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Abstract: There is no theoretical underpinning that successfully explains how turbulent mixing is

fed by wave breaking associated with nonlinear wave-wave interactions in the background oceanic

internal wavefield. We address this conundrum using one-dimensional ray tracing simulations to

investigate interactions between high frequency internal waves and inertial oscillations in the extreme

scale separated limit known as “Induced Diffusion”. Here, estimates of phase locking are used to

define a resonant process (a resonant well) and a non-resonant process that results in stochastic jumps.

The small amplitude limit consists of jumps that are small compared to the scale of the resonant well.

The ray tracing simulations are used to estimate the first and second moments of a wave packet’s

vertical wavenumber as it evolves from an initial condition. These moments are compared with

predictions obtained from the diffusive approximation to a self-consistent kinetic equation derived

in the ‘Direct Interaction Approximation’. Results indicate that the first and second moments

of the two systems evolve in a nearly identical manner when the inertial field has amplitudes

an order of magnitude smaller than oceanic values. At realistic (oceanic) amplitudes, though,

the second moment estimated from the ray tracing simulations is inhibited. The transition is explained

by the stochastic jumps obtaining the characteristic size of the resonant well. We interpret this

transition as an adiabatic ‘saturation’ process which changes the nominal background wavefield from

supporting no mixing to the point where that background wavefield defines the normalization for

oceanic mixing models.
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1. Introduction

One of the stories that gets told in Physical Oceanography is that, at the turn of the preceding

century, there was one major unsolved problem in Physics, turbulence, and some niggling questions

concerning an ultraviolet catastrophe. Physics then went off and did the easier problem, resulting in

Quantum Mechanics. While we do have some understanding of turbulence in a homogeneous setting

deriving from Kolmogorov [1], we remain generally ignorant about the relation of turbulence to the

various species of waves that support turbulence through a spatially inhomogeneous and temporally

intermittent breaking process. In short, the difficult problem of developing an understanding of

strongly interacting waves that leads to wave breaking and turbulence remains.

The ultraviolet catastrophe is a prediction, assuming an equipartition of energy in the harmonic

oscillator modes of a system in thermal equilibrium, that an ideal black body will emit an infinite

amount of radiation. There are two aspects to the oceanic ultraviolet catastrophe. Both are both

based upon a theory of nonlinear transfers of energy between internal waves formulated as a system
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of coupled harmonic oscillators [2–4]. This theory ultimately results in a Fokker-Planck, or generalized

diffusion, equation with the following properties. First, energy in the internal wavefield will typically

be transferred from large vertical scales to small at constant horizontal wavenumber and consequently

from high frequency to low [5]. With such transfer, a source of internal wave energy at high frequency

is required for a stationary balance. A recent systematic review of the nonlinear transfers and possible

energy sources of the oceanic internal wavefield [6] strongly suggests that the required energy source

at high frequency does not exist. Yet that same theory makes a prediction for the spectral power laws

of statistically stationary states that are in good agreement with observed oceanic spectra, Figure 1.

The second aspect to the oceanic catastrophe is that the Garrett and Munk 1976 (GM76) version of

the oceanic spectrum, which was given “universal” status in [7], is not just a stationary state in the

coupled oscillator paradigm: Having no gradients of action in vertical wavenumber, GM76 is a no flux

solution of the Fokker-Planck equation, which means no transport of energy to smaller scales. Again, it

is highly unlikely that this prediction can be observationally sustained.
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Figure 1. Estimates of frequency and vertical wavenumber power laws cast in terms of a three

dimensional action spectrum n(kh, m) ∝ k−a
h |m|

−b with horizontal wavenumber magnitude kh and

vertical wavenumber m and overlain on a theoretical paradigm map. Blue symbols represent power

law fits to ocean observations. See [6] (their Figure 36) for the identification of the field programs.

Filled circles represent scale-invariant stationary states identified by [8] (PR), a convergent numerical

solution determined in [9] (C), the GM76 spectrum at (a, b) = (4, 0) and curve fits to two possible

dynamic balances identified in [5] (M). Thin white contours are proportional to the action tendency in

the Fokker–Plank with +− symbols denoting the sign. The [5] states lie in a part of parameter space

with decreasing spectral amplitude, which then requires an unidentified source to remain in a steady

state. Overlain as thick white lines are the induced diffusion stationary states with the constant flux

solution trending diagonally and the no-flux solution lying horizontal along b = 0. Adapted from [6],

their Figure 37.

The glaring nature of this tension is exposed with the use of finescale parameterizations that

seek to characterize the interaction of high frequency waves with near-inertial shear leading to a net

downscale transport of energy, turbulent production and mixing. The finescale parameterization was

originally set [10] as a high wavenumber gate beyond which wave breaking effects would balance

a downscale flux, with no theoretical underpinning for that flux. The finescale parameterization was

generalized in [11,12] as an energy (not wave action) cascade process in order to permit its application
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at larger vertical scales. This generalization is a heuristically motivated advective (not diffusive)

closure underpinned by empirical evidence [11,13] that demands spectral transports in horizontal

wavenumber similar to those in vertical wavenumber, to the effect that transports in the frequency

domain are minimal. In that work the GM76 spectrum is special only in that it serves as a normalization

for a finite downscale energy transport.

To date there is no theoretical justification for this finescale parameterization. Yet it has seen

wide application in the field (see [13] for a recent review) with the only parameterization vs.

data discrepancies arising from wave-mean interactions and from double-diffusive contributions

to dissipation.

The first inconsistency could be resolved by recognizing that the historical characterization

of the coupled oscillator paradigm is incomplete. Polzin and Lvov [6] present evidence that the coupled

oscillator paradigm contains O(1) transfers in horizontal wavenumber, which in turn imply transports

in frequency that could offset those implied by transfers in vertical wavenumber. These horizontal

interactions appear as ‘unclassified triads’ in evaluations of resonant kinetic equations [14,15] and

appear to be ‘local’ in the spectral domain [6]. While the presence of unclassified triads is acknowledged

in the early literature, they did not fit into the prevailing paradigm of extreme scale separated

interactions [14] and lacked interpretation.

The advective nature of the finescale parameterization was motivated in part by ray-tracing

results that suggested a non-diffusive behavior of high frequency internal waves in inertial shear [16].

The interpretation is ambiguous as those ray tracing results are compared with a resonant model

of diffusion, so that the identification of non-diffusive behavior could simply be a broadened version

of a diffusive closure. Providing the wherewithal to make this judgement, though, requires digging

deep into the toolbox of Wave Turbulence.

Wave Turbulence is a collection of general techniques for examining nonlinear interactions within

many wave systems, with an emphasis on the coupled oscillator paradigm. A perfect introduction

and good reference is provided in [17]. Wave Turbulence in its application to high frequency internal

waves has important nonlocal elements. In other words, the statistics of internal waves are determined,

in large, by nonlinear interactions between internal waves with a significant scale separation between

interacting wave vectors. Nonlocal wave turbulence appears in other well known and intensively

studied contexts such as Rossby waves and Magneto Hydro Dynamics (MHD) of the solar wind [18].

Ray tracing [19] provides an alternate description of nonlocal interactions and, while it may seem

intuitively obvious [20,21] that one might arrive at a diffusive characterization for ray tracing, the first

investigation of the general connection between a diffusive approximation to the kinetic equation and

ray tracing of which we are aware is contained in [22]. The sticking point is that the diffusion coefficient

for ray tracing defies a first principals closure. We will be making judgements about behavior at finite

amplitude and thus will require a broadened kinetic equation [23].

