

Environmental drivers of benthic communities and habitat heterogeneity on an East Antarctic shelf

ALEXANDRA L. POST¹, CAROLINE LAVOIE², EUGENE W. DOMACK³, AMY LEVENTER⁴,
AMELIA SHEVENELL³, ALEXANDER D. FRASER^{5,6} and the NBP 14-02 SCIENCE TEAM

¹Geoscience Australia, GPO Box 378, Canberra, ACT 2601, Australia

²Department of Geosciences/CESAM, University of Aveiro, Aveiro, 3810-193, Portugal

³College of Marine Science, University of South Florida, St. Petersburg, FL 33701, USA

⁴Department of Geology, Colgate University, Hamilton, NY 13346, USA

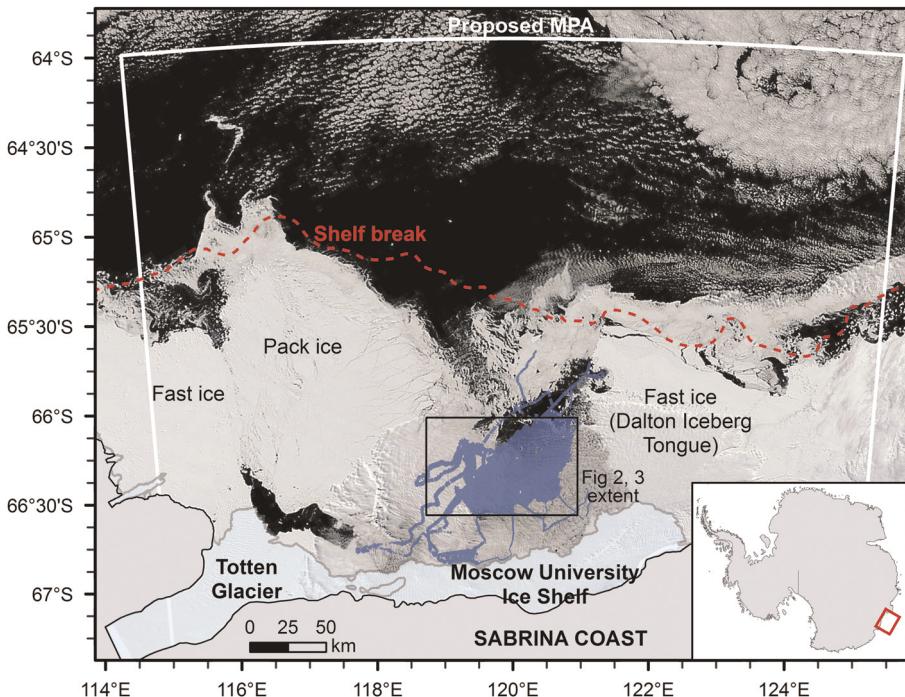
⁵Antarctic Climate & Ecosystems Cooperative Research Centre, University of Tasmania, Private Bag 80, Hobart, TAS 7001, Australia

⁶Institute for Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan

alix.post@ga.gov.au

Abstract: This study presents the first analysis of benthic megafauna and habitats from the Sabrina Coast shelf, encompassing a proposed Marine Protected Area. Sea bed imagery indicated an abundant benthic fauna compared to other parts of the Antarctic shelf, dominated by brittle stars, polychaete tubeworms, and a range of other sessile and mobile taxa. The distribution of taxa was related ($p = 0.592$, $P < 0.001$) to variations in water depth, latitude, substrate type and phytodetritus. High phytodetritus cover was associated with muddy/sandy sediments and abundant holothurians and amphipods, while harder substrates hosted abundant brachiopods, hard bryozoans, polychaete tubeworms, massive and encrusting sponges, and sea whips. Brittle stars, irregular urchins and anemones were ubiquitous. Variations in substrate largely reflected the distribution of dropstones, creating fine-scale habitat heterogeneity. Several taxa were found only on hard substrates, and their broad regional distribution indicated that the density of dropstones was sufficient for most sessile invertebrates to disperse across the region. The hexactinellid sponge *Anoxycalyx joubini* and branching hydrocorals exhibited a more restricted distribution, probably related to water depth and limited dispersal capability, respectively. Dropstones were associated with significant increases in taxa diversity, abundance and biological cover, enhancing the overall diversity and biomass of this ecosystem.

Received 14 February 2016, accepted 11 August 2016


Key words: benthic habitats, benthic megafauna, biophysical relationships, dropstones, marine protected area, substrate type

Introduction

The Antarctic continental shelf contains diverse benthic communities with many endemic species making protection a priority. However, factors driving the distribution and diversity of benthic megafauna are not fully understood. There are many environmental variables that may influence the composition and diversity of benthic communities, and variations in the physical environment may create habitat heterogeneity over a range of geographical scales. Key environmental factors include food supply, sea ice duration, iceberg scour, light, temperature, nutrients, salinity, substrate characteristics (see review by Convey *et al.* 2014), geomorphological variability (e.g. Post *et al.* 2010) and ongoing recolonization following glacial retreat (Gutt 2006). However, the influence of these factors on the distribution of the sea floor biota varies considerably between regions and over different geographical scales. For example, sediment characteristics are significant in many studies and regions (e.g. Jones *et al.* 2007, Post *et al.* 2011,

Smith *et al.* 2015), while in other studies the relationship to substrate properties are less consistent (e.g. Cummings *et al.* 2006, Gutt 2007). Some of the inconsistencies that are observed between regions may reflect the influence of biological interactions, but this aspect is beyond the scope of the current study.

Constraining relationships between biological and physical variables is important for understanding drivers of Antarctic biodiversity and enabling development of predictive ecosystem models. However, sampling gaps limit our knowledge of the distribution and diversity of benthic assemblages on the Antarctic margin particularly in East Antarctica where most of the margin contains < 30 sample sites for every $3^\circ \times 3^\circ$ grid cell (Griffiths *et al.* 2014). Physical datasets are available across larger scales than biological observations, with broad-scale bathymetric, geomorphological, grain size, nutrient, productivity, temperature and sea ice patterns discernible from satellite data and observations (Post *et al.* 2014). Thus, physical datasets provide an opportunity to build predictive models of species distributions and diversity, if significant

Fig. 1. MODIS satellite image from 26 February 2014 showing the sea ice distribution in the study region. The survey area (shown in blue) is located within the Dalton Iceberg Tongue polynya.

relationships can be determined (e.g. Koubbi *et al.* 2011). Such models are significant for guiding Southern Ocean ecosystem management, including the selection and ongoing monitoring of Marine Protected Areas (MPAs).

In addition to developing broad-scale biodiversity models, consideration of the significance of fine-scale variability and its impact on biological communities is also important. The complex interplay of different biological and physical factors creates habitat patchiness at a range of scales on the Antarctic shelf that significantly enhances biological diversity (Gutt & Piepenburg 2003). A patchwork of physical habitats is created by factors including the occurrence and frequency of iceberg scouring and irregular distributions of hard substratum. The impacts of variations in these physical factors are mediated by the biological characteristics of the fauna, such as their mode of dispersal and growth rates (e.g. Gutt & Koltun 1995). Iceberg scouring creates significant habitat heterogeneity, with varying impact on the biological diversity depending on the scale of observation. Over local scales (tens of metres) scours reduce diversity, with low diversity within individual scours, while at regional scales (tens of kilometres), patchiness created by iceberg scours enhances species diversity due to the existence of communities at a range of different successional stages (Gutt & Piepenburg 2003). Dropstones, deposited during basal melt of ice shelves and icebergs, also create a mosaic of hard and soft substrates, described as 'colonization islands', which can enhance habitat diversity at a small scale (Schulz *et al.* 2010). The physical processes of iceberg scouring and

deposition of dropstones can be difficult to parameterize in broad-scale biodiversity models because they often represent centennial- to millennial-scale processes. Thus, it is important to determine the extent to which these factors influence the distribution and abundance of taxa on the Antarctic shelf.

Here we investigated sea floor environments and benthic taxa adjacent to the Moscow University Ice Shelf and Totten Glacier on the Sabrina Coast continental shelf, East Antarctica. Until 2014, this region was largely unexplored, but has been the focus of increasing interest due to satellite observations that indicate thinning of both the Totten Glacier and Moscow University Ice Shelf systems (Rignot *et al.* 2013). The region adjacent to the Sabrina Coast and extending to 64°S has also been identified as having biological significance, with an MPA proposed to preserve the biodiversity of the shelf, canyon and slope ecosystems along this part of the margin (Fig. 1) (Constable *et al.* 2010). Given the sensitivity of this region to change and its recognized biological importance, our study provides a baseline for assessing the impacts of future natural or anthropogenic change on benthic taxa and sea bed habitats of the Sabrina Coast continental shelf, as well as determining the biophysical relationships that currently shape this sea bed community.

Physical setting

The Sabrina Coast includes the floating parts of the Totten Glacier tongue and the Moscow University

Table I. Yoyo camera transects completed during NBP 14-02. Position is shown for the mid-point of each transect.

Station	Latitude	Longitude	Depth SOL (m)	Depth EOL (m)	SOG (kn)	Duration (min)	Image count
NBP 14-02-Yoyo10	66°22.359	120°3.833	602	587	1.1	33	38
NBP 14-02-Yoyo20	66°23.236	118°57.052	895	896	1.0	38	62
NBP 14-02-Yoyo34	66°20.186	120°47.699	280	274	1.0	20	39
NBP 14-02-Yoyo35	66°19.608	120°29.673	457	469	0.8	46	200
NBP 14-02-Yoyo36	66°16.485	120°35.671	459	429	0.8	33	86
NBP 14-02-Yoyo40	66°26.749	119°54.548	697	683	0.8	27	49
NBP 14-02-Yoyo47	66°35.569	120°13.784	339	340	0.6	26	22
NBP 14-02-Yoyo49	66°35.700	120°10.691	444	497	0.6	24	52
NBP 14-02-Yoyo50	66°19.389	120°28.278	455	457	0.7	32	67
NBP 14-02-Yoyo52	66°11.025	120°29.393	512	531	0.8	31	86
TOTAL							701

EOL = end of line, SOG = speed over ground, SOL = start of line.

130 Ice Shelf (Fig. 1). It contains extensive and persistent
 131 areas of fast ice along the western side of the Totten
 132 Glacier and to the east of the Moscow University Ice
 133 Shelf, forming the Dalton Iceberg Tongue (Fraser *et al.*
 134 2011). Prior to the US Antarctic Program NBP14-02
 135 research voyage, there had been no ship-based
 136 expeditions extending onto the continental shelf in this
 137 part of East Antarctica.

