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Abstract—We extend the self-organizing mapping algorithm to
the problem of visualizing data on Grassmann manifolds. In this
setting, a collection of k points in n-dimensions is represented
by a k-dimensional subspace, e.g., via the singular value or
QR-decompositions. Data assembled in this way is challenging
to visualize given abstract points on the Grassmannian do not
reside in Euclidean space. The extension of the SOM algorithm
to this geometric setting only requires that distances between
two points can be measured and that any given point can be
moved towards a presented pattern. The similarity between two
points on the Grassmannian is measured in terms of the principal
angles between subspaces, e.g., the chordal distance. Further,
we employ a formula for moving one subspace towards another
along the shortest path, i.e., the geodesic between two points on
the Grassmannian. This enables a faithful implementation of the
SOM approach for visualizing data consisting of k-dimensional
subspaces of n-dimensional Euclidean space. We illustrate the
resulting algorithm on a hyperspectral imaging application.

I. INTRODUCTION

In the visualization of data we often resort to the com-
putation of a mean, or in high dimensions, the centroid, of a
collection of data. It is then natural to visualize these centroids,
and the associated neighborhood data, using dimensionality re-
duction techniques such as Self-Organizing Mappings (SOMs)
[15], [16], [17], [18]. This approach has proven to be a valuable
tool for the low-dimensional visualization of data, see, e.g.,
[19], [24] in addition to an extended bibliography indicating
the widespread applications of this methodology [14]. The key
ingredient of this idea is that points that are neighbors in high-
dimensional space are also represented as neighbors in the
low-dimensional index space, a feature that arises through the
self-organizing properties of the algorithm.

There is now considerable evidence that subspace ap-
proaches for data analysis are extremely effective at capturing
the variability in data that often confounds pattern recognition,
or classification systems, see, e.g., [22], [12], [23], [21]. The
basic idea behind the approach is to compare an unlabeled
observation to sets of data, each consisting of several pat-
terns of a given class. Using a set of labeled data captures
the variability of the data set over variations such as, e.g.,
illumination [4], [7], [2], [5]. It has been observed that the
pattern set framework can greatly enhance the robustness of
pattern recognition algorithms. For example, the resolution of
images can be greatly reduced without sacrificing classification
accuracy [6].
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One attractive feature of set-to-set pattern recognition is the
existence of the geometric mathematical framework known as
the Grassmannian, or Grassmann manifold. The Grassmannian
is a manifold whose points parameterize the k-dimensional
subspaces of a fixed n dimensional vector space. As such, it
provides a setting for comparing distances between subspaces
using a variety of metrics. Due to their invariance under the
natural action of the orthogonal group, the most widely used
class of metrics are functions of the principal angles between
the subspaces. Further, it is possible to transition from one
subspace to another along a shortest path, or geodesic of k-
dimensional subspaces. These ingredients make it possible to
convert the SOM algorithm on vector spaces to an analogous
algorithm on Grassmannians.

In this paper we develop the Grassmannian-SOM algo-
rithm, i.e., we modify the standard SOM algorithm to operate
in the setting of the Grassmann framework. We use the result-
ing approach to visualize subspaces of data in high dimensional
spaces on low-dimensional index sets.

II. THE MATHEMATICS OF THE GRASSMANNIAN

The real Grassmann manifold Gr(k,n) is a parameteriza-
tion of all k-dimensional linear subspaces of real Euclidean
n-dimensional space R”,0 < k < n. We use the geometric
structure of the Grassmann manifold to represent sets of points
as subspaces. The framework allows us to compute distances
between subspaces and to generate a curve of points (orthonor-
mal matrices) between any two given points, i.e., subspaces.
A point on Gr(k,n), i.e., a k-dimensional subspace, can be
non-uniquely represented by a basis, for instance by an n x k
matrix U with orthonormal columns (UTU = I, the identity
matrix) [13]. Two n x k full rank matrices correspond to the
same point on Gr(k,n) if they span the same subspace. The
distances between points on the Grassmannian are measured
in terms of the principle angles between the subspaces.

A. Overview of Angles

We provide a short summary of the computation of angles
between subspaces initially described in [3]. Let X and Y be
two vector subspaces of R™ such that

p=dim(X) > dim(Y)=¢ > 1,

where dim denotes the dimension of the subspace. Then the
principal angles 0, € [0, 5],1 < k < ¢ between X and Y are
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Fig. 1: This figure shows the approximate geodesic path of a
sequence of 15 two-dimensional subspaces of 20-dimensional
space.