Given that both ray tracing and kinetic equations can be rigorously derived from Hamiltonian

formulations [24], our tack here is to define a model of high frequency internal wave interactions with

inertial shear that minimizes the algebraic infrastructure and permits us to obtain rigorous analytic

results from a broadened kinetic equation that can compared with results from ray tracing simulations.

At small amplitude, our ray tracing results are consistent with metrics of diffusive behavior derived

from the kinetic equation. These ray tracing simulations reveal a transition to a non-diffusive behavior

at oceanic amplitudes. Analysis of the corresponding kinetic equation returns an amplitude dependent

change in the scaling of the resonant bandwidth, as conjectured by [25,26], but this change in scaling is

independent of the breakdown in the diffusive behavior of the ray tracing simulations.

To rationalize the difference we make a distinction between the basis functions used to describe

the nonlinear interactions that is grounded in the notion that a signal

s(t) = A(t)eiϕ(t) (1)
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has a instantaneous frequency
.
ϕ and an instantaneous bandwidth [27], which, in the mean, implies

the bandwidth B has variance

B2 =
∫ .

A(t)dt +
∫

(
.
ϕ(t)− < σ >)2 A2(t)dt . (2)

and mean frequency < σ >. At finite amplitude, kinetic equations are set up as a system of coupled

oscillators with wave frequency σ and wave number p obeying a well defined dispersion relation.

Wave amplitudes are a function of time:

a(t)ei(p·r−σt) .

This defines an amplitude modulated (AM) process. Associated with this amplitude modulation is a

bandwidth γ, a corresponding equation for that bandwidth and an assumption that:

γ� σ (3)

This is the basic inequality that defines a weakly nonlinear system in the coupled oscillator paradigm.

On the other hand, ray tracing considers the localization of a wave packet on spatial scales R and

time scales τ that are large relative to the spatial scales corresponding to wavenumber p:

a(R, τ)ei(p·r−σt) .

If a(R, τ) is interpreted as the action spectral density, action density is conserved along ray

trajectories so that the bandwidth associated with the nonlinearity appears as the modulation

of the phase (p · r− σt) associated with variations in the Doppler shift p · u as the wave packet refracts

in a background velocity profile u. The bandwidth in the ray tracing paradigm is thus related to

a phase modulation, an FM process. The ray tracing approach is limited by the lack of a systematic

theory for assessing spectral transports. However, it comes with no explicit assumption of weak

nonlinearity as in (3).

Ray tracing simulations reported here document a dynamical transition in behavior at oceanic

amplitude. The coupled oscillator theory does not. It is within this milieu of wave/particle, coupled

oscillator/wave packet, AM/FM distinctions that we seek a theoretical answer for the oceanic

ultraviolet catastrophe.

Our results concern basic concepts about the migration and dispersion of wave packets in

the spectral domain as well as more mathematically sophisticated manipulations of kinetic equations.

Section 2.1 introduces the oceanic internal wave spectrum; Section 2.2 describes the fundamentals of ray

tracing and Section 2.3 provides the basic diagnostics used to identify diffusive behavior. Ray tracing

results for both low and high dimensional systems are presented in Sections 3.1 and 3.2, respectively.

Section 4 presents the internal wave kinetic equation and analytic approximations that result in a

Fokker-Planck (a generalized diffusion) equation. Section 5 summarizes and places the results in a

more general context.

2. Materials and Methods

2.1. The Empirical Spectrum

Gravity acts as a restoring force in a continuously stratified fluid, much as it does at the ocean’s
surface. The restoring forces associated with continuous stratification, though, are much smaller than
at the air-sea interface, with the buoyancy frequency,

N =

√

−g

ρ

∂ρ

∂z
,



Fluids 2017, 2, 36 5 of 26

representing the maximum rate of oscillation of a fluid parcel displaced in the vertical. The rotation

of the earth becomes increasingly important as wave frequency decreases, providing a lower bound

of f . The dispersion relation,

σ2 − f 2

N2 − σ2
=

k2 + l2

m2
=

k2
h

m2
, (4)

in which k and l are the horizontal components of the wavevector p = (k, l, m) and kh = (k2 + l2)1/2,

conveys both these frequency bounds for freely propagating waves and that a wave’s aspect ratio

depends only on frequency.

For specific calculations a slightly modified version of the Garrett and Munk (GM76) vertical

wavenumber spectrum [6] will be used. The expression for energy density is:

e(m, σ) =
1

2

N

No

2

π

eGM
o m∗

m2∗ + m2

2 f

π

1

σ(σ2 − f 2)1/2
,

e(m) =
∫ N

f
e(m, σ)dσ ∼= 1

2

N

No

2

π

eGM
o m∗

m2∗ + m2
, (5)

with eGM
o ≡ 0.0030 m2 s−2, No = 3 cph and m∗ = 4πN/1300No [m−1] is equivalent to mode-4 in

a b = 1300 m deep (buoyancy scaled) ocean. The one-sided spectrum of vertical shear, equal to

4m2ek(m) with kinetic energy density ek(m) = 3
4 e(m), asymptotes to 1.01N2 [m−1].

Ray tracing simulations reported here use significantly smaller values of the bandwidth parameter

m∗ than GM76 so that the shear spectral density is independent of vertical wavenumber over a much

broader range of vertical scales. The use of lower bandwidth parameters renders the interaction

between test wave and background to be scale invariant for test waves within the hydrostatic and

non-rotating limits. We report background amplitude variability in the asymptotic shear spectral

density as the ratio eo/eGM
o rather than the more proper notation (eom∗)/(eGM

o 4π/b).

The corresponding vertical wavenumber / horizontal wavenumber magnitude action spectrum is:

n(m, kh)GM =
1

2
eGM

o
N

No

2m∗
π

1

[m2∗ + m2]

2 f

π

Nm2

[N2k2
h + f 2m2]3/2

(6)

Integration over horizontal wavenumber magnitude further provides:

n(m)GM =
1

2
eGM

o
N

No

2m∗
π

1

[m2∗ + m2]

2

f π
(7)

where there is a factor of two difference between wavenumber magnitude and signed wavenumber

spectra. We will employ the model spectrum

n(m, kh) = e(m)δ(kh)
2

π f
(8)

with e(m) given by (5). The definitions here are in depth coordinates. Definitions in the isopycnal

coordinate system used by the kinetic equation differ by a factor of N2/g.

2.2. Ray Tracing

One begins by assuming a plane-wave solution modulated over large space and time scales:

a(r, t)ei(r·p−σt) . (9)

After transferring into a mixed spatial/temporal/spectral domain, the action balance

∂n(p, r)

∂t
+∇p σ(p, r) · ∇r n(p, r)−∇r σ(p, r) · ∇p n(p, r) = 0 (10)
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expresses conservation of phase along trajectories

dgR

dt
= ∇p σ(p, r) = u + Cg

and
dg p

dt
= ∇r σ(p, r)

in which Eulerian frequency σ and wavenumber p are related to the intrinsic frequency ω:

σ− p · u = ω(p, r) (11)

and thence to a dispersion relation. See [24] for a comprehensive derivation. What has been dropped

here are nonlinear terms local in wavenumber and the interaction of the wave packet with the secondary

circulation associated with the packet envelope.

Ray tracing results described below will utilize a one dimensional model with

dgp

dt
= [0, 0,

dgm

dt
= −kuz] (12)

and dispersion relation that assumes constant stratification

ω2 − f 2

N2
=

k2

m2
. (13)

2.3. Metrics of Diffusion

Extreme scale separated Hamiltonian systems often admit to a diffusive characterization. There

are several generic tools that we utilize.

