhead. They are not tenable on the constrained hardware
platforms that enabled long-lived wearable deployment.

Language-based techniques provide a more efficient al-
ternative, by changing the programming model [18, 21] to
make dangerous actions impossible or easy to detect, and
using a combination of compile-time static analysis and in-
serted run-time checks to detect the dangerous actions that
remain [13, 14]. The Amulet architecture builds on these
techniques, with a new focus on safely combining multiple
applications without hardware memory-protection support
and providing insight into each apps’ share of system re-
sources.

Energy and resource modeling. Previous research on
energy modeling for constrained devices has focused on tech-
niques for smartphones and wireless sensors. Tools like San-
dra [31], eDoctor [28], Eprof [34], Carat [33] and PowerFore-
caster [30] help users make decisions about energy efficiency
at install time, observe the effect of use from day to day, or
diagnose abnormal battery drain. Other research has tried
to identify how users and batteries interact—investigating
the battery mental model of users [17]. These works focus on
meeting user needs while ARP-View is focused on enabling
the developer. Further, these systems are all in-situ; gather-
ing information about usage and then presenting information
to the user. However, integrating these tools with ARP-view
could provide interesting avenues for future work.

Developer-focused tools have also emerged for smartphones.
Tools have focused on identifying energy bugs at compile
time [44], in-situ energy metering using kernel additions for
energy model building [45], and then using those models to
predict smartphone lifetime [22]. These tools, if carefully
applied to constrained wearable platforms, could complement
the developer insights gleaned from the Amulet Resource
Profiler and ARP-view.

Other tools profile changes in the frequency and amount
of system calls as a proxy for hardware profiling, to esti-
mate changes in application energy efficiency [2]. Some tools
estimate energy cost per line of source code [26]. These
tools provide insight for the developer into energy usage and
efficiency, but are not tuned to the specific needs of wear-
able development. Wearable applications are more energy
constrained than cell phones, and rely on periodic sensing
activities for their function. The developer must be able
to easily identify energy expensive code segments that are
periodically executed. This is why ARP-view exposes timers
to the developer, allowing them to manipulate code, and
frequency of sensing actions in a GUI, without additional
profiling or emulation steps.

Simulation and emulation techniques have attempted to
provide forecasts of energy usage, starting with tools from the
wireless sensor network literature like Power TOSSIM [38].
WattsOn [32] extends the idea of emulation to provide in-
sights and what-if analysis for Android applications, after
running the application in an emulator. WattsOn specifically
focuses on empowering developers to understand energy effi-
ciency, and is most closely aligned with the goals of ARP-view.
However, WattsOn is phone-focused, and does not account
for periodic sensing tasks that are crucial to wearable oper-
ation. Nor does it provide real time feedback on code and

duty cycling changes. Wearables require special attention to
be paid to periodic sensing tasks, timing and duty cycling,
and costs of each API function. The Amulet Resource Pro-
filer seeks to empower wearable developers without requiring
specialized hardware knowledge, or costly profiling and emu-
lation, all while accounting for sensing and user-interaction
costs.

9. DISCUSSION AND FUTURE WORK
The Amulet project (see http://Amulet-project.org) is

a large, ongoing research effort, and this paper is focused on
just one aspect of the Amulet vision and its novel approach
to enabling secure co-existence of multiple applications on
an ultra-low-power wearable device. There remain some
limitations and areas for future work.

Profiler limitations: Predicting software energy costs is
difficult in any context, and the Amulet Resource Profiler has
some limitations. First, it currently assumes that every line
of code has the same energy cost E`, regardless of complexity
(though it does account separately for any function the line
calls; each of the system API calls are explicitly measured
such that we know the amount of energy consumed by making
such a call and thus, do not have to estimate their energy
cost). We could improve our analysis tools (and benchmark
measurements) to reflect a more nuanced view.

Second, it cannot handle data-dependent loop conditions
(all loops are expected to execute a statically-determined
maximum number of times) or conditional statements (ARP
conservatively assumes both branches are always taken).

Third, it assumes that each sensor has an average power
draw Ps, although some sensors may have different rates or
modes of operation that affect power consumption. Indeed, it
assumes that the set of sensor subscriptions does not change
over time, whereas some apps may start (or end) sensor
subscriptions (triggered by new data or by user input).

