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First-order reversal curve of the magnetostructural phase transition in FeTe

M. K. Frampton,' J. Crocker,' D. A. Gilbert,">" N. Curro,' Kai Liu,' J. A. Schneeloch,® G. D. Gu,? and R. J. Zieve-f
' Physics Department, University of California, Davis, California 95616, USA
*National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
3Brookhaven National Laboratory, Upton, New York 11973, USA
(Received 8 October 2016; revised manuscript received 4 May 2017; published 5 June 2017)

We apply the first-order reversal curve (FORC) method, adapted from studies of ferromagnetic materials, to
the magnetostructural phase transition of Fe;;,Te. FORC measurements reveal two features in the hysteretic

phase transition, even in samples where traditional temperature measurements display only a single transition.
For Fe, 13Te, the influence of magnetic field suggests that the main feature is primarily structural while a smaller,
slightly higher-temperature transition is magnetic in origin. By contrast, Fe; o3Te has a single transition which
shows a uniform response to magnetic field, indicating a stronger coupling of the magnetic and structural
phase transitions. We also introduce uniaxial stress, which spreads the distribution width without changing the
underlying energy barrier of the transformation. The work shows how FORC can help disentangle the roles of

the magnetic and structural phase transitions in FeTe.
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I. INTRODUCTION

For decades it was well-established wisdom that su-
perconductors could not be magnetic, and could not even
contain a substantial concentration of magnetic impurities.
Yet, beginning in the 1980’s, unconventional superconductors
such as perovskites [1], 115s [2], and other heavy fermions [3]
illustrated that in some cases magnetism could coexist with and
even enable superconductivity. The trend culminated with the
iron-based chalcogenides and pnictides, which claim among
the highest superconducting transition temperatures of above
50 K despite containing the quintessential magnetic atom [4].
Understanding the complex interplay among the many types
of interactions in these compounds may ultimately lead to
higher-temperature superconductors or devices based on their
other collective behaviors.

Many chalcogenides and pnictides exhibit structural and
magnetic phase transitions which are nearly or exactly simul-
taneous and occur well above any superconducting transition
temperature. At even higher temperatures compounds in both
families also develop nematicity [5]. These material properties
and their coupling explicitly define the electron spin ordering
and phonon coupling, and set the stage for the superconducting
transition. The magnetic and structural ordering are particu-
larly intertwined in Fe,, Te: For small y, the high-temperature
phase, which is tetragonal and paramagnetic, undergoes a
first-order transition to a bicollinear antiferromagnetic phase
with a monoclinic structure [6]. However, for sufficiently large
v, the low-temperature phase changes to orthorhombic with
incommensurate helical magnetic order [7]. This apparently
second-order transition violates the weak Lifshitz criterion [8],
which may indicate a precursor spin-liquid state above the
transition [9]. For an intermediate range near y = 0.11, a
series of phases emerges on cooling. One set of measure-
ments suggests an initial orthorhombic distortion coinciding
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with incommensurate antiferromagnetism, and then at lower
temperatures a transition to a monoclinic, bicollinear antifer-
romagnet [10,11]. More recent work supports an even more
complicated sequence: first a monoclinic distortion, then the
onset of incommensurate antiferromagnetism, and finally a
zigzag distortion of the monoclinic lattice as the magnetic
ordering becomes commensurate [12,13]. The upper two tran-
sitions are apparently second order, while the lowest transition
is strongly first order. The lowest-temperature transition may
also coincide with yet another type of order, an electronically
driven ferro-orbital ordering that alters the magnetism and
produces a structural distortion [13-15].

It is expected that both the magnetic ordering and lattice
structure play crucial roles in enabling superconductivity in
these materials. Here, we probe the intimate details of the
magnetic and structural phase transitions and the magne-
tostructural coupling using a first-order reversal curve (FORC)
technique [16-18]. By a controlled sequence of temperature
cycles, this technique sets the system in the middle of the phase
transition, and then measures its evolution as it is driven out
of the transition under increasing temperatures. Details of this
evolution clearly depend on the distribution of intrinsic prop-
erties and interactions within the sample; the FORC technique
evaluates the evolution from several mixed-phase starting
conditions to separately extract these details—a feat which
is impossible with standard resistance versus temperature
measurements. The FORC technique is traditionally applied
to magnetic materials [19-25], and is able to quantitatively
extract details including the magnetization reversal mecha-
nism, the anisotropy distribution, and the magnetic dipolar and
exchange interactions. In this paper, we extract the phase tran-
sition activation energy—an analog of the anisotropy—and the
strain-based interaction energy. These details cannot be easily
extracted from the simple single parameter measurements
typically performed. In addition, the FORC technique allows
us to explicitly separate hysteretic (first-order) transitions from
second-order transitions in the same temperature regime. Thus,
the FORC measurements yield a microscopic view of the phase
evolution.
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II. EXPERIMENT