2.3.1. The Moment Method

In this work ray-tracing results are analyzed by comparison with the time evolution of moments

associated with a Fokker-Planck (diffusion) equation with diffusivity D(m):

∂n(m, t)

∂t
− ∂

∂m
D(m)

∂

∂m
n(m, t) = 0 . (14)

This application of the moment method consists of multiplying (14) by vertical wavenumber

raised to the power j, mj, invoking the chain rule, then integrating over vertical wavenumber to discard

boundary terms at m = ±∞. See, for example, [28]. The high wavenumber asymptote of the GM76

spectrum provides a resonant prescription for D [14],

D(m) = m2km∗eGM
o /N, (15)

which remains valid at finite amplitude, Section 4.6. This provides the where-with-all to define

the spectral moments:

∂

∂t

∫ ∞

−∞
n(p)dm = 0

∂

∂t

∫ ∞

−∞
m n(p)dm−

∫ ∞

−∞

∂D(m)

∂m
n(p)dm = 0 (16)

∂

∂t

∫ ∞

−∞
m2n(p)dm− 2

∫ ∞

−∞

∂mD(m)

∂m
n(p)dm = 0;
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with associated solutions
∫ ∞

−∞
n(p)dm = Mo

∫ ∞

−∞
mn(p)dm = M1e2D(m)t/m2

∫ ∞

−∞
m2 n(p)dm = M2e6D(m)t/m2

,

in whichMj represents the jth moment at time t = 0. These, nominally AM solutions, will be over

plotted on the FM metrics estimated from ray tracing in Section 3.

2.3.2. Diffusion in the Spectral Domain

A Lagrangian identity for ray tracing is provided by [29]. For a Lagrangian parcel with

coordinate ‘x’:
d

dt
[x(t)− x(t = 0)]2 = 2

∫ t

0
ẋ(t)ẋ(t− τ)dτ . (17)

If the integral converges, one has diffusion with diffusivity D =
∫ ∞

0
ẋ(t)ẋ(t− τ)dτ.

It is a simple step to substitute p for x and obtain a quantitative approach for discussing

the migration and dispersion of wave packets in the spectral domain. In one dimension, (17) becomes:

dg

dt
[m−m(t = 0)]2 = 2k2

∫ t

0
uz(t)uz(t− τ)dτ . (18)

The actual derivation [22] of this relation in the context of the action balance (10) requires

considerably more effort. Upon recognizing that the integral in (18) represents a lagged autocorrelation

function, so that D = k2U2
z τc, an obvious ansatz is to assert ergodicity and invoke the Weiner-Khinchin

theorem relating the lagged auto-correlation function to the cosine transform of the spectrum Puz(s):

dg

dt
[m−m(t = 0)]2 = 2k2

∫ t

0

∫ +∞

−∞
cos(sτ)Puz(s)ds dτ , (19)

with encounter frequency s. The power spectrum Puz(s) is available to us as the Fourier transform in

time of vertical shear along a ray. Spectra estimated as ensemble averages over many background

realizations in Section 4 are bandwidth limited and white.

This produces several nontrivial insights:

The first insight is that the diffusivity is determined as the product of the shear variance and

a decorrelation time scale. Since the shear spectrum is essentially a bandwidth limited white spectrum,

the bandwidth determines the decorrelation time scale τc. Thus a very narrow bandwidth, resonant

response results in the same diffusivity as a non-resonant process having much larger bandwidth.

The second is that there are initial transients in the development of the second moment. This can

seen by making an ad hoc assumption about the algebraic representation of Puz(s) and doing the

indicated math. If one were to assume that Puz(s) = U2
z τc/π(1 + s2τ2

c ), the diffusivity would be

D = τcU2
z [1− e−t/τc ]. Non-parametric estimates of τc are available as the difference between first and

second passage statistics presented in Section 3.

We anticipate our interpretation by stating that it appears to be the interaction of a short time

scale non-resonant process with a longer time scale resonant process, both of which are characterized

by diffusive behavior, that gives rise to non-diffusive behavior.
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3. Results: Ray Tracing

Our investigations are limited to representing the background as a sum of inertial oscillations:

u(z, t) = ∑
i

Ui sin(Miz− f t + φi) . (20)

This problem is especially simple. With only vertical gradients and no vertical velocity, a sum

of randomly phased inertial oscillations represents an exact solution of the nonlinear equations

of motion. Thus the results are not clouded by the disregard of amplitude dependent nonlinearities in

the background fields.

Assuming that the test wave is initially oriented along the x axis, the evolution of the wave vector

in a field of inertial oscillations reduces to

dgp

dt
= (0, 0,−kuz) . (21)

3.1. Low Dimensional Systems

We start by examining the simple case of a single wave background that demonstrates resonance

as a bound wave phenomena. In this example, test waves have initial wave numbers m (m2)

approximately 12.5 (11.5) times the background at M = 3π/1300 m, initial frequency of 12.5 f

(11.5 f ) and background velocity amplitudes of U = 1.0 × 10−4 and U = 1.2 × 10−4. The initial

conditions are at the nominal ID resonances [p = (M, 0, 0) + p2 and σ = f + σ2), Figure 2]. The small

differences in background amplitude are sufficient to make the difference between an off-resonant

and resonant behavior, Figure 3. At the smaller background amplitude, the test waves sample all

phases of the background. At the larger background amplitude, the test waves transit the resonance

condition MCz
g = f and occupy the same domain in wave number-frequency space. The test waves no

longer sample all the phases of the background wave, which is evident in the time series of background

velocity following the wave. This bound wave behavior becomes more exaggerated as the background

amplitude increases.

10
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10
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p
2

+

p
2

−

p

−M
+ −M

−

vertical wavenumber [m
−1

]

fr
e

q
u

e
n

c
y
 [

s
−

1
]

f

N

Figure 2. Resonant configuration of the two triads completing the balance for p, [(m, M, m − M),

(k, 0, k), (σ, f , kN
m−M )] and [(m, M, m + M), (k, 0, k), (σ, f , kN

m+M )]. The two are distinguished with

superscripts of ± according to the sign of ± f . The wavenumber for p1 = (0, 0, m1) in the reduced

model under discussion, and is denoted as (0, 0, M±) at resonance. The low dimensional example in

Section 3.1 employs one of these triads.
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Figure 3. Solutions for the two high frequency members of the triad. Upper panels:

U = 1.0× 10−4 m s−1. Lower panels: U = 1.2 × 10−4 m s−1. Left panels: vertical wavenumber

vs. frequency. In the high amplitude cases the two wave trajectories can not be distinguished and

the lower frequency of that duo is over plotted as a thinner white line. Normalization of vertical

wavenumber and frequency is provided by dividing the wavenumber-frequency pairs by the mean

values for the two triads at t = 0. The dashed line represents the Cph = Cz
g resonance curve. Middle

Panels: black and blue traces represent the inertial velocity following the ray path, normalized by

U. Right Panels: Similarly, black and blue traces represent the inertial shear following the ray path,

normalized by MU. In the low(er) amplitude case all phases of the background are sampled by the test

wave. The high(er) amplitude case represents a resonant bound wave phenomena.

The amplitude of the test-wave response can be estimated from the eikonal relation:

dgm

dt
= −kUzcos(Mz− f t + φ) . (22)

In the off-resonant case, ray trajectories are perturbed by only small amounts from straight lines.

Thus z =
∫

Cz
gdt ∼= Cz

g(t = 0)t and integration of (22) provides

(m−m(t = 0))2 =
1

2

k2U2
z

(MCz
g − f )2

. (23)

This obviously fails at resonance, for which MCz
g = f .