Fourth, as applications become more complex, the ARP-
view interface becomes much larger, and the amount of
parameters increases, which could lead to usability prob-
lems, We plan to address these limitations by refining our
energy model and analysis tools. Further improvements to
ARP-View are planned that take advantage of the wealth
of information provided by ARP. By integrating ARP-View
with a code editor, developers will be able to get real time
updates as they code, and view energy costs per line of code.

App combinations: We anticipate that Amulet users will
be able to select a set of apps for their personal Amulet
device, perhaps from a sort of app store. The app store
would compile a custom firmware image comprising their
selected apps. When a developer submits her app to the app
store, the results of the Resource Profiler are included, which
later allows the app store to evaluate a given combination
of apps for their impact on Amulet resources and advise the
user in battery lifetime impact.

Applications: To fully explore the capability of Amulet and
its tools, we need to explore a wider variety of applications.
Researchers at Worcester Polytechnic Institute (WPI) have
developed an app that correlates data from multiple phys-
iological signals in an effort to mathematically determine
whether one sensor is faulty (or perhaps tampered). We
encourage the community to download our code, fabricate
an Amulet device, and write apps.

Security and privacy: Wearable devices, especially those
focused on mHealth applications, raise important security
and privacy questions. Together, Amulet-OS and AFT pro-
vide the foundation for securing the system and applications
from misbehaving applications, but more effort is needed on
issues related to access control, encrypted storage, secure
communication, and key management.

10. SUMMARY AND CONCLUSIONS
Wearable platforms must give developers insight into how

their application (and specifically its usage of system re-
sources) will affect the device’s battery lifetime. Currently,
developers can not easily determine how an application’s
sensing regimen will impact battery lifetime, or easily tweak
sensing and interaction rates to explore their effect on battery
life. Furthermore, today’s multi-application wearable plat-
forms have battery life measured in hours and days, whereas
many compelling applications (particularly in mHealth) ben-
efit from battery life on the order of weeks. In this paper we
present the Amulet Platform, which comprises a toolchain
(the Amulet Firmware Toolchain) and runtime (the Amulet-
OS) for development of energy- and resource-efficient ap-
plications on low-power multi-application wearable devices.
Using this framework, and the interactive ARP-View tool,
developers are given guarantees on app isolation, insight into
the tradeoff between resource usage and app performance,
and bounded predictions of the application’s effect on battery
lifetime.

This paper’s contributions include 1) a firmware-production
toolchain that guarantees application isolation (protecting
the system and applications from errant applications), 2) a
multi-application runtime system for resource-constrained
wearables, and 3) the ARP-View tool to help developers pre-
dict battery lifetimes and understand how their decisions af-
fect those lifetimes, 4) an open-source, open-hardware release
of the Amulet platform and its tools;5 From our evaluation,
we found that our Amulet prototype could sustain multiple
applications for weeks on a single, small battery, that our
resource profiler was accurate to within 6-10% of the actual
power draw on our prototype hardware, and that Amulet
has great potential as an mHealth research device.

11. ACKNOWLEDGMENTS
We thank the anonymous reviewers and our shepherd,

Omprakash Gnawali, for their comments. We are grateful
to George Boateng for developing the EMA and Heart-rate
Logger apps, to Taylor Hardin for the final preparation of
the open-source release, and to the whole Amulet team for
their advice and input. We are especially grateful to Andrés
Molina-Markham for his early guidance of the Amulet design
and development.

This research results from a research program at the In-
stitute for Security, Technology, and Society, supported by
the National Science Foundation under award numbers CNS-
1314281, CNS-1314342, and TC-0910842, and by the De-
partment of Health and Human Services (SHARP program)
under award number 90TR0003-01. The views and conclu-
sions contained in this document are those of the authors
and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the sponsors.

5The Amulet Platform can be found at
https://github.com/AmuletGroup/amulet-project

12. REFERENCES
[1] Y. Agarwal, S. Hodges, R. Chandra, J. Scott, P. Bahl,

and R. Gupta. Somniloquy: Augmenting network
interfaces to reduce PC energy usage. In Proceedings of
the USENIX Symposium on Networked Systems Design
and Implementation (NSDI), pages 365–380. USENIX
Association, 2009.