Single-crystal samples of Fe; g3 Te and Fe; ;3Te were fab-
ricated by unidirectional solidification, following procedures
discussed previously [26]. In-plane resistance measurements
were performed using a four-probe constant current configura-
tion. Uniaxial stress was applied using a nonmagnetic stainless
steel press with a manganin foil manometer [27].

The transition which we monitor occurs near 62 K for
Fe, o3Te and 45 K for Fe; 13Te. In each case the transition
is thermally hysteretic; the resistance values measured while
cooling and warming do not overlap. Details of a hysteretic
transition are directly related to the nanoscale properties of the
system, including the activation energy to initiate the transfor-
mation, the distribution of the activation energies across the
sample, e.g., due to defects or strain fields, and the interactions
between phases during the transformation. We will use “intrin-
sic” to describe all influences that would affect the transition
of a small isolated piece of the material, including such
properties as activation energy or defect density. Traditional
measurements of a hysteretic transition start well away from
the transition; we will take the high-temperature (HT) phase
as the starting point. The resistance is measured as the temper-
ature is decreased and the system transforms entirely into the
low-temperature (LT) phase. The temperature sweep direction
is then reversed, and the resistance is measured as the tem-
perature increases and the system reenters the HT phase. This
forms the “major hysteresis loop,” which is shown for Fe, g3 Te
atuoH =0 T,and P = 120 MPain Fig. 1(a). The FORC tech-
nique obtains additional data corresponding to the interior of
the major loop, by preparing the system in a mixed-phase state
and measuring as it progresses towards a single-phase state.
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FIG. 1. (a) Illustrative diagram of the warming and cooling lines
demonstrating hysteresis and thermal coercivity, taken from Fe, o3 Te
at uoH =0T, P = 120 Mpa. (b) The family of FORCs shown to fill
the major loop, highlighting the FORC branch starting at 7z = 59 K.
(c) Calculated FORC distribution with (7', T) and (T, T3 ) coordinate
axes shown. (d) Schematic illustration of a hysteron associated with
the thermal hysteresis.
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Our FORC measurement scheme is based on previously
published procedures [16,17,19-21,28,29]. As when measur-
ing the major hysteresis loop, the sample is prepared in the
HT phase, point A in Fig. 1(b). Then the temperature is
lowered towards the LT phase (red curve). The temperature
sweep is halted between the HT and LT single-phase states, at
a temperature termed the “reversal temperature” Tk. Between
point A and T the resistance follows the major hysteresis loop,
although these values are not used in the subsequent FORC
analysis. The temperature is then increased in increments
of AT from Ty back towards A. At each temperature 7T,
the resistance is measured after the sample achieves thermal
equilibrium. A single FORC branch with Tz =59 K is
highlighted in blue in Fig. 1(b). Upon reaching A, the process is
repeated for a new T, until these “minor loops” fill the interior
of the major loop; all of the measured FORCs, termed a family
of FORCs, are shown in pink, with the major loop shown as
dashed line in Fig. 1(b). For Ty near A the sample is in the
HT phase, and for Tk at particularly low temperatures (<50 K
in Fig. 1) the sample is in the LT phase. Under our FORC
procedure, for Tx within the phase transition temperature
range, the system will start in a mixed HT/LT state and end
in the HT phase. The evolution of the system as T increases
from Tk depends on the intrinsic and interaction details listed
above. The temperature is changed quite slowly during these
measurements, to ensure that there is no overshoot of Ty or T.

Once the family of FORC:s is collected, the FORC distribu-
tion p(T,Tr) is calculated by applying a mixed second-order
derivative, p(T,Tg) = — 75 (2818), shown in Fig. 1(c). The

aT
derivative 220 jdentifies the slope of R(T,Tg), at each

value of T'; the subsequent derivative 07Ty identifies how the
slope changes at a particular value of 7 along branches starting
at different Tx. Noting that the changes in the slope correspond
to the physical LT-to-HT phase transitions, this sequence
of measurements identifies changes in the transformation
temperatures as a function of the phase state at each Tk.