‘Near’ resonance we consider the happy state in which MCo
g − f = 0 and perturbations in vertical

wavenumber sufficiently small as to expand the group velocity in a Taylor series:

dgm′

dt
∼= −kUzcos(MCo

g
2

mo

∫

m′dt) . (24)

With φ = 0 and an initial condition that m′(t = 0) = 0,

m ∼= −kUzt ,
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so that an iterative solution to (24) suggests

dgm′

dt
= −kuzcos(MCo

gkUzt2/mo) .

We recognize the implication for the next iterate is one of growth until the argument of the cosine

function attains a value of π/2,

τgrowth = (
π

2

mo

MCo
gkUz

)1/2 ,

so that the root-mean-square deviation can be estimated as the product of the amplitude kUz and this

time scale:

(m−m(t = 0))2 ∼= (
πmokUz

2 f
) , (25)

which provides an effective stepping stone to define the resonance bandwidth in the higher

dimensional problems.

Finally, we note that the above characterization of ray tracing results is at odds with that presented

in [30]. We have found that simulations using deterministic backgrounds are prone to a numerical

instability that results in the test wave running off to very low wavenumber. We have reduced

the time step to eliminate this behavior. This tendency was reported in [30,31] and interpreted as a

physical result.

3.2. High Dimensional Systems

Here problems are considered using a background (20) having a uniform shear spectral density of

N2

rad m−1

eo

eGM
o

and eo is varied in order of magnitude steps.

The models (20) and (21) is subject to a number of constraints. First, a scale separation criterion

requires the background to simply have larger spatial scales than that of the test wave: |m| > |M|.
Second, the intent is to maintain fidelity with the scale invariant dynamics associated with a uniform

shear spectral density and test waves with group velocity Cz
g = −ω

m . Thus the analysis is limited to

times in which the high and low frequency tails of the test wave spectral distribution are effectively

contained within
√

2 f < ω < N/
√

2. Third, in trying to mimic a continuous background spectrum,

the background is comprised of thousands to tens of thousands of randomly phased inertial oscillations.

Fourth, and finally, the test waves are initially uncorrelated with the background but it is our intent

to assess the phase locking between test wave and background. We therefore wait a time t > 1/ f to

start compiling estimates of phase correlations. Estimates of the evolving first and second moments

start with a test wave being inserted at a lower wavenumber and higher frequency than the nominal

initial condition. Statistics are then accumulated with time starting at the first and second passage past

the initial condition of

m(t = 0) = −12.5
4π

b
and ω(t = 0) = 12.5 f .

The first passage statistics have the test wave going to smaller vertical scale. Second passage

statistics have the test wave going to larger vertical scales. Their difference (Figure 4) serendipitously

permits an estimate of the decorrelation time scale τc, Section 2.3.2. Consistent with that discussion,

altering the scale separation criteria does not significantly impact the asymptotic diffusivity, either.

See the Appendix A for background parameters.

3.2.1. Analysis via the Moment Method

The diagnostic ability of the resonant closure (15) is investigated by simply over plotting test

wave ensemble estimates of the first and second moments with predictions from the Fokker-Planck
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Equation (17). Following the discussion above, first passage, second passage and ensemble estimates

are all displayed in Figure 4. The analysis uses a value for D that is 10% larger than (15). Both ray

tracing and analysis code have been closely scrutinized in search of a reason without success.

Both first and second moments are nicely captured by the resonant closure (15) for eo/eGM
o ≤ 0.1.

Ray tracing derived first moments are consistent with the resonant prediction at oceanic amplitude,

eo = eGM
o , but the second moment is significantly lower than the resonant prediction.

The difference between first (with dgm/dt > 0) and second (with dgm/dt < 0) passage estimates

of the first moment clearly reveals the decorrelation time scale τc of approximately 1/25 of an inertial

period, corresponding to 1/2 a wave period. Shear spectra in the low amplitude case provide consistent

information, Figure 5.

The time integration at oceanic amplitudes is limited by test waves reaching the boundaries

of the spectral domain, but even so, one should be able to appreciate that the second moment shows

little sign of rebounding to the prediction ensconced in the time dependent Taylor Formula (19).

This inference is supported by ray tracing simulations (not reported) that use a higher stratification N

which, in turn, permits increased integration times.

The question becomes why the diffusive paradigm shows signs of breaking down. To answer this

we examine the structure of the resonant well relative to the response to non-resonant forcing.
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Figure 4. First and second moments vs time for the high dimensional system (red and black)

with prediction based upon the coupled oscillator paradigm (46) (green). The red line represents

the ensemble average of the moments. The black lines are ensemble averages conditioned on the sign

of the wavenumber tendency (velocity in wavenumber space) at t = 0. The blue line represents

a constant diffusivity model. Upper left (upper right, lower left) panels are 10−2eGM
o (10−1eGM

o ,

100eGM
o ). Left hand panels are the first moment. Right hand panels are the second moment. Differences

in the conditioned moments (black lines) reflect a decorrelation time scale from which one can infer

a “jump” time scale, Section 3.2.4 and Figure 9.
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Figure 5. Example of a frequency spectrum of vertical shear following a ray path for a background with

eo/eGM = 1× 10−2. These frequency spectra are band-width limited and white. Note that the vertical

wavenumber spectrum is white and the bandwidth inferred from the frequency spectrum leads to

a short decorrelation time scale, approximately 1/2 a wave period.

3.2.2. Phase Correlations

Kinetic equations assume a zeroth order description in which wave phases are uncorrelated and

then predict action transfer associated with phase locking at first order. The inference of phase locking

is indirect as one is closing out a hierarchy of moments.

In ray tracing, phase locking can be much more directly assessed (Figure 6). In this high

dimensional system, the probability density of background phase ϑi (20) is estimated as a function

of background wavenumber Mi:

ϑi = Miz− f t + φi
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when the test wave has the value mo − δ ≤ m ≤ mo + δ,

p̂ = p[(ϑ, M) | m = mo ± δ] .

Since the background velocity is specified as a sum of sine waves (20), a probability density

maximum centered on either 0 − π or π − 2π implies a bound wave behavior in which the test

wave preferentially occupies a background crest or trough. A probability maximum centered on

π/2− 3π/2 implies a non-zero average shear and drift to either larger or small scales. We focus on

the two behaviors by estimating
∫

cos(ϑ) p̂ dϑ and
∫

sin(ϑ) p̂ dϑ, Figure 7. The cosine weighting is

proportional to the energy exchanged between test wave and background. The resonance MCz
g = f is

dominated by the cosine weighting, indicating a net drift of test waves to smaller scales. The shoulders

of the resonance appear more representative of a bound wave behavior with lower wavenumber

background waves tending to overtake the test wave and higher wavenumber background waves

having smaller phase speeds being overtaken.
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Figure 6. Probability density of a test wave with vertical wavenumber m = mo ± δ residing

in the background phase ϑi = Miz− f t + φi as a function of background wavenumber Mi. The three

vertical black lines denote the approximate resonance condition Cph = Cz
g and the inertial members

of the two triads that mo participates in. Upper, middle, lower panels are 10−2eo (10−1eo, 100eo).
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Figure 7. Drift
∫

cos(ϑ) p̂ dϑ and bound
∫

sin(ϑ) p̂ dϑ pieces of the phase locking distributions p̂ for

eo/eGM = 1× 10−2. The drift terms implies a mean transport of higher vertical wavenumber and

energy exchange between test wave and background. The background wavenumber is normalized by

the nominal resonant value.
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3.2.3. The Resonant Response and a Resonant Well

A quantitative measure of the resonance bandwidth is provided by a half-width at half-maximum

estimate γM to the magnitude of the probability distribution, Figure 8:

∫

{| p̂(ϑ, M)−
∫

p̂(ϑ, M)dϑ |}dϑ . (26)

These probability distributions are neither peaked at the nominal resonance (M = M1) nor are

the distributions precisely symmetric about the peak. However, the half-widths are well predicted by

casting the deterministic response (25) as a bandwidth γm, noting that this projects onto the background

as a bandwidth γM/M = 2γm/m using the resonance criteria, and replacing the background shear

of a single wave Uz with the shear associated with the resonance Uz ← [γM M2ek(M)]1/2:

γM

M
= [3π(

ω

N f
)2eom∗M]1/3 . (27)

The comparison between half-width estimates via fits to (26) and analytic Formula (27) appears

in Figure 9.

