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Abstract—We propose a sequential algorithm for learning
sparse radial basis approximations for streaming data. The
initial phase of the algorithm formulates the RBF training as
a convex optimization problem with an /; objective function on
the expansion weights while the data fitting problem imposed
only as an /..-norm constraint. Each new data point observed
is tested for feasibility, i.e., whether the data fitting constraint is
satisfied. If so, that point is discarded and no model update is
required. If it is infeasible, a new basic variable is added to the
linear program. The result is a primal infeasible-dual feasible
solution. The dual simplex algorithm is applied to determine a
new optimal solution. A large fraction of the streaming data
points does not require updates to the RBF model since they
are similar enough to previously observed data and satisfy the
data fitting constraints. The structure of the simplex algorithm
makes the update to the solution particularly efficient given the
inverse of the new basis matrix is easily computed from the old
inverse. The second phase of the algorithm involves a non-convex
refinement of the convex problem. Given the sparse nature of
the LP solution, the computational expense of the non-convex
algorithm is greatly reduced. We have also found that a small
subset of the training data that includes the novel data identified
by the algorithm can be used to train the non-convex optimization
problem with substantial computation savings and comparable
errors on the test data. We illustrate the method on the Mackey-
Glass chaotic time-series, the monthly sunspot data, and a Fort
Collins, Colorado weather data set. In each case we compare the
results to artificial neural networks (ANN) and standard skew-
RBFs.

I. INTRODUCTION

This paper addresses the problems of data selection and
model order determination that arise when learning nonlinear
mappings from observations. The data selection problem has
two primary components. Ideally, the algorithm should identify
the point at which new observations are not changing the
model, i.e., the number of fitting functions and their approx-
imate locations have been determined. Once enough data has
been observed, there is no advantage to including additional
points in the training phase. Further, only a subset of the total
training data may be required to capture the behavior required
to construct the model. There is no need to train on new
data if it is sufficiently similar to previously processed data.
This is particularly important for efficiency in real-time data
streaming, or on-line learning, where only novel data being
observed should be incorporated into model updates. The
approach proposed here addresses both of these data selection
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issues and in so doing, the model order of the problem is also
determined.

In recent work, we proposed a two-phase barch algorithm
for modeling nonlinear relationships in data using radial basis
functions [26], [27]. The first phase required the solution of
a linear program for center selection. The Dantzig-Selector,
and p-norm convex optimization problems were explored for
the center selection problem in the batch, or non-streaming,
modeling problem. Given the full training data set at the start
of modeling, these sparsity promoting optimization problems
provide an estimate of the required complexity for the model,
as well as initial spatial locations for the approximating
functions. The second training phase involved the nonconvex
optimization of the shape and location parameters of skew
RBFs proposed in [5], [6]. While this can be an expensive
aspect of the training, the fact that a parsimonious model is
produced by the first phase greatly reduces the amount of effort
required for model refinement. The batch algorithm produced
results on standard bench-marking problems comparable to
state-of-the-art. However, this batch algorithm doesn’t exploit
the efficiencies of the sequential simplex algorithm, nor can it
identify novel data subsets.

In this paper we demonstrate how the linear nature of the
RBF learning problem, first advocated in [19], can be exploited
to formulate an adaptive learning algorithm using a sequential
simplex algorithm. Streaming data points are identified as fea-
sible and ignored, or infeasible, and used to update the solution
to the convex optimization problem. The result is a highly
parsimonious model that is then refined by adding skewing
terms and non-convex refinement. The algorithm provides a
geometric criterion, polyhedron feasibility, to identify novel
data points which are the only ones used to update the model.
Interestingly we see that in the context of time-series, the novel
data points tend to occur at extrema, or inflection points, in
the target data. As we shall see, these novel data points may
also be used to construct minimal training sets for the non-
convex refinement phase of the algorithm. We demonstrate this
numerically on three data sets including that Mackey-Glass
chaotic time-series, Fort Collins weather data, and monthly
sunspot data. Our results are shown to be comparable to those
of Artificial Neural Networks where substantially more user
guidance is required to determine network architecture.



II. PROBLEM FORMULATION

The Radial Basis Function (RBF) expansion is a widely
used tool for data driven modeling of large data sets and has
the form

fl@) =wo+ " wne(lz - ekl M)
k=1
where the RBF functions can be selected from several options,
see, e.g., [18] for details. We assume in this paper that the
function f and weights wy are scalars. As we see below,
the location, and number of centers {cy} will be determined
automatically by the algorithm. In our implementation, the
Euclidean inner product is weighted with the metric being
determined by the data; see [6] for details.
We define the interpolation matrix as
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and our notation (®); is the i’th row of this matrix.