The traditional approach to interpreting FORC distributions
is to apply the Preisach model of hysteresis [30], which
describes a hysteretic system as a weighted sum of funda-
mental units of hysteresis called hysterons. In this model
each hysteron has one contribution to the resistance associated
with the HT phase, and a different contribution associated
with the LT phase, as illustrated in Fig. 1(d). The hysteron
has a sharp HT-to-LT transition temperature TV and a sharp
LT-to-HT transition temperature 7'. In FORC measurements
with Tg > TV, the hysteron never leaves the HT phase; thus
M(BTJ = 0 and is independent of Tk. Correspondingly, the
FORC distribution for this value of Ty is zero at all T,
with the restriction that the measurements can only sample
T > Tg. Similarly, for the FORC branches with Tz < TV,
the hysteretic element does reach the LT state. As the FORC
measurement temperature increases, the sample remains in the
LT state until 7 = T, at which point the hysteron switches
back into the HT phase, and the resistance abruptly changes.

The derivative % vanishes except at T = T*, and since

the measurements near 71 are identical for all Tx < TV,
the mixed second-order derivative vanishes again. The only
nonzero contribution to the FORC distribution p(T,Tg) is
at the crossover between these regimes, where Ty = TV and
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T = T". In this case varying either T or Ty switches between
the two resistance levels. The entire sample is treated as a
weighted sum of hysterons with unique (7", T+) parameters,
thus the FORC distribution maps out the weight parameter.
Each hysteron encodes details of local behavior, which may
be intrinsic or may stem from interactions.

Next, we define the center of a hysteron by AR A4

2
coercivity by # Bearing in mind that each hysteron’s con-
tribution to the FORC distribution appears at (T = T1,Tz =
TV), a new coordinate system can be defined in terms of these
values, (T¢ = T_ZTR , T = T’LZTR ), where T¢ and Tp are the
coercive and bias temperatures. The vocabulary stems from the
original use of FORC with ferromagnets. The transformation
of the FORC distribution is shown in Fig. 1(c). Physically, T
is the average (center) of the phase transition temperatures,
while T¢ identifies the energy barrier (or activation energy) of
the phase transition. In particular, displacement of a feature
along T¢ shows a change in the energy barrier for the
transition, while displacement in 7 shows a change in the
center of the transition temperature. Any hysteretic transition
has nonzero T¢, with larger values of T¢ corresponding to
stronger hysteresis. At the other extreme, a second-order
transition has no hysteresis, so it would appear along the
Tc = 0K axis. Without special consideration beyond the
analysis described here, features do not appear onthe 7¢ = 0K
axis [31]; thus the FORC technique filters out nonhysteretic
transitions. The FORC diagrams in this paper are plotted in the
(T,Tg) coordinates since these coordinates correspond to the
temperatures set during measurement, and thus may be more
simply understood. The (7¢,Tp) coordinates are included in
the plots, as they offer keen physical insight into the intimate
details of the system.

For further insight into the physical origin of the FORC
features, we consider, as an example case, a single very
small isolated crystalline grain. If small enough, this one
grain should exhibit sharp transitions and contribute to the
FORC distribution only at (7" = T1,Tg = TV). Next, consider
a collection of isolated (noninteracting) small crystallites with
slightly different transition temperatures, e.g., due to doping
variation. If each crystallite has the same quality (defect
density), the activation energy is expected to be the same,
resulting in a common 7¢. However, the different transition
temperatures will displace the FORC features from each
crystallite along the Tp direction. Thus, the resultant feature
will appear narrow in 7¢ and elongated and continuous in
the Ty direction. As the difference between the transition
temperatures becomes larger, the FORC features decouple and
can become discrete [29,32]. Alternatively, consider a collec-
tion of crystallites with similar stoichiometric composition,
but variations in their defect densities. The central transition
temperatures 7 for these crystallites should be the same, but
the defects may act as nucleation sites for premature phase
nucleation or pin the phase transition propagation front. The
consequences of defects are presumably symmetric along the
warming and cooling branches, and hence will be manifested
along the T¢ axis. Adding interactions to the example system
significantly complicates the FORC distribution in nontrivial
ways [19], which are still under ongoing investigation [29].
For this work, the relevant interaction is found to be a