[2] K. Aggarwal, C. Zhang, J. C. Campbell, A. Hindle, and
E. Stroulia. The power of system call traces: Predicting
the software energy consumption impact of changes. In
Proceedings of Annual International Conference on
Computer Science and Software Engineering,
(CASCON), pages 219–233. IBM Corp., 2014. Online at
http://portal.acm.org/citation.cfm?id=2735546.

[3] Android. Optimizing performance and battery life.
Online at http://developer.android.com/training/
wearables/watch-faces/performance.html, visited Dec.
2015.

[4] Android. Power profiles for Android. Online at https:
//source.android.com/devices/tech/power/index.html,
visited Nov. 2015.

[5] Angel. Angel Sensor. Online at
http://www.angelsensor.com, visited Dec. 2015.

[6] ANTLR (ANother Tool for Language Recognition).
Online at http://www.antlr.org/, visited Mar. 2014.

[7] Apple. Apple Watch. Online at
http://www.apple.com/watch/, visited Dec. 2015.

[8] Apple. Energy efficiency and the user experience.
Online at https://developer.apple.com/library/
prerelease/watchos/documentation/Performance/
Conceptual/EnergyGuide-iOS/, visited Dec. 2015.

[9] C. Arthur. Your smartphone’s best app? battery life,
say 89% of Britons. The Guardian, May 2014. Online
at http:
//www.theguardian.com/technology/2014/may/21/
your-smartphones-best-app-battery-life-say-89-of-britons.

[10] E. Baccelli, O. Hahm, M. Günes, M. Wählisch,
T. Schmidt, et al. RIOT OS: Towards an OS for the
Internet of Things (poster). In Proceedings of the IEEE
International Conference on Computer
Communications (INFOCOM), 2013. DOI
10.1109/INFCOMW.2013.6970748.

[11] N. Banerjee, J. Sorber, M. D. Corner, S. Rollins, and
D. Ganesan. Triage: balancing energy and quality of
service in a microserver. In Proceedings of the
International Conference on Mobile Systems,
Applications and Services (MobiSys), pages 152–164.
ACM, 2007. DOI 10.1145/1247660.1247680.

[12] J. Brooke et al. SUS – a quick and dirty usability scale.
Usability evaluation in industry, 189(194):4–7, 1996.

[13] Y. Chen, O. Gnawali, M. Kazandjieva, P. Levis, and
J. Regehr. Surviving sensor network software faults. In
Proceedings of the ACM SIGOPS Symposium on
Operating Systems Principles, (SOSP), pages 235–246.
ACM, 2009. DOI 10.1145/1629575.1629598.

[14] N. Cooprider, W. Archer, E. Eide, D. Gay, and
J. Regehr. Efficient memory safety for tinyos. In
Proceedings of the International Conference on
Embedded Networked Sensor Systems, (SenSys), pages
205–218. ACM, 2007. DOI 10.1145/1322263.1322283.

[15] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali.

Protothreads: Simplifying event-driven programming of
memory-constrained embedded systems. In Proceedings
of the International Conference on Embedded
Networked Sensor Systems (SenSys), pages 29–42.
ACM, 2006. DOI 10.1145/1182807.1182811.

[16] B. Fang, N. D. Lane, M. Zhang, A. Boran, and
F. Kawsar. Bodyscan: Enabling radio-based sensing on
wearable devices for contactless activity and vital sign
monitoring. In Proceedings of the Annual International
Conference on Mobile Systems, Applications, and
Services, (MobiSys), pages 97–110. ACM, 2016. DOI
10.1145/2906388.2906411.

[17] D. Ferreira, E. Ferreira, J. Goncalves, V. Kostakos, and
A. K. Dey. Revisiting human-battery interaction with
an interactive battery interface. In Proceedings of the
ACM International Joint Conference on Pervasive and
Ubiquitous Computing, (UbiComp), pages 563–572.
ACM, 2013. DOI 10.1145/2493432.2493465.