The Dantzig-Selector optimization problem was proposed
in the context of solving b = Xw + z where X is n X p with
n << p [16], [28]. The Dantzig-selector convex optimization
problem is

minimize ||w]|; (2)
subject to

[XT(Xw = D)o < € 3)

This approach was extended to the RBF data fitting problem
where X = & as defined above [26], [27]. In this paper,
we employ the modified Dantzig-selector where the convex
optimization problem has the form

[Pw — bljoc < €c 4

where €. is estimated as in [27]. The constraint in Equation
(4) is preferred to the formulation in Equation (2) since
the number of candidate centers may be large and it avoids
forming a p x p matrix for large p. Also, more importantly,
Equation (2) does not allow for a sequential application of the
linear programming algorithm.

III. ALGORITHM

The modified (and unmodified) Dantzig-selector problem
may be written as a Linear Program (LP) in standard form

minimize ¢! x (@)
subject to the constraints
Ar=0b, x>0 (6)

where ¢ € R" is the cost vector, A € R™*", resources b €
R™.

A. Formulation of the LP

The conversion of the ¢;-norm problem with /., constraints
into a linear program in standard form may be accomplished
by introducing new variables. First, we transform the objective
function introducing ¢; such that —¢; < w; < ¢;. Similarly,
the ¢o.-norm in the constraint ||[®w — b||o, can be rewritten
—€ <®Tw—-b<e,.

At the k’th step the sequential algorithm solves the problem

N(‘.
minimize Z t; @)

i=1

subject to

OTw — b+ wy, 41 = € (8)
— 0w +b+wn, 12 =€ )
wigtizo,izl,...,NC (10)
—w; <t; =0,i=1,..., N, (11)

where wy,+1 > 0, wn.42 > 0 are introduced as new
basic variables converting the inequality constraints to equality
constraints.

B. Feasibility of New LP

At each iteration we add a new data point and the associated
LP may be augmented by two basic variables. Given an
optimal solution was determined in the previous iteration,
the new LP must be dual feasible since the reduced cost of
the added basic variables are zero [3]. However, the primal
problem may not be feasible since either wy,+1 < 0, or
wp,+2 < 0, but not both. In other words, at least one of the
two constraints being added with each point must be feasible,
and they may both be feasible. This follows since if

& w —b>0
i.e., the first added constraint is violated, then
—olw+b<0
so the second constraint must be satisfied. Note that if
—ecg@iwabgec

then both added constraints are feasible.

In our algorithm we do not update the LP with constraints
that are feasible. We will observe in the numerical experiments
that this approach significantly accelerates the learning prob-
lem since only a small fraction of the streaming data points
lead to infeasibility.

C. Initialization of LP

We start by solving the following initialization problem so
that an optimal basic feasible solution can be obtained. The
first convex minimization problem to be solved is Equation
(12), a linear programming without any data points added.
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Fig. 1: The result of applying the simplex algorithm to the Mackey-Glass data set using sequential training over 1000 data
points. The lower bars denote that an infeasible LP resulted from adding the point. The location of the novel point is shown
in blue. A total of N. = 14 RBFs were automatically selected from an initial set of 500 during the streaming algorithm.

The optimal solution to this problem is just w; = ¢; = 0,
1=1,...,Ne.

N
minimize Zti (12)
=1
subject to
w; <t;i=1,...,N., (13)
—w; <t;;i=1,...,N. (14)

With this initialization the LP is now updated by streaming
new data points as described in the next section.

D. Infeasibility and Update

In the event that the resulting LP is infeasible there will
only be a single variable that will determine the pivoting row
in the dual simplex algorithm. The dual simplex algorithm
is already feasible so it can be iterated until the primal is
feasible while maintaining dual feasibility. We will see that in
our application, only a small number of iterations is required
in practice to achieve an optimal solution after each new data
point is added.

Here we briefly describe the components of the simplex
algorithm that make it especially suitable for the current
application. A full discussion of the method is outside the
scope of this paper and the reader is referred to [3]. The

simplex algorithm proceeds by maintaining and updating a
basis matrix B consisting of linearly independent columns of
the constraint matrix. The solution is improved by identifying
a nonbasic column of A which may be used to improve the
solution. In this process we require the matrix B! in order
to compute the reduced costs of each non-basic column of A.
When the basis B is updated there is a very efficient approach
to determine an update for B! known as the revised simplex
method.
In our problem at the m’th update we add a constraint

(Dﬂw + Wpgm = €

The new basis matrix has size (m + 1) x (m + 1) and is of

the form
B,

O ]
T
o1
where B,, is the basis matrix with m constraints and 0, is
the column vector of m zeros. The vector ¢,,, consists of the
components of the vector ®; associated with basic columns.