, and its
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mean-field-like destabilizing interaction. In this interaction the
mixed-phase state is favored. As a consequence, the HT-to-LT
transitions occurs prematurely along the cooling branch of
the major loop from the HT phase to enter the mixed state.
Similarly, the HT-to-LT transition is suppressed to lower
temperatures when approaching the LT state on the cooling
branch of the major loop to remain in the mixed state. These
transitions act to expand the FORC distribution along the Tk
direction. Along each FORC branch, the same mean-field
interactions act to promote the mixed-phase state, inducing
similar shifts along the T axis, resulting in a net shift along the
Tp direction, as discussed in Ref. [19]. As long as the intrinsic
transition temperatures of the crystallites are close together,
such an interaction is manifested as a broadening of the FORC
distribution along the T axis. An analogous discussion on the
mean-field interaction in FORC is provided in Refs. [19,20].

One other useful concept is the projection of the FORC
distribution along one of its coordinates [33]. In some cases
projections onto the T or Tk axes are informative; in others,
projections onto T¢ or Tp are more useful. As seen in the
discussion of hysterons, varying Tk probes the HT-to-LT
transition, so a projection onto the Tk axis is analogous to
measuring the derivative with respect to temperature of cooling
branch of the major loop, but only identifying the hysteretic
events. Similarly, a projection onto the 7' axis is analogous
to measuring the derivative of the warming branch of the
major loop. However, projections onto 7¢ and 7p have no
simple analogs in a measurement of only the major loop.
Using the aforementioned description of T¢ and Ty, the FORC
diagram in (7¢,Tp) coordinates plots the phase-resolved
nanoscale transition temperature and the thermal hysteresis,
corresponding to the activation energy.

III. RESULTS

The measured family of FORCs and extracted FORC dis-
tributions for Fe; 13Te at several magnetic fields are shown in
Figs. 2(a)-2(d) and 2(e)-2(h), respectively. Different research
groups report slightly different Fe content for the intermediate
regime with multiple transitions [9,11,12]. Our Fe, 3Te
sample lies in that regime, with a characteristic metallic
behavior below the resistive transition [11]. Interestingly,
the two-dimensional FORC contour plots show two distinct
features: a dominant peak centered near (T = 52K, Ty =
45 K) and a secondary peak at slightly higher T and lower T
(T =54 K, Tg = 54 K). The second peak indicates a two-step
reversal and is entirely invisible in the major hysteresis loops
[Figs. 2(a)-2(d)]. In an applied magnetic field the main peak
is shifted to lower T and Ty and the secondary satellite
peak intensity is suppressed. The Tp and T projections,
shown in Figs. 2(i) and 2(j), confirm the displacement of
the main peak in Tp and suppression of the satellite peak
with increasing magnetic field. The area of the satellite peak
extrapolates to zero at 16.5 T, which is consistent with standard
magnetic exchange coupling parameters, suggesting the origin
of this peak may be local magnetic ordering. We note that
the magnetic field has no influence on the width or position
of the main peak in the 7 projection, but only displaces
the peak in Tp. This suggests a change to the transition
temperature, but not the activation energy. As will be discussed
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FIG. 2. (a)~(d) Major hysteresis loop (black) and family of
FORC:s for Fe; 3Te measured at P = 0 Pa and different magnetic
fields applied along the ¢ axis. (e)—(h) FORC distributions extracted
from (a)-(d). (i), (j) Projections of (e)—(h) onto the T and T axes,
normalized to their respective maxima, with the main peak and
satellite feature indicated by a dot and arrow, respectively. Error bars
are determined by the resistance and temperature sensitivity, and are
smaller than the linewidth.
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below, similar trends are observed in the Fe; o3 Te sample. The
uneven influence of field, suppressing the satellite peak but
merely translating the main peak, suggests that both peaks
possess a magnetic ordering component, but for the main
peak the ordering may be directly coupled to a structural
or orbital ordering which is not suppressed by the field.
Additionally, the satellite peak occurs at a smaller value of 7¢,
generally corresponding to a transition with less hysteresis, and
indicating a different (smaller) activation energy than the main
peak. One possibility is that we are measuring the lower two of
the three transitions identified by Fobes et al. [13]. Our main
peak is the orbital ordering transition which is accompanied
by magnetic and electronic changes; this is consistent with the
slight effect of magnetic field on this peak. The satellite peak,
which appears to be magnetic, may be the antiferromagnetic
transition previously identified as second order. The FORC
results suggest that it is in fact weakly first order, to a degree
difficult to ascertain with traditional transport measurements.