138 Sea floor bathymetry from the Sabrina Coast reveals a
 139 complex history of glaciation and deglaciation, with
 140 streamlined features and a series of recessional moraines
 141 evident (Levener *et al.* 2014). Other features include
 142 bedforms in water depths of ~ 450 m, and a complex
 143 network of channels over crystalline bedrock in the
 144 southern part of the study area. The camera transects in
 145 this study targeted a number of these geological and
 146 glaciological features.

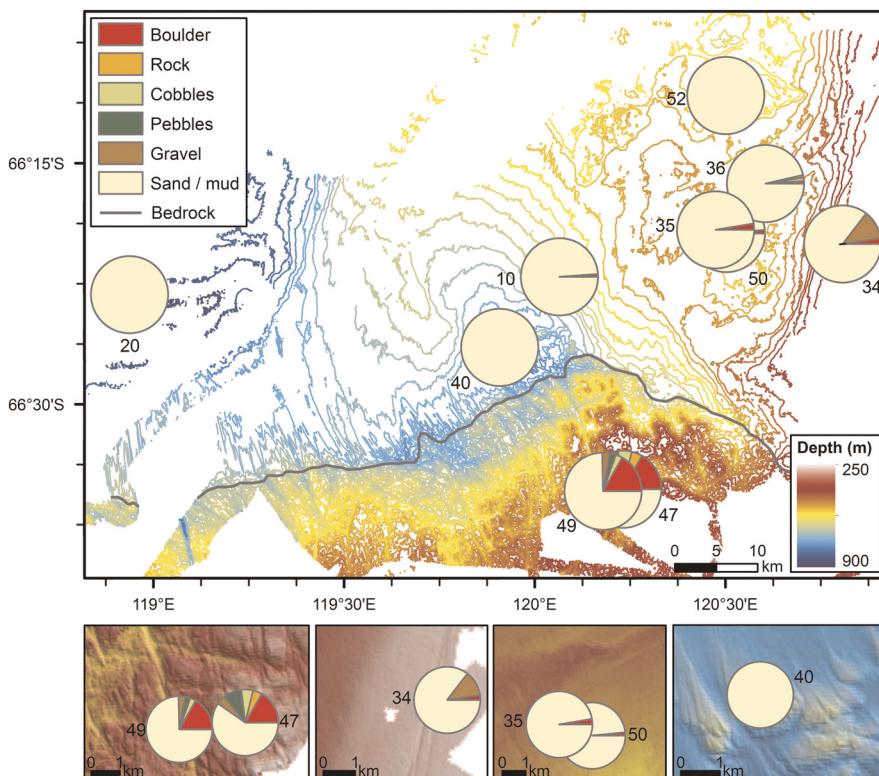
147 Modified Circumpolar Deep Water has been observed at
 148 depth along the continental shelf edge at ~ 119°E (Williams
 149 *et al.* 2011), and work is currently underway to determine
 150 areas where this water mass may flow onto the continental
 151 shelf. On the continental shelf, the Antarctic Coastal Current
 152 flows westward within 50 km of the coast, controlled by the
 153 strength of the east wind drift (Gwyther *et al.* 2014). A large
 154 coastal polynya, the Dalton Ice Tongue polynya, is a
 155 recurrent feature west of the Moscow University Ice Shelf
 156 (Massom *et al.* 2013). Recent analysis of passive
 157 microwave data indicates that the polynya area varied by
 158 up to a factor of two between 1992 and 2008, with
 159 associated variations in the production of cold saline shelf
 160 waters proposed (Khazendar *et al.* 2013). Satellite sea ice
 161 information indicates that sea ice retreats from the north-
 162 east to the south-west, with all areas within the polynya
 163 typically ice free by February (Massom *et al.* 2013). There
 164 is a short seasonal phytoplankton bloom associated with
 165 the sea ice breakup, with corrected satellite chlorophyll
 166 data (Johnson *et al.* 2013) indicating that regional blooms
 167 may last from November to March. However, > 70% of
 168 the measured chlorophyll flux is typically produced over
 169 ≤ 6 weeks between late December and mid-February.

Methods

170 Research was conducted aboard the RVIB *Nathaniel B*
 171 *Palmer* during NBP14-02 (29 January to 16 March 2014)
 172 across a > 3000 km² area. A ‘yoyo’ camera, with
 173 downward facing digital still and video cameras
 174 mounted within a tubular steel frame, was deployed on
 175 a co-axial cable to image the sea floor; still images are
 176 presented here. The Ocean Imaging Systems DSC 10000
 177 digital still camera (10.2 megapixel, 20 mm, Nikon D-80
 178 camera) was contained within titanium housing. Camera
 179 settings were: F-8, focus 1.9 m, ASA-400. An Ocean
 180 Imaging Systems 3831 Strobe (200 W-S) was positioned
 181 1 m from the camera at an angle of 26° from vertical.
 182

183 A Model 494 bottom contact switch triggered the
 184 camera and strobe at 2.5 m above the sea floor, imaging
 185 ~ 4.8 m² of sea floor. Parallel laser beams (10 cm
 186 separation) provided a reference scale for the images.
 187 During normal deployments, the live video feed was used
 188 to determine bottom contact, with the flash of the strobe
 189 light indicating the collection of an image. This mode
 190 allowed regular spacing between images of 10–20 m
 191 across the sea floor. Due to technical problems the final
 192 four deployments did not include a live video feed, relying
 193 instead on a contact alarm which sounded as soon as the
 194 bottom contact was activated on the sea floor. Occasional
 195 dragging of the bottom contact switch along the sea floor
 196 meant that the number of images collected and their
 197 spacing was not always known until the images were
 198 downloaded.

199 A total of 701 still images were analysed across
 200 ten transects (Table I). Transect lengths ranged from
 201 400–1000 m, and were contained within a single
 202 habitat type as identified from the multibeam
 203 bathymetry. Images that were too close to the sea floor,
 204 and therefore poorly focussed, were discarded.
 205 Overlapping images were also discarded. Counts were
 206 corrected where sediment clouds produced from the
 207 bottom contact switch obscured part of the image, or
 208 removed where > 30% of the image was affected.


Table II. Additional physical datasets included in this study. Values were derived from the mid-point of each transect.

Dataset	Source
Latitude	Vessel GPS
Longitude*	Vessel GPS
Depth	Multibeam echosounder (Leventer <i>et al.</i> 2014)
Rugosity	Derived from multibeam echosounder data
Rugosity, standard deviation*	Derived from multibeam echosounder data
Slope	Derived from multibeam echosounder data
Slope, standard deviation	Derived from multibeam echosounder data
Sea ice Dec 2003–10	AMSR-E sea ice climatology (Spreen <i>et al.</i> 2008)
Sea ice Jan 2003–10	AMSR-E sea ice climatology (Spreen <i>et al.</i> 2008)
Sea ice Feb 2003–10*	AMSR-E sea ice climatology (Spreen <i>et al.</i> 2008)
Sea ice DJF 2003–10*	AMSR-E sea ice climatology (Spreen <i>et al.</i> 2008)
Sea ice min 2003–10	AMSR-E sea ice climatology (Spreen <i>et al.</i> 2008)
Surface chlorophyll average	Corrected MODIS data 2002–12 (Johnson <i>et al.</i> 2013)
Surface chlorophyll interannual variability	Corrected MODIS data 2002–12 (Johnson <i>et al.</i> 2013)

*Variable removed due to correlation $> \pm 0.95$ with another listed variable.

209 Post-processing of images involved colour correction in
 210 Adobe Photoshop to remove the blue bias. Images
 211 were then scored according to a combination
 212 of physical and biological properties. A grid was
 213 overlain on each image to assist in calculation of percent
 214 cover and to keep track of counts. Percent cover was
 215 recorded for substrate types (sand/mud, gravel, pebbles,
 216 cobbles, rock, boulders), occurrence of phytodetritus,
 217 presence of bioturbation features and overall biological
 218 cover by determining the number of grid squares covered

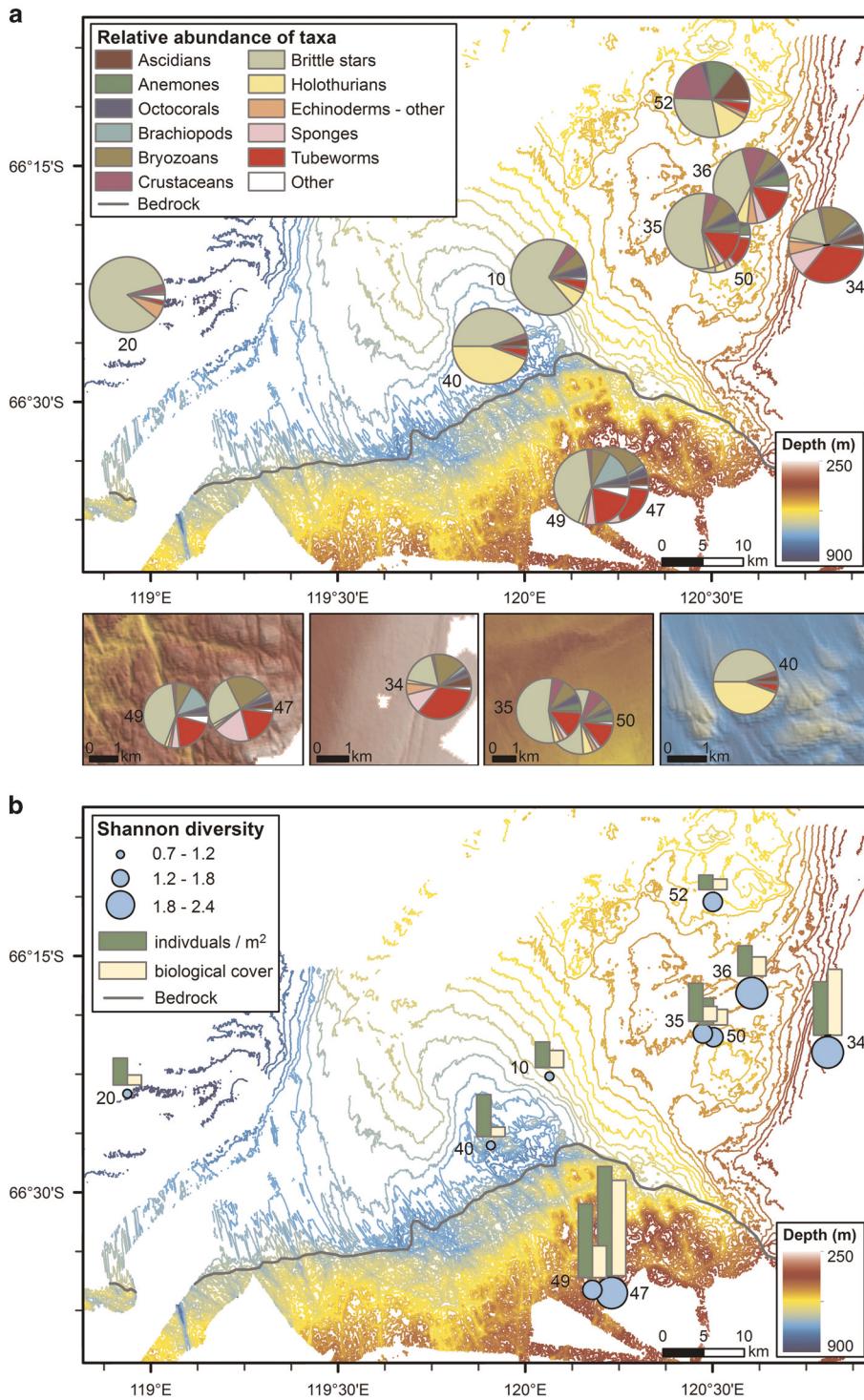
219 by each of these and then calculating the overall percent 220 occurrence. Due to the downward facing aspect of the 221 camera, variations in relief could not be determined. 222 Megafauna taxonomic groups were counted manually 223 for the whole image according to the Collaborative 224 and Automated Tools for Analysis of Marine Imagery 225 (CATAMI) classification scheme (Althaus *et al.* 226 2015). This scheme is hierarchical and incorporates 227 morphological characteristics for those taxa that 228 have fine-scale features not easily distinguishable 229

