- 1 FINAL ACCEPTED MANUSCRIPT
- 2 This is the accepted version of the following article: Blair, ME, Le, MD, Sethi, G, Thạch, HM,
- 3 Nguyen, VTH, Amato, G, Birchette, M, Sterling, EJ. 2017. The importance of an
- 4 interdisciplinary research approach to inform wildlife trade management in Southeast Asia.
- 5 BioScience, which has been published in final form at
- 6 [https://doi.org/10.1093/biosci/bix113].

- 8 Title
- 9 The Importance of an Interdisciplinary Research Approach to Inform Wildlife Trade
- 10 Management in Southeast Asia.
- 11 Authors
- M.E. Blair1*+, M.D. Le2*+, G. Sethi3, H.M. Thach4, V.T.H. Nguyen5, G. Amato6, M. Birchette7,
- 13 E.J. Sterling1
- 14 1. Center for Biodiversity and Conservation, American Museum of Natural History, Central
- 15 Park West at 79th Street, New York, NY, USA
- 16 2. Faculty of Environmental Science and Central Institute for Natural Resources and
- 17 Environmental Studies, Vietnam National University, 19 Le Thanh Tong Street, Hanoi,
- 18 Vietnam
- 19 3. Bard Center for Environmental Policy, Bard College, Annandale-on-Hudson, NY, USA
- 4. Department of Anthropology, Vietnam National University, Hanoi, Vietnam
- 5. Faculty of Biology, Vietnam National University (VNU University of Science), Hanoi,
- 22 Vietnam

- 23 6. Sackler Institute for Comparative Genomics, American Museum of Natural History, New
- 24 York, NY, USA
- 25 7. Department of Biology, Long Island University Brooklyn, NY, USA
- * Both authors contributed equally to the writing of this paper.
- + Corresponding authors.
- 28 Mary E. Blair (mblair1@amnh.org) is a conservation biologist at the Center for Biodiversity
- and Conservation, American Museum of Natural History, New York. She uses
- 30 interdisciplinary approaches to study the ecology and evolution of primates and threats to
- 31 their conservation.
- 32 Minh D. Le (le.duc.minh@hus.edu.vn) is a lecturer in the Faculty of Environmental Science
- 33 and a research associate at the Central Institute for Natural Resources and Environmental
- 34 Studies, Vietnam National University. His research focuses on the conservation, ecology,
- and evolution of multiple vertebrate taxa in Southeast Asia.

37 **Abstract**

- Wildlife trade represents a major threat to endangered species populations, especially in
- 39 Southeast Asia where trade continues at high levels despite increased efforts to control
- 40 illegal activities. To identify management strategies that better mitigate the threat of this
- 41 trade, research must address knowledge gaps about the complexity of established trade
- 42 networks. This requires a comprehensive and interdisciplinary approach that integrates
- biological, anthropological, socioeconomic, and other kinds of data and involves multiple
- stakeholders across sectors. We present here an interdisciplinary research framework for
- developing such an approach. Our integrative framework, based on the Social-Ecological

Systems Framework by Ostrom, can be used to explore and untangle complex wildlife trade dynamics across scales, and test hypotheses derived from different disciplines to provide robust recommendations for trade management. We also discuss the need for developing databases for trade-targeted species and outline steps to build and strengthen technical and interdisciplinary capacity to support the integrative framework.

Keywords: wildlife trade, Vietnam, Indochina, social-ecological system, systems thinking

Overexploitation of wildlife to supply domestic and international trade is a global threat

Introduction

to biodiversity conservation goals. In particular, it has been recognized as the single largest threat to biodiversity in many Southeast Asian countries, where increasing wealth and demand for wildlife products correspond with low levels of enforcement (Bennett 2011, Nijman 2010, TRAFFIC 2008).

A large volume of wildlife is traded internationally; each year consumers in China, Europe, Japan, and the U.S. purchase billions of dollars' worth of wildlife products from Southeast Asia (Nijman 2010). However, wildlife is also traded locally or nationally, and hunting for subsistence and traditional medicines are long established traditions in Southeast Asia and also provide sources of income (e.g. Nekaris et al. 2010). Reductionist management of wildlife trade not only impedes goals related to environmental sustainability but also goals related to health, poverty, and hunger (TRAFFIC 2008). On the other hand, wildlife trade has significant negative implications and is known to synergize

with other threats to biodiversity: hunting and trade increase as access to forests increases through other mining or extraction efforts (e.g. Suarez et al. 2009), and zoonotic viruses are often associated with illegally imported wildlife products (Greatorex et al. 2016). Wildlife trade has also been connected with conflict and national security issues (Douglas and Alie 2014). Despite increased media attention to the problem, collaborative actions on the ground (e.g., the establishment of the ASEAN Wildlife Enforcement Network in 2004), and international commitments to tackle illegal wildlife trade (e.g., the London Declaration, and Kasane and Hanoi Statements), wildlife trafficking continues at high levels (Hanoi Statement on Illegal Widlife Trade 2016, UNODC 2016). Many researchers and officials agree that existing regulatory top-down or "command and control," policies are failing in this region and changes are necessary to work towards sustainable resource use (CITES Vietnam 2008, TRAFFIC 2008). Bennett (2011) argues that regulatory-based interventions remain the best approach because the greatest driver of trade is wildlife demand from wealthy consumers in East Asia; in other words, the major problem is not the type of intervention but rather the gaps in capacity and resources to enforce existing regulations. However, the ubiquity of the trade makes it impractical to govern using regulatory-based interventions alone (CITES Vietnam 2008, TRAFFIC 2008); to work more effectively towards sustainability, research must assess how feasible other non-regulatory incentives and interventions might be, including market-based instruments (Jepson and Ladle 2009), which some argue may have a greater chance of being equitable and effective. However, bold supply-side strategies including regulated trade, ranching, and wildlife farming