Figure 3 displays corresponding measurements on Fe, g3 Te,
which has a monoclinic LT state. Here, the zero-field FORC
distribution is elongated in the Tp direction and narrow in
Tc. This is analogous to a magnetometry-FORC distribution
for a sample with narrow intrinsic coercivity distribution
and large mean-field-like demagnetizing interactions [19].
Demagnetizing interactions in magnetic materials destabilize
the saturated magnetic state, or, alternatively, stabilize the
demagnetized configuration. Translating this analogy to the
FeTe FORCs, the elongation along the Ty direction may
indicate interactions which favor a mixed-phase state, or,
alternatively, destabilize the single-phase state. A narrow
coercivity distribution is consistent with having a high-quality
single-crystal sample, while the origin of the destabilizing
interactions is, as of yet, unclear. Another interpretation is
that the two features may indicate different regions within
the sample with slightly different transition temperatures,
suggesting stoichiometry variation. As in Fe; 13Te, while major
hysteresis loops [Figs. 3(a)-3(d)] show what appears to be a
single transition, the FORC distribution suggests a two-step
phase evolution, as appears most clearly in the 7 projection
of Fig. 3(e).

Upon the application of a magnetic field along the (001)
axis [Figs. 3(f)-3(h)], the FORC distribution does not exhibit
appreciable deformation or changes in intensity, but again the
feature is displaced in —Tp, particularly for yugH > 4 T. This
suggests that there is a magnetic component to the transition,
but suppression of the magnetic ordering does not suppress
other transformations—presumably orbital ordering [13]. In
the Tp projection shown in Fig. 3(i), the two-peak feature
does not move for woH = 2 T, then shifts steadily towards
smaller T for uoH = 4 T-8 T. Weighing the thermal energy
and magnetic Zeeman energy against each other, an energy
can be extracted from the shift, as shown in the Discussion
section. Similar to the main peak in the Fe; 3Te sample, the
T¢ projection [Fig. 3(j)] shows no dependence whatsoever on
the magnetic field.

The above FORC measurements demonstrate magnetic
field control of these magnetostructural transitions, and sug-
gest some coupling between the magnetic ordering and other
transformations (structural and orbital). Another approach to
tuning the transitions is the application of uniaxial stress;
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FIG. 3. (a)-(d) Major hysteresis loop (black) and family of
FORC:s for Fe; o3Te measured at P = 0 Pa and different magnetic
fields applied along the ¢ axis. (e)—(h) FORC distributions extracted
from (a)-(d). (i), (j) Projections of (e)—(h) onto the Ty and T axes,
with the main peak and satellite feature indicated by a dot and an
arrow, respectively. The curves in each frame are normalized by
the height of the main peak. The 2 T data are shown only in the
projections, since the FORCs and resulting distribution are nearly
identical to those for zero field. Scaling and error bars are determined
asin Fig. 2. Plots in (i) and (f) are sequentially offset by 0.5 to improve
visibility.
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FORC measurements on Fej o3Te under uniaxial stress are
shown in Fig. 4. Stress is applied along the (001) axis, without
any external magnetic field. Unlike the family of FORCs in
Figs. 2 and 3, the pressure measurements in Fig. 4 generate a
shift in the resistance of both the HT and LT phase, shown
in Figs. 4(a)-4(d). However, the derivative in the FORC
calculation removes these offsets, only identifying changes
in the evolution processes. The extracted FORC distributions
[Figs. 4(e)—4(h)] show a distribution narrow in T¢ and broad
in Tp. Under increasing stress [Figs. 4(e)—4(g)], the width of
the FORC feature increases substantially in both directions of
Tg, but the distribution remains centered slightly below the
Tp = 62 K line. Similar to the magnetic field case, the T¢
projection is insensitive to pressure. Relieving the pressure
[Fig. 4(h)] returns the FORC feature to a narrower distribution
in Tp, suggesting that the stress-induced changes are mostly
reversible. A shallow tail along T which remains may be the
result of residual sample damage from the pressure cell.