The reason this sequential approach is so attractive is the easily
verified expression

Bm+1 -

Bl Om
I
Hence the update to the LP is extremely efficient.
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Fig. 2: A comparison of the training phases for the Mackey-
Glass problem with the adaptive simplex algorithm. The graph
is a blowup of the a segment of the testing data.

ANN RBF LP LP lite
train set 1000 pts 1000 pts 1000 pts 200 pts
train RMSE 2.1e-3 3.0e-3 2.8e-3 2.8e-3
val. RMSE 2.4e-3 4.0e-3 3.0e-3 2.9e-3
test RMSE (2.2e-3+5.6e-5| 3.0e-3+4e-4 (2.7e-3+1e-4|2.7e-3+1e-4
NPE1 9e-3t+4e-4 |1.3e-241.5e-3[1.2e-2+6e-4|1.2e-2+6e-4
NPE2 9e-5+5e-6 | 2.0e-4+5e-5 |1.4e-4+1e-5(1.4e-4+1e-5
mean error -2e-6 le-4 8.6e-5 2e-4

TABLE I: Comparison between ANN and Sequential simplex
algorithm with non-convex refinement on MackeyGlass data.

E. Linear Optimization Algorithm Summary

For clarity we briefly summarize the main components of
the algorithm. We denote the feasible set with m points as
P,,. We say that z,,, € P, i.e., x,, is feasible, if

—e§<I>iTw§e,i:1,...,m.

¢ Initialize the LP with the first observation x;.

o Compute the optimal solution w* to this LP.

e Add a new data point x2 and compute B L

o If zo € P, then the solution (w*,wn,+1,WN, +2) is
optimal and a new observation x3 is made and the process
repeated.

o If x5 ¢ P, then apply the dual simplex algorithm until
the problem is primal feasible.

o Add a new observation and repeat.

IV. NON-CONVEX REFINEMENT

The linear optimization problem solved via the sequential
simplex algorithm provides the number N, of the RBFs
estimated to be required for the data fitting problem, as well
as estimated initial locations of the centers {cy}.

We use this data to refine the model extending Equation (1)
to be

m

F(x) = wo + Y wiz(\f (2 — ex)) (||l — ex])

k=1

15)

where each Euclidean norm is weighted as described in [6].
The addition of the skewing term z(A%(z — cx)) provides

additional shape parameters A; to the RBFs making them
capable of fitting more complex data with fewer terms. The
skewing term z(r) used in this paper is

1 1
z(r) = = arctan(r) 4+ 3

while the RBF function has the usual form
2
P(p) = eXp(?)
The error is now minimized using scaled conjugate gradient
(SCQG) as described in [26], [27]. See [6] and references therein
for an introduction as well as additional details and options
for skew functions.

V. NUMERICAL EXPERIMENTS

We present numerical results comparing Artificial Neural
Networks (ANNs), and standard RBFs to the LP (Simplex)
RBF on three illustrative data sets. The scaled conjugate gra-
dient method is used in all cases to train the final parameters.
LP uses the same training data as ANN and standard RBFs,
but with centers selected by the sequential simplex algorithm.
LP lite uses only the novel data points augmented with a small
number of randomly selected points. The normalized predic-
tive errors NPE1 and NPE2 are defined in [5]. Results are
averaged over 25 experiments. In all cases optimal parameters
are selected based on performance on a validation set.

A. Mackey-Glass

In our first experiment we apply the sequential simplex
algorithm to the Mackey-Glass data set in Figure 1. Blue
circles mark the location on the graph where points introduce
infeasible constraints, i.e., they are novel when compared to
previously streamed data. We see that this happens at peaks
and valleys of the function, as well as inflection points. In
contrast, data in the stream which is sufficiently similar to
previously observed points (determined by the fact that the
new constraints are feasible) are discarded and no iterations
of the (dual) simplex algorithm are required.

We see in Figure 1 (lower panel) the number of iterations
taken by the dual simplex algorithm each time an infeasible
data point is added. The median number of iterations, com-
puted over 127 novel points, is 5. In this experiment there
were 873 iterations where no update was required, i.e., these
data had feasible constraints. Also, note that larger numbers
of iterations in the dual simplex algorithm occur in clusters,
suggesting that the training data is exploring a new region in
state space. In contrast, regions that have been well modeled
produce long sequences of where the data is all feasible.