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

91 remain hotly debated regarding both their application in Southeast Asia (Brooks et al. 92 2010, Drury 2009) and at a global scale (Phelps et al. 2014). 93 Behind each of these arguments are assumptions about the specific set of drivers of 94 wildlife trade in Southeast Asia. In Africa and in the Neotropics, several studies have shown 95 how wild meat over-exploitation is driven by poverty (e.g. Brashares et al. 2011, Wittemyer 96 2011), a lack of alternatives to wild protein (Foerster et al. 2011), conflicts and 97 displacement (e.g. Wittemyer 2011), and the implementation and choice of enforcement 98 measures and policies (e.g. Nyaki et al. 2014). This is not to say that the drivers of 99 overexploitation in these regions have been completely clarified; recent work highlights 100 how assumptions and limited contexts regarding definitions of poverty have restricted 101 researchers' understandings of motivations for illegal hunting (Duffy et al. 2016). 102 To avoid the development of management efforts and intervention measures in Southeast 103 Asia on assumptions based on thin evidence (Nadal and Aguayo 2014), several knowledge 104 gaps should be addressed towards characterizing the highly variable and complex wildlife 105 trade chains and socioeconomic drivers of trade (Lee et al. 2014; TRAFFIC 2008). In part, 106 the complexity of wildlife trade in Southeast Asia stems from traditional uses and cultural 107 values relating to wildlife and wildlife products (Donovan 2004). For example, some 108 studies indicate that wealth and social status appear to be stronger drivers of wildlife trade 109 in Southeast Asia than poverty, with urban consumers driving demand for wildlife 110 products more than local subsistence in some cases (e.g. Drury 2011, Sandalj et al 2016). 111 However, other studies show that most wildlife is still traded locally in rural regions (e.g. 112 Nijman 2010), meaning that further complexity may not be addressed by research that 113 focuses solely on urban consumers. There are diverse actors with multiple cultural

backgrounds along trade chains in Southeast Asia and their actions are likely shaped by factors that vary from site to site, including financial gain, social esteem, cultural identity, and customs, among others (MacMillan and Nguyen 2014, Nekaris et al. 2010). Thus, different policy incentives and interventions may be effective at different points along the trade chain and in different locales, and research aimed at informing wildlife trade management should take into account the possibility of spatial and cultural heterogeneity in potential trade drivers at multiple scales. We argue here that interdisciplinary research approaches that integrate socioeconomic, anthropological, psychological, governance, and biological data across multiple scales are necessary to understand the characteristics of wildlife trade dynamics and effects. Others have made similar arguments about how to improve research approaches for studying the links between poverty and illegal wildlife hunting (Duffy et al. 2016) and for studying 'conservation crime' more broadly (Gibbs et al. 2010, Gore 2011). These authors note the importance of studying the structural contexts of hunting holistically, questioning assumptions about key variables and concepts, and capturing historical social, economic, and political contexts (Duffy et al. 2016). The need for interdisciplinary, holistic research approaches is of particular importance given the complex cultural, political, economic, and social contexts of Southeast Asia (McElwee 2004). However, what is needed to operationalize this idea? Recent papers have articulated the utility of a social-ecological systems framework to study sustainability of hunting for meat at local-site scales (van Vliet et al. 2015). Here, we describe a social-ecological systems framework to design an interdisciplinary research approach to study the illicit wildlife trade regionally and across scales in Southeast Asia. A

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

common analytical framework that can be applied and understood across disciplines is especially necessary in cases such as the Southeast Asian wildlife trade, where knowledge and theories from different disciplines are required to understand dynamic trade systems. The framework we present here is designed to guide holistic study of complex wildlife trade systems, including to explore variables, question assumptions, and design interdisciplinary research questions. We focus on Southeast Asia because 1) there is an established need to fill knowledge gaps about wildlife trade in this region and 2) this region exhibits the complex cross-scale dynamics that can illustrate why an interdisciplinary research approach is so critical to guide research on wildlife trade. However, our framework is flexible enough to be applied in other regions as well.

We discuss steps taken and planned towards developing an interdisciplinary analysis of the pattern, scale, and drivers of trade in key targeted species in Indochina/Vietnam, a hotspot for the Southeast Asian trade network, as examples for how to implement the framework. We highlight examples of cases where, without a framework or rigorous integration of methods and data from different disciplines, researchers might draw the wrong conclusions, which would lead to misdirection of wildlife trade management efforts. We also argue for building and strengthening technical and interdisciplinary capacity to implement the approach, including the enlistment of DNA barcoding and integration of social science approaches.

An Interdisciplinary Research Framework

The dynamic complexity of wildlife trade in Southeast Asia highlights the need for an interdisciplinary research framework to guide academic study of the trade and inform management decisions. An ideal framework would enable systems level conceptualizations,

or 'systems thinking,' to identify and analyze linkages among complex system elements. Emphasizing interrelationships, feedback loops, nonlinearities, and time delays, among other systems principles, promotes iterative analyses of a system's dynamic connections and interactions towards a better understanding of the whole system, thus informing an understanding of its components (Sterling et al. 2010). The need for dynamic models and frameworks to understand complex systems has been established (Costanza et al. 1993), as has the need to integrate knowledge and theories across disciplines for effective biodiversity management (Watzold et al. 2006). Elinor Ostrom's Social-Ecological Systems (SES) Framework, which organizes multiple, diverse variables across scales, represented a leap forward towards an interdisciplinary framework for empirical studies (Ostrom 2009). The SES framework enables formal exploration of dynamic, nonlinear linkages and interactions among variables across scales to better understand system outcomes. Being theory-neutral, a SES framework can also facilitate exploration of variables that might be derived theoretically from different disciplines, and of how assessments based only on biological or social data alone may lead to divergent interpretations of the system (Leslie et al. 2015, Schlüter et al. 2014). Our interdisciplinary conceptual framework (Figure 1) groups variables derived from different disciplines within system components, or first-tier variables, as in Ostrom's SES Framework (McGinnis and Ostrom 2014, Ostrom 2009). Second-tier variables or attributes facilitate analysis of wildlife trade in Southeast Asia. To characterize resource units and resource systems, variables stem from biological data and models at varying scales. This includes, for example, the genetic and morphological diversity as well as the population status and distribution of resource units (Figure 1). Anthropological, psychological,