IV. DISCUSSION

The FORC distributions in Figs. 2 and 3 show that, above a
critical field, the magnetic field uniformly translates the FORC
distribution along — Tz, without changing its internal structure,
as would be expected from Zeeman energy considerations.
In an applied field, the larger magnetic susceptibility of the
paramagnetic (HT) phase [11] stabilizes that phase relative
to the antiferromagnetic (LT) phase. The Zeeman energy
difference between the two phases, favoring the HT phase,
shifts the transition to lower temperatures with increasing
field. This holds for both directions of the transition, either to
(HT-to-LT) or from (LT-to-HT) the antiferromagnetic phase;
the entire hysteretic transition, along with its nesting behavior
probed by FORC, moves to lower temperature. Since T¢
corresponds roughly to the half width of the hysteresis loop,
and is insensitive to the average transition temperature, the
absence of a change in T¢ confirms exactly this behavior.

However, the traditional Zeeman energy is linear in applied
field, implying the displacement of the FORC features would
also be linear in field. We plot the Tp displacement of the
FORC features for the Fe;3Te and Fe;3Te samples in
Fig. 5(a). This plot shows the shift in T of the fitted Gaussian
center of dR/dTg between poH = 0T and an applied field
WoH, multiplied by Boltzmann’s constant to convert to the
corresponding energy. In both cases the displacement at low
fields does not follow the expected linear trend. Indeed, the
shift for uoH < 3 T is extremely small, as shown directly
in Figs. 2(e) and 3(e), respectively. We conclude that orbital
ordering energy considerations dominate the low-field phase
transition, with magnetic contributions playing only a small
role. Assuming a linear coupling between the energy and
magnetic field, as is the case with the Zeeman interaction, we
can quantify this statement; linearly extrapolating the FORC
displacement from the puoH > 3 T range, the magnetic field
energy and other ordering energies (structural, orbital) become
equal at 2.6 T and 2.8 T for Fe; j3Te and Fe, 3 Te, respectively.
A further extrapolation to zero magnetic field yields a coupling
energy of 25 ueV for Fe; ;3Te and 15 eV for Fe;gs3Te. It
is important to note that these results were made possible by
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FIG. 4. (a)-(d) Major hysteresis loop (black) and family of
FORC:s for Fe p3Te measured at uoH =0 T, at (a) P =70 MPa,
(b) P = 120 MPa, (c) P = 160 MPa, (d) P = 0O (the order shows the
measurement sequence). (e)—(h) FORC distributions extracted from
(a)—(d). (i), (j) Projections of (e)—(h) onto the T and T¢ axes, with
the main peak and satellite feature indicated by a dot and an arrow,
respectively. The curves in each frame are normalized by the height
of the main peak. Error bars are determined by the resistance and
temperature sensitivity, and are smaller than the linewidth. Scaling,
offset, and error bars are determined as in Fig. 3.
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FIG. 5. (a) Thermal energy calculated from the FORC feature
displacement, as observed in the T projections. The linear fit is
calculated from the poH > 2 T data. (b) Full width at half maximum
(FWHM) of FORC distribution under increasing pressure. Arrows
indicate the measurement sequence. The linear fit is determined using
all of the data. Error bars are determined by the error of the peak fit
location and width for (a) and (b), respectively.

resolving the energy difference represented in the 7 coordi-
nate, which could be achieved only through FORC analysis.

The broadening under stress is plotted in Fig. 5(b), which
shows the full width at half maximum of Gaussian fits to the T
projections of Fig. 4(i). The broadening both to higher Tp and
lower T means that some regions in the sample transition
at higher temperatures and others at lower temperatures,
relative to their unstressed state. Meanwhile, the stability of
the distribution in 7¢ [Fig. 4(j)] implies that each region retains
its original degree of hysteresis. The symmetrical broadening
leads to the seemingly paradoxical conclusion that stress has
an opposite effect on the regions of the sample near the high or
low ends of the transition, moving the former to a yet higher
temperature while depressing the latter.