In this example, we observe that the refinement of the
parameters using scaled conjugate gradient on the shape
parameters and centers only improves the LP solution from
MSE 0.0054 to 0.0033; see Figure 2.

The solutions all produce comparable errors as shown in
Table I. Fourteen centers selected at random were used in the
standard skew-RBF and optimized with the shape parameters
using SCG. LP lite was the fastest to train using only an
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Fig. 3: Fort Collins weather data training results (split into two panels of 3250 data points each). A 3-dimensional embedding
with time delay 7" = 6 (30 minutes) is used and we are predicting 12 steps (1 hour) ahead. A total of 6500 input-output
pairs are generated for training. A total of 2000 initial centers are sampled from the domain of training data. The RBFs are
selected to be Gaussians all with width 10. The sequential simplex algorithm identifies 180 out of 6500 data points as infeasible
requiring dual simplex updates to solve for primal feasibility. This plot shows the location of the novel points with number of
iterations used in dual simplex algorithm directly in the panel below. A total of N, = 13 centers were selected for this model.
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Fig. 4: A comparison of the RBF simplex and non-convex
refinement models for the Fort Collins weather data on the
testing data. Only 180 data points were used to update the
simplex model out of 6500 training data points. An additional
650 were randomly added to these to refine the model using
SGC.

ANN RBF LP LP lite
training set size| 6500 pts 6500pts | 6500 pts | 800 pts
training RMSE 3.19 3.19 3.43 3.51

val. RMSE 2.94 2.94 2.99 2.93
test RMSE | 2.97+0.06 | 2.91+0.11 |2.71£0.24]|2.75+0.29
NPEI 0.30£0.008| 0.3£0.01 {0.28+0.03]0.284+-0.03
NPE2 0.1240.005]0.12+0.009{0.10+0.02{0.114-0.03

mean residual 1.14 -0.87 -0.46 -0.29

TABLE II: Comparison between ANN and Sequential simplex
algorithm with non-convex refinement on Fort Collins weather
data.

average of 131 £ 4 novel data points augmented to a total
of 200 points.

B. Streaming Weather Data

The data for this experiment were collected at the Christman
Field Weather Station at Colorado State University [30]. The
data set consists of temperature measurements collected every
five minutes over the month of September, 2016.

In this example the sequential LP is used on the first
6500 data points. It is observed that only 180 data points
are identified as infeasible during the streaming data update
process; see Figure 3. The blue circles identify the location of

ANN RBF LP LP lite
training set size| 360 pts 360pts 360 pts 120 pts
training RMSE 12.39 14.85 14.54 16.20

val. RMSE 8.91 19.86 9.28 9.35
test RMSE  |15.8641.63|18.94+0.76|13.64+1.33(11.95+2.14
NPE1 0.2040.02 | 0.23+0.06 | 0.17£0.02 | 0.1540.03
NPE2 0.0540.01 | 0.08+0.06 {0.044-0.007| 0.03£0.01

mean residual 8.66 11.70 9.28 9.30

TABLE III: Comparison between ANN and Sequential sim-
plex algorithm with non-convex refinement on monthly
sunspot data.

novel (infeasible) data which we again see occur at extrema
and inflection points. We see that the number of iterations of
the dual simplex is generally small, e.g., 5, and rarely exceeds
20.

In the nonconvex refinement of the simplex algorithm model
we use the last 10% (650) data points for validation. For LP
lite 17447 novel data points were found and augmented to 800
for the SCG optimization. In Figure 4 we display the results
of the prediction of the weather on 250 test data points. A
detailed comparison of the methods is shown in Table II. LP
and LP lite are seen to have the best overall error rates. The
RBFs all have 14 centers.

C. Monthly Sunspot Data

Lastly, we model the sunspot data obtained from the World
DATA Center SILSO, Royal Observatory of Belgium, Brus-
sels [29]. This data set consists of smoothed monthly total
sunspot numbers from 1749 to 1789.!

In this example the sequential LP is applied on the first 360
input output pairs (30 years) and the subsequent 120 points
(10 years) are used for testing. An average of 63 £ 3 data
points are identified as infeasible during the sequential dual
simplex update process. The results of this training process
can be seen from Figure 5. We observe that the downslope
portions of the curve, e.g., months 100-190, apparently contain
little novelty in the data. The number of iterations of the dual
simplex algorithm is also generally small and never exceeds
12.

In Figure 6 we show plots of the prediction on the test data.
See also Table III for numerical details. The test RMSE for
LP lite is approximately four sunspots more accurate when
compared to the ANN. Eight RBFs were used for all the RBF
sunspot examples.