Alfalfa 46
Corn-notill 1428
Corn-mintill 830
Corn 237
Grass-pasture 483
Grass-trees 730
Grass-pasture-mowed 28
Hay-windrowed 478
Oats 20
Soybean-notill 972
Soybean-mintill 2455
Soybean-clean 593
Wheat 205
Woods 1265
Buildings-Grass-Trees-Drives 386
Stone-Steel-Towers 93

TABLE I: The classes of the Indian Pines data. The bold
denotes the data that was used in our experiment.

defined recursively by first defining 6; by

cos(6q) = max — max ulv (1)
ue Ve
lull2=1]lv]|2=1

Thus 6 is the smallest angle achieved between vectors lying
in X and vectors lying in Y. If 6; is the angle between u; € X
and vy € Y, then 05 is defined as the smallest angle between
vectors lying in X which are orthogonal to u; and vectors
lying in Y which are orthogonal to v;. Continuing in this
manner, additional principal angles can be found by requiring
additional orthogonality constraints. This leads to ¢ principal
angles which satisty 0 < 6, < 60y < ...0, < g Henceforth,
0 = (61,...,0,) will denote the principal angle vector. Note
that we have abused notation somewhat in using X to represent
both a subspace and an orthonormal matrix which spans this
space. For additional details related to algorithms for the
computation of principal angles please see [3].

B. Metrics on the Grassmannian

Let X,Y be two points on the Grassmannian Gr(k,n).
Again, we are thinking of these points equivalently as sub-
spaces, or orthonormal matrices that span the subspaces. The
geodesic distance between these two points is given by

dg(X,Y) = [|(01,...,0k)|l2 2)
Other metrics are possible, e.g., the chordal distance
dg(X,Y) = ||(sin(61), .. .,sin(0k))]2 3)

We note that it is possible to show that the Grassmannian
may be isometrically embedding in Euclidean space when the
chordal metric is employed and this is not the case for the
geodesic metric [11]; see also [9].

Principal angles between subspaces are defined regardless
of the dimensions of the subspaces. Thus, inspired by the
Riemannian geometry of the Grassmannian, we may define,
for any vector subspaces A, B of R™ the geodesic distance

de(A, B) = [|(b1; - -, 00) |2,

for any ¢ < min{dim X,dimY}. While d; is not, strictly
speaking, a metric (for example, if dimA N B > ¢, then
d¢(A, B) = 0), it nevertheless provides an efficient and useful
tool for analyzing configurations in Uy>¢Gr(k,n). The geom-
etry driving these distance measures is captured by the notion
of a special kind of Schubert variety Q,(W) C Gr(k,n). Let
W be a subspace of R", then we define

QW) = {E € Gr(k,n) | dim(ENW) > (}.

With this notation, d¢(A, B) simply measures the distance be-
tween A and Qy(B), i.e. d(A4,Q(B)) = min{dy(4,C)|C €
Qu(B)} (it is worth noting that under this interpretation,
de(4,B) = dy(B, A).

For | = 1 we employ only the smallest angle to determine
the distance between two subspaces. This pseudo-metric was
used to generate the Grassmannian SOM shown in Figures 2
and 3.

C. Geodesics

In this section we follow the results obtained in [1] for com-
puting the geodesic path between two points X,Y € Gr(k, n)
given by

G(t) = XV cos Ot + U sin Ot “4)
‘We observe that
X =G(0)
and
Y =G(1)

and the trajectory G(t) traces out the path of shortest distance
on Gr(k,n) in terms of the geodesic metric given by Equation
(2). The quantities U, % and V are found by computing the
singular value decomposition of the projection of

M=Y(XTy) ! ®)
onto the orthogonal complement of X, i.e.,

Usv? = (1 - xXT)yy(xTy)™! (6)
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Fig. 2: Initial mapping of the classes to a 15 by 15 index set. We see that the data is not organized and that different classes are

mapped to the same index.

where X and Y are given and the inverse of X 7Y exists.
Further, it can be shown that

© = atan(X) 7

to complete the requirements of computing the geodesic be-
tween two subspaces X and Y as prescribed in Equation
(4). This formula is a key ingredient for extending the self-
organizing mapping algorithm on vector spaces to Grassman-
nians. See [1] for additional details.

ITI. SELF-ORGANIZING MAPPINGS ON Gr(k,n)

Here we extend the SOM algorithm on vector spaces to
the setting of the Grassmannian, a parameterization of all k-
dimensional subspaces of a fixed n-dimensional space. The
general setting is that there is a collection of training patterns
M = 1,..., P and an initial set of centers {c;} where
the subscript ¢ is the label of the spatial index I;. Since the
algorithm iteratively updates these initial centers we add a
superscript m to identify the value of ¢; at the mth iteration.
The standard SOM update equation is given by

e = e h(d(i, 1)) (@ - ) ®

where +* is the winning center associated to pattern z, i.e.,
i* = arg min |z — ¢z
K2

where the distance between the point z and the center c; is
given by the standard Euclidean norm; see [15], [16], [17], [18]
for additional details. We also take the localization function as
the standard

h(s) = exp(—s?/0?)

and d is a metric that induces the topology on the index set.
For simplicity, in this paper we will restrict our attention to
the case

d(i,j) = 1 Zi — Il

where the indices are enumerated by the subscripts, i.e., the
index set consists of 1, I, ..., Iy. In this paper we use [; =
(1,1),I5 = (1,2),..., Isos = (15,15).