Most notably, the scaling of the resonant well differs from both small and large amplitude limits

of the coupled oscillator, γ ∝ eo/eGM
o and γ ∝ (eo/eGM

o )1/2, as discussed in Section 4.
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Figure 8. An example of a resonance half-width estimate for eo/eGM = 1× 10−2. Circles represent (26).

The background wavenumber is normalized by the nominal resonant value.
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Figure 9. Ray tracing estimates of the half width of the resonant well, black line and symbols; non

resonant jump sizes (28), blue line, versus spectral amplitude. Black dots are fits to the phase locking

distributions in Section 3.2.2. The resonant bandwidth (27) is rendered as the black line. Jump size

and bandwidths have been nondimensionalized by the resonant wavenumber M. The jump size

approaches the size of the resonant well at oceanic amplitudes, eo/eGM
o = 1, signifying a breakdown

of the diffusive characterization.

3.2.4. The Non-Resonant Response and Jump Size

While the phase distributions (Figure 6) depict the structure of a resonant well, a white frequency

spectrum (Figure 5) implies substantial forcing which is not translated into that resonant response.

With a decorrelation time scale τc
∼= π/ω, we characterize this non-resonant response as a random

jump on a short time scale. If the non-resonant forcing dominates, movement through the potential

well at each jump is 2M/m times the rms displacement in test wave vertical wavenumber over

the decorrelation time scale:

∆Mjump
∼= 2M

m
k(U2

z )
1/2τc

∼= 2πM
(U2

z )
1/2

N
. (28)

The projection of the jump onto the background wavenumber (28) is approximately equal to

the bandwidth (27) at oceanic amplitudes, Figure 9, and suggests that the inhibition of the second

moment is related to the wave packet no longer executing many independent jumps within the resonant

well. Apparently, what is left is the mean drift articulated by the first moment, Figure 4.

3.3. Summary

In summary, the ray tracing results contain, crudely, two processes: a resonant one with

an interaction time scale giving rise to the ‘resonant well’ concept that is made apparent by the phase

locking distributions, and off resonant, stochastic jumps at a shorter time scale which are apparent

as differences in the first and second passage estimates of the first moment (Figure 4) and as

approximate half-power points of the Lagrangian shear spectra. The decorrelation time scales are

shorter than that associated with the resonant well; by itself this is too short to explain the inhibition

of the second moment at oceanic amplitudes. However, the shear variance associated with the off

resonant forcing exceeds that of the resonant forcing. This distinction underlies our interpretation that



Fluids 2017, 2, 36 17 of 26

the diffusive characterization breaks down when the size of the off-resonant jump exceeds the size

of the resonant well.

4. Results: Kinetic Equations

4.1. Background

Here we present a necessarily brief summary of equations for the time evolution of the wave action

spectrum, n(p), in which action is energy density e(p) divided by frequency σ(p), with the intent

of divining whether a breakdown in diffusion can be inferred from a self-consistent kinetic equation at

finite amplitude. Such equations are built around perturbations to plane wave solutions of ei(r·p−σt)

having wavenumber p and Eulerian frequency σ related by the dispersion relation (4) and thus

represent the coupled oscillator paradigm. See [32] for a sketch of the derivation.

Our investigation seeks to understand a qualitative change in behavior of a system of small

amplitude internal waves interacting with a much larger amplitude background having much larger

spatial scales that occurs as the amplitude of that background crosses a threshold. In particular,

what we are looking at is an extreme scale separated system in which nonlinear interactions can occur

in triads, or three wave combinations, in which frequencies and wavenumber sum to zero:

σ = ±σ1 + σ2

p = ±p1 + p2, e.g., (29)

We have taken a subscript of 1 to denote the low frequency, large scale member of the triad and it is

assumed that wavenumber and frequency are connected by a dispersion relation. Many wave systems

(e.g., internal waves, Rossby waves, acoustic waves, capillary-gravity waves) have dispersion relations

that permit triadic interactions, so our findings may well be generally applicable. Interactions in this

particular internal wave system are dominated by extreme scale separations such that the kinetic

equation does not converge unless a lower bound in vertical wavenumber is inserted, which is

accomplished by including rotation [9].

As a matter of convention we take wave frequency to be positive in this problem, permit

wavenumber to be signed, and there is a third triad

σ = σ1 − σ2

p = p1 − p2, (30)

that is not characterized by the extreme scale separation conditions of concern here.

The kinetic equation is a statistical representation for the long time scale evolution of the spectral

density for a many wave assembly. A rigorous definition for this long time scale is not obvious

without direct calculation: The simple Fourier principal that growth/decay in amplitude leads to

a finite bandwidth needs to be accounted for in an internally consistent theory, but prior work on

the problem is limited to theories having zero bandwidth (a strictly resonant representation) being

interpreted as implying very large bandwidths [21,25,26]. Construction of a proper self-consistent

theory is highly nontrivial and requires two key ingredients. The first is that the scattering

cross-sections defining the nonlinear coupling need to be defined off the resonant manifold. Much of

the work on kinetic equations projects the resonant triad onto the nonlinearity in order to obtain

the cross-sections. This method can produce extremely large cross-sectional variability in the

neighborhood of the resonant manifold, which is our [32] experience using cross sections defined

in [33]. The second is that variational formulations (i.e., one that utilizes either Hamilton’s equation or

Lagrange’s equation to define an evolution equation for wave amplitude) require the use of canonical

coordinates and this, in turn, can require a coordinate transformation whose radius of convergence is

ambiguous. This coordinate transformation can introduce an unknown small amplitude limitation to a
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broadened theory. The isopycnal Hamiltonian approach used here is free from both these limitations.

These ingredients were not available to the investigations reviewed in [21].

Lvov et al. [23] use diagrammatic techniques to derive corrections Σ(p, σ̂) to the linear frequency

σ(p) resulting from nonlinear wave-wave interactions. In the terminology of diagrammatics,

their expression (4.18):

Σ(p, σ̂) =
∫

d3 p1d3 p2

(2π)3

×
(

|V(p2, p, p1)|2δ(p + p1 − p2)
[

n(p1)− n(p2)
]

σ̂(p) + σ̂(p1)− σ̂(p2) + iΓp12

+
|V(p, p1, p2)|2δ(p− p1 − p2)n(p2)

σ̂(p)− σ̂(p1)− σ̂(p2) + iΓp12

)

(31)

where

Γp12 = γ(p) + γ(p1) + γ(p2) (32)

represents a single pole, one loop approximation for the mass operator Σ = ς(p) + iγ(p). The mass

operator is a complex valued variable in which the real part ς(p) represents a frequency shift

(<(σ̂) = σ + ς) and imaginary part γ(p) represents resonance broadening in response to nonlinearity.