220 **Fig. 2.** Percent cover of substrate types 221 averaged within each transect. Note 222 that boulders on Transects 20 and 52 223 have occurrences of $< 0.2\%$, so are not 224 visible on the pie charts. Insets show 225 enhanced views of selected transects 226 over multibeam bathymetry data. 227 MPA = marine protected area.

Table III. List of all taxa observed and identified according to the CATAMI scheme (Althaus *et al.* 2015) and their total abundance.

Phyla/broad groups	Taxonomy/morphotypes	Total observations
Ascidian	Stalked colonial	840
	Stalked solitary	114
	Unstalked colonial	76
	Unstalked solitary	438
Anemone	True	1757
Black and octocorals		
Branching (3-D)	Fleshy arborescent	2
	Fleshy mushroom	21
	Non-fleshy arborescent	1
	Non-fleshy bottle-brush complex	36
	Non-fleshy bottle-brush simple	1339
	Non-fleshy bushy	4
	Fern frond complex	16
	Fern frond simple	53
	Fan – rigid	4
Fan (2-D)	Sea whip	779
	Sea pen	74
	Deep sea octocoral	4
	Solitary attached	3
	Solitary free-living	11
Hydrocoral	Branching	107
Hydroids	Colonial feathered	67
	Solitary stalked	11
	Solitary unstalked	68
Brachiopods	Brachiopods	2550
Bryozoa	Hard branching	3194
	Hard massive	1
	Hard encrusting	1452
	Hard fenestrate	29
	Soft dendriod	289
	Soft foliaceous	960
	Isopods	7
Crustacea	Amphipod	2881
	Prawns/shrimp	195
	Criniod unstalked	393
Echinoderm	Basket star	1
	Brittle/snake stars	28475
	Holothurian substrate	2986
	Holothurian invert	113
	Holothurian infaunal	1048
	Sea star	80
	Urchin irregular	850
	Urchin regular <i>Sterechinus</i>	174
	Urchin regular pencil	121
	Urchin regular other	47
Mollusc	Bivalves	40
	Cephalopod	6
	Gastropod	148
Sea spiders	Sea spider	285
	Encrusting	472
Sponges	Erect laminar	180
	Erect branching	115
	Erect simple	269
	Hollow cups	8
	Hollow tubes	388
	Massive simple	456
	Massive ball	1559
	Massive stalked	2
	Massive barrel	85
	Massive cryptic	1

Worms	Worms – other	5
	Ribbon worms	4
	Acorn	2
	Echiura	22
	Polychaete	303
Fishes	Tubeworm	8906
	Bony fish	75
	Rays/skates	3
Unknown	Unknown	11


in imagery. Colonies of bryozoans, sponges and other colonial organisms were counted as individuals.

In addition to the substrate properties derived from the image analysis, a range of environmental variables were included in statistical analyses (Table II). Rugosity and slope were calculated from the multibeam grid (Leventer *et al.* 2014) using the ArcGIS Benthic Terrain Modeler toolbox. Values for these parameters, as well as depth, were extracted for the mid-point of each transect as it was not possible to accurately calculate position for each image. The standard deviation of slope and rugosity was calculated within an 800 m radius to match the mean scale of the camera transects. Substrate types were divided into hard (< 80% mud/sand), mixed (80–99% mud/sand) and soft (100% mud/sand). These values were chosen to best represent the variability in substrate types given that most images had high mud/sand content, with <10% of the images characterized as hard and 35% as mixed.

Statistical analyses were completed in PRIMER v6 (Clarke & Gorley 2006). Biological data were square root transformed prior to analysis to give more weighting

Table IV. Most abundant megafaunal taxa across the study area, with average and maximum numbers of individuals m^{-2} and percent occurrence across all images. Numbers in brackets indicate the transect on which the maximum number for that taxa occurred.

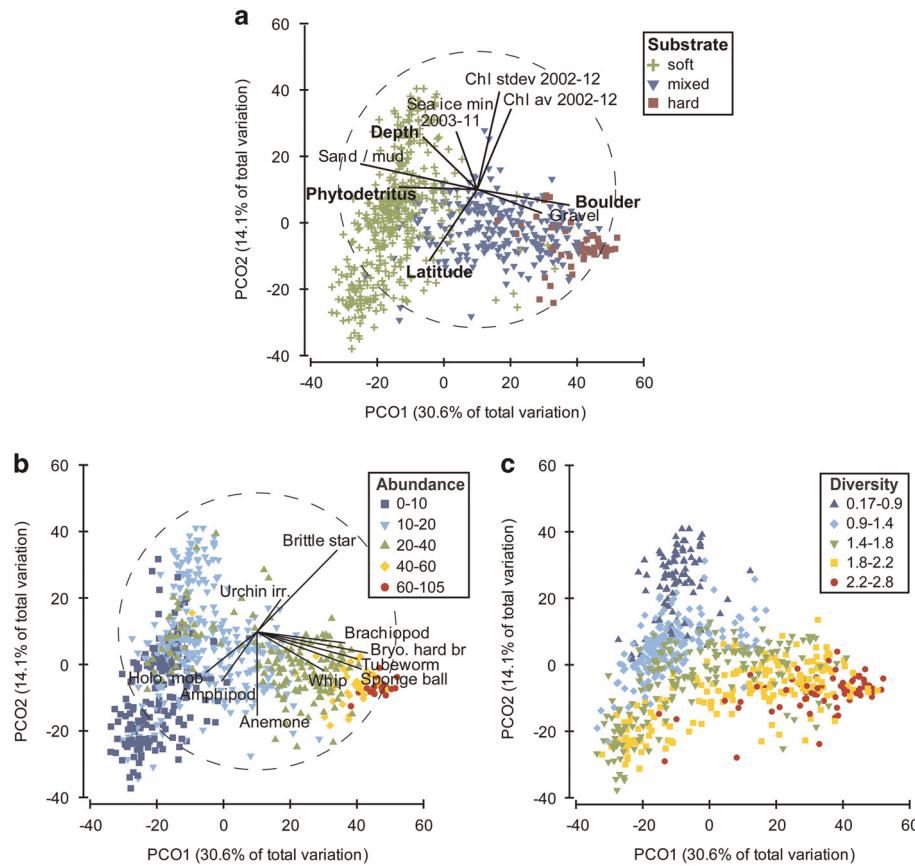
Taxa	Avg. ind. m^{-2}	Max. ind. m^{-2}	% occurrence
Brittle star	8.5	31.0 (49)	100
Tubeworm	2.6	37.3 (34)	90.4
Bryozoan – hard, branching	0.95	14.0 (10)	74.5
Holothurian – substrate	0.89	16.0 (40)	72.6
Amphipod	0.86	5.4 (52)	60.2
Brachiopod	0.76	35.6 (49)	56.9
Anemone	0.52	58.3 (36)	51.6
Sponge – massive ball	0.46	11.0 (47)	44.2
Bryozoan – hard, encrusting	0.43	7.7 (50)	41.9
Gorgonian – non-fleshy, bottle-brush, simple	0.40	6.9 (36)	39.2
Holothurian – infaunal	0.31	2.9 (35)	38.7
Bryozoan – soft, foliaceous	0.29	5.6 (47)	37.5
Urchin – irregular	0.25	2.5 (20)	32.7
Ascidian – stalked, colonial	0.25	4.2 (47)	28.1
Sea whip	0.23	8.3 (34)	25.2
All taxa	19.3	59.8 (47)	

Fig. 3a. Relative abundance of taxa averaged within each transect. Insets show enhanced views over multibeam bathymetry for selected transects. **b.** Average values for Shannon diversity, individuals m^{-2} , and percent biological cover for each transect. The individuals m^{-2} range from 8 (Transect 52) to 60 (Transect 47), while percent biological cover ranges from 5 (Transect 40) to 52 (Transect 47).