As noted above, the elongated feature suggests in-
teractions which promote instability in the single-phase
states [19,20,34,35]. The pressure-induced elongation of the
FORC feature supports a conclusion that self-destabilizing
interaction cause the stretching of the feature, rather than
stoichiometric variation. One possible mechanism is that local
strains created in either the tetragonal or monoclinic phases
could be relieved in a mixed state with regions of each struc-
ture. Such a mechanism that favored the mixed state would
spread out the transition, as observed. To achieve the fully
LT phase would require overcoming this additional energy
and suppress the FORC feature to lower Tg. Subsequently
warming from the LT state, the transition would begin at lower
temperatures to return to the mixed-phase state, leading to the
FORC feature at the same T, but displaced in T. Similarly,
this preference for a mixed-phase state causes the initial phase
transitions to occur at higher temperatures, stretching the
FORC distribution to a higher Tp. This type of interaction
need not change the energy of the mixed-phase state, so the
center of the FORC distribution could remain unchanged, as
observed here. The broad uniformity of the FORC distribution
along Tp indicates that these interactions are mean-field-like,
as opposed to local interactions, which would manifest as
discrete maxima in the FORC distribution. For completeness,
if the system favored a single-phase state, the transformation
would occur as an avalanche event, resulting in a collapse of
the FORC distribution feature to a single point [19].

Since the FORC technique is unfamiliar to this research
field, Fig. 6 shows a comparison of the FORC projections with
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FIG. 6. Comparison of (a), (b) the derivative of the cooling and
warming “direct” measurements with (c), (d) the Tx and 7 FORC
projections from Figs. 1(a)-1(d) in the main text.

the derivative of the warming and cooling one-dimensional
measurements. Specifically, the FORC measurements require
anumber of minor loop measurements, followed by a complex
mathematical operation to develop a two-dimensional contour
plot of the transitions. The advantage of the FORC technique is
its ability to quantitatively resolve both the 7" and T+ events
for the transitions, but throughout this paper the projections
were provided as a powerful tool to aid in visual clarification.
Projecting the FORC distribution in either 7 or Tk parameters
returns the FORC measurement to a one-dimensional plot
which represents the sum total of all transitions along the
warming and cooling branches. Thus, the FORC projection
should be similar to the first derivative of the traditional
one-dimensional warming and cooling measurements, with
a main difference being that the FORC measurement shows
only hysteretic transitions. In Fig. 6, the derivative of the
cooling and warming major loop measurements [Figs. 6(a)
and 6(b)] and the FORC projections [Figs. 6(c) and 6(d)] for
Fig. 2 are compared. The similarities between the curves are
immediately apparent, with all of the plots showing a shift of
the main peak to lower temperatures with increasing magnetic
field. However, there are also key differences, notably, that
the derivative of the cooling curve [Fig. 6(a)] identifies a
broad transition before the main peak, but does not identify
it as a separate, distinguishable transition, and does not
show a change in intensity. This highlights the ability of the
FORC technique to specifically resolve hysteretic transitions.
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Interestingly, the feature corresponding to the suppressed high-
temperature transition shows only a change in intensity for the
FORC measurement, implying the magnetic field makes this
transition more reversible. Additionally, the projections show
a shift in both 71 and TV (implicit in 7 and T%) but it is
only by transforming into (7¢,7g) coordinates—which have
no analog in the direct measurement—that we can directly
relate to nanoscale physics effects.

V. CONCLUSIONS

In summary, the first-order reversal curve (FORC) tech-
nique is applied to the magnetostructural phase transition of
FeTe. The phase transition at ~60 K is of particular interest
as it sets the stage for the superconducting transition, and
engenders the onset of magnetostructural coupling. The roles
of stoichiometric doping and pressure are investigated, as
these approaches are often used to induce superconductivity
in this class of material. FORC measurements on FeTe show a
two-step hysteretic transition, while traditional measurements
show only a single first-order transition. In Fe; ;3Te one
transition is suppressed by magnetic fields and seems to be the
antiferromagnetic ordering previously thought to be second
order. This possibility of a first-order transition is notable
because the order of the transition helps determine what
phases are present elsewhere in the phase diagram. In Fe, g3 Te,
low magnetic fields do not affect the phase transition, while
larger fields cause a linear shift in the transition temperature,
consistent with a simple Zeeman energy. Using this model,
the magnetostructural coupling energy is quantitatively de-
termined. Lastly, the FORC technique reveals that pressure
increases the spread of the transition temperature without
changing the activation energy. By analogy to magnetic FORC
measurements, the measured FORC distribution implies a self-
interaction which stabilizes the mixed-phase state. The FORC
technique thus provides insight into the magnetostructural
coupling and the consequences of stoichiometric doping and
pressure, crucial to expanding our understanding of these
materials.
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