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Abstract

Many data sets can be viewed as a noisy sampling of an underlying space, and tools from
topological data analysis can characterize this structure for the purpose of knowledge dis-
covery. One such tool is persistent homology, which provides a multiscale description of
the homological features within a data set. A useful representation of this homological
information is a persistence diagram (PD). Efforts have been made to map PDs into spaces
with additional structure valuable to machine learning tasks. We convert a PD to a finite-
dimensional vector representation which we call a persistence image (PI), and prove the
stability of this transformation with respect to small perturbations in the inputs. The
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discriminatory power of Pls is compared against existing methods, showing significant per-
formance gains. We explore the use of PIs with vector-based machine learning tools, such
as linear sparse support vector machines, which identify features containing discriminating
topological information. Finally, high accuracy inference of parameter values from the dy-
namic output of a discrete dynamical system (the linked twist map) and a partial differential
equation (the anisotropic Kuramoto-Sivashinsky equation) provide a novel application of
the discriminatory power of Pls.

Keywords: topological data analysis, persistent homology, persistence images, machine
learning, dynamical systems

1. Introduction

In recent years, the field of topology has grown to include a large set of computational tools
(Edelsbrunner and Harer, 2010). One of the fundamental tools is persistent homology, which
tracks how topological features appear and disappear in a nested sequence of topological
spaces (Edelsbrunner and Harer, 2008; Zomorodian and Carlsson, 2005). This multiscale
information can be represented as a persistence diagram (PD), a collection of points in the
plane where each point (z,y) corresponds to a topological feature that appears at scale
x and disappears at scale y. We say the feature has a persistence value of y — x. This
compact summary of topological characteristics by finite multi-sets of points in the plane is
responsible, in part, for the surge of interest in applying persistent homology to the analysis
of complex, often high-dimensional data. Computational topology has been successfully
applied to a broad range of data-driven disciplines (Perea and Harer, 2013; Dabaghian
et al., 2012; Chung et al., 2009; Heath et al.; Singh et al., 2008; Topaz et al., 2015; Pearson
et al., 2015).

Concurrent with this revolution in computational topology, a growing general interest
in data analysis has driven advances in data mining, pattern recognition, and machine
learning (ML). Since the space of PDs can be equipped with a metric structure (bottleneck
or Wasserstein (Mileyko et al., 2011; Turner et al., 2014)), and since these metrics reveal
the stability of PDs under small perturbations of the data they summarize (Cohen-Steiner
et al., 2007, 2010; Chazal et al., 2014), it is possible to perform a variety of ML techniques
using PDs as a statistic for clustering data sets. However, many other useful ML tools
and techniques (e.g., support vector machines (SVM), decision tree classification, neural
networks, feature selection, and dimension reduction methods) require more than a metric
structure. In addition, the cost of computing the bottleneck or Wasserstein distance grows
quickly as the number of off-diagonal points in the diagrams increases (Di Fabio and Ferri,
2015). To resolve these issues, considerable effort (which we review in §2) has been made
to map PDs into spaces which are suitable for other ML tools (Bubenik, 2015; Reininghaus
et al., 2015; Rouse et al., 2015; Adcock et al., 2016; Donatini et al., 1998; Ferri et al., 1997;
Chung et al., 2009; Pachauri et al., 2011; Bendich et al., 2016; Chen et al., 2015; Carriére
et al., 2015; Di Fabio and Ferri, 2015). With the benefits and drawbacks of these approaches
in mind, we pose the following question:

Problem Statement: How can we represent a persistence diagram so that

(i) the output of the representation is a vector in R",

(ii) the representation is stable with respect to input noise,
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(iii) the representation is efficient to compute,
(iv) the representation maintains an interpretable connection to the original PD, and

(v) the representation allows one to adjust the relative importance of points in different
regions of the PD?

The main contribution of this paper is to study a finite-dimensional-vector representa-
tion of a PD called a persistence image (PI). We first map a persistence diagram B to an
integrable function pp: R? — R called a persistence surface. The surface pp is defined as
a weighted sum of Gaussian functions,! one centered at each point in the PD. The idea of
persistence surfaces has appeared even prior to the development of persistent homology, in
Donatini et al. (1998) and Ferri et al. (1997). Taking a discretization of a subdomain of
pp defines a grid. A persistence image, i.e., a matrix of pixel values, can be created by
computing the integral of pp on each grid box. This PI is a “vectorization” of the PD, and
provides a solution to the problem statement above.

Criterion (i) is the primary motivation for developing PIs. A large suite of ML tech-
niques and statistical tools (means and variances) already exist to work with data in R"™.
Additionally, such a representation allows for the use of various distance metrics (p-norms
and angle based metrics) and other measures of (dis)similarity. The remaining criteria of
the problem statement (ii-v) further ensure the usefulness of this representation.

The desired flexibility of (v) is accomplished by allowing one to build a PI as a weighted
sum of Gaussians, where the weightings may be chosen from a broad class of weighting
functions.? For example, a typical interpretation is that points in a PD of high persistence
are more important than points of low persistence (which may correspond to noise). One
may therefore build a PI as a weighted sum of Gaussians where the weighting function is
non-decreasing with respect to the persistence value of each PD point. However, there are
situations in which one may prefer different measures of importance. Indeed, Bendich et al.
(2016) find that, in their regression task of identifying a human brain’s age from its arterial
geometry, the points of medium persistence (not high persistence) best distinguish the data.
In such a setting, one may choose a weighting function with largest values for the points of
medium persistence. In addition, the Homology Inference Theorem (Cohen-Steiner et al.,
2007) states that when given a sufficiently dense finite sample from a space X, the points
in the PD with sufficiently small birth times (and sufficiently high persistence) recover the
homology groups of the space; hence one may choose a weighting function that emphasizes
points near the death-axis and away from the diagonal, as indicated in the leftmost yellow
rectangle of Figure 2.4 in Bendich (2009). A potential disadvantage of the flexibility in (v) is
that it requires a choice; however, prior knowledge of one’s particular problem may inform
that choice. Moreoever, our examples illustrate the effectiveness of a standard choice of
weighting function that is non-decreasing with the persistence value.

The remainder of this article is organized as follows. Related work connecting topological
data analysis and ML is reviewed in §2, and §3 gives a brief introduction to persistent ho-
mology, PDs from point cloud data, PDs from functions, and the bottleneck and Wasserstein
metrics. Pls are defined in §4 and their stability with respect to the 1-Wasserstein distance

1. In general, pp can be a weighted sum of probability density functions
2. Weighting functions are restricted only to the extent necessary for our stability results in §5.
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between PDs is proved in §5. Lastly, §6 contains examples of ML techniques applied to
PIs generated from samples of common topological spaces, an applied dynamical system
modeling turbulent mixing, and a partial differential equation describing pattern formation
in extended systems driven far from equilibrium. Our code for producing PIs is publicly
available at https://github.com/CSU-TDA/PersistenceImages.