256 to rare taxa and the similarity between observations
 257 was calculated using the Bray-Curtis similarity
 258 coefficient. Taxa diversity was calculated using formulas
 259 for Margalef's richness, Pielou's evenness, Shannon
 260 diversity (log base e) and Simpson diversity ($1-\lambda'$).
 261 A number of physical variables were log-transformed
 prior to analysis to reduce right skewed distributions, and

one variable from each pair of highly correlated variables 262 ($R > 0.95$) was removed (see Table II). All physical 263 variables were normalized to provide a common scale 264 for analysis and similarity was calculated using Euclidean 265 distance. The relationship between the distribution of 266 taxa and environmental variables was tested using 267 the BEST and principle co-ordinates analysis (PCO) 268

Fig. 4. Representative taxa on sea floor transects for soft (a, f), mixed (b.) and hard substrates (c, d, e.). A = anemone, A-sc/ A-uns = ascidian, stalked colonial/unstalked solitary, B = brachiopod, Bs = brittle star, B-hb/B-en/B-sd/B-sf = bryozoan, hard branching/encrusting/soft dendroid/soft foliaceous, C-un = crinoid, unstalked, F = fish, G-bbs/G-f = gorgonian bottle-brush, simple/fan, H-if/H-iv/ H-m = holothurian infaunal/on invertebrate/mobile, Hy-b = hydrocoral, branching, Hy-cf = hydroid, colonial feathered, PD = phytodetritus, Pt = polychaete tube, S-b/S-bl/ S-eb/S-en/S-es/S-t = sponge, barrel/ ball/erect branching/encrusting/ erect simple/tube, Sp = sea spider. Scale bars indicate 10 cm.


functions in PRIMER, with Spearman rank correlations indicating the strength of the relationships. A permutation test (999 permutations) was used to test the significance of the biophysical relationships. A one-way ANOSIM was used to test for differences in taxa abundance and composition between substrate types, and between transects on the same substrate type. These analyses allowed us to test the null hypothesis that the presence of boulders and dropstones has no significant

effect on the diversity, abundance and composition of the benthic biota.

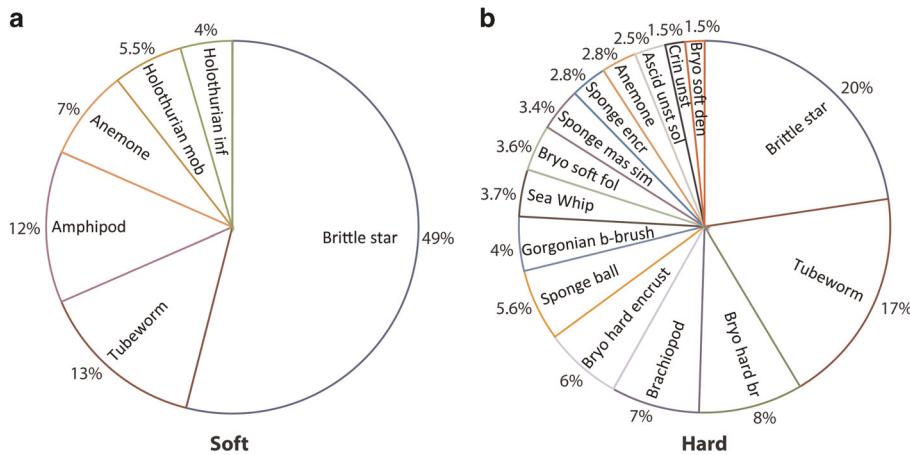
Results

Characteristics of the physical environment

Sea bed imagery was used to determine substrate characteristics along each transect. All transects were

Fig. 5. Principle co-ordinates analysis of assemblage counts. **a.** Symbols represent substrate type with Spearman rank correlation of physical variables overlain as vectors. Variables in bold text have the highest combined correlation (0.592, $P < 0.001$) against the assemblage counts using the BEST routine. **b.** Symbols indicate the number of individuals (m^{-2}) at each datapoint with Spearman rank correlation of key taxa overlain as vectors. **c.** Symbols represent the Shannon diversity of taxa at each datapoint.

dominated by muddy/sandy substrates, with nine of the ten transects also containing varying proportions of hard substrates in the gravel to boulder size range (Fig. 2). Transects 10, 20, 35, 36, 50 and 52 all contained a small proportion of boulders, which were deposited on the sea floor as dropstones; dropstones were scattered throughout the transects. Smaller boulders were often partially buried in sediment and many of the larger boulders in deeper water appeared to have a manganese oxide coating. Transect 34 contained a relatively high proportion of gravel in addition to some dropstones. Manganese coatings were absent from the boulders on this shallower transect. Transects 47 and 49 were located on crystalline bedrock and contained the highest proportions of hard substrates. Both of these transects had an average cover by boulders of 17 percent, with cobbles, pebbles and gravel adding an additional 9% (Transect 49) to 19% (Transect 47). Transect 47 also contained an average of 5% bedrock cover.


Depth, slope and rugosity values were derived from the multibeam bathymetry grid and analysed to understand variations between and within each transect. Depth for the study ranged from 274 m (Transect 34) to 896 m (Transect 20). Depth ranges within each transect were generally small (< 20 m), with a slightly larger range along

Transect 36 (30 m) associated with a moraine feature and 309 Transect 49 (53 m) due to a steep slope associated with 310 the edge of a bedrock channel. Slope values were 311 generally $< 5^\circ$, but reached 45° along the channel flank 312 on Transect 49. Rugosity was also highest along the 313 channel edge, with some higher values also associated 314 with the bedrock plateau on Transect 47. Low rugosity 315 occurred on each of the other transects. While iceberg 316 scours were visible on the multibeam imagery at depths 317 of ≤ 500 m, they were not observed along any of 318 the transects. 319

Characteristics of the benthic assemblage

A total of 68 different megafaunal taxa were observed 321 across the study area (Table III). Of these, brittle stars and 322 polychaete tubeworms were the most abundant 323 (Table IV); brittle stars were observed in every image. 324 Seven taxa were observed in $> 50\%$ of the images, with the 325 remaining taxa occurring more sporadically and several 326 only observed once or twice. 327

The relative abundance of taxa averaged within each 328 transect indicates that while brittle stars dominated on 329 most transects, there was significant variability in the 330 assemblage composition (Fig. 3a). Brittle stars reached 331

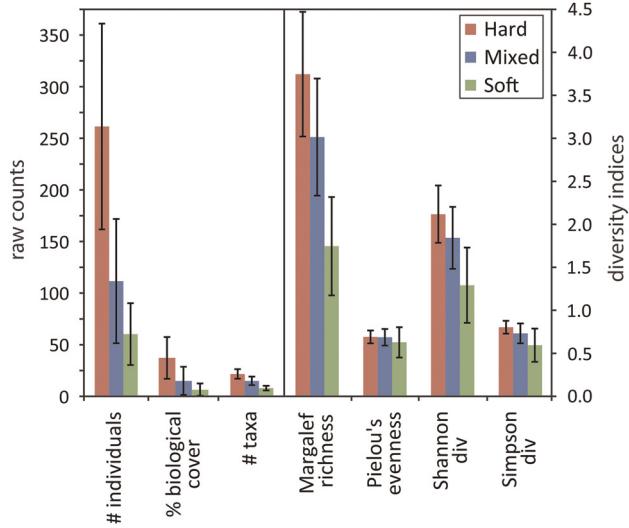
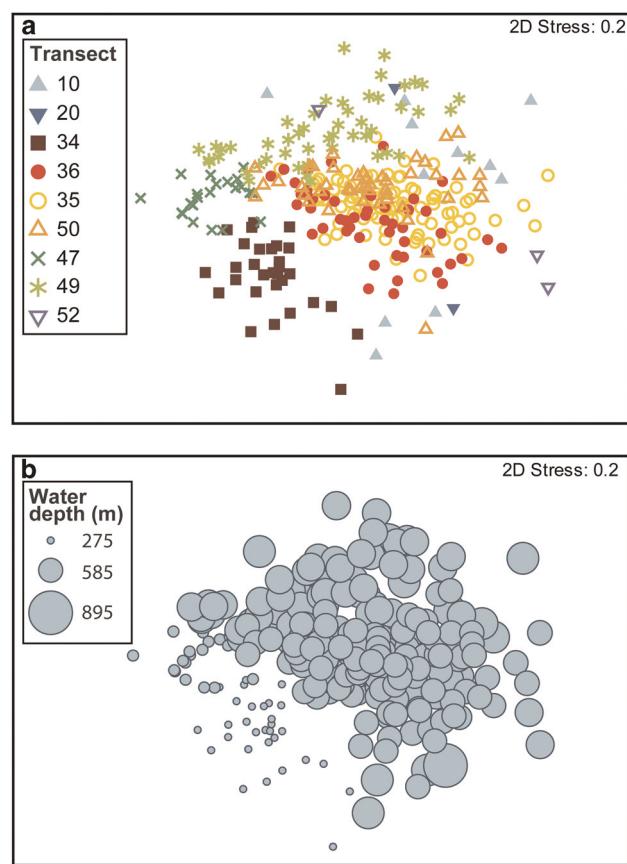


Fig. 6. Composition of most abundant taxa up to 90% total abundance for **a.** soft and **b.** hard substrates.


highest proportions on Transects 10 and 20, while lowest abundances occurred within Transects 34 and 47. These two transects had relatively high abundances of polychaete tubeworms, sponges (mostly ball sponges, with high abundance of massive sponges along Transect 34 and hollow sponge tubes along Transect 47) and bryozoans (mostly hard branching). Lower abundances of brittle stars also occurred within Transect 52, with relatively high abundances of crustaceans (mostly amphipods), holothurians (mostly mobile forms living on the substrate), anemones and stalked colonial ascidians. Adjacent Transects 35, 50 and 36 (all within 8 km) had a similar overall composition. Transects 47 and 49 were also located within 2 km of each other, yet their overall abundances revealed significant differences,

including the relative abundances of sponges, brittle stars, brachiopods and bryozoans. Representative images are included in Fig. 4.

Abundance and diversity of taxa revealed significant variability between transects. The highest average

Fig. 7. Average abundance, cover and diversity indices according to substrate type, with standard deviation indicated by the bars. Note the change in scale from the left to right.