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

governance, and economic data and models inform understanding of the behavior and decisions of actors, as well as the nature of relevant governance systems. Variables could include, for example, the economic and cultural values actors place on traded species, social networks of actors (in different hierarchical groupings, as noted by McGinnis and Ostrom 2014), access to education and technology, laws and knowledge of laws, and infrastructure related to enforcement and transportation. We describe analysis of process relationships, interactions, and outcomes to operationalize the framework into mathematical model(s) in the next section. Related ecosystems and additional social, economic, and political settings are considered external to the focal SES analyzed, but are relevant for broader context (Figure 1).

Iterative Exploration across Disciplines

Our integrated framework enables exploration of variables and datasets that combine biological information of trade-targeted populations with other information on how people engage in the trade of these populations at multiple scales. Selection and outlining of second-tier variables and attributes can be helpful to explore the dynamics and interconnections of a system across scales, test assumptions about drivers of wildlife trade, and test combined policy interventions to identify points and locations in the trade chain where interventions are likely to have the greatest impact. We explore below some examples of how integration and exploration of different disciplinary approaches and technologies illuminate the complexity of wildlife trade in Southeast Asia:

Biology

Two major problems for law enforcement and study of taxa in the trade are species identification and product provenance, often because products have been processed before

being sold in markets. Sophisticated techniques can help in assigning species and in identifying wildlife products (Alacs et al. 2010, Ogden et al. 2009). DNA barcoding, for instance, has been used successfully over several years for many different groups of plants and animals (Eaton et al. 2010, Dawnay et al. 2007, Hebert et al. 2003). This technique has not been applied widely in Southeast Asia due to limited access to molecular laboratories. The situation is expected to change quickly as DNA amplification and sequencing have become more accessible and inexpensive. Indeed, a growing number of wildlife trade studies in Asia employ DNA to investigate species under threat (e.g. Chen et al. 2015, Zhang et al. 2015). By combining DNA barcoding with morphological, anthropological, and socioeconomic data, researchers can clarify the patterns, scales, and drivers of wildlife trade, determine hotspots of trade activities, and taxa under critical pressure.

Anthropology

Non-economic social and cultural elements are often neglected in studies that integrate ecological and economic factors for decision-making (Fagerholm et al. 2012) and social, cultural, and political contexts can play significant roles in supporting or preventing wildlife trade (Figure 1). Strong governance, regulations, and enforcement of regulations, for instance, can vary across regions, as can cultural norms regarding trade. Better understanding of why and when individual actors participate in trade – what social and cultural forces and norms drive hunting, subsistence uses, and market activities, such as valuing of rarity or connection to identity – is critical to sustainable management and situated governance. For example, slow lorises (genus *Nycticebus*) seem to be subject to opportunistic or incidental exploitation for uses that vary widely from meat to medicine to pets depending both on the ethnic group and the region under study (Thach et al. In

review). Also, methods such as social network analysis, developed first in sociology but used in anthropology and other fields, can be applied to explore the importance of social networks as drivers and operators of wildlife trade chains (Freeman 2004).

Economics

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

Traditional economic models are anthropocentric and analyze human uses of ecosystems for production and consumption activities. In contrast, over the past two decades there has been a spate of interest in bioeconomic modeling, an exercise that employs both economic and biophysical components, largely through the application of econometrics, Although econometric models have been applied to the bushmeat trade in Africa (e.g. Fischer et al. 2011, Skonhoft 1998), analyses of the Asian wildlife trade to date have been limited to characterizing trade chains or quantification of species, consumption patterns, and profits in trade at particular locations (e.g. Sandalj et al. 2016, Shairp et al. 2016); very few studies have used models to illustrate broader or more complex trade dynamics across sites. While such interdisciplinary empirical analyses constitute a step in the right direction, successful integration of ecological phenomena remains a major challenge due to sharp differences in disciplinary foci, mindsets, and vocabulary. This is beginning to change, however, with the advent of SES models. An important element of SES frameworks that has not been examined in previous studies is how to operationally connect data, hypotheses, and questions from different disciplines. The interdisciplinary SES framework that we outline in Figure 1 can also be used to iteratively investigate different assumptions supported by data from any discipline included in the framework, and to pinpoint key interactions and outcomes of the system. For example, if there is initial evidence from interview-derived data suggesting that trade products are transported from southern to

northern Vietnam, it can be articulated as a preliminary hypothesis. This hypothesis can be further supported using patterns inferred from forensic DNA barcoding of trade confiscations, or another biological approach (Figure 2). Other types of data (e.g. transportation information) can be used to further triangulate the nature of interactions and outcomes along this dimension of the system.