2. Related Work

The space of PDs can be equipped with the bottleneck or Wasserstein metric (defined in §3),
and one reason for the popularity of PDs is that these metrics are stable with respect to small
deviations in the inputs (Cohen-Steiner et al., 2007, 2010; Chazal et al., 2014). Furthermore,
the bottleneck metric allows one to define Fréchet means and variances for a collection of
PDs (Mileyko et al., 2011; Turner et al., 2014). However, the structure of a metric space
alone is insufficient for many ML techniques, and a recent area of interest in the topological
data analysis community has been encoding PDs in ways that broaden the applicability of
persistence. For example, Adcock et al. (2016) study a ring of algebraic functions on the
space of persistence diagrams, and Verovsek (2016) identifies tropical coordinates on the
space of diagrams. Ferri and Landi (1999) and Di Fabio and Ferri (2015) encode a PD using
the coefficients of a complex polynomial that has the points of the PD as its roots.

Bubenik (2015) develops the notion of a persistence landscape, a stable functional rep-
resentation of a PD that lies in a Banach space. A persistence landscape (PL) is a function
A: N xR — [—00,00], which can equivalently be thought of as a sequence of functions
Ap: R — [—o00,00]. For 1 < p < oo the p-landscape distance between two landscapes A
and X' is defined as |[A — X||,; the oo-landscape distance is stable with respect to the bot-
tleneck distance on PDs, and the p-landscape distance is continuous with respect to the
p-Wasserstein distance on PDs. One of the motivations for defining persistence landscapes
is that even though Fréchet means of PDs are not necessarily unique (Mileyko et al., 2011),
a set of persistence landscapes does have a unique mean. Unique means are also a feature
of Pls as they are vector representations. An advantage of PLs over Pls is that the map
from a PD to a PL is easily invertible; an advantage of PIs over PLs is that Pls live in
Euclidean space and hence are amenable to a broader range of ML techniques. In §6, we
compare PDs, PLs, and PIs in a classification task on synthetic data sampled from common
topological spaces. We find that PIs behave comparably or better than PDs when using
ML techniques available to both representations, but Pls are significantly more efficient to
compute. Also, Pls outperform PLs in the majority of the classification tasks and are of
comparable computational efficiency.

A vector representation of a PD, due to Carriére et al. (2015), can be obtained by
rearranging the entries of the distance matrix between points in a PD. In their Theorem 3.2,
they prove that both the L and L? norms between their resulting vectors are stable with
respect to the bottleneck distance on PDs. They remark that while the L> norm is useful
for nearest-neighbor classifiers, the L? norm allows for more elaborate algorithms such as
SVM. However, though their stability result for the L*° norm is well-behaved, their constant
for the L? norm scales undesirably with the number of points in the PD. We provide this as
motivation for our Theorem 10, in which we prove the L>, L', and L? norms for PI vectors
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are stable with respect to the 1-Wasserstein distance between PDs, and in which none of
the constants depend on the number of points in the PD.

By superimposing a grid over a PD and counting the number of topological features in
each bin, Rouse et al. (2015) create a feature vector representation. An advantage of this ap-
proach is that the output is easier to interpret than other more complicated representations,
but a disadvantage is that the vectors are not stable for two reasons:

(i) an arbitrarily small movement of a point in a PD may move it to another bin, and
(ii) a PD point emerging from the diagonal creates a discontinuous change.

Source (i) of instability can be improved by first smoothing a PD into a surface. This idea
has appeared multiple times in various forms—even prior to the development of persistent
homology, Donatini et al. (1998) and Ferri et al. (1997) convert size functions (closely related
to O-dimensional PDs) into surfaces by taking a sum of Gaussians centered on each point in
the diagram. This conversion is not stable due to (ii), and we view our work as a continued
study of these surfaces, now also in higher homological dimensions, in which we introduce
a weighting function® to address (ii) and obtain stability. Chung et al. (2009) produce a
surface by convolving a PD with the characteristic function of a disk, and Pachauri et al.
(2011) produce a surface by centering a Gaussian on each point, but both of these methods
lack stability again due to (ii). Surfaces produced from random PDs are related to the
empirical intensity plots of Edelsbrunner et al. (2012).

Reininghaus et al. (2015) produce a stable surface from a PD by taking the sum of a
positive Gaussian centered on each PD point together with a negative Gaussian centered
on its reflection below the diagonal; the resulting surface is zero along the diagonal. This
approach is similar to PIs, and indeed we use a result of Reininghaus et al. (2015, Theo-
rem 3) to show that persistence surfaces are stable only with respect to the 1-Wasserstein
distance (Remark 6). Nevertheless, we propose our independently-developed surfaces as an
alternative stable representation of PDs with the following potential advantages. First, the
sum of non-negatively weighted Gaussians in PIs may be easier to interpret than a sum
including negative Gaussians. Second, we produce vectors from persistence surfaces with
well-behaved stability bounds, allowing one to use vector-based learning methods such as
linear SVM. Indeed, Zeppelzauer et al. (2016) report that while the kernel of Reininghaus
et al. (2015) can be used with nonlinear SVMs, in practice, this becomes inefficient for a
large number of training vectors because the entire kernel matrix must be computed. Third,
while the surface of Reininghaus et al. (2015) weights persistence points further from the
diagonal more heavily, there are situations in which one may prefer different weightings, as
discussed in §1 and item (v) of our Problem Statement. Hence, one may want weightings on
PD points that are non-increasing or even decreasing when moving away from the diagonal,
an option available in the PI approach.

We produce a persistence surface from a PD by taking a weighted sum of Gaussians
centered at each point. We create vectors, or Pls, by integrating our surfaces over a grid,
allowing ML techniques for finite-dimensional vector spaces to be applied to PDs. Persistence
images are stable, and distinct homology dimensions may be concatenated together into
a single vector to be analyzed simultaneously. Persistence surfaces are studied from the

3. Our weighting function is continuous and zero for points of zero persistence, i.e., points along the diagonal.
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statistical point of view by Chen et al. (2015); their applications in Section 4 use the L!
norm between these surfaces, which can be justified as a reasonable notion of distance due
to Theorem 9 that proves the L! distance between such surfaces is stable.