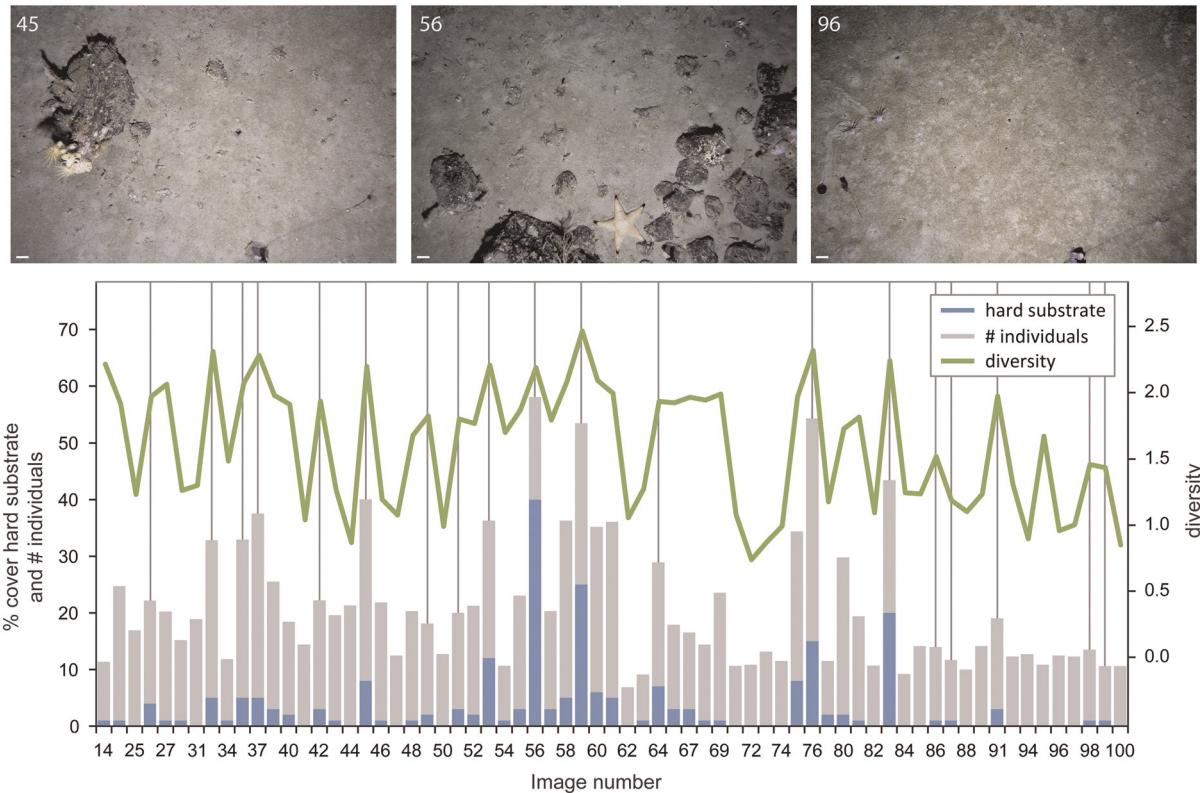
Fig. 8. Multidimensional scale plot of taxa abundance and composition based on Bray-Curtis similarity across hard and mixed substrates. **a.** Symbols represent transects. **b.** Symbol size indicates water depth.

Table V. Percent abundance and average count of individuals m^{-2} for taxa found only on hard substrates. Transects are labelled according to their locality. Transect 40 is not shown as it contained no hard substrates.

Transect	Average depth (m)	Ascidian – unstalked colonial	Gorgonian – fern frond, complex	Gorgonian – fern frond, simple	Hydrocoral – branching	Hydroid – colonial, feathered	Holothurian – on invertebrate	Sponge – smooth barrel	Sponge – rough barrel	Av. ind. m^{-2}
Bedrock	34	276	26.7	0.0	0.0	6.7	10.0	40.0	3.3	33.3
	47	316	27.3	36.4	31.8	50.0	27.3	90.9	9.1	86.4
	49	517	20.0	2.0	14.0	18.0	12.0	14.0	0.0	12.0
Habitat A	35	461	0.0	2.3	3.5	0.0	1.2	3.5	0.0	0.0
	36	444	10.4	0.0	6.3	0.0	18.8	14.6	0.0	0.0
	50	457	11.1	0.0	11.1	0.0	8.9	2.2	0.0	2.2
	10	595	9.1	0.0	0.0	0.0	9.1	18.2	0.0	9.1
	20	895	0.0	0.0	0.0	0.0	0.0	0.0	0.0	82
	52	521	0.0	0.0	0.0	0.0	0.0	0.0	0.0	54

358 number of individuals m^{-2} (60) and percent biological
359 cover (52%) occurred on Transect 47, and high values also
360 occurred on Transects 34 and 49 (Fig. 3b). Relatively low
361 values were observed on other transects (8–23 ind. m^{-2}
362 and 5–10% cover). Shannon diversity of the taxa was
363 highest on Transects 47 and 34 (2.4 and 2.0), with high
364 values also recorded for Transect 36 (1.9). Lowest taxa

diversity occurred on Transects 10, 40 and 20 (1.2, 1.1 and 0.7). 365


366

Relationship to environmental variables

367

The association between the physical variables and the composition and abundance of the taxa was explored 368

369

Fig. 9. The percent cover of hard substrate (columns) is associated with changes in the number of individuals and Shannon diversity along Transect 50. Representative examples of sea floor images are shown, numbered according to image number, with a 10 cm scale bar. Images were selected to highlight a range of different taxa colonizing the hard substrates and to show examples of mixed hard and soft substrates in a single image.

370 using the PRIMER 6 software. The BEST routine
 371 indicated that water depth, latitude and percent cover by
 372 boulders and phytodetritus were most strongly correlated
 373 ($\rho = 0.592$, $P < 0.001$) with the abundance of taxa across
 374 the datapoints. A PCO plot (Fig. 5a) was used to indicate
 375 how physical variables were distributed in relation to the
 376 assemblage data. Axis 1 reflected the distribution of
 377 phytodetritus and soft substrates in the negative direction
 378 and boulders and gravel in the positive direction,
 379 explaining a total variation of just over 30% (Fig. 5a).
 380 Axis 2 explained 14% of the variation, with latitude
 381 distributed in the negative direction and depth and
 382 chlorophyll in the positive direction. Deeper depths,
 383 greater phytodetritus and muddy/sandy substrates were
 384 associated with lower abundance (Fig. 5b) and lower
 385 Shannon taxa diversity (Fig. 5c), while harder substrates
 386 (e.g. boulders and gravelly sediments), shallower depths
 387 and decreasing phytodetritus were associated with
 388 high abundance (Fig. 5b) and higher Shannon taxa
 389 diversity (Fig. 5c). The harder substrates with a more
 390 diverse assemblage were comprised of taxa including
 391 brachiopods, hard bryozoans, polychaete tubeworms,
 392 sponges (particularly ball, massive and encrusting
 393 sponges) and sea whips (Fig. 5b). Higher abundances of
 394 mobile holothurians and amphipods were associated with
 395 muddy/sandy substrates with greater phytodetritus, while
 396 taxa such as brittle stars, irregular urchins and anemones
 397 were associated with all substrates.

398 *Habitat heterogeneity*

399 The occurrence and impact of habitat heterogeneity was
 400 explored for hard versus soft substrates along each
 401 transect to test the null hypothesis that boulders and
 402 dropstones have no significant effect on the diversity,
 403 abundance and composition of the benthic biota.
 404 Dropstones occurred on seven Transects (10, 20, 34, 35,
 405 36, 50 and 52), while crystalline bedrock along Transects
 406 47 and 49 created abundant hard substrates.

407 Substrate types, based on percent cover, were assigned
 408 to the categories soft, mixed and hard categories.
 409 ANOSIM analysis indicated that the composition and
 410 abundance of taxa was significantly different between
 411 substrate types (ANOSIM global $R = 0.477$, $P < 0.001$;
 412 soft vs hard $R = 0.868$, $P < 0.001$), as were the
 413 measures of taxa diversity (ANOSIM global $R = 0.407$,
 414 $P < 0.001$; soft vs hard $R = 0.767$, $P < 0.001$). A PCO plot
 415 indicated a distinct clustering of the taxa according to
 416 substrate characteristics, with only slight overlap between
 417 categories (Fig. 5a). The abundance and diversity of
 418 taxa (Fig. 5b & c) also showed a gradational change in
 419 values consistent with changing substrate type (Fig. 5a).

420 Pie charts of key taxa within hard and soft substrate
 421 types indicated that brittle stars and polychaete tube
 422 worms were the most abundant taxa across all substrates.

423 Hard substrates were dominated by sessile suspension
 424 feeders (58%), including hard branching bryozoans,
 425 brachiopods, encrusting bryozoans and ball sponges
 426 (Fig. 6a & b). Soft substrates had high abundances of
 427 mobile taxa (84% overall), including almost 50% brittle
 428 stars, amphipods and mobile holothurians, and some
 429 sessile suspension feeders such as anemones and infaunal
 430 holothurians. Hard substrates were inhabited by an
 431 average of five times as many individuals as soft
 432 substrates, with over twice the taxa richness and
 433 significantly higher values for the other diversity
 434 measures (Fig. 7). The percent biological cover was also
 435 significantly different between substrate types, with six
 436 times the biological cover on hard compared to soft
 437 substrates. Values for areas of mixed substrate fell
 438 halfway between those of hard and soft substrates.

439 ANOSIM analysis of differences between transects for
 440 taxa abundance on hard and mixed substrates indicated a
 441 significant difference between transects (Global
 442 $R = 0.488$, $P < 0.001$); however, there was a large range
 443 in R values between individual transects. Taxa on
 444 Transects 35, 50 and 36 showed the greatest overlap in
 445 taxa abundance and composition (Fig. 8a; ANOSIM
 446 $R = 0.121$ –0.147). These transects were all located within
 447 8 km of each other and can be considered as a single
 448 habitat: Habitat A. Less similarity was observed between
 449 the remaining transects, with the multidimensional scale
 450 (MDS) plot illustrating the distinct separation between
 451 Transects 34, 47 and 49 (ANOSIM $R = 0.421$ –0.592),
 452 which were located on a relict moraine and crystalline
 453 bedrock respectively. Transects 10, 20 and 52 had a broad
 454 distribution on the MDS plot, with some overlap with
 455 Transect 49. Depth was associated with some of the
 456 assemblage variability in areas of hard and mixed
 457 substrates, with shallow transects (275–315 m; Transects
 458 34 and 47) separated from deeper transects (Fig. 8b).
 459 There is no clear relationship between depth and the
 460 average counts of individuals m^{-2} (Table V).

461 Eight taxa were found primarily on hard substrates
 462 with a restricted distribution between transects (Table V).
 463 Branching hydrocorals and smooth barrel sponges were
 464 only found on hard substrates associated with crystalline
 465 bedrock and a relict moraine, while the remaining taxa
 466 were also found within Habitat A, and in relatively low
 467 abundances on Transect 10. Each of these taxa were
 468 absent from those transects most distal to the other sites
 469 (Transects 20 and 52, which consisted of <1% hard
 470 substrates).