Operationalizing the Framework

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

SES models developed from the perspective of a single discipline, such as resource economics, applied ecology, or fisheries science, tend to oversimplify either the ecological or the social domain, and often fall short in exploring and explaining the social-ecological feedbacks that drive the development of the coupled SES (Schlüter et al. 2014). In particular, the 'Ecology' component of the SES framework has been underdeveloped; yet, policy recommendations are more likely to stem from SES research that includes both ecological and social variables (Rissman et al. 2017). Under an interdisciplinary SES framework as proposed in Figure 1, process and pattern oriented sub-models or component models for different system components or variables (e.g., econometric dichotomous choice models to predict actor behavior in relation to hunting) can be bundled into a suite of models using knowledge and theories from diverse disciplines to further explore interactions and outcomes at various scales (Figure 1). Challenges to the operationalization of SES frameworks via quantitative or semiquantitative models (such as process-oriented, decision, general equilibrium, general algebraic systems, dynamic systems, fuzzy-logic cognitive mapping, or input-output models) include parameterization of dynamic processes to account for scale as well as cultural, biological, and economic change; and integrating spatially explicit variables with

other factors. Recent operationalization of SES frameworks into models have accounted for dynamic scales by distinguishing between different levels of aggregation, e.g., individual actors vs. groups of actors, and individual resource units vs. populations of resource units (Hinkel et al. 2014). Others have clarified hierarchies of process relationships and interactions among components through influence diagramming and top-down unpacking of process relationships until changes in all relevant variables are explained (Schlüter et al. 2014). Making explicit underlying assumptions of component and systems models will be particularly important to integrate effectively across inputs and assumptions that stem from the conceptual backgrounds of different disciplines (Schlüter et al. 2014). Rather than prescribe a particular modeling or analysis approach to implement our framework, analysis should be tailored to the specific data-driven requirements of a given research question and associated considerations of statistical assumptions and power and should remain open to qualitative and thematic approaches. For example, below we describe our analysis under development for key trade targeted species in Indochina, where we are integrating regression approaches with qualitative analysis. Simply put, qualitative research can support "internal validity" (sensu Drury et al. 2011), meaning that data represent the phenomenon under study in complement to the "external validity" of quantitative data.

Key Trade-targeted Species

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

The Southeast Asian wildlife trade involves a huge diversity of plants and animals.

Although we focus here on animal groups, plants are also heavily traded in Southeast Asia, but possibly at different scales and influenced by different socio-economic drivers (e.g., orchids and cycads – CITES Vietnam 2008). In terms of taxonomic groups, turtles,

pangolins, and snakes have been most traded internationally. Other heavily traded groups include civet, muntjac, bear, primate, sambar, otter, and serow (Nguyen 2008, TRAFFIC/WCS 2004). The abundance of many trade-targeted animal species in Southeast Asia has declined severely over the past decade. However, in some cases local extinctions may be linked to wildlife trade by little more than assumed association because key information on distribution, taxonomy, and population status are lacking for many tradetargeted species, especially in Vietnam/Indochina (CITES Vietnam 2008, Nguyen 2008, TRAFFIC 2008, Benitez-López et al. 2017). Guidance from our SES framework might help to prioritize data collection. For example, a great deal of trade data, e.g., number of seizures, specimens, and species in the trade at both regional and local scales are available, but data on population status of traded species is generally limited. The latter should therefore be a focus of future programs to help link trade to local extinction of species and/or populations. Research that narrows on a suite of focal species could serve to investigate multiple scales of trade within a hierarchical SES research framework. Candidate species groups should be those for which wildlife trade is their major threat and that are subject to local, regional, or international demand, advancing our understanding of the multiple scales of wildlife trade in the region. In addition, data on their taxonomy, genetic patterns, distribution, and the level of exploitation should be available for hypothesis testing within the framework. In our work we have identified four focal groups of trade-targeted species for which sufficient data are available as per categories above, yet differ in their relative

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

prevalence in trade across scales to test hypotheses about scales and drivers of wildlife

trade in Vietnam/Indochina: turtles, muntjacs, pangolins, and slow lorises.

With the exception of some of the turtles and muntjac species, these groups are overall widespread and taxonomically diverse. However, a majority of species in the two aforementioned groups is traded in two vastly different networks. While most turtle species in Mainland Southeast Asia are hunted for export, muntjacs are often consumed domestically (Nguyen 2008, TRAFFIC/WCS 2004, Authors' Unpublished data). Tradetargeted species, such as turtles and pangolins, are under immense pressures from rising demands of the international trade. As turtle and pangolin populations decline, their value in the trade is increasing at rates greater than inflation (Newton et al. 2008), exhibiting an 'anthropogenic allee effect' where extinction of rare species is influenced by human value attributed to rarity (Courchamp et al. 2006). Because of the nature of turtle and pangolin trade, namely their rarity and high price, all pangolins and turtles caught in local villages are sold to traders for sale in urban or international markets. Therefore, data on most turtle and pangolin trade may not be able to tell us very much about local scales of trade. On the other hand, muntjacs are suitable for studies examining the nature of the trade at the local scale because of their domestic consumption. Slow lorises (genus *Nycticebus*) are small, nocturnal primates. Slow lorises are widespread, have naturally low densities, and are in high demand for traditional medicines, as pets, and for food and are also traded internationally for these purposes (Nekaris et al. 2010). Despite all slow lorises having protected status across their range, enforcement of this status remains quite neglected compared to other, higher-profile animals (Beyle et al. 2014). Importantly, traded species are not necessarily traded in isolation; a targeted species may be opportunistically, incidentally, or accidentally exploited when hunters are looking for more common, or other species (Branch et al. 2013). Because of their natural

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

low densities (rarity), slow lorises seem to be subject to opportunistic or incidental exploitation, depending on the area under study (Thach et al. In review). More research needs to be done both across and within species, in the latter case focusing on how the same species could be exploited in different ways at different scales and by different people. Data on highly targeted species alone may not be able to tell us very much about other species, and it might be quite difficult to get unbiased information from hunters and traders on the targeted species.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

In our preliminary analysis on slow loris trade, iterative exploration including qualitative methods and analysis of key informant interviews were essential to understanding why people engage in trade and also to accurately characterize trade pathways. We have used genetic information to identify a pygmy slow loris confiscated by Vietnamese authorities in northern Vietnam as originating from southern Vietnam, supporting a trend of trafficking from southern Vietnam to northern Vietnam (Cao Giang et al. In prep). Our interviews with key informants confirm this trend but also suggest some movement from central to southern Vietnam (Thach et al. In review). However, none of our confiscated samples from southern Vietnam show genetic provenance from northern or central Vietnam. Together, our datasets collected and integrated within our framework show a more complicated spatial pattern of trade than would be inferred by using only one method, and have inspired a next set of iterative research questions that could be answered by integrating new sources of data within our integrative framework, such as transportation information: Is trade more frequent in one direction than the other? Are prices and uses different in trade going different directions? Where and how do intermediaries sort pricing and routes? Interventions that might be informed by the outcomes of this research might include

activities targeted at sorting points that are tailored to the particular drivers in each direction, which may differ.