Zeppelzauer et al. (2016) apply Pls to 3D surface analysis for archeological data, in
which the machine learning task is to distinguish scans of natural rock surfaces from those
containing ancient human-made engravings. The authors state they select Pls over other
topological methods because Pls are computationally efficient and can be used with a broader
set of ML techniques. Pls are compared to an aggregate topological descriptor for a PD: the
first entry of this vector is the number of points in the diagram, and the remaining entries
are the minimum, maximum, mean, standard deviation, variance, 1st-quartile, median, 3rd-
quartile, sum of square roots, sum, and sum of squares of all the persistence values. In their
three experiments, the authors find the following.

e When classifying natural rock surfaces from engravings using PDs produced from the
sublevel set filtration, PIs outperform the aggregate descriptor.

e When the natural rock and engraved surfaces are first preprocessed using the completed
local binary pattern (CLBP) operator for texture classificiation (Guo et al., 2010), PIs
outperform the aggregate descriptor.

e The authors added PIs and the aggregate descriptor to eleven different non-topological
baseline descriptors, and found that the classification accuracy of the baseline descrip-
tor was improved more by the addition of PIs than by the addition of the aggregate
descriptor.

Furthermore, Zeppelzauer et al. (2016, Table 1) demonstrate that for their machine learning
task, PIs have low sensitivity to the parameter choices of resolution and variance (§4).

3. Background on Persistent Homology

Homology is an algebraic topological invariant that, roughly speaking, describes the holes in
a space. The k-dimensional holes (connected components, loops, trapped volumes, etc.) of
a topological space X are encoded in an algebraic structure called the k-th homology group
of X, denoted Hy(X). The rank of this group is referred to as the k-th Betti number, By,
and counts the number of independent k-dimensional holes. For a comprehensive study of
homology, see the textbook by Hatcher (2002).

Given a nested sequence of topological spaces X; C Xy C ... C X,, the inclusion
X; C Xy for i < 4 induces a linear map Hy(X;) — Hy(Xy) on the corresponding k-th
homology for all £ > 0. The idea of persistent homology is to track elements of Hy(X;)
as the scale (or “time”) parameter i increases (Edelsbrunner and Harer, 2008; Zomorodian
and Carlsson, 2005; Edelsbrunner and Harer, 2010). A standard way to represent persistent
homology information is a persistence diagram (PD),* which is a multiset of points in the
Cartesian plane R?. For a fixed choice of homological dimension k, each homological feature
is represented by a point (z,y), whose birth and death indices x and y are the scale param-
eters at which that feature first appears and disappears, respectively. Since all topological

4. Another standard representation is the barcode (Ghrist, 2008).
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features die after they are born, necessarily each point appears on or above the diagonal
line y = x. A PD is a multiset of such points, as distinct topological features may have
the same birth and death coordinates.® Points near the diagonal are often considered to be
noise while those further from the diagonal represent more robust topological features.

In this paper, we produce PDs from two different types of input data:

(i) When the data is a point cloud, i.e., a finite set of points in some space, then we
produce PDs using the Vietoris—Rips filtration.

(ii) When the data is a real-valued function, we produce PDs using the sublevel set filtra-
tion.

For setting (i), point cloud data often comes equipped with a metric or a measure of inter-
nal (dis)similarity and is rich with latent geometric content. One approach to identifying
geometric shapes in data is to consider the data set as the vertices of a simplicial complex
and to add edges, triangles, tetrahedra, and higher-dimensional simplices whenever their
diameter is less than a fixed choice of scale. This topological space is called the Vietoris—
Rips simplicial complex, which we introduce in more detail in §A.2. The homology of the
Vietoris—Rips complex depends crucially on the choice of scale, but persistent homology
eliminates the need for this choice by computing homology over a range of scales (Carlsson,
2009; Ghrist, 2008). In §6.1-6.4.1, we obtain PDs from point cloud data using the Vietoris—
Rips filtered simplicial complex, and we use ML techniques to classify the point clouds by
their topological features.

In setting (ii), our input is a real valued function f: X — R defined on some domain X.
One way to understand the behavior of map f is to understand the topology of its sublevel
sets f71((—o0,€]). By letting ¢ increase, we obtain an increasing sequence of topological
spaces, called the sublevel set filtration, which we introduce in more detail in §A.3. In
§6.4.2, we obtain PDs from surfaces u: [0, 1]2> — R produced from the Kuramoto-Sivashinsky
equation, and we use ML techniques to perform parameter classification.

In both settings, the output of the persistent homology computation is a collection of
PDs encoding homological features of the data across a range of scales. Let D denote the
set of all PDs. The space D can be endowed with metrics as studied by Cohen-Steiner et al.
(2007) and Mileyko et al. (2011). The p- Wasserstein distance defined between two PDs B
and B’ is given by

W,(B,B') 1nf <Z]|u7 w)| )1/p,

ueB

where 1 < p < oo and v ranges over bijections between B and B’. Another standard
choice of distance between diagrams is Woo(B, B') = inf sup||u — v(u)]||oo, referred to as
v:B—=B",eB

the bottleneck distance. These metrics allow us to measure the (dis)similarity between the
homological characteristics of two data sets.

5. By convention, all points on the diagonal are taken with infinite multiplicity. This facilitates the defini-
tions of the p-Wasserstein and bottleneck distances below.
6. As explained in §A.3, (i) can be viewed as a special case of (ii).
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4. Persistence Images

We propose a method for converting a PD into a vector while maintaining an interpretable
connection to the original PD. Figure 1 illustrates the pipeline from data to PI starting with
spectral and spatial information in R® from an immunofluorescent image of a circulating
tumor cell (Emerson et al., 2015).

Precisely, let B be a PD in birth-death coordinates.” Let T: R> — R? be the linear
transformation T'(z,y) = (x,y — =), and let T(B) be the transformed multiset in birth-
persistence coordinates,® where each point (x,y) € B corresponds to a point (z,y — z) €
T(B). Let ¢,: R? — R be a differentiable probability distribution with mean u = (ug,u,) €
R2. In all of our applications, we choose this distribution to be the normalized symmetric
Gaussian ¢, = g, with mean u and variance o2 defined as

1 () (y—uy)?] /202
2mo?

gu(m,y) =

We fix a nonnegative weighting function f: R? — R that is zero along the horizontal axis,
continuous, and piecewise differentiable. With these ingredients, we transform the PD into
a scalar function over the plane.

Definition 1 For B a PD, the corresponding persistence surface pg: R? — R is the func-
tion
pp(2)= Y f(w)du(2).

ueT(B)

The weighting function f is critical to ensure the transformation from a PD to a persistence
surface is stable, which we prove in §5.