471 Data from Transect 50 was used to illustrate how
 472 substrate and diversity indices vary (Fig. 9). Images in
 473 which there was high cover by hard substrates (> 15%)
 474 indicated dramatic increases in the number of individuals
 475 present and the Shannon diversity compared to
 476 surrounding images with much lower occurrences of
 477 hard substrates. This pattern of higher diversity and

478 number of individuals was observed even when the cover
 479 by hard substrates increased by just a few percent.
 480 Individual boulders on images typically had a dense
 481 invertebrate cover, amidst softer substrates with a
 482 relatively sparse biological cover, thus creating habitat
 483 heterogeneity on a submetre scale.

484 **Discussion**

485 *Understanding the Sabrina Coast sea floor environment
 486 and assemblages*

487 Substrate type and water depth have frequently been
 488 associated with the distribution of benthic biota on
 489 continental shelves, including the Antarctic shelf (e.g.
 490 Jones *et al.* 2007, Post *et al.* 2011, Smith *et al.* 2015), and
 491 these factors (specifically boulders and water depth) were
 492 also among the most significant factors relating to the
 493 distribution of benthic taxa in this study. Coarse
 494 substrates provide a hard attachment and an elevated
 495 position off the sea floor, enhancing the food supply for
 496 sessile suspension feeders (Starmans *et al.* 1999), while
 497 deposit feeders are often associated with soft substrates
 498 where they are able to feed on fine particles (Jones *et al.*
 499 2007). These patterns create distinct differences in
 500 assemblages occurring on hard and soft substrates. The
 501 strong relationship with substrate is in contrast to studies
 502 in areas strongly influenced by ice disturbance, in which
 503 substrate has been found to be of lesser importance (Gutt
 504 2007). Ice disturbance due to scouring was not observed
 505 within any of the Sabrina Coast shelf transects, allowing
 506 the effects of substrate to be clearly discerned. The
 507 association with depth may reflect other factors, such as
 508 organic matter flux, temperature, salinity and oxygen
 509 content; and in this study, depth also reflects a gradient
 510 from nearshore to open ocean environments.

511 In addition to substrate type and depth, phytodetritus
 512 cover and latitude were shown to be important factors
 513 associated with the distribution of the benthic taxa. The
 514 accumulation of phytodetritus results in the local
 515 enhancement of deposit feeding communities (Fig. 5b). The
 516 highest accumulation of phytodetritus on the sea
 517 floor occurs in areas of bottom water recirculation and

518 sediment focussing of muddy/sandy sediments (Fig. 5a). 519 Phytodetritus cover in the current study is not 520 strongly correlated with satellite surface chlorophyll 521 measurements. This suggests that, at a local scale, there is 522 weak spatial benthic-pelagic coupling in this system, with 523 accumulation of phytodetritus most probably dependent on 524 redistribution via bottom currents. The effect of 525 zooplankton grazing on phytodetritus flux is considered to 526 be minimal in the bloom/bust setting of polynyas 527 (Grebmeier & Barry 2007), and satellite ocean colour 528 observations from the Dalton Iceberg Tongue polynya 529 indicate a typical bloom period of only six weeks, which 530 further reduces the opportunity for significant grazing. 530

531 Sub-bottom profiles over the transects indicate that the 531 surface sedimentary drape is very thin (typically < 4 m; 532 Leventer *et al.* 2014) even in areas of sediment focussing. 533 The presence of manganese oxides on dropstones across 534 the deeper parts of this continental shelf further suggests 535 low sedimentation rates (see Wright *et al.* 2005 and 536 references therein). Low sedimentation rates may reflect 537 low surface production or low accumulation of 538 phytoplankton on the sea floor, but it may also be that 539 the pelagic deposition is rapidly scavenged by the mobile 540 deposit feeding brittle stars, holothurians and amphipods, 541 leaving little to accumulate on the sea floor. Surface 542 deposit feeders can respond rapidly to the arrival of 543 phytodetritus at the sea floor, with observations of 544 megafaunal activities on the north-east Atlantic sea floor 545 indicating the removal of deposits within six weeks of 546 arrival (Bett *et al.* 2001), while elasipod holothurians on 547 the western Antarctic Peninsula (WAP) increase their 548 feeding rates by a factor of more than two during periods 549 of high phytodetritus flux (Sumida *et al.* 2008). The 550 association between mobile taxa and phytodetritus in this 551 study, and the low sediment accumulation, is consistent 552 with the rapid response of the benthos to this food source. 553

554 Latitude was also shown to be a significant factor 554 associated with the distribution of the benthic taxa. In this 555 setting, latitude shows partial negative correlation to a 556 number of variables, including: sea surface chlorophyll, 557 sea floor rugosity and slope. A combination of these 558 factors may result in the association between the faunal 559 distributions and latitude. Alternatively, the latitudinal 560

Table VI. Comparison of abundance and key taxa based on photographic studies at comparative depths on Antarctica's continental shelf. Mean abundances of megafauna are shown in brackets.

Location	Depth (m)	Abundance of megafauna (m^{-2})	Most abundant taxa	Reference
Sabrina Coast	274–896	13–105 (19.3)	Brittle stars, polychaetes	This study
Western Ross Sea	270–1173	0.83–169 (19.6)	Bryozoa, brittle stars	Barry <i>et al.</i> 2003
Fimbul Ice Shelf region, Weddell Sea	245–510	0.9–7.8 (2.6)	Brittle stars, polychaetes	Jones <i>et al.</i> 2007
Weddell Sea shelf	99–1243	0.67–330 (46)	Brittle stars, bryozoa	Gutt & Starmans 199
Western Antarctic Peninsula fjords	436–725	9.5–43.2 (~ 26)	Polychaetes, amphipods, pycnogonids	Grange & Smith 2013
Western Antarctic Peninsula shelf	526–641	0.19–1.52 (0.5)	Holothurians, irregular urchins, anthozoa	Sumida <i>et al.</i> 2008
Amundsen and Bellingshausen seas	171–561	0.04–0.49 (0.38)	Echinoderms, anthozoa, bryozoa	Starmans <i>et al.</i> 1999

561 distribution of transects may represent another
562 environmental gradient not measured in this study.

563 *Comparison to taxa on other Antarctic shelf environments*

564 The abundance of megafauna taxa on the Sabrina Coast
565 sea floor is generally high relative to other locations on the
566 Antarctic continental shelf where still imagery has been
567 analysed (Table VI). Abundances are particularly high
568 compared to those observed on the WAP shelf (Sumida
569 *et al.* 2008), in the Amundsen and Bellingshausen seas
570 (Starmans *et al.* 1999), and the Fimbul Ice Shelf region,
571 Weddell Sea (Jones *et al.* 2007). Similar average
572 abundances are observed between this study and those
573 on the western Ross Sea shelf (Barry *et al.* 2003) and in the
574 WAP fjords (Grange & Smith 2013), while much higher
575 abundances have been observed on the Weddell Sea shelf
576 (Gutt & Starmans 1998).

577 The relatively high abundances of megafauna in this
578 study may reflect the generally higher productivity
579 associated with polynyas; the Dalton Iceberg Tongue
580 polynya is a recurrent feature of the Sabrina Coast
581 (Massom *et al.* 2013). Polynyas significantly enhance
582 benthic production in both the Arctic and Antarctic
583 environments due to the high export production from the
584 surface waters (Grebmeier & Barry 2007). While we
585 observed weak benthopelagic coupling at a local scale,
586 surface production is likely to significantly influence benthic
587 production at a regional scale, as also observed in studies
588 within the Ross Sea polynya, where benthic productivity
589 within the polynya was significantly higher than in ice-
590 covered areas (Grebmeier & Barry 2007). However,
591 Antarctic polynya primary and benthic production is
592 quite variable due to differences in water depth and
593 grazing pressure. These sources of variability complicate
594 the interpretation of regional abundance patterns.

595 A circumpolar distribution has been observed for many
596 Antarctic species across various taxonomic groups
597 (Griffiths *et al.* 2009), but at an assemblage level there
598 are significant regional differences that depend on a range
599 of physical factors (see review by Convey *et al.* 2014),
600 disturbance regimes (Barnes & Conlan 2007) and
601 potentially ongoing post-glacial recolonization (Gutt
602 2006). The Sabrina Coast megafaunal composition is
603 most similar to that observed in the Fimbul Ice Shelf
604 region (Table VI; Jones *et al.* 2007), with brittle stars and
605 polychaetes most abundant in each system. Brittle stars
606 are also one of the key taxa in the western Ross and
607 Weddell seas (Gutt & Starmans 1998, Barry *et al.* 2003).
608 In the Ross Sea, brittle star and worm-dominated
609 assemblages are associated with deep slopes (500–600 m)
610 and basins (700–900 m), while high densities of sponges
611 and crinoids are associated with dropstones in the
612 deeper basins (Barry *et al.* 2003), consistent with our
613 observations. There is less similarity between the

614 megafauna in this study and that observed in the WAP
615 and the Amundsen and Bellingshausen seas. Polychaetes
616 are a key taxon in the WAP fjords and on the Sabrina
617 Coast, but abundance of brittle stars is much lower in the
618 WAP (Grange & Smith 2013). The dominance of brittle
619 stars and polychaetes in the Sabrina Coast study region
620 reflects the dominance of soft substrates (> 90% of
621 images), with bryozoa and other sessile invertebrates
622 almost exclusively restricted to dropstones and the
623 nearshore crystalline bedrock. Brittle stars are also
624 relatively abundant in other East Antarctic settings,
625 including the Ross and Weddell seas, but they are much
626 less abundant in West Antarctic sites, including the
627 WAP and Amundsen Sea. The West Antarctic studies
628 indicate a much more variable assemblage than that seen
629 in the East Antarctic studies.

630 *Habitat heterogeneity as diversity hotspots on the 631 continental shelf*

632 The importance of fine-scale habitat heterogeneity in
633 enhancing diversity has been established in several shelf
634 settings (e.g. Hewitt *et al.* 2005, Thrush *et al.* 2010), with
635 dropstones noted as a habitat for sessile invertebrates in
636 both the Antarctic and Arctic (Starmans *et al.* 1999,
637 Schulz *et al.* 2010). The current study demonstrates that
638 habitat heterogeneity on a small scale can be important
639 for the overall biodiversity of a system. Dropstones were
640 associated with a significant increase in the composition,
641 abundance and diversity of taxa over on a submetre scale,
642 with particularly high abundances of sessile invertebrates
643 (e.g. bryozoans, sponges, gorgonians and ascidians), and
644 several other hard substrate taxa. Given that the majority
645 of the Antarctic shelf is < 200 m and dominated by muddy
646 sediments (Smith *et al.* 2006), the importance of
647 dropstones in providing hard substrates for sessile
648 invertebrates cannot be underestimated.