The single pole nature of the formula can be directly appreciated from the functional dependence

of the denominator. The single pole representation assumes that waves are not too far from being linear,

so that the Green’s function of the waves are close to the linear Green’s function with renormalized

frequency. The diagrammatic technique is in essence a graphical representation of the infinite

perturbation theory. The first step of diagrammatic technique is to write graphical representations

of the infinite perturbation series for the equation of motion for the field variables ak(t). Such graphical

representations look like trees, with branching by the three wave vertices representing interactions

of wave numbers. To derive statistical quantities such as a correlator, two field variables need to

be multiplied and averaged. Graphically this consists of “gluing” together various trees. Branches

of glued trees form loops. The one loop approximation takes into account only the lowest nonzero

contributions to the double correlator. The reader who is interested is directed to [23] for specific details

and [34] for a tutorial. The one loop approximation is self consistent for weakly interacting waves.

Its formal validity may be verified by calculating higher order, i.e., two loop approximations, as it was

done in [23] for acoustic turbulence. Formal verification of self-consistency of this approximation for

internal waves is left for future publication.

4.2. The DIA Equations

The time evolution of the action spectrum is given by (The astute reader may have noted that
the prefactors in (31) differ from the those adopted in this section. This is a matter of definitions.
We have also taken to writing out the equivalent of (31) rather than assuming the reader
understands (31) needs to be parsed for the intended symmetries. Our Equations (33) and (34) correct
sign errors in [32]):

∂

∂t
n(p) = 4

∫ ∫

dp1dp2

{

| V
p
p1,p2

|2 δ(p− p1 − p2)L(σ̂− σ̂1 − σ̂2)
[

n(p1)n(p2)− n(p)[n(p1) + n(p2)]
]

− | V
p1
p,p2
|2 δ(p1 − p2 − p)L(σ̂1 − σ̂2 − σ̂)

[

n(p2)n(p)− n(p1)[n(p2) + n(p)]
]

− | V
p2
p,p1
|2 δ(p2 − p− p1)L(σ̂2 − σ̂− σ̂1)

[

n(p)n(p1)− n(p2)[n(p) + n(p1)]
]

}

. (33)

with Laurencian

L(∆σ̂) = Γp12/[(∆σ̂)2 + Γ2
p12]
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containing the sum of bandwidths along each resonant surface Γp12 = γp + γ1 + γ2 and distance from

the resonant surface ∆σ̂ = σ̂− σ̂1 − σ̂2, etc. which includes the shifts; and an associated equation for

the nonlinear frequency bandwidth:

γp = 4
∫ ∫

dp1dp2

{

| V
p
p1,p2

|2 δ(p− p1 − p2)L(σ̂− σ̂1 − σ̂2)[n(p1) + n(p2)]

+ | V
p1
p,p2
|2 δ(p1 − p2 − p)L(σ̂1 − σ̂2 − σ̂)[n(p2)− n(p1)]

+ | V
p2
p,p1
|2 δ(p2 − p− p1)L(σ̂2 − σ̂− σ̂1)[n(p1)− n(p2)]

}

. (34)

The scattering cross-sections V
p
p1,p2

[32,35] are complicated algebraic expressions of the three

wavenumbers p, p1 and p2 completing the triad:

| V
p
p1,p2

|2= N2

32g

((

kk1 · k2

k1k2

√

σ1σ2

σ
+

k1k2 · k
k2k

√

σ2σ

σ1
+

k2k · k1

kk1

√

σσ1

σ2

+
f 2

√
σσ1σ2

k2k1 · k2 − k2
1k · k2 − k2

2k · k1

kk1k2

)2

+

(

f
k1 · k⊥2
kk1k2

(√

σ

σ1σ2
(k2

1 − k2
2)−

√

σ1

σ2σ
(k2

2 − k2)−
√

σ2

σσ1
(k2 − k2

1)

)

)2


 , (35)

in which k⊥2 = (−y, x) for horizontal wavenumber k = (x, y) and k =| k |.
Having provided these formal definitions, we find the shift to be small (see below) and hence

consider <(σ̂) = σ + ς→ σ.

In order to address the ray tracing model we reduce these equations to consider the two triads

relevant to the ID process, in which the spectral balance at high wavenumber p is defined by transfers

between p = ±p1 + p2 with p1 � p ∼ p2 and σ = ±σ1 + σ2 with σ1
∼= f � σ ∼ σ2:

γp = 4
∫ ∫

dp1dp2

{

| V
p
p1,p2

|2 δ(p− p1 − p2)L(σ− σ1 − σ2)[n(p1) + n(p2)]

+ | V
p2
p,p1
|2 δ(p2 − p− p1)L(σ2 − σ− σ1)[n(p1)− n(p2)]

}

. (36)

and

| V
p
p1,p2

|2 ∼=
N2k2

h f

32g





√

σ−2
σ

+

√

σ

σ−2





2

≡ N2k2
h f

32g
S−(σ, σ1 = f , σ−2 )

| V
p2
p,p1
|2 ∼=

N2k2
h f

32g





√

σ

σ+
2

+

√

σ+
2

σ





2

≡ N2k2
h f

32g
S+(σ, σ1 = f , σ+

2 ) (37)

The approximation in (37) discards terms of O( kh1σ
khσ1

). In the limit that σ1 → f and consequently

kh → kh2, kh1 → 0, these contributions are vanishingly small. Specifying n(p1) as a field of inertial

oscillations (8) ensures this. The two (p2, σ2) members are labeled with additional superscripts, i.e.,

p+
2 and p−2 which correspond to σ + f and σ− f in the resonant limit.

Noting that n(p1) � n(p), n(p2) and using the momentum delta function (with σ1 → f it

provides k2 → k and σ±2 (p± p1)→ kN
m±m1

) allows us to arrive at:

γp =
N2k2 f

8g

∫

dp1 n(p1)
{ S−(σ, f , σ2(p− p1))(γ(p) + γ(p− p1))

(σ− f − σ(p− p1))2 + (γ(p) + γ(p− p1))2

+
S+(σ, f , σ2(p + p1))(γ(p) + γ(p + p1))

(σ + f − σ(p + p1))2 + (γ(p) + γ(p + p1))2

}

(38)
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Inserting the GM76 based model (8), and executing the delta function in k1:

γp =
N2k2 f

8g

∫

dm1 n(m1)
{ S−(σ, f , σ2(p− p1))(γ(p) + γ(p− p1))

(σ− f − σ(p− p1))2 + (γ(p) + γ(p− p1))2

+
S+(σ, f , σ2(p + p1))(γ(p) + γ(p + p1))

(σ + f − σ(p + p1))2 + (γ(p) + γ(p + p1))2

}

(39)

4.3. The Small Amplitude Limit

As a first step we take the limit that γ → 0 on the right-hand-side of (39). In this limit

the Laurencians become delta functions, L(x)→ πδ(x). Also utilizing n(m1) = 2e(m1)/π f :

γp =
N2k2

4g

∫

dm1 e(m1)
{

S−(σ, f , σ−2 =
kN

m−m1
)δ(σ− f − kN

m−m1
)

+S+(σ, f , σ+
2 =

kN

m + m1
)δ(σ + f − kN

m + m1
)
}

(40)

Remembering that δ(g(x))dx = δ(x − xo)dx/g′(xo) and canceling the distinction between

isopycnal and depth coordinates (the N2/g factor)

γp =
k2eGMm∗

4π

∫

dm1

{S−(σ, f , σ−2 = kN
m−m1

)δ(m1 −M−)

(m2∗ + m2
1)g′(M−)

+
S+(σ, f , σ+

2 = kN
m+m1

)δ(m1 −M+)

(m2∗ + m2
1)g′(M+)

}

(41)

The zeros of g = σ ± f − kN
m±m1

are M± = − kN f
σ(σ± f )

. Evaluation of (41) in the high vertical

wavenumber power law regime of the GM vertical wavenumber spectrum returns:

1

(M±)2

1

| g′(M±) | = [
σ(σ± f )

kN f
]2

kN

(σ± f )2
=

σ2

kN f 2

and
γp

σ
∼= 2

π
[
eGMm∗

N2
M±](

σ

f
)3 . (42)

This broadening is 2/3 the buoyancy normalized shear content [ eGMm∗
N2 M±] times (σ/ f )3 at

resonance. The shear spectral density of the background is independent of vertical wavenumber,

and an O(1) normalized shear content defines the nominal 10 m vertical wavelength transition into

the wave breaking regime. Even though M± � 2π/10 the small amplitude limit returns resonance

broadening at oceanic amplitudes that is large (γp/σ � 1) at oceanic amplitudes. Inference of this

time scale (but not its direct calculation as γ) led to extensive commentary in the literature [25,26].