Finally, the surface pp(z) is reduced to a finite-dimensional vector by discretizing a rele-
vant subdomain and integrating pp(z) over each region in the discretization. In particular,
we fix a grid in the plane with n boxes (pixels) and assign to each the integral of pp over
that region.

Definition 2 For B a PD, its persistence image is the collection of pizels I(pp), = ffp pB dydx.

PIs provide a convenient way to combine PDs of different homological dimensions into a
single object. Indeed, suppose in an experiment the PDs for Hy, Hy, ..., Hy are computed.
One can concatenate the PI vectors for Hy, H1, ..., Hj into a single vector representing all
homological dimensions simultaneously, and then use this concatenated vector as input into
ML algorithms.

When generating a PI, the user makes three choices: the resolution, the distribution
(and its associated parameters), and the weighting function. A strength of Pls is that they
are flexible; a weakness is that these choices are noncanonical.

7. We omit points that correspond to features with infinite persistence, e.g., the Hy feature corresponding
to the connectedness of the complete simplicial complex.

8. Instead of birth-persistence coordinates, one could also use other choices such as birth-death or (average
size)-persistence coordinates. Our stability results (§5) still hold with only a slight modification to the
constants.
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Figure 1: Algorithm pipeline to transform data into a persistence image.

Resolution of the image: The resolution of the PI corresponds to the grid being
overlaid on the PD. The classification accuracy in the PI framework appears to be fairly
robust to choice of resolution, as discussed in §6.2 and by Zeppelzauer et al. (2016).

The Distribution: Our method requires the choice of a probability distribution asso-
ciated to each point in the PD. The examples in this paper use a Gaussian centered at each
point, but other distributions may be used. The Gaussian distribution depends on a choice
of variance: we leave this choice as an open problem, though the experiments in §6.2 and
those of Zeppelzauer et al. (2016) show a low sensitivity to the choice of variance.

The Weighting Function: In order for our stability results in §5 to hold, our weighting
function f: R? — R must be zero along the horizontal axis (the analogue of the diagonal
in birth-persistence coordinates), continuous, and piecewise differentiable. A simple choice
is a weighting function that depends only on the vertical persistence coordinate y. In order
to weight points of higher persistence more heavily, functions which are nondecreasing in ¥,
such as sigmoidal functions, are a natural choice. However, in certain ML tasks such as the
work of Bendich et al. (2016) the points of small or medium persistence may perform best,
and hence one may choose to use more general weighting functions. In our experiments
in §6, we use a piecewise linear weighting function f: R?> — R which only depends on the
persistence coordinate y. Given b > 0, define wy: R — R via

0 ift <o,
wy(t) = ¢ £ if 0 <t <b, and
1 ift>b.

We use f(x,y) = wp(y), where b is the persistence value of the most persistent feature in all
trials of the experiment.

In the event that the birth coordinate is zero for all points in the PD, as is often the
case for Hy, it is possible to generate a 1-dimensional (instead of 2-dimensional) PI using
1-dimensional distributions. This is the approach we adopt. Appendix B displays examples
of PIs for the common topological spaces of a circle and a torus with various parameter
choices.

5. Stability of Persistence Surfaces and Images

Due to the unavoidable presence of noise or measurement error, tools for data analysis
ought to be stable with respect to small perturbations of the inputs. Indeed, one reason
for the popularity of PDs in topological data analysis is that the transformation of a data
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set to a PD is stable (Lipschitz) with respect to the bottleneck metric and—given some
mild assumptions about the underlying data—is also stable with respect to the Wasserstein
metrics (Edelsbrunner and Harer (2010)). In §5.1, we show that persistence surfaces and
images are stable with respect to the 1-Wasserstein distance between PDs. In §5.2, we
prove stability with improved constants when the PI is constructed using the Gaussian
distribution.

5.1 Stability for general distributions

For h: R? — R differentiable, define |Vh| = sup,cg2 |[Vh(2)|2 to be the maximal norm
of the gradient vector of h, i.e., the largest directional derivative of h. It follows by the
fundamental theorem of calculus for line integrals that for all u,v € R?, we have

[h(w) = h(v)] < [VA] |lu —v]2. (1)

Recall ¢,,: R? — R is a differentiable probability distribution with mean u = (uy, uy) €
R?. We may safely denote |[V¢,| by |[V¢| and ||¢y s by ||¢]lce since the maximal directional
derivative and supremum of a fixed differentiable probability distribution are invariant under
translation. Note that

[6u = dolloe < VO] [lu— ]2 (2)

since for any z € R? we have |¢y(2) — ¢u(2)] = |pu(2) — u(z +u —v)| < V| |lu — v|2.
Recall that our nonnegative weighting function f: R?> — R is defined to be zero along
the horizontal axis, continuous, and piecewise differentiable.

Lemma 3 Foru,v € R?, we have || f(u)py — f(0)dy |00 < (||f|\oo|V¢|+||¢||oo|Vf|)||u—v|\2.

Proof For any z € R?, we have

[f(w)du(2) = f(0)$u(2)] = [f(u) (¢u(2) = du(2))+(f(u) = f(v))u(2)]
<l flloo [Pu(2) = @ (2)] + [ @lloo| f () = F(v)]
< fllool VOl lu = vll2 + [[#lloo VS lu = vl by (2) and (1)
= (If eIVl + 8lloc| V1) 1 = v]l2.

Theorem 4 The persistence surface p is stable with respect to the 1-Wasserstein distance
between diagrams: for B, B’ € D we have

los = pBrlloc < VIO(I flloc| Vel + lI6]lc |V ) W1(B, B').

10
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Proof Since we assume B and B’ consist of finitely many points, there exists a matching
~ that achieves the infimum in the Wasserstein distance. Then

lps = porlle =1l D> flu Z (v (1) Dy (wylloo

ueT(B) ueT(B

< > fw u—fw(u)m,(u)noo

ueT(B)

< (Iflloo Vol + 18l V£) > llu—~(u)2 by Lemma 3.

ueT(B)

<V2(I sl VO + 16110V A1) D fu—y(w)]oe since || [l2 < V2 - [l in R?
u€T(B)

< VIO(Illoo Vol + [0llcl VF1) 3l = v(u)loe  since |T()]|2 < V5] - [lo
ueB

= VI0(|I ||V + | ¢llocl V £) Wi (B, B).