[18] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer,
and D. Culler. The nesC language: A holistic approach
to networked embedded systems. In Proceedings of the
ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 1–11, 2003.
DOI 10.1145/781131.781133.

[19] Hexiwear. Hexiwear open iot development solution.
Online at http://www.hexiwear.com/, visited Aug.
2016.

[20] W. Huang, Y. S. Kuo, P. Pannuto, and P. Dutta. Opo:
A wearable sensor for capturing high-fidelity
face-to-face interactions. In Proceedings of the ACM
Conference on Embedded Network Sensor Systems,
(SenSys), pages 61–75. ACM, 2014. DOI
10.1145/2668332.2668338.

[21] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks,
J. Cheney, and Y. Wang. Cyclone: A safe dialect of C.
In Proceedings of the Annual Conference on USENIX
Annual Technical Conference (ATEC), pages 275–288.
USENIX Association, 2002.

[22] D. Kim, Y. Chon, W. Jung, Y. Kim, and H. Cha.
Accurate prediction of available battery time for mobile
applications. ACM Transactions on Embedded
Computing Systems, 15(3), May 2016. DOI
10.1145/2875423.

[23] N. D. Lane, P. Georgiev, C. Mascolo, and Y. Gao.
ZOE: A cloud-less dialog-enabled continuous sensing
wearable exploiting heterogeneous computation. In
Proceedings of the Annual International Conference on
Mobile Systems, Applications, and Services (MobiSys),
pages 273–286. ACM, May 2015. DOI
10.1145/2742647.2742672.

[24] Q. Leaps. QP/C Framework. Online at
http://www.state-machine.com/qpc/index.html, visited
Dec. 2015.

[25] P. Levis, S. Madden, J. Polastre, R. Szewczyk,
K. Whitehouse, A. Woo, D. Gay, J. Hill, M. Welsh,
E. Brewer, et al. TinyOS: An operating system for
sensor networks. In Ambient Intelligence, pages
115–148. Springer, 2005.

[26] D. Li, S. Hao, W. G. J. Halfond, and R. Govindan.
Calculating source line level energy information for
Android applications. In Proceedings of the
International Symposium on Software Testing and

Analysis, (ISSTA), pages 78–89. ACM, 2013. DOI
10.1145/2483760.2483780.

[27] K. Lorincz, B.-r. Chen, G. W. Challen, A. R.
Chowdhury, S. Patel, P. Bonato, and M. Welsh.
Mercury: A wearable sensor network platform for
high-fidelity motion analysis. In Proceedings of the
International Conference on Embedded Networked
Sensor Systems (SenSys), pages 183–196, Nov. 2009.
DOI 10.1145/1644038.1644057.

[28] X. Ma, P. Huang, X. Jin, P. Wang, S. Park, D. Shen,
Y. Zhou, L. K. Saul, and G. M. Voelker. eDoctor:
Automatically diagnosing abnormal battery drain
issues on smartphones. In Proceedings of the USENIX
Conference on Networked Systems Design and
Implementation, (NSDI), pages 57–70. USENIX
Association, 2013. Online at https://www.usenix.org/
conference/nsdi13/technical-sessions/presentation/ma.

[29] ARM. Technology / mbed OS. ARM mbed IoT Device
Platform, 2014. Online at
http://mbed.org/technology/os/.

[30] C. Min, Y. Lee, C. Yoo, S. Kang, S. Choi, P. Park,
I. Hwang, Y. Ju, S. Choi, and J. Song. PowerForecaster:
Predicting smartphone power impact of continuous
sensing applications at pre-installation time. In
Proceedings of the ACM Conference on Embedded
Networked Sensor Systems (SenSys), pages 31–44.
ACM, 2015. DOI 10.1145/2809695.2809728.

[31] C. Min, C. Yoo, I. Hwang, S. Kang, Y. Lee, S. Lee,
P. Park, C. Lee, S. Choi, and J. Song. Sandra helps you
learn: The more you walk, the more battery your
phone drains. In Proceedings of the ACM International
Joint Conference on Pervasive and Ubiquitous
Computing, (UbiComp), pages 421–432. ACM, 2015.
DOI 10.1145/2750858.2807553.