Building and Strengthening Technical and Interdisciplinary Capacity for Integrative

Approaches

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

A key challenge in this effort will be building the capacity for effective interdisciplinary teams of researchers enabled to operationalize the iterative exploration of wildlife trade within a SES framework. Our framework originated in the lead authors' backgrounds in evolutionary biology, and to complete our framework development we built a team that includes anthropologists and economists. In addition, integration and increased collaboration with legal, anti-corruption, and governance research fields will be essential to bring the framework to action at multiple scales (Figure 1; e.g. Gibbs et al. 2010, Gore 2011). Interdisciplinary and international teams must negotiate conceptual differences, theories of knowledge, research ethics requirements, power dynamics, disciplinary prejudices, and challenges in communication, infrastructure, and logistics. Effective interdisciplinary collaborations require a great deal of work to implement, including team leadership that is committed to true conceptual integration among carefully selected team members who collaborate towards a co-created research question (Black and Copsey 2014, Pooley et al. 2014). Although the integrative framework requires well-rounded research capabilities, we highlight here the need for strengthening key areas, which we argue currently fall short of the standard for quality interdisciplinary research especially in our region of focus. As a key component of the integrative framework developed here, DNA forensic and barcoding

tools should be made widely available to facilitate wildlife trade management and

hypothesis testing for better understanding of critical parameters, e.g., scale, driver, and pattern, of the complex conservation threat (UNODC 2016). Recent advances in molecular technologies have led to a rapid increase in application of DNA barcoding and other assignment tools to wildlife trade (e.g. Eaton et al. 2010, Chen et al. 2015, Zhang et al. 2015). Recognizing the advantages of the method, Pakistan became the first country in Asia to adopt DNA barcoding as a technique to curb illegal wildlife trade (Shahid 2015). Other countries are also considering the use of DNA analyses as an official wildlife enforcement tool (TRAFFIC 2015). Currently, however, infrastructure, such as comprehensive DNA databases, is not ready to support comprehensive use of the technique. GenBank data are not well curated, and many available sequences are missing key information, such as locality. The few available curated databases, e.g., DNA Surveillance and DNA_{BUSHMEAT}, only cover specific taxonomic groups, most often mammals (Gaubert et al. 2015, Ross et al. 2003). For other lesser known, but widely traded vertebrates, such as turtles and other reptile species, resources have not been developed. To better control the wildlife trade, it is critical to develop such a DNA database for range countries in Southeast Asia. As a first step, the database should have representatives of all vertebrates protected under the law in the countries for wildlife trade enforcement. DNA barcoding regions for the database could include the mitochondrial genes, cytochrome b or the cytochrome c oxidase subunit 1 (COI), because they are the markers of choice in wildlife forensic science (Alacs et al. 2010). Other species that are currently not protected under law, but have been heavily traded, should also be included in the database in the likelihood that these species will be

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

regulated in the future. More importantly, multiple sequences from geographically isolated

populations of the targeted species should be incorporated into the database to help determine trade patterns, hotspots of trade activities, or populations under a high level of harvesting pressure. Recent studies demonstrate that such a fine scale population assignment is particularly informative for wildlife trade management (e.g. Zhang et al. 2015), especially to trace geographic provenance and provide detail to supplement data from other disciplines within our integrative framework.

There are many challenges in developing a database for wildlife trade enforcement and research within the interdisciplinary framework. Its development requires collaboration between a wide variety of research institutions, including natural history museums, nongovernment organizations, universities, and other research institutes from different countries in the region. This involves establishing data sharing mechanisms among

participating organizations. In addition, as funding for biodiversity research is in serious

shortage (Amato and DeSalle 2012), this could prove a daunting task without support from

Conclusion

governments and international funding agencies.

In summary, we believe that complex conservation problems merit interdisciplinary frameworks such as the one we have developed and described here. Our framework will allow researchers to test assumptions about how different aspects of a system interact and where there are non-linearities in feedbacks across scales and dimensions. Our approach is intended to guide holistic study of complex wildlife trade systems, rather than prescribe specific policy actions, which should be assessed by policymakers and managers in specific socio-political contexts based upon new information produced under the framework. However, the ideas put forward in our framework also relate to broader discussions in

conservation aimed at intervention design and planning. The Open Standards (OS) for the Practice of Conservation (CMP 2013) is a tool to facilitate adaptive management in planning, implementing, and monitoring conservation initiatives. The OS fosters transparency by making explicit assumed causal relationships between strategies and anticipated outcomes (Schwartz et al. 2012). Our framework could be helpful to inform the process by which teams come to and question their stated assumptions during the process of formulation, and help to promote systems analyses of problems. In the future, we expect to collaborate with more enforcement-focused organizations such as the Society for Wildlife Forensics to bridge holistic understanding guided by the framework to specific enforcement outcomes that avoid one-size-fits-all solutions and pinpoint where to invest effort to address problems such as wildlife trade in Southeast Asia. Capturing the complexity of cross-scale interactions in a wildlife trade system does not mean that management needs to be so complicated and convoluted that it will no longer be feasible; different management strategies can be tailored to focus on different dimensions of the social ecological system, keeping in mind how they influence and are influenced by other aspects of the system (Sterling et al. 2010). This systems perspective helps to focus initial questions towards those that are tractable and appropriate and away from fixes that fail. Strategic management approaches can be targeted to the needs and strengths of specific regions or scales; for example, if variables related to local actors are found to be the most important drivers of trade at the local scale, interventions can focus on improving relationships among relevant stakeholders. If variables related to governance are found to be the most important drivers at the national scale, interventions may focus on improving institutional arrangements (Leslie et al. 2015). Capacity development and database