The step transforming from a sum over all u € T'(B) to one over all u € B is necessary be-
cause the Wasserstein distance is defined using birth-death coordinates, not birth-persistence
coordinates. The bound || T(:)|l2 < V/5]| - [|o follows from the fact the unit ball with respect
to the L> norm in R? (i.e., a square) gets mapped under T to a parallelogram contained
inside a ball with respect to the L? norm of radius v/5. |

It follows that persistence images are also stable.

Theorem 5 The persistence image I(ppg) is stable with respect to the 1-Wasserstein distance
between diagrams. More precisely, if A is the mazimum area of any pizel in the image, A’
is the total area of the image, and n is the number of pizels in the image, then

1(p5) = I(pp) e < VIOA(|| flloc| Vel + [I8]lc| V ) W1(B, B')
1(p5) = I(pp) It < VIOA (| flloo| Vol + lI6lloc |V f) W1(B, B')
H(p5) = I(pp)ll2 < VIORA([|flloc| V| + 18lloc |V f[) W1 (B, B').

The constant for the L? norm bound containing /n goes to infinity as the resolution of
the image increases. For this reason, in Theorem 10 we provide bounds with better constants
in the specific case of Gaussian distributions.

Proof Note for any pixel p with area A(p) we have

[ (pB)p — I(pB')p ‘// pB dydz—//pB/ dydﬂf
‘// PB — PB’ dydx‘

< A(p)llpB — pprlloo
< VI0A®) (/1| V| + 161l V /) W1(B, B') by Theorem 4.

11
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Hence we have

(o) = I(p5) oo < VIOA(|| flloc| Vel + [|6]loc| V ) W1(B, B')
1(p5) = I(pp) 1t < VIOA (| fllsc| Vel + 18llc| V) W1 (B, B')
1T(pg) — I(pp)ll2 < VallI(p) — I(ppr)lloe

< VIOA([| fllool Vol + [ 6lloc| V ) W1(B, B').

Remark 6 Recall D is the set of all PDs. The kernel k: D x D — R defined by k(B, B') =
(I(pg),I(pp’))rn is non-trivial and additive, and hence Theorem 3 of Reininghaus et al.
(2015) implies that k is not stable with respect to W), for any 1 < p < oco. That is, when
1 < p < oo there is no constant ¢ such that for all B, B' € D we have ||I(pg) — I(pp/)|2 <
W, (B, B').

5.2 Stability for Gaussian distributions

In this section, we provide stability results with better constants in the case of Gaussian
distributions. With Gaussian distributions, we can control not only the L distance but
also the L' distance between two persistence surfaces.

Our results for 2-dimensional Gaussians will rely on the following lemma for 1-dimensional
Gaussians.

Lemma 7 For u,v € R, let gy,g9,: R — R be the normalized 1-dimensional Gaussians,

1 2 2
defined via gy(z) = ——e F"W /29" If 4. b >0, then
fi 9u(2) o f

2 min{a, b
Hagu - bgv”l < ‘a - b| + \/;;{T}W — ’U|.

Proof Let Erf(t) = % fg e’ du. We show in Appendix C that
lagu = bgoll1 = F(v — u), (3)
where F': R — R is defined by

F2) {|a—b| ifz=0
z) = 224202 In(a/b) —224-202In(a/b) .
}aErf (Tﬁ) — bErf (W) ‘ otherwise.

The roots of F” are z = +04/2In(a/b) and z = +io\/2In(a/b). If a > b, the unique

positive real root is z, = o4/2In(a/b) while if b > a, the unique positive real root is

zp = —ioy/21In (a/b). Since F'(z,) = by/2/7/0o and F'(zp) = ay/2/7 /0, we conclude that

2 min{a, b 2 min{a, b
1F |0 = \fmm{“’ b andhence  F(2) < |a—b| + \fmm{“’ b
™ g T g

The result follows by letting z = v — u. |

12
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Lemma 8 For u,v € R?, let gy, g,: R? = R be normalized 2-dimensional Gaussians. Then

||f<u>gu—f<v>gv||1s<|Vf|+\f L ”})uu—vua.

The proof of Lemma 8 is shown in Appendix C and uses a similar construction to that
of Lemma 7. We are prepared to prove the stability of persistence surfaces with Gaussian
distributions.

Theorem 9 The persistence surface p with Gaussian distributions is stable with respect to
the 1-Wasserstein distance between diagrams: for B, B’ € D we have

los — pih < (f!Vf\Jr\/»Hf"OO) (BB,

Proof Since we assume B and B’ consist of finitely many off-diagonal points, there exists
a matching v that achieves the infimum in the Wasserstein distance. Then

||pB - pB'Hl = Z f Z f g’y(u

u€T(B) u€T(B) 1
< 3 1o =100l
ueT (B
(|Vf|+\f I ”‘”) o= ()l by Lemma., where min{ f(u), £(2)) < 1/l
ueT(B)
(fyvm\f I ”°°>Zuu Wik since [TC)]z < VB
ueB

= <\/5ny\ + ﬁ%) Wi(B, B).

It follows that persistence images are also stable.

Theorem 10 The persistence image I(pg) with Gaussian distributions is stable with respect
to the 1-Wasserstein distance between diagrams. More precisely,

17(5) ~ o)l < (ﬁw + \/?”fa'“’) Wa(B, B
I1(0m) ~ 1ol < (ﬁw v \/?”fg"”) Wi(B,B)

I1(p5) — Tpp) o < (f Vil+ f”') Wi(B, B)
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Proof We have

I (pB) = I(pp)l1 = Zp:‘//pps dydz—//ppB/ dydx‘ < //}R2 lpB — pp| dydz
=lpB —ppl1 < (\/5\Vf| + \/?W") Wi (B, B')

by Theorem 9. The claim follows since || - ||2 < || - ||1 and || - ||[oc < || - ||1 for vectors in R™. W

6. Experiments

We perform several experiments in order to assess the added value of our vector repre-
sentation of PDs. First, in §6.1, we compare the performance of PDs, PLs, and Pls in a
classification task for a synthetic data set consisting of point clouds sampled from six dif-
ferent topological spaces using K-medoids, which requires only a metric space (instead of a
vector space) structure. We find that PIs produce consistently high classification accuracy,
and furthermore, the computation time for Pls is significantly faster than computing bottle-
neck or Wasserstein distances between PDs. In §6.2, we explore the impact that the choices
of parameters determining our PIs have on classification accuracy. We find that the accuracy
is insensitive to the particular choices of PI resolution and distribution variance. In §6.3, we
combine PIs with a sparse support vector machine classifier to identify the most strongly
differentiating pixels for classification; this is an example of a ML task which is facilitated
by the fact that Pls are finite vectors. Finally, as a novel machine learning application,
we illustrate the utility of PIs to infer dynamical parameter values in both continuous and
discrete dynamical systems: a discrete time system called the linked twist map in §6.4.1,
and a partial differential equation called the anisotropic Kuramoto-Sivashinsky equation in
§6.4.2.