On the Grassmannian the points are no longer elements of
n-dimensional Euclidean space, but points X, Y € Gr(k,n),
i.e., k-dimensional subspaces of R™. For a given subspace X
we identify the center, i.e., from the set of subspaces that
represent centers {C;}, that is closest via

i* = arg mindy(X, C;)
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Fig. 3: This figure shows the final configuration of the points as mapped to the 2D index set. In contrast to Figure 2 we see
clear organization of the class labels.

where the metric d, is given by Equation (2). To move the Algorithm 1: Grassmannian Self-Organizing Mapping
centers towards the pattern subspace X according to the SOM Input Data: Load class labeled data matrices
update we compute the geodesic between each subspace center ) (X j} € R"*4 where k is the number of
) i
C; and subspace pattern X samples in each subspace and n is the
UiZViT =(- CZ-C'Z-T)X(CZ-TX)_l 9) dimension of the data, j is the class index,
1 1s the matrix index.
Our localization term now becomes Output Data: Final centers and indices of each data
subspace.
t =toh(d(i,3")) (10) Result: Representation of points on Gr(k,n) as indices
of SOM centers.
where h and d are the same as for standard SOM but now Initialization: Set the number of samples per subspace
0 <t <1 is the amount we move each center C; along the k., the number of centers NN, initialize
geodesic between it and the subspace X. We take ¢ty = 1/10 centers C; as random d-dimensional
as an initial distance along the geodesic that is annealed over subspaces and select the index set.
the course of the iterations along with the width parameter o. Define: Select the (pseudo)-metric on Grassmannian
The updated centers are found using and compute the distance matrix between all
i1 11 . pairs of subspaces.

Ci"" = G Vicos Ot + Uy sin Ot (D Step 1: Present a random subspace to the network.
which moves each center towards the presented pattern X, i.e., Step 2: Move all the centers C; proportionally tqwards
. - the presented subspace along the appropriate

point on the Grassmannian. geodesic
This pseudo-code for this process is summarized in Algo- Step 3: Repeat until convergence.

rithm 1.
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Fig. 4: The self-organizing mapping of the Indian Pines data set using Standard SOM.

IV. NUMERICAL RESULTS
A. Grassmannian Geodesic

In our first experiment we compute a geodesic path of two-
dimensional subspaces of twenty dimensions using random
matrices X, Y, Z. We form a geodesic along the path X —
Y — Z — X. Each segment has five sampled subspaces. See
Figure 1 for a 2 dimensional visualization of this geodesic path
that is traversing 20 dimensions. The fact that the line is not
self-intersecting indicates that the nearest neighbor property on
the path is preserved in two dimensions.

B. Indian Pines

To illustrate the utility of the proposed method for visual-
izing data on Grassmannians, we apply it to the well-known
Indian Pines hyperspectral image [20]. We have considered
this data set before in the context of the band selection
problem [8] and the persistent homology for signal detection
on Grassmannians [10]. A related visualization application
invokes the technique of multi-dimensional scaling and sparse
support vector machines [9].

In this application we selected the 12 classes that were
large enough to give 20 subspaces of dimension ten. Since

this application is merely intended to illustrate the model we
made no attempt to optimize our parameters. However, our
previous work suggests these dimensions are reasonable [9].
Thus we are visualizing 240 labeled points in 220 dimensions
by first constructing sets of 10-dimensional subspaces in 220-
dimensions using the SVD.

We initialized the centers for Grassmannian-SOM by se-
lecting 225 ten dimensional subspaces at random. This was
done by computing the singular value decomposition of matri-
ces of size 220 by 10 from the uniform distribution. Associated
with these centers is a 15 by 15 grid of integers that serve as
the index set for the SOM. The initialization of the method
is shown in Figure 2. We see the points are not organized
and different classes are mapping to the same indices. In
contrast, in Figure 3, we see the results of the Grassmannian-
SOM algorithm, i.e., iterating Equation (11), where points in
the same class have been organized to have similarly valued
indices.

This data set is well-known as a challenging classification
problem. For example, there are classes which are inherently
very similar such as corn, corn-notill and corn-mintill. We see
that these three classes are all located in a neighborhood of
the index set with some overlap. Similarly, the three soybean



classes all clump together in a region reflecting the fact that
this data has strong similarities. Classes such as green pasture,
grass and trees and wheat are clean clusters.

It is interesting to compare this approach to the standard
self-organizing mapping given by Equation (8). We see less
coherent organization in the clustering in the standard SOM
approach.

V. CONCLUSION

We have presented an extension of the self-organizing
mapping algorithm to the setting of the Grassmann manifold.
In the same spirit as the original SOM proposed in [15], the
Grassmannian SOM moves centers towards patterns presented
to the network moving proportionally along the geodesic, or
shortest path between two elements of Gr(k, n). We illustrate
the method by showing that the algorithm organizes the data
in the index space and separates ten dimensional subspaces
of 220 dimensional space. This approach exploits the ability
of subspaces to capture the variability of a family of patterns
and is seen to produce more coherent organized structure than
standard SOM on the hyperspectral example shown in the
paper. Additional data sets need to be examined to determine
if this behavior is exhibited more generally.

Although the algorithm was applied to subspaces of equal
dimension, i.e., the mathematical setting of the Grassmannian,
it is a straight-forward procedure to visualize subspaces of
differing and possibly high dimensions.
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