4.4. Broadening at Finite Amplitude

The integral equation for γ, (36), is potentially subject to a change in scaling at finite amplitude.

Numerical evaluation of (39) returns (42) in the small amplitude limit, Figure 10. At amplitudes

as small as 10−4eGM, though, one obtains a change in scaling from γ being proportional to eGM to

γ being proportional to
√

eGMm∗. The broadening further evaluates as being O(kU), the Doppler

shift. [25,26] points to this possibility on the basis of DIA applications to turbulence. That it appears

here in a problem with a well defined dispersion relation is by no means a trivial result.
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Figure 10. Bandwidth estimates versus spectral level, normalized by frequency σ. The dashed black line

is the small amplitude limit of γp (42). Colors differentiate estimates using different values of the GM76

bandwidth parameter m∗= [1/40 1/6 1 4] π/1300 m as [black blue red green]. The background spectra

differ in total kinetic energy and Doppler shift but have the same asymptotic shear spectral density at

high vertical wavenumber. The dots indicate numerical estimates using (42). The green dots lie below

the others as the GM value of m∗ = 4π/1300 m challenges the assumption of a constant shear spectral

density. The scaling regime of γ ∝ kUrms is indicated by the solid lines connecting the numerical

estimates. The ray tracing results reported here use a background with j∗ = 1/40. The transition in

bandwidth scaling for the DIA equations happens at far smaller amplitudes (eo/eGM
o
∼= 1× 10−4) than

the transition noted in the ray-tracing results (eo/eGM
o > 1× 10−1).

4.5. The Frequency Shift

The frequency shift ς corresponding to the broadening (34) can be obtained by noting that
1

∆σ̂+iΓp12
=

∆σ̂−iΓp12

(∆σ̂)2+Γ2
p12

. The frequency shift is proportional to the real part:

ςp = 4
∫ ∫

dp1dp2

{

| V
p
p1,p2

|2 δ(p− p1 − p2)
(σ̂−σ̂1−σ̂2)

(σ̂−σ̂1−σ̂2)2+Γ2
p12

[n(p1) + n(p2)]

+ | V
p1
p,p2
|2 δ(p1 − p2 − p) (σ̂1−σ̂2−σ̂)

(σ̂1−σ̂2−σ̂)2+Γ2
p12

[n(p2)− n(p1)]

+ | V
p2
p,p1
|2 δ(p2 − p− p1)

(σ̂2−σ̂−σ̂1)

(σ̂2−σ̂−σ̂1)2+Γ2
p12

[n(p1)− n(p2)]
}

. (43)

This equation is reduced using the same arguments as in the previous subsection, obtaining:

ςp =
N2k2 f

8g

∫

dm1 n(m1)
{ S−(σ, f , σ2(p− p1))(σ(p)− f − σ(p− p1))

(σ− f − σ(p− p1))2 + (γ(p) + γ(p− p1))2

+
S+(σ, f , σ2(p + p1))(σ(p) + f − σ(p + p1))

(σ + f − σ(p + p1))2 + (γ(p) + γ(p + p1))2

}

(44)

in which σ = kN
m and σ±2 = kN

m±m1
. We integrate the resulting expression for the frequency shift

numerically using the finite amplitude estimates of γ in Figure 10. Numerical evaluation of (44) returns

shifts that are much smaller than the corresponding bandwidth (γ) estimates. The relative size is

a product of cancellation between the two terms, whereas they sum in the γ equation. In the finite

amplitude limit the γ integrand is dominated by low wavenumber contributions. Here they have
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opposite signs, which can be seen by noting the sign differences between kN
m + f − kN

m+m1
and

kN
m − f − kN

m−m1
when m1 is small. The shifting of the poles in (44) T m±1 = − kN f

σ(σ± f )
is given by

the difference ς− ς2, which is smaller than 10−2 f .

Thus the shifts are insufficient to delay to onset of the finite amplitude scaling regime for γ.

Frequency shifts do not appear to be involved in a dynamical transition that might explain a breakdown

in the diffusive characterization.

4.6. A Fokker-Planck Equation

While the identity of the fast time scale [14] as the relevant metric for resonance broadening and the

transition to a Doppler shift scaling were the point of speculation in the early literature, that literature

does not address how that resonance broadening impacts a diffusive closure to the kinetic equation.

We do so here.

The ID limit of the resonant kinetic equation admits to a diffusive representation, generically

referred to as a Fokker-Planck equation [28], as a result of assuming a smooth spectral representation

and invoking Taylor series expansions [20]. Derivation from the kinetic Equation (33) starts by

integrating over p2, discarding spectral amplitudes consistent with n(p1)� n(p), n(p2); representing

differences in the high frequency spectral amplitudes as a truncated Taylor series expansion,

n(p−2 )− n(p) ∼= −p1∂mn(p) and n(p)− n(p+
2 )
∼= −p1∂mn(p), and then inserting the leading order

expression for scattering cross sections | V |2:

∂

∂t
n(p) = 4

∫

dp1 | V
p

p1,p−2
|2 L(σ− σ1 − σ−2 )n(p1)[n(p−2 )− n(p)]

− | V
p+

2
p,p1
|2 L(σ + σ1 − σ+

2 )n(p1)[n(p)− n(p+
2 )]

∂

∂t
n(p) = −4

∫

dp1 [| V
p

p1,p−2
|2 L(σ− σ1 − σ−2 )− | V

p+
2

p,p1
|2 L(σ + σ1 − σ+

2 )]n(p1)p1∂mn(p)

∂

∂t
n(p) ∼= −N2

g

k2 f

2

∫

dp1 [L(σ− σ1 − σ−2 )−L(σ + σ1 − σ+
2 )]n(p1)p1∂mn(p) . (45)

A Taylor series expansion of the Laurencian’s argument locates the poles at σ
m m1 = f , in which

the inertial phase speed equals the high frequency vertical group velocity, and a final Taylor series

expansion of the integral provides:

∂

∂t
n(p) =

∂

∂m
D

∂

∂m
n(p) with diffusivity (46)

D ∼= k2 f
∫

dp1n(p1)m
2
1L(m1Cz

g − f ) . (47)

in which the shear content at inertial frequency is evaluated at the approximate resonance condition.

Since the GM76 vertical wavenumber shear spectrum is white, i.e., independent of m1 in the limit that

m1 � m∗, the integral in (47) further reduces to

D ∼= k2 f
m2

1e(|m1|)
2 f

∫

dm1

Γp12

(m1Cz
g − f )2 + Γ2

p12

∼= π

4 f
k2 |m1|3 e(m1) , (48)

and thus D is independent of the specification for γp ! Given the minimal shifts in the pole positions

(ςp � γp) neither transitions in, nor redefinitions of, γp are going to show up in either D or associated

metrics such as the spectral moments.