6.1 Comparison of PDs, PLs, and Pls using K-medoids Classification

Our synthetic data set consists of six shape classes: a unit cube, a circle of diameter one,
a sphere of diameter one, three clusters with centers randomly chosen in the unit cube,
three clusters within three clusters (where the centers of the minor clusters are chosen as
small—i.e., <0.1—random perturbations from the major cluster centers), and a torus with
a major diameter of one and a minor diameter of one half. We produce 25 point clouds of
500 points sampled uniformly at random from each of the six shapes, and then add a level
of Gaussian noise. This gives 150 point clouds in total.

We then compute the Hy and H; PDs for the Vietoris—Rips filtration (§A.2) built from
each point cloud which have been endowed with the ambient Euclidean metric on R3.

Our goal is to compare various methods for transforming PDs into distance matrices
to be used to establish proximity of topological features extracted from data. We create
32 .22 = 36 distance matrices of size 150 x 150, using three choices of representation (PDs,
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PLs, PIs), three choices of metric (L', L2, L>),? two choices of Gaussian noise (n = 0.05,
0.1), and two homological dimensions (Hy, H;). For example, the PD, Hy, L? n = 0.1,
distance matrix contains the 2-Wasserstein distances between the H; PDs for the random
point clouds with noise level 0.1. By contrast, the PI, Hy, L? 1 = 0.1 distance matrix
contains all pairwise L? distances between the PIs'® produced from the H; PDs with noise
level 0.1.

We first compare these distance matrices based on how well they classify the random
point clouds into shape classes via K-medoids clustering (Kaufman and Rousseeuw, 1987;
Park and Jun, 2009). K-medoids produces a partition of a metric space into K clusters
by choosing K points from the data set called medoids and assigning each metric space
point to its closest medoid. The score of such a clustering is the sum of the distances from
each point to its closest medoid. The desired output of K-medoids is the clustering with
the minimal clustering score. Unfortunately, an exhaustive search for the global minimum
is often prohibitively expensive. A typical approach to search for this global minimum is
to choose a large selection of K random initial medoids, improve each selection of medoids
iteratively in rounds until the clustering score stabilizes and then return the identified final
clustering with the lowest score for each initialization. In our experiments, we choose 1,000
random initial selections of K = 6 medoids (as there are six shape classes) for each distance
matrix, improve each selection of medoids using the Voronoi iteration method (Park and
Jun, 2009), and return the clustering with the lowest classification score. To each K-medoids
clustering we assign an accuracy which is equal to the percentage of random point clouds
identifed with a medoid of the same shape class. In Table 1, we report the classification
accuracy of the K-medoids clustering with the lowest clustering score, for each distance
matrix.

Our second criterion for comparing methods to produce distance matrices is compu-
tational efficiency. In Table 1, we report the time required to produce each distance
matrix, starting with 150 precomputed PDs as input. In the case of PLs and Pls, this
time includes the intermediate step of transforming each PD into the alternate represen-
tation, as well as computing the pairwise distance matrix. All timings are computed on
a laptop with a 1.3 GHz Intel Core i5 processor and 4 GB of memory. We compute
bottleneck, 1-Wasserstein, and 2-Wasserstein distance matrices using the software of Ker-
ber et al. (2016). For PL computations, we use the Persistence Landscapes Toolbox by
Bubenik and Dlotko (2016). Our MATLAB code for producing PIs is publically available
at https://github.com/CSU-TDA/Persistencelmages.

We see in Table 1 that PI distance matrices have higher classification accuracy than
nearly every PL distance matrix, and higher classification accuracy than PDs in half of the
trials.

Furthermore, the computation times for PI distance matrices are significantly lower
than the time required to produce distance matrices from PDs using the bottleneck or p-
Wasserstein metrics. There is certainly no guarantee that PlIs will outperform PDs or PLs
in any given machine learning task. However, in this experiment, persistent images provide

9. The L', L?, L™ distances on PDs are more commonly known as the 1-Wasserstein, 2-Wasserstein, and
bottleneck distances.

10. For PIs in this experiment, we use variance ¢ = 0.1, resolution 20 x 20, and the weighting function
defined in §4.
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Table 1: Comparing classification accuracy and times of PDs, PLs, and PIs. The timings
contain the computation time in seconds for producing a 150 x 150 distance matrix from 150
precomputed PDs. In the case of PLs and Pls, this requires first transforming each PD into
its alternate representation and then computing a distance matrix. We consider 36 distinct
distance matrices: three representations (PDs, PLs, PIs), two homological dimensions (Hy,
Hy), three choices of metric (L', L?, L*), and two levels of Gaussian noise (n = 0.05, 0.1).

Accuracy Time Accuracy Time
Distance Matrix | (Noise 0.05) | (Noise 0.05) | (Noise 0.1) | (Noise 0.1)
PD, Hy, L' 96.0% 37346s 96.0% 42613s
PD, Hy, L? 91.3% 246565 91.3% 25138s
PD, Hy, L™ 60.7% 1133s 63.3% 1149s
PD, Hy, L' 100% 657s 96.0% 703s
PD, H;, L? 100% 984s 97.3% 1042s
PD, H;, L™ 81.3% 527s 66.7% 564s
PL, Hy, L' 92.7% 29s 96.7% 33s
PL, Hy, L? 77.3% 29s 82.0% 34s
PL, Hy, L™ 60.7% 2s 63.3% 2s
PL, Hy, L' 83.3% 36s 80.7% 48s
PL, H,, L? 83.3% 50s 66.7% 69s
PL, Hy, L™ 74.7% 8s 66.7% 9s
PI, Hy, L' 93.3% 9s 95.3% 9s
PI, Hy, L? 92.7% 9s 95.3% 9s
PI, Hy, L™ 94.0% 9s 96.0% 9s
PI, H,, L' 100% 17s 95.3% 18s
PI, Hy, L? 100% 17s 96.0% 18s
PI, H;, L™ 100% 17s 96.0% 18s

a representation of persistent diagrams which is both useful for the classification task and
also computationally efficient.