[32] R. Mittal, A. Kansal, and R. Chandra. Empowering
developers to estimate app energy consumption. In
Proceedings of the Annual International Conference on
Mobile Computing and Networking, (Mobicom), pages
317–328. ACM, 2012. DOI 10.1145/2348543.2348583.

[33] A. J. Oliner, A. P. Iyer, I. Stoica, E. Lagerspetz, and
S. Tarkoma. Carat: Collaborative energy diagnosis for
mobile devices. In Proceedings of the ACM Conference
on Embedded Networked Sensor Systems, (SenSys).
ACM, 2013. DOI 10.1145/2517351.2517354.

[34] A. Pathak, Y. C. Hu, and M. Zhang. Where is the
energy spent inside my app?: Fine grained energy
accounting on smartphones with Eprof. In Proceedings
of the ACM European Conference on Computer
Systems, (EuroSys), pages 29–42. ACM, 2012. DOI
10.1145/2168836.2168841.

[35] Pebble. Battery performance guide. Online at
https://developer.getpebble.com/guides/
best-practices/battery-perform-guide/, visited Nov.
2015.

[36] Pebble. Pebble. Online at https://www.pebble.com/,
visited Nov. 2015.

[37] D. Sehr, R. Muth, C. Biffle, V. Khimenko, E. Pasko,
K. Schimpf, B. Yee, and B. Chen. Adapting software
fault isolation to contemporary CPU architectures. In
USENIX Security Symposium, pages 1–12, 2010.

[38] V. Shnayder, M. Hempstead, B. R. Chen, G. W. Allen,
and M. Welsh. Simulating the power consumption of
large-scale sensor network applications. In Proceedings
of the International Conference on Embedded
Networked Sensor Systems, (SenSys), pages 188–200.
ACM, 2004. DOI 10.1145/1031495.1031518.

[39] SocialCompare. Comparison of popular smartwatches.
Online at http://socialcompare.com/en/comparison/
comparison-of-popular-smartwatches, visited Dec. 2015.

[40] Sony. Open SmartWatch Project. Online at
http://developer.sonymobile.com/services/
open-smartwatch-project/, visited Dec. 2015.

[41] J. Sorber, N. Banerjee, M. D. Corner, and S. Rollins.
Turducken: Hierarchical power management for mobile
devices. In Proceedings of the International Conference
on Mobile Systems, Applications, and Services
(MobiSys), pages 261–274. ACM, 2005. DOI
10.1145/1067170.1067198.

[42] TE Connectivity. New survey from TE Connectivity
uncovers America’s desire for wearables. PR Newswire,
May 2015, Online at https://perma.cc/Y55G-5RRF.

[43] The Creators Project. Choose BLOCKS. Online at
http://www.chooseblocks.com, visited Dec. 2015.

[44] H. Wu, S. Yang, and A. Rountev. Static detection of
energy defect patterns in android applications. In
Proceedings of the International Conference on
Compiler Construction, (CC), pages 185–195. ACM,
2016. DOI 10.1145/2892208.2892218.

[45] C. Yoon, D. Kim, W. Jung, C. Kang, and H. Cha.
AppScope: Application energy metering framework for
Android smartphones using kernel activity monitoring.
In Proceedings of the USENIX Conference on Annual
Technical Conference, (USENIX ATC), page 36.
USENIX Association, 2012. Online at
https://www.usenix.org/conference/atc12/
technical-sessions/presentation/yoon.

[46] L. Zhao, G. Li, B. De Sutter, and J. Regehr. ARMor:
Fully verified software fault isolation. In Proceedings of
the International Conference on Embedded Software
(EMSOFT), pages 289–298. ACM, 2011. DOI
10.1145/2038642.2038687.

[47] Y. Zhou, X. Wang, Y. Chen, and Z. Wang. ARMlock:
Hardware-based fault isolation for ARM. In Proceedings
of the ACM SIGSAC Conference on Computer and
Communications Security (CCS), pages 558–569. ACM,
2014. DOI 10.1145/2660267.2660344.

[48] ZWear. ZWear – a wearable platform for makers.
Online at http://zwear.org, visited Dec. 2015.