649 The present dataset allows us to consider the role of
650 dropstones as potential stepping stones for the dispersal
651 of sessile suspension feeders across the Sabrina Coast
652 shelf. Our ANOSIM analysis revealed significantly
653 greater variability between, rather than within, substrate
654 types. This finding suggests that, at the taxa level, there is
655 a high degree of connectivity between hard substrate
656 areas. There were only eight taxa associated with
657 hard substrates that were found to have a restricted
658 distribution. Two of these taxa were found only on
659 nearshore transects, while the other six were associated
660 with the crystalline bedrock, a relict moraine and Habitat
661 A environments, but were absent or had generally low
662 abundance on the most distal transects. These results
663 suggest that these eight taxa may have more limited
664 dispersal capability, or that they are restricted in their
665 distribution by the absence of optimal habitats or by
666 competition. It is not possible to fully assess the impact of

these different factors, but some general observations can be made. The branching hydrocorals were limited to just the three transects associated with the crystalline bedrock and relict moraine and are known to have very localized dispersal capability (Cairns 2011). Their localized dispersal may explain their absence in areas further offshore where dropstones have a more scattered distribution. The smooth barrel sponges (*Anoxycalyx joubini* (Topsent); Fig. 4d; Downey, personal communication 2015) were also only observed along the two shallowest transects. On the Antarctic margin, this sponge is only known from water depths of 40–400 m, so its absence across other transects, which are all > 440 m, may be due to depth limitation for this species. The remaining hard substrate taxa (Table V) do not show any clear limitation with water depth to 600 m. The broad distribution of the majority of taxa across hard substrates (within an area of 800 km²) indicates that there is a sufficient density of dropstones for most sessile invertebrates to disperse across the region. The occurrence of dropstones and other hard substrates across different habitats (shallow areas through to deep basins) therefore adds considerably to the overall diversity of taxa and their distribution across the Sabrina continental shelf.

The association of sessile invertebrates and dropstones has a cumulative effect on the diversity of regional hard substrate assemblages. The high diversity and abundance of taxa found on hard substrates is enhanced by the 3-D surface created by the organisms themselves, particularly sponges, gorgonians and bryozoans, which form complex habitats for other invertebrates. The images in Fig. 4b & d show crinoids perched on the top of the sponges and a fish within a barrel sponge, while crinoids, brittle stars and a holothurian are also visible on the edges of the bottle-brush gorgonians (Fig. 4c & d). A wide variety of invertebrates are also known to inhabit the canals of sponges, which provide protection from predators and strong currents, and also a detrital food supply (Buhl-Mortensen *et al.* 2010). The 3-D structure of these organisms thereby acts to further enhance the local diversity in areas of dropstones.

710 Conclusions

711 Understanding the relationships between physical
 712 parameters and the distribution and abundance of
 713 benthic taxa is important for improving our
 714 understanding of the factors that drive biodiversity and
 715 species distribution on the Antarctic shelf. Benthic
 716 assemblages vary considerably between regions on the
 717 Antarctic margin, as do the factors that drive their
 718 distribution. Because the Sabrina Coast shelf is relatively

719 undisturbed by the impacts of icebergs, we were able to
 720 explore the impacts of other physical factors on the
 721 benthos. The distribution of taxa on this shelf is
 722 correlated with substrate properties, water depth,
 723 phytodetritus accumulation and latitude. Substrate
 724 properties vary over fine geographical scales due to the
 725 scattered distribution of dropstones, which create
 726 hotspots in both the abundance and diversity of sessile
 727 suspension feeding taxa. The habitat heterogeneity
 728 created by dropstones significantly enhances the
 729 diversity and biomass of the benthic community across
 730 this shelf, with several taxa found only on hard substrates.
 731 The relatively high regional abundance of benthic taxa,
 732 represented by a diverse range of taxa, strengthens the
 733 case for protecting this area in the network of MPAs
 734 proposed for East Antarctica. This dataset provides a
 735 snapshot of the current status of this ecosystem, which
 736 can be used as a baseline for monitoring any ecosystem
 737 change that may occur due to future natural or
 738 anthropogenic change.

739 Acknowledgements

740 Our thanks to the captain, crew and USAP *Nathaniel B.*
 741 *Palmer* NPB 14-02 Shipboard Science Party. A special
 742 thanks to the ASC staff, including Barry Bjork and
 743 Sheldon Blackman, for their technical assistance in
 744 setting up and repairing the 'yo-yo' camera. We thank
 745 Rachel Downey, Rachel Przeslawski and Andrew Carroll
 746 for assistance with biological identifications, and Andrew
 747 Carroll and Floyd Howard for their comments on an
 748 earlier version of the manuscript. Jackie Grebmeier
 749 and an anonymous reviewer are thanked for their
 750 constructive reviews. This project was supported by
 751 NSF Office of Polar Programs grants ANT-1143834,
 752 1143836, 1143837, 1143843 and 1313826. ALP publishes
 753 with the permission of the Chief Executive Officer,
 754 Geoscience Australia.

755 Author contributions

756 All authors have contributed to this manuscript. ALP
 757 characterized the sea floor images, completed statistical
 758 analyses and wrote the paper. CL processed the
 759 multibeam bathymetry data and assisted with data
 760 interpretation. EWD assisted with survey design,
 761 collection of imagery and data interpretation. AL was
 762 the field survey leader and contributed to collection of
 763 imagery and data interpretation. AS contributed to the
 764 preparation of the paper and data interpretation. ADF
 765 contributed sea ice data, analysis and interpretation. The
 766 NBP 14-02 Science Team are acknowledged for their
 767 contribution to the collection of the sea floor images and
 768 physical datasets.

769 **References**

770 ALTHAUS, F., HILL, N., FERRARI, R., EDWARDS, L., PRZESLAWSKI, R.,
 771 SCHÖNBERG, C.H.L., STUART-SMITH, R., BARRETT, N., EDGAR, G.,
 772 COLQUHOUN, J., TRAN, M., JORDAN, A., REES, T. & GOWLETT-HOLMES, K.
 773 2015. A standardised vocabulary for identifying benthic biota
 774 and substrata from underwater imagery: the CATAMI
 775 classification scheme. *PLoS ONE*, **10**, 10.1371/journal.pone.0141039.

776 BARNES, D.K.A. & CONLAN, K.E. 2007. Disturbance, colonization and
 777 development of Antarctic benthic communities. *Philosophical
 778 Transactions of the Royal Society*, **B362**, 11–38.

779 BARRY, J.P., GREBMEIER, J.M., SMITH, J. & DUNBAR, R.B. 2003.
 780 Oceanographic versus sea floor-habitat control of benthic
 781 megafaunal communities in the S.W. Ross Sea, Antarctica.
 782 *Antarctic Research Series*, **78**, 327–354.

783 BETT, B.J., MALZONE, M.G., NARAYANASWAMY, B.E. & WIGHAM, B.D.
 784 2001. Temporal variability in phydetritus and megabenthic activity
 785 at the sea bed in the deep northeast Atlantic. *Progress in
 786 Oceanography*, **50**, 10.1016/S0079-6611(01)00066-0.

787 BUHL-MORTENSEN, L., VANREUSEL, A., GOODAY, A.J., LEVIN, L.A.,
 788 PRIEDE, I.G., BUHL-MORTENSEN, P., GHEERARDYN, H., KING, N.J. &
 789 RAES, M. 2010. Biological structures as a source of habitat
 790 heterogeneity and biodiversity on the deep ocean margins. *Marine
 791 Ecology*, **31**, 10.1111/j.1439-0485.2010.00359.x.

792 CAIRNS, S.D. 2011. Global diversity of the Styelasteridae (Cnidaria:
 793 Hydrozoa: Athecatae). *PLoS ONE*, **6**, 10.1371/journal.pone.0021670.

794 CLARKE, K.R. & GORLEY, R.N. 2006. *PRIMER v6: user manual/tutorial*.
 795 Plymouth: PRIMER-E.

796 CONSTABLE, A.J., RAYMOND, B., DOUST, S., WELSFORD, D. &
 797 MARTIN-SMITH, K. 2010. *Elaborating a representative system of
 798 marine protected areas in eastern Antarctica, south of 60°S*.
 799 Document WG-EMM-10/26. Cape Town: Commission for the
 800 Conservation of Antarctic Marine Living Resources.

801 CONVEY, P., CHOWN, S.L., CLARKE, A., BARNES, D.K.A., BOKHORST, S.,
 802 CUMMINGS, V., DUCKLOW, H.W., FRATI, F., GREEN, T.G.A., GORDON,
 803 S., GRIFFITHS, H.J., HOWARD-WILLIAMS, C., HUISKES, A.H.L.,
 804 LABOURN-PARRY, J., LYONS, W.B., McMENNIN, A., MORLEY, S.A.,
 805 PECK, L.S., QUESADA, A., ROBINSON, S.A., SCHIAPARELLI, S. &
 806 WALL, D.H. 2014. The spatial structure of Antarctic biodiversity.
 807 *Ecological Monographs*, **84**, 10.1890/12-2216.1.

808 CUMMINGS, V., THRUSH, S., SCHWARZ, A.M., FUNNEL, G. & BUDD, R.
 809 2006. *Ecology of coastal benthic communities of the northwestern
 810 Ross Sea*. New Zealand Aquatic Environment and Biodiversity
 811 Report No. 6. Wellington: New Zealand Ministry of Fisheries,
 812 67 pp.

813 FRASER, A.D., MASSOM, R.A., MICHAEL, K.J., GALTON-FENZI, B.K. &
 814 LIESER, J.L. 2011. East Antarctic landfast sea ice
 815 distribution and variability, 2000–08. *Journal of Climate*, **25**,
 816 1137–1156.

817 GRANGE, L.J. & SMITH, C.R. 2013. Megafaunal communities in rapidly
 818 warming fjords along the west Antarctic Peninsula: hotspots of
 819 abundance and beta diversity. *PLoS ONE*, **8**, 10.1371/journal.
 820 pone.0077917.