6.2 Effect of PI Parameter Choice

In any system that relies on multiple parameters, it is important to understand the effect of
parameter values on the system. As such, we complete a search of the parameter space used
to generate PIs on the shape data set described in §6.1 and measure K-medoids classification
accuracy as a function of the parameters. We use 20 different resolutions (ranging from 5 x 5
to 100 x 100 in increments of 5), a Gaussian function with 20 different choices of variance
(ranging from 0.01 to 0.2 in increments of 0.01), and the weighting function described in
84. For each set of parameters, we compute the classification accuracy of the K-medoids
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Figure 2: K-medoids classification accuracy as a function of resolution and variance for the
data set of six shape classes. First column: noise level 7 = 0.05. Second column: noise level
n = 0.1. First row: fixed variance 0.1 with resolutions ranging from 5 x 5 to 100 x 100 in
increments of 5. Second row: fixed resolution 20 x 20 with variances ranging from 0.01 to
0.2 in increments of 0.01.

clustering with the minimum clustering score on the two sets of noise levels for the homology
dimensions Hy and H;. We observe that the classification accuracy is insensitive to the choice
of resolution and variance.

The plots in Figure 2 are characteristic of the 2-dimensional accuracy surface over all
combinations of parameters in the ranges of variances and resolutions we tested. In an
application to archeology, Zeppelzauer et al. (2016) find a similar robustness of PIs to the
choices of resolution and variance.

6.3 Differentiating Homological Features by Sparse Support Vector Machine

The 1-norm regularized linear support vector machine (SVM), a.k.a. sparse SVM (SSVM)
classifies data by generating a separating hyperplane that depends on very few input space
features (Bradley and Mangasarian, 1998; Zhu et al., 2004; Zhang and Zhou, 2010). Such a
model can be used for reducing data dimension or selecting discriminatory features. Note
that linear SSVM feature selection is implemented on vectors and therefore, can be used on
our PlIs to select discriminatory pixels during classification. Other PD representations in
the literature (Reininghaus et al., 2015; Pachauri et al., 2011) are designed to use kernel ML
methods, such as kernel (nonlinear) SVMs. However, constructing kernel SVM classifiers
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using the 1-norm results in minimizing the number of kernel functions, not the number of
features in the input space (i.e., pixels in our application) (Fung and Mangasarian, 2004).
Hence, for the purpose of feature selection or more precisely, PI pixel selection, we employ
the linear SSVM.

We adopt the one-against-all (OAA) SSVM on the sets of Hy and Hy Pls from the six
class shape data. In a one-against-all SSVM, there is one binary SSVM for each class to
separate members of that class from members of all other classes. The Pls were generated
using resolution 20 x 20, variance 0.0001, and noise level 0.05. Note that because of the
resolution parameter choice of 20 x 20, each PI is a 400-dimensional vector, and the selected
features will be a subset of indices corresponding to pixels within the PI. Using 5-fold cross-
validated SSVM resulted in 100% accuracy comparing six sparse models with indications
of the discriminatory features. Feature selection is performed by retaining the features
(again, in this application, pixels) with non-zero SSVM weights, determined by magnitude
comparison using weight ratios; for details see Chepushtanova et al. (2014). Figure 3 provides
two examples, indicating the pixels of H; Pls that discriminate circles and tori from the other
classes in the synthetic data set.

Figure 3: SSVM-based feature (pixel) selection for H; Pls from two classes of the synthetic
data. Selected pixels are marked by blue crosses. (a) A noisy circle with the two selected
pixels (indices 21 and 22 out of 400). (b) A noisy torus with the two selected pixels (indices
59 and 98 out of 400). The PI parameters used are resolution 20 x 20 and variance 1074,
for noise level 0.05.

Feature selection produces highly interpretable results. The discriminatory pixels in the
H, PIs that separate circles from the other classes correspond to the region where highly
persistent H; topological features exist across all samples of a noisy circle (highlighted
in Figure 3a). Alternatively, the discriminatory pixels in H; Pls that separate tori from
the other classes correspond to points of short to moderate persistence (see Figure 3b).
In this way, Figure 3b reiterates an observation of Bendich et al. (2016) that points of
short to moderate persistence can contain important discriminatory information. Similar
conclusions can be drawn from the discriminatory pixels of others classes (Appendix D).
Our classification accuracy of 100% is obtained using only those pixels selected by SSVM (a
cumulative set of only 10 distinct pixels).
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6.4 Application: Determination of Dynamical System Parameters

Models of dynamic physical phenomenon rarely agree perfectly with the reality they repre-
sent. This is often due to the presence of poorly-resolved (or poorly-understood) processes
which are parameterized rather than treated explicitly. As such, determination of the influ-
ence of a model parameter—which may itself be an incompletely-described conglomeration
of several physical parameters—on model dynamics is a mainstay of dynamical system anal-
ysis. In the case of fitting a dynamic model to data, i.e., explicit determination of optimal
model parameters, a variety of techniques exist for searching through parameter space, which
often necessitate costly simulations. Furthermore, such approaches struggle when applied
to models exhibiting sensitivity to initial conditions. We recast this problem as a machine-
learning exercise based on the hypotheses that model parameters will be reflected directly
in dynamic data in a way made accessible by persistent homology.

6.4.1 A DISCRETE DYNAMICAL MODEL

We approach a classification problem with data arising from the linked twist map, a discrete
dynamical system modeling fluid flow. Hertzsch et al. (2007) use the linked twist map
to model flows in DNA microarrays with a particular interest in understanding turbulent
mixing. This demonstrates a primary mechanism giving rise to chaotic advection. The linked
twist map is a Poincaré section of eggbeater-type flow (Hertzsch et al., 2007) in continuous
dynamical systems. The Poincaré section captures the behavior of the flow by viewing a
particle’s location at discrete time intervals. The linked twist map is given by the discrete
dynamical system

Tpt1 = Tn +7Yn(1 —y,) mod 1
Ynt1 = Yn + 125 (1 —x,) mod 1,

where r is a positive parameter. For some values of r, the orbits {(x,,y,) : n=0,...,00}
are dense in the domain. However, for other parameter values, voids form. In either case,
the truncated orbits {(zn,yn) : n=0,..., N € N} exhibit complex structure.

For this experiment, we choose a set of parameter values, r = 2.5, 3.5, 4.0, 4.1 and
4.3, which produce a variety of orbit patterns. For each parameter value, 50 randomly-
chosen initial conditions are selected, and 1000 iterations of the linked twist map are used
to generate point clouds in R?. Figure 4 shows examples of typical orbits generated for
each parameter value. The goal is to classify the trials by parameter value using Pls to
capitalize on distinguishing topological features of the data. We use resolution 20 x 20 and a
Gaussian with variance o = 0.005 to generate the PIs. These parameters were chosen after
a preliminary parameter search and classification effort. Similar results hold for a range of
PI parameter values.