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

459 development and sharing will be key to acting on recommendations derived from the 460 framework analysis in order to address the critical issue of wildlife trade in Southeast Asia. 461 Acknowledgments 462 We are grateful to three anonymous reviewers for their comments on previous versions 463 of this manuscript. We also thank R. DeSalle for inspiration, N. Gazit for graphic design and 464 collaborators and student research assistants on the ongoing larger study: M. Kenyon, B. 465 Zain, K. Nguyen, H.X. Nguyen, T.T. Nguyen, T.V. Pham, T.V. Nguyen, H. Duong, G. Cao, E. 466 Lopez, D. Veronese, N. Vu, A. Panariello, and B. Yates from the USFWS Forensic 467 Laboratory. We also thank L. T. Tran, H. M. Nguyen, P. McElwee, C. Roos, A. Nekaris, H.M. 468 Nguyen, T.V. Hoang, D.M. Hoang, and T. Nadler, for support, advice and discussion. This 469 material is based upon work supported by US National Science Foundation Grant No. CHE-470 1313908, the Center for Biodiversity and Conservation at the American Museum of Natural 471 History, the Margot Marsh Biodiversity Foundation, the Eppley Foundation for Research, 472 the Disney Worldwide Conservation Fund, the Critical Ecosystem Partnership Fund, Turtle 473 Conservation Fund, NAGAO Natural Environment Foundation, and USAID-PEER 474 Science Project 3-149. The authors' views expressed in this publication do not necessarily 475 reflect the views of the United States Agency for International Development or the United 476 States Government. 477 References 478 Alacs E, Georges A, FitzSimmons N, Robertson J. 2010. DNA detective: a review of molecular 479 approaches to wildlife forensics. Forensic Science, Medicine, and Pathology 6:180-194. 480 Amato G, DeSalle R. 2012. Assessing biodiversity funding during the sixth extinction.

481

Bioessays 34:658-660.

- Benitez-López A, Alkemade R, Schipper AM, Ingram DJ, Verweij PA, Eikelboom JAJ,
- Huijbregts MAJ. The impact of hunting on tropical mammal and bird populations. Science
- 484 356:180-183.
- Bennett EL. 2011. Another inconvenient truth: the failure of enforcement systems to save
- 486 charismatic species. Oryx 45:476-479.
- Beyle J, Bguyen VQ, Hendrie D, Nadler T. 2014. Primates in the illegal wildlife trade in
- Vietnam. Pages 43-50 in Nadler T, Brockman DK, eds. Primates of Vietnam. Hanoi, Vietnam:
- 489 Endangered Primate Rescue Center, Vietnam.
- 490 Black SA, Copsey JA. 2014. Purpose, process, knowledge and dignity in interdisciplinary
- 491 projects. Conservation Biology 28:1139-1141.
- 492 Branch TA, Lobo AS, Purcell SW. 2013. Opportunistic exploitation: an overlooked pathway
- 493 to extinction. Trends in Ecology & Evolution 28:409-413.
- 494 Brashares JS, Golden CD, Weinbaum K, Barrett C, Okello G. 2011. Economic and geographic
- drivers of wildlife consumption in rural Africa. Proceedings of the National Academy of
- 496 Sciences 108:13931-13936.
- 497 Brooks EGE, Roberton SI, Bell DI, 2010. The conservation impact of commercial wildlife
- farming of porcupines in Vietnam. Biological Conservation 143:2808-2814.
- Chen J, Jiang Z, Li C, Ping X, Cui S, Tang S, Chu H, Liu B. 2015. Identification of ungulates
- used in a traditional Chinese medicine with DNA barcoding technology. Ecology and
- 501 Evolution 5:1818-1825.
- 502 [CITES Vietnam] Convention on International Trade in Endangered Species Vietnam. 2008.
- Report on the Review of Vietnam's Wildlife Trade Policy. Hanoi, Vietnam: CITES Scientific
- Authority of Vietnam, Centre for Natural Resources and Environmental Studies, Vietnam

505 National University and CITES Management Authority of Vietnam, Forest Protection 506 Department, Ministry of Agriculture and Rural Development. 507 [CMP] Conservation Measures Partnership. 2013. Open Standards for the Practice of 508 Conservation. Version 3.0. Accessible at www.conservationmeasures.org 509 Costanza R, Wainger L, Folke C, Maler K-G. 1993. Modeling complex ecological economic 510 systems. BioScience 43:545-555. 511 Courchamp F, Angulo E, Rivalan P, Hall RJ, Signoret L, Bull L, Meinard Y. 2006. Rarity value 512 and species extinction: The anthropogenic allee effect. Plos Biology 4:e415. 513 Dawnay N, Ogden R, McEwing R, Carvalho GR, Thorpe RS. 2007. Validation of the barcoding 514 gene COI for use in forensic genetic species identification. Forensic Science International 515 173:1-6. 516 DeSalle R, Egan MG, Siddall M. 2005. The unholy trinity: taxonomy, species delimitation and 517 DNA barcoding. Philosophical Transactions of the Royal Society of London Series B-518 Biological Sciences 360:1905-1916. 519 Donovan D. 2004. Cultural underpinnings of the wildlife trade in Southeast Asia. Pages 88-520 111 in Knight I, ed. Wildlife in Asia: Cultural perspectives. New York: Routledge Curzon. 521 Douglas LR, Alie K. 2014. High-value natural resources: Linking wildlife conservation to 522 international conflict, insecurity, and development concerns. Biological Conservation 523 171:270-277. 524 Drury R. 2009. Reducing urban demand for wild animals in Vietnam: examining the 525 potential of wildlife farming as a conservation tool. Conservation Letters 2:263-270. 526 ---. 2011. Hungry for Success: Urban Consumer Demand for Wild Animal Products in 527 Vietnam. Conservation & Society 9:247-257.