4.7. Summary

We’ve investigated the DIA approximation for a self-consistent kinetic equation to the point that

we understand a one-pole, single loop formulation returns two scaling regimes for the bandwidth
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and a diffusive closure. This approach is mathematically sophisticated, linked to first principles

and, in one word, dense. We have yet to understand how this model can be manipulated to mimic

a departure from a diffusive closure documented by the ray tracing simulations in the previous section.

If this DIA system does not admit to a dynamical transition it implies a fundamental difference between

waves in fluids as plane waves and waves described as particles via ray tracing. This dualistic tendency

finds some articulation in the distinction between AM and FM signals.

5. Discussion

In the Introduction we raised the notion of an oceanic ultraviolet catastrophe. This catastrophe

arises as theoretical predictions based upon a one-dimensional Fokker-Planck (generalized diffusion)

equation that (i) internal wave energy is transferred from high frequency to low and that (ii) the Garret

and Munk spectrum should support a substantially reduced amount of diapycnal mixing compared to

other spectral distributions in vertical wavenumber and frequency. Neither prediction is supported by

three decades of observational efforts.

We also noted a distinction between describing interactions between waves as a system of coupled

oscillators, in which one solves for time dependent amplitudes of plane wave solutions, and that

associated with wave-packets (ray tracing), in which one allows for space-time dependent phases with

space-time invariant spectral amplitude. The former is supported by a well developed theoretical

apparatus which has as its central focus the amplitude modulated bandwidth. No such systematic

theory for assessing spectral transports exists for ray tracing. However, we managed to estimate

bandwidths for the frequency modulation associated with ray tracing which differ from both the small

and finite amplitude limits of the coupled oscillator theory. Thus there is an underlying dualism to

describing wave-wave interactions.

We endeavored to understand whether this dualistic tendency could resolve the oceanic ultraviolet

catastrophe by comparing ray tracing results and diagnostics based upon the coupled oscillator’s

Fokker-Planck (generalized diffusion) equation. These diagnostics concern the evolution of the first and

second moments of a high frequency wave packet’s vertical wavenumber (m) with time. At spectral

levels 1 to 2 orders of magnitude smaller than GM76, both first and second moments are nicely captured

by the diffusive prediction. At oceanic amplitude, the first moment agrees with the diffusive prediction

but the second moment is significantly lower than the prediction. We pursued finite amplitude versions

of the coupled oscillator theory in the context of the Direct Interaction Approximation, determined that

frequency shifts are small and found that predictions for the moments are consequently insensitive to

changes in amplitude dependent bandwidth. The noted inhibition of the second moment in the ray

tracing results at oceanic amplitude might be taken as implying a threshold for a weakly nonlinear

(though finite amplitude) theory that does not exist in the coupled oscillator paradigm.

Our current understanding is that the non-resonant response represents jumps within a resonant

well and that agreement with the diffusive diagnostics breaks down when the jumps take

on the characteristic size of the resonant well, Figure 9. This change in behavior happens at

oceanic amplitudes.

We understand these results as having broader consequences. In a ground breaking study

of the coupled oscillator paradigm applied to a nonlinear Schrödinger equation, [36] find that finite

amplitude effects include changes in the sign of energy cascades resulting from wave-wave interactions.

That amplitude dependent transition is the subject of ongoing research, but [37] identifies the transition

as being related to the appearance of solitary waves. This work points to a possible middle ground:

solitary waves are associated with spectrally local nonlinearity that is discarded in developing the ray

tracing approach [24]. Curiously, the ray theory assumes extreme scale separations, but our estimates

of the decorrelation time scales are small, sufficiently small as to lead us to speculate that a solitary

wave like basis function could be a more natural description.

One could view this exercise not in terms of nonlinear interactions, but rather wave propagation in

a time dependent, spatially inhomogeneous background. Wave propagation in temporally stationary,
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spatially inhomogeneous media is know to exhibit similar transitions. Specific examples include

low energy electrons in a crystal lattice [38], lasers in [39]. In these instances, increasing disorder

leads to greater diffusion, until a transition point is reached and the medium becomes an insulator.

If our background vertical wavenumber spectrum were other than white, increasing the background

amplitude would likely lead to amplitude dependent diffusivity in both wave and particle paradigms.

The dynamical transition in the ray-tracing results is one that promotes increasing transports to

high wavenumber, with the internal wave dispersion relation demanding a vastly inhibited vertical

propagation. Thus our analysis tools and the self-consistent theoretical paradigm have distinct parallels

within Solid State Physics.

This work corresponds to a suggestion by [7] that the near-universal character of the oceanic

internal wavefield implies some sort of saturation mechanism. That suggestion was investigated

in the context of hydrodynamic instabilities and wave breaking. The dynamical transition described

here seems a more likely candidate. See [6] for documentation of oceanic variability.
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Appendix A. Ray-Tracing Set-Up Parameters

When examining issues of phase correlations (Section 3.2.2) we use a relatively broad background

spectrum, Table A1, and implement a scale separation criteria that | m |>| M |. Here our concern is

to estimate the correlations at mo − δ ≤ m ≤ mo + δ with δ sufficiently small as to provide resolution

of the triad configuration.

Table A1. Run summary for estimating phase correlations (Figure 6). We create an ensemble of test

wave time series by creating multiple realizations (#tw) of the randomly phased inertial field having

#bw constituents uniformly distributed between jmin and jmax. The length of the simulations are

denoted by number of time steps ts at the indicated time difference.

Name eo/eGM
o ts@1/N #tw #bw jmin jmax m(t = 0)

12.19.0c 100 2500@1/10N 30,000 2401 0.025 160 j = 25

11.7.1a 10−1 1000 30,000 2401 0.025 1600 j = 25

11.7.1b 10−1 1000 30,000 2401 0.025 1600 j = 50
10.23.2a 10−2 10,000 3000 24,001 0.5 1600 j = 25
10.23.2b 10−2 20000@1/2N 3000 24,001 0.5 1600 j = 25
11.13.20 10−2 1200 40,000 2001 0.25 32 j = 50
11.13.30 10−3 5000 10,000 2001 0.25 32 j = 50

11.13.40 10−4 5000 10,000 5001 0.5 16 j = 50
11.13.50 10−5 10,000 10,000 6001 3.2 4.8 j = 50

7.3.6abcdefghij 10−6 50,000 1200 24,001 3.2 4.8 j = 50

When estimating evolution of the spectral moments (Section 3.2.1 and Table A2), our concerns

are about the global evolution of the distribution with time. Our intent is to maintain fidelity with

the internal dynamics and not have the boundaries of the spectral domain influence the results.

In addition to the scale separation described above, we limit our analysis to times in which the high

and low frequency tails of the spectral distribution are effectively contained within
√

2 f < ω < N/
√

2.
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Table A2. Run summary for estimating the spectral moments that appear in Figure 4. We create

an ensemble of test wave time series by creating multiple realizations (#tw) of the randomly phased

inertial field having #bw constituents.

Name eo/eGM
o ts@1/N #tw #bw jmin jmax mo

12.19.0c 100 2500@1/10N 30,000 2401 0.025 160 j = 25

11.7.1a 10−1 1000 30,000 2401 0.025 1600 j = 25
10.23.2a 10−2 5000 3000 24,001 0.025 1600 j = 25

12.6.2 10−2 5000 3000 24,001 0.025 1600 j = 50

12.7.3 10−4 20,000 1500 24,001 0.5 16 j = 50
7.3.6abcdefghij 10−6 50,000 1200 24,001 3.2 4.8 j = 50
12.19.0g (4No) 100 2500@1/2.5N 30,000 4801 0.025 640 j = 12.5

11.7.1c.v7.3 (4No) 10−1 10000@1/N 30,000 4801 0.025 640 j = 12.5
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