821 GREBMEIER, J.M. & BARRY, J.P. 2007. Benthic processes in polynyas.
 822 In SMITH, W.O. Jr & BARBER, D.G., eds. *Polynyas: windows to the
 823 world*. San Diego: Elsevier, 363–390.

824 GRIFFITHS, H.J., BARNES, D.K.A. & LINSE, K. 2009. Towards a
 825 generalized biogeography of the Southern Ocean benthos. *Journal of
 826 Biogeography*, **36**, 162–177.

827 GRIFFITHS, H.J., VAN DE PUTTE, A. & DANIS, B. 2014. Data distribution:
 828 patterns and implications. In DE BROYER, C., KOUBBI, P.,
 829 GRIFFITHS, H., RAYMOND, B., D'UDEKEM D'ACOX, C., VAN DE PUTTE, A.,
 830 DANIS, B., DAVID, B., GRANT, S., GUTT, J., HELD, C., HOSIE, G.,
 831 HUETTMANN, F., POST, A. & ROPERT-COUDERT, Y., eds. *Biogeographic
 832 atlas of the Southern Ocean*. Cambridge: Scientific Committee on
 833 Antarctic Research, 16–26.

834 GUTT, J. 2006. Coexistence of macro-zoobenthic species on the
 835 Antarctic shelf: an attempt to link ecological theory and
 836 results. *Deep-Sea Research II - Topical Studies in Oceanography*, **53**,
 837 1009–1028.

838 GUTT, J. 2007. Antarctic macro-zoobenthic communities: a review and
 839 an ecological classification. *Antarctic Science*, **19**, 165–182.

840 GUTT, J. & KOLTUN, V.M. 1995. Sponges of the Lazarev and Weddell
 841 Sea, Antarctica: explanations for their patchy occurrence. *Antarctic
 842 Science*, **7**, 227–234.

843 GUTT, J. & STARLMANS, A. 1998. Structure and biodiversity of
 844 megabenthos in the Weddell and Lazarev seas (Antarctica):
 845 ecological role of physical parameters and biological interactions.
 846 *Polar Biology*, **20**, 229–247.

847 GUTT, J. & PIEPENBURG, D. 2003. Scale-dependent impact on diversity of
 848 Antarctic benthos caused by grounding of icebergs. *Marine Ecology
 849 Progress Series*, **253**, 77–83.

850 GWTHER, D.E., GALTON-FENZI, B.K., HUNTER, J.R. & ROBERTS, J.L.
 851 2014. Simulated melt rates for the Totten and Dalton ice shelves.
 852 *Ocean Science*, **10**, 10.5194/os-10-267-2014.

853 HEWITT, J.E., THRUSH, S.E., HALLIDAY, J. & DUFFY, C. 2005. The
 854 importance of small-scale habitat structure for maintaining beta
 855 diversity. *Ecology*, **86**, 10.1890/04-1099.

856 JOHNSON, R., STRUTTON, P.G., WRIGHT, S.W., McMENNIN, A. &
 857 MEINERS, K.M. 2013. Three improved satellite chlorophyll
 858 algorithms for the Southern Ocean. *Journal of Geophysical
 859 Research - Oceans*, **118**, 10.1002/jgrc.20270.

860 JONES, D.O.B., BETT, B.J. & TYLER, P.A. 2007. Depth-related changes to
 861 density, diversity and structure of benthic megafaunal assemblages
 862 in the Fimbul ice shelf region, Weddell Sea, Antarctica. *Polar Biology*,
 863 **30**, 1579–1592.

864 KHAZENDAR, A., SCHODLOK, M.P., FENTY, I., LIGTENBERG, S.R.M.,
 865 RIGNOT, E. & VAN DEN BROEKE, M.R. 2013. Observed thinning
 866 of Totten Glacier is linked to coastal polynya variability. *Nature
 867 Communications*, **4**, 10.1038/ncomms3857.

868 KOUBBI, P., MOTEKI, M., DUHAMEL, G., GOARANT, A., HULLEY, P.A.,
 869 O'DRISCOLL, R., ISHIMARU, T., PRUVOST, P., TAVERNIER, E. &
 870 HOSIE, G. 2011. Ecoregionalization of myctophid fish in the Indian
 871 sector of the Southern Ocean: results from generalized
 872 dissimilarity models. *Deep-Sea Research II - Topical Studies in
 873 Oceanography*, **58**, 170–180.

874 LEVENTER, A., DOMACK, E., GULICK, S., HUBER, B., ORSI, A.,
 875 SHEVENELL, A. & SCIENTIFIC PARTY 2014. *Sabrina Coast marine record
 876 of cryosphere-ocean dynamics*. United States Antarctic Program:
 877 Hamilton, NY: 467 pp.

878 MASSOM, R., REID, P., STAMMERJOHN, S., RAYMOND, B., FRASER, A. &
 879 USHIO, S. 2013. Change and variability in East Antarctic sea ice
 880 seasonality, 1979/80–2009/10. *PLoS ONE*, **8**, 10.1371/journal.
 881 pone.0064756.

882 POST, A.L., BEAMAN, R.J., O'BRIEN, P.E., ELÉAUME, M. & RIDDLE, M.J.
 883 2011. Community structure and benthic habitats across the George V
 884 Shelf, East Antarctica: trends through space and time. *Deep-Sea
 885 Research II - Topical Studies in Oceanography*, **58**, 10.1016/
 886 j.ds2.2010.05.020.

887 POST, A.L., O'BRIEN, P.E., BEAMAN, R.J., RIDDLE, M.J. & DE SANTIS, L.
 888 2010. Physical controls on deep water coral communities on
 889 the George V Land slope, East Antarctica. *Antarctic Science*, **22**,
 890 10.1017/S0954102010000180.

891 POST, A.L., MEIJERS, A.J.S., FRASER, A.D., MEINERS, K.M., AYERS, J.,
 892 BINDOFF, N.L., GRIFFITHS, H.J., VAN DE PUTTE, A.P., O'BRIEN, P.E.,
 893 SWADLING, K.M. & RAYMOND, B. 2014. Chapter 14. Environmental
 894 setting. In DE BROYER, C., KOUBBI, P., GRIFFITHS, H., RAYMOND, B.,
 895 D'UDEKEM D'ACOX, C., VAN DE PUTTE, A., DANIS, B., DAVID, B.,
 896 GRANT, S., GUTT, J., HELD, C., HOSIE, G., HUETTMANN, F., POST, A. &
 897 ROPERT-COUDERT, Y., eds. *Biogeographic atlas of the Southern Ocean*.
 898 Cambridge: Scientific Committee on Antarctic Research, 46–64.

899 RIGNOT, E., JACOBS, S., MOUGINOT, J. & SCHEUCHL, B. 2013.
 900 Ice-shelf melting around Antarctica. *Science*, **341**, 10.1126/
 901 science.1235798.

902 SCHULZ, M., BERGMANN, M., VON JUTERZENKA, K. & SOLTWEDEL, T. 2010.
 903 Colonisation of hard substrata along a channel system in the deep
 904 Greenland Sea. *Polar Biology*, **33**, 10.1007/s00300-010-0825-9.

905 SMITH, C.R., MINCKS, S. & DEMASTER, D.J. 2006. A synthesis of benthic-
 906 pelagic coupling on the Antarctic shelf: food banks, ecosystem inertia
 907 and global climate change. *Deep-Sea Research II - Topical Studies in
 908 Oceanography*, **53**, 10.1016/j.dsr2.2006.02.001.

909 SMITH, J., O'BRIEN, P.E., STARK, J.S., JOHNSTONE, G.J. & RIDDLE, M.J.
 910 2015. Integrating multibeam sonar and underwater video data to map
 911 benthic habitats in an East Antarctic nearshore environment. *Estuarine,
 912 Coastal and Shelf Science*, **164**, 10.1016/j.ecss.2015.07.036.

913 SPREEN, G., KALESCHEK, L. & HEYGSTER, G. 2008. Sea ice remote sensing
 914 using AMSR-E 89-GHz channels. *Journal of Geophysical Research -
 915 Oceans*, **113**, 10.1029/2005JC003384.

916 STARMANS, A., GUTT, J. & ARNTZ, W.E. 1999. Mega-epibenthic
 917 communities in Arctic and Antarctic shelf areas. *Marine Biology*,
 918 **135**, 10.1007/s002270050624.

939 SUMIDA, P.Y.G., BERNARDINO, A.F., STEDALL, V.P., GLOVER, A.G. & 919
 920 SMITH, C.R. 2008. Temporal changes in benthic megafaunal 920
 921 abundance and composition across the West Antarctic Peninsula 921
 922 shelf: results from video surveys. *Deep-Sea Research II - Topical 922
 923 Studies in Oceanography*, **55**, 10.1016/j.dsr2.2008.06.006.

924 THRUSH, S.F., HEWITT, J.E., CUMMINGS, V.J., NORKKO, A. & 924
 925 CHIANTORE, M. 2010. β -diversity and species accumulation in 925
 926 Antarctic coastal benthos: influence of habitat, distance and 926
 927 productivity on ecological connectivity. *PLoS ONE*, **5**, 10.1371/ 927
 928 journal.pone.0011899.

929 WILLIAMS, G.D., MEIJERS, A.J.S., POOLE, A., MATHIOT, P., TAMURA, T. 929
 930 & KLOCKER, A. 2011. Late winter oceanography off the Sabrina and 930
 931 BANZARE coast (117–128°E), East Antarctica. *Deep-Sea 931
 932 Research II - Topical Studies in Oceanography*, **58**, 10.1016/ 932
 933 j.dsr2.2010.10.035.

934 WRIGHT, I.C., GRAHAM, I.J., CHANG, S.W., CHOI, H. & LEE, S.R. 2005. 934
 935 Occurrence and physical setting of ferromanganese nodules 935
 936 beneath the deep Western Boundary Current, southwest 936
 937 Pacific Ocean. *New Zealand Journal of Geology and Geophysics*, **48**, 937
 938 27–41.

QUERY FORM

ANS

Manuscript ID	[Art. Id: 742]
Author	
Editor	
Publisher	

Journal: Antarctic Science

Author :- The following queries have arisen during the editing of your manuscript. Please answer queries by making the requisite corrections at the appropriate positions in the text.

<i>Query No</i>	<i>Nature of Query</i>
	No queries.