528 ---, Homewood K, Randall S. 2011. Less is more: the potential of qualitative approaches in 529 conservation research. Animal Conservation 14:18-24. 530 Duffy R, St John FAV, Buscher B, Brockington D. 2016. Toward a new understanding of the 531 links between poverty and illegal wildlife hunting. Conservation Biology 30:14-22. 532 Eaton MJ, Meyers GL, Kolokotronis SO, Leslie MS, Martin AP, and Amato G. 2010. Barcoding 533 bushmeat: molecular identification of Central African and South American harvested 534 vertebrates. Conservation Genetics. 11:1389-1404. 535 Fagerholm N, Kayhko N, Ndumbaro F, Khamis M. 2012. Community stakeholders' 536 knowledge in landscape assessments - Mapping indicators for landscape services. 537 Ecological Indicators 18:421-433. 538 Fischer C, Muchapondwa E, Sterner T. 2011. A Bio-Economic Model of Community 539 Incentives for Wildlife Management Under CAMPFIRE. Environmental Resource Economics 540 48:303-319. 541 Foerster S, Wilkie DS, Morelli GA, Demmer J, Starkey M, Telfer P, Steil M, Lewbel A. 2011. 542 Correlates of Bushmeat Hunting among Remote Rural Households in Gabon, Central Africa. 543 Conservation Biology 26:335-344. 544 Freeman L. 2004. The Development of Social Network Analysis. Empirical Press, 545 Vancouver, BC.

Gaubert P, Njiokou F, Olayemi A, Pagani P, Dufour S, Danquah E, Nutsuakor MEK, Ngua G,

Missoup AD, Tedesco PA. 2015. Bushmeat genetics: setting up a reference framework for

the DNA typing of African forest bushmeat. Molecular Ecology Resources 15:633-651.

546

547

549 Gibbs CE, Gore MI, McGarrell EF, Rivers L. 2010. Introducing conservation criminology: 550 towards interdisciplinary scholarship on environmental crimes and risks. British Journal of 551 Criminology 50:124-144. 552 Golden CD, Gupta AC, Vaitla B, Myers SS. 2016. Ecosystem services and food security: 553 assessing inequality at community, household, and individual scales. Environmental 554 Conservation 43:381-388 555 Gore MI. 2011. The Science of Conservation Crime. Conservation Biology 25:659-661. 556 Greatorex ZF, et al. 2016. Wildlife trade and human health in Lao PDR: An assessment of the 557 zoonotic disease risk in markets. PLoS ONE 11:e0150666. 558 Hanoi Statement on Illegal Wildlife Trade, 2016. Hanoi Conference on Illegal Wildlife Trade, 559 17-18 November 2016, Hanoi, Vietnam. 560 Hebert PD, Cywinska A, Ball SL. 2003. Biological identifications through DNA barcodes. 561 Proceedings of the Royal Society of London B: Biological Sciences 270:313-321. 562 Hinkel J, Bots P, Schlüter M. 2014. Enhancing the Ostrom social-ecological system 563 framework through formalization. Ecology and Society 19:51. 564 Jepson P, Ladle RJ. 2009. Governing bird-keeping in Java and Bali: evidence from a 565 household survey. Oryx 43:364-374. 566 Lee TM, Sigouin A, Pinedo-Vasquez M, Nasi R. 2014. The harvest of wildlife for bushmeat 567 and traditional medicine in East, South and Southeast Asia. Bogor, Indonesia: Center for 568 International Forestry Research. 569 Leslie HM, Basurto X, Nenadovic M, al. e. 2015. Operationalizing the social-ecological

systems framework to assess sustainability. Proceedings of the National Academy of

570

571

Sciences 112:5979-5984.

- 572 MacMillan D, Nguyen Q. 2014. Factors influencing the illegal harvest of wildlife by trapping 573 and snaring among the Katu ethnic group in Vietnam. Oryx 48:304-312. 574 McElwee P. 2004. Becoming socialist or becoming Kinh? Government policies for ethnic 575 minorities in the Socialist Republic of Viet Nam. Pages 182-213 in Duncan CR, ed. Civilizing 576 the margins: Southeast Asian government policies for the development of minorities. 577 Ithaca, NY: Cornell University Press. 578 McGinnis M, Ostrom E. 2014. Social-ecological system framework: initial changes and 579 continuing challenges. Ecology and Society 19:30. 580 Nadal A, Aguayo F. 2014. Leonardo's sailors: A review of the economic analysis of wildlife 581 trade. Leverhulme Centre for the Study of Value Working Paper Series 6:1-45. 582 Nekaris KAI, Shepherd CR, Starr C, Nijman V. 2010. Exploring cultural drivers for wildlife 583 trade via an ethnoprimatological approach: A case study of slender and slow lorises (*Loris* 584 and Nycticebus) in South and Southeast Asia. American Journal of Primatology 72:877-886. 585 Newton P, Nguyen V, Roberton SI, Bell DJ. 2008. Pangolines in peril: using local hunters' 586 knowledge to conserve elusive species in Vietnam. Endangered Species Resarch 6:41-53. 587 Nguyen VS. 2008. Wildlife Trading in Vietnam: Situations, Causes, and Solutions. The 588 Journal of Environment and Development 17:145-165. 589 Nijman V. 2010. An overview of international wildlife trade from Southeast Asia. 590 Biodiversity and Conservation 19:1101-1114.
- Ogden R, Dawnay N, McEwing R. 2009. Wildlife DNA forensics—bridging the gap between
 conservation genetics and law enforcement. Endangered Species Research 9:179-195.

drivers of bushmeat trade. Conservation Biology 28:1403-1414.