VI. BACKGROUND AND RELATED WORK

We present a new algorithm for sequentially learning an
RBF model using the dual simplex algorithm. This approach
is distinct from prior work in several fundamental ways. The
compressed sensing problem has been solved using sequential
observations in [1]. They update their LP after each new obser-
vation and solve an augmented primal, or Big-M problem [3].
In another compressed sensing study, the sequential problem
was formulated as a quadratic program [2]. Our approach uses
the dual simplex algorithm and formulates the linear program
using a different treatment of the absolute value constraints.

In other recent work RBF networks have been proposed
as a tool for sparse signal recovery [23]. LASSO and LARS
techniques have also been incorporated with RBF networks
[24]. Sparse RBF kernel methods with ¢;-norm penalty have
been proposed [25]. The paper [26] proposed the ¢1-norm min-
imization of the weight vector only in the objective functions
while imposing the RBF fitting problem as a constraint on the
feasible set. The sequel [27] expanded the numerical results of
[26] providing further evidence that the convex optimization

The sunspot number data can be freely downloaded from [29].
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Fig. 6: A comparison of the predictions for the monthly
sunspot data with the adaptive simplex algorithm. First 360
input output pairs (30 years) are generated for training. A 3-
dimensional time delayed embedding is used with time delay
T = 15 (months) and we are predicting 6 months ahead. The
graph is the test result on the next 120 data points (10 years).

formulation leads to very competitive models. In these papers,
in contrast to the current paper, the training was done in batch
mode and there was no identification of novel training data.
More generally, Radial Basis Functions were proposed as
a tool for arbitrary function approximation [19], [21]. A
universal approximation theorem was provided for continuous
functions over compact domains in [20]. There have been a
series of papers whose goal has been to develop fast learning

algorithms starting with [21], but this still required the tuning
of a variety of ad hoc parameters. A comprehensive theoretical
introduction to RBFs may be found in [4].

Previous efforts have been made to develop black box algo-
rithms that require no user input for the model development,
such as model order selection [10], [18]. This work proposed
the use of compact skew-radial basis functions expansions to
approximate time-series data. It has been observed computa-
tionally that skew-radial basis functions have impressive data
fitting characteristics and can even fit abrupt jumps in data
[7], [5]. More recent modifications to this algorithm with the-
oretical foundations have identified even more parsimonious
models for, e.g., the Mackey-Glass problem [6].

VII. CONCLUSION

We have proposed a sequential RBF learning algorithm for
streaming data that exploits the mathematical framework of the
primal and dual simplex algorithms. Each new observation is
incorporated into the linear program as two inequality con-
straints that result in the addition of two new basic variables
that are required to put the problem into standard form. If
the solution to the LP is still optimal, then no additional
computations are required for that point and the data is
discarded. If the solution is primal infeasible, the dual simplex
algorithm is applied until a new optimal solution is determined.

The sequential algorithm is particularly suitable for stream-
ing data since new observations often lead to feasible con-
straints. Thus, the algorithm has built into it a measure of the
novelty of the training data. If a new observation resides in
the polyhedron of the data constraints that have already been



observed processed, then no update is required. This aspect
of the sequential update makes the algorithm very efficient
in practice. We have seen that it is very effective to use
the novel data, suitably augmented with randomly selected
data, to train the nonconvex optimization problem providing
additional acceleration of the algorithm. As the numerical
examples illustrate, this LP lite approach results in substantial
computational savings over using the entire training data set.

We presented results on the Mackey-Glass chaotic time-
series, temperature from the Colorado State University weather
station and the monthly sunspot data set. In the extreme case,
we were able to process 6500 streaming data points with
updates to the model needed less than 3% of the time averaged
over 25 experiments. This is due to the fact that the weather
data, being sampled every five minutes, is highly correlated
over short times. The sunspot data was the most variable and
had the highest novelty per observation at 17%. The Mackey-
Glass showed an average of 13% novel data. All comparisons
with the ANNs suggested the methods had comparable errors
on the final models across several measures of error.

The main advantage of our proposed approach is the lack
of design input required from the user and information gained
about the novelty of the exemplars. The number and loca-
tion of the RBFs are automatically determined solving the
sequential convex optimization problems. We also note that
this sequential simplex approach can provide a criterion for
terminating training on a streaming data set. Namely, after
a sufficiently long sequence with no infeasible constraints
detected suggests training could be stopped.

Lastly, we note that this structure proposed here can be
adapted to the center selection problem. One can also in-
crementally add centers to the training problem as non-basic
variables. This leaves the primal problem feasible, and may
or may not leave the dual feasible. If the problem remains
optimal, one could conclude that the center is not necessary.
We will explore this direction in future work.
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