Nyaki A, Gray S, Lepczyk C, Skibins J, Rentsch D. 2014. Local-scale dynamics and local

591

- 595 Ostrom E. 2009. A general framework for analyzing sustainability of social-ecological
- 596 systems. Science 325:419-422.
- 597 Phelps J, Shepherd C, Reeve R, Niissalo M, Webb E. 2014. No easy alternatives to
- 598 conservation enforcement: response to Challender and Macmillan. Conservation Letters
- 599 7:495-496.
- 600 Pooley SP, Mendelsohn JA, Milner-Gulland E. 2014. Hunting down the chimera of multiple
- disciplinarity in conservation science. Conservation Biology 28:22-32.
- Rissman AR, Gillon S. 2017. Where are Ecology and Biodiversity in Social-Ecological
- 603 Systems Research? A Review of Research Methods and Applied recommendations.
- 604 Conservation Letters 10:86-93.
- Ross H, Lento G, Dalebout M, Goode M, Ewing G, McLaren P, Rodrigo A, Lavery S, Baker C.
- 606 2003. DNA surveillance: web-based molecular identification of whales, dolphins, and
- 607 porpoises. Journal of Heredity 94:111-114.
- 608 Sandalj M, Treydte AC, Ziegler S. 2016. Is wild meat luxury? Quantifying wild meat demand
- and availability in Hue, Vietnam. Biological Conservation 194:105-112.
- 610 Schlüter M, Hinkel J, Bots P, Arlinghaus R. 2014. Application of the SES framework for
- 611 model-based analysis of the dynamics of social-ecological systems. Ecology and Society
- 612 19:36.
- 613 Schwartz MW, Deiner K, Forrester T, Grof-Tisza P, Muir MJ, Santos MJ, Souza LE, Wilkerson
- 614 ML, Zylerberg M. 2012. Perspectives on the Open Standards for the Practice of
- 615 Conservation. Biological Conservation 155:169-177.
- 616 Shahid J. 2015. Pakistan adopts DNA barcoding to check illegal wildlife trade. Dawn.
- Accessible at http://www.dawn.com/news/1203605.

618 Shairp R, Verissimo D, Fraser I, Challender D, MacMillan D. 2016. Understanding urban 619 demand for wild meat in Vietnam: Implications for conservation actions. PLoS ONE 620 11:e0134787. 621 Skonhoft A. 1998. Resource utilisation, property rights and welfare-wildlife and the local 622 people. Ecological Economics 26:67-80. 623 Sterling EJ, Gomez A, Porzecanski A. 2010. A systemic view of biodiversity and its 624 conservation: Processes, interrelationships, and human culture. Bioessays 32:1090-1098. 625 Suarez E, Morales M, Cueva R, Bucheli VU, Zapata-Rios G, Toral E, Torres J, Prado W, Olalla 626 IV. 2009. Oil industry, wild meat trade and roads: indirect effects of oil extraction activities 627 in a protected area in north-eastern Ecuador. Animal Conservation 12:364-373. 628 Thach HM, Le MD, Vu NB, Panariello A, Sethi G, Sterling EJ, Blair ME. In review. Slow loris 629 trade in Vietnam: Exploring diverse knowledges and values. Folia Primatologica. In review. 630 TRAFFIC. 2008. What's Driving the Wildlife Trade? A Review of Expert Opinion on 631 Economic and Social Drivers of the Wildlife Trade and Trade Control Efforts in Cambodia, 632 Indonesia, Lao PDR and Vietnam. East Asia and Pacific Region Sustainable Development 633 Department, World Bank. 634 ---. 2015. Wildlife DNA forensic group established to combat illegal wildlife trade in SE Asia. 635 (June 20 2016) 636 TRAFFIC/WCS. 2004. Hunting and wildlife trade in Asia: Proceedings of a strategic 637 planning meeting of the Wildlife Conservation Society (WCS) and TRAFFIC, Bali, Indonesia. 638 WCS and TRAFFIC. 639 UNODC (United Nations Office on Drugs and Crime). 2016. World Wildlife Crime Report:

Trafficking in protected species. UNODC, Vienna, New York, NY.

641 van Vliet N, Fa J, Nasi R. 2015. Managing hunting under uncertainty: from one-off ecological 642 indicators to resilience approaches in assessing the sustainability of bushmeat hunting. 643 Ecology and Society 20:7. 644 Watzold F, et al. 2006. Ecological-economic modeling for biodiversity management: 645 Potential, pitfalls, and prospects. Conservation Biology 20:1034-1041. 646 Wittemyer G. 2011. Effects of Economic Downturns on Mortality of Wild African Elephants. 647 Conservation Biology 25:1002-1009. 648 Zhang H, Miller MP, Yang F, Chan HK, Gaubert P, Ades G, Fischer GA. 2015. Molecular 649 tracing of confiscated pangolin scales for conservation and illegal trade monitoring in 650 Southeast Asia. Global Ecology and Conservation 4:414-422. 651 652 **Figure Legends** 653 Figure 1. An interdisciplinary conceptual framework identifying relevant components or 654 first-tier variables (quarters of the circle, labeled on the outside of the circle), sub-655 components (inside the circle), and second-tier variables (below) to analyze wildlife trade 656 with a focus on Southeast Asia, modeled after Ostrom (2007)'s Social-Ecological Systems 657 Framework. 658 659 Figure 2. Iterative investigation of different research questions, assumptions, and 660 hypotheses can be supported by data from different disciplines included in the SES 661 framework. Arrows represent exit from investigation after sufficient support for a 662 hypothesis towards understanding of interactions and outcomes of the system. After 663 DeSalle et al. (2005).