For a fixed r parameter value and a large number of points (many thousands), the
patterns in the distributions of iterates show only small visible variations for different choices
of the initial condition (x,yo). However, with few points, such as in Figure 5, there are
more significant variations in the patterns for different choices of initial conditions, making
classification more difficult.

We perform classification and cross-validation with a discriminant subspace ensemble.
This ML algorithm trains many “weak” learners on randomly chosen subspaces of the data
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Figure 4: Examples of the first 1000 iterations, {(zn,y,) : n =0,...,1000}, of the linked
twist map with parameter values r = 2, 3.5, 4.0, 4.1 and 4.3, respectively.

T 4]

Figure 5: Truncated orbits, {(zy,yn) : n=0,...,1000}, of the linked twist map with fixed
r = 4.3 for different initial conditions (zo,yo).

(of a fixed dimension), and classifies and assigns a score to each point based on the current
subspace. The final classification arises from an average of the scores of each data point over
all learners (Ho, 1998). We perform 10 trials and average the classification accuracies. For
the concatenated Hy and Hp Pls, this method achieves a classification accuracy of 82.5%;
compared to 49.8% when using only Hy PIs and 65.7% when using H; Pls. This experiment
highlights two strengths of Pls: they offer flexibility in choosing a ML algorithm that is
well suited to the data under consideration, and homological information from multiple
dimensions may be leveraged simultaneously for greater discriminatory power.

This application is a brief example of the utility of Pls in classification of data from dy-
namical systems and modeling real-world phenomena, which provides a promising direction
for further applications of Pls.

6.4.2 A PARTIAL DIFFERENTIAL EQUATION

The Kuramoto-Sivashinsky (KS) equation is a partial differential equation for a function
u(z,y,t) of spatial variables x, y and time ¢ that has been independently derived in a variety
of problems involving pattern formation in extended systems driven far from equilibrium.
Applications involving surface dynamics include surface nanopatterning by ion-beam erosion
(Cuerno and Barabési, 1995; Motta et al., 2012), epitaxial growth (Villain, 1991; Wolf, 1991,
Rost and Krug, 1995), and solidification from a melt (Golovin and Davis, 1998). In these
applications, the nonlinear term in the KS equation may be anisotropic, resulting in the
anisotropic Kuramoto-Sivashinsky (aKS) equation

92 = VP VOV IN (2
ETi VZu VVu—i—r(axu) + ayu , (4)
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where V2 = % + g—;, and the real parameter r controls the degree of anisotropy. At
a fixed time t*, u(z,y,t*) is a patterned surface (periodic in both z and y) defined over
the (z,y)-plane. Visibly, the anisotropy appears as a slight tendency for the pattern to be
elongated in the vertical or horizontal direction.

Figure 6: Plots of height-variance-normalized surfaces u(z,y,-) resulting from numerical
simulations of the aKS equation (4). Each column represents a different parameter value:
(from left) r = 1, 1.25, 1.5, 1.75 and 2. Each row represents a different time: ¢t = 3 (top)
and t = 5 (bottom). By ¢ = 5 any anisotropic elongation of the surface pattern has visibly
stabilized.

Numerical simulations of the aKS equation for a range of parameter values (columns) and
simulation times (rows) are shown in Figure 6. For all simulations, the initial conditions were
low-amplitude white noise. We employed a Fourier spectral method with periodic boundary
conditions on a 512 x 512 spatial grid, with a fourth-order exponential time differencing
Runge-Kutta method for the time stepping. Five values for the parameter r were chosen,
namely » = 1, 1.25, 1.5, 1.75 and 2, and thirty trials were performed for each parameter
value. Figure 7 shows the similarity between surfaces associated to two parameter values
r=1.75 and r = 2 at an early time.

Figure 7: To illustrate the difficulty of our classification task, consider five instances of
surfaces u(z,y,3) for r = 1.75 or r = 2, plotted on the same color axis. These surfaces
are found by numerical integration of Equation (4), starting from random initial conditions.
Can you group the images by eye?

'TTCLT TGl T = 4 (1J9] WOT)) :IeMSUY
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We aim to identify the anisotropy parameter for each simulation using snapshots of
surfaces u(zx,y,-) as they evolve in time. Inference of the parameter using the surface
alone proves difficult for several reasons. First, Equation (4) exhibits sensitivity to initial
conditions: initially nearby solutions diverge quickly. Second, although the surface u(z, y, t*)
at a fixed time is an approximation due to the finite discretization of its domain, the spatial
resolution is still very large: in fact, these surfaces may be thought of as points in R266144,
We were unable to perform standard classification techniques in this space. It was therefore
necessary to perform some sort of dimension reduction. One such method is to simply
‘resize’ the surface by coarsening the discretization of the spatial domain after computing
the simulation at a high resolution by replacing a block of grid elements with their average
surface height. The surfaces were resized in this way to a resolution of 10 x 10 and a
subspace discriminant ensemble was used to perform classification. Unsurprisingly, this
method performs very poorly at all times (first row of Table 2).

The anisotropy parameter also influences the mean and amplitude of the surface pattern.
We eliminate differences in the mean by mean-centering each surface after the simulation. To
assess the impact of the variance of surface height on our task, classification was performed
using a normal distribution-based classifier built on the variances of the surface heights. In
this classifier, a normal distribution was fit to a training set of 2/3 of the variances for each
parameter value, and the testing data was classified based on a z-test for each of the different
models. That is, a p-value for each new variance was computed for membership to the five
normal distributions (corresponding to the five parameter choices of r), and the surface
was classified based on the model yielding the highest p-value. After the pattern has more
fully emerged (by, say, time ¢ = 5) this method of classification yields 75% accuracy,!! as
shown in Table 2. However, early on in the formation of the pattern, this classifier performs
very poorly because height variance is not yet a discriminating feature. Figure 8 shows the
normal distribution fit to the variance of the surfaces for each parameter value at times t = 3
and 5, and illustrates why the variance of surface height is informative only after a surface
is allowed to evolve for a sufficiently long time.

(a) (b) — r=1.00
r=1.25
0.501 0.14y — r = 1.50
r=1.75
2 0.10f - r = 2.00
% 0.30}
< 0.06}
0.10 0.02} \
19 20 21 22 23 24 25 40 50 60 70 80 90 100
variance variance

Figure 8: Histograms of the variances of surface heights for each parameter value, and the
normal distribution fit to each histogram, for times (a) t = 3 and (b) t = 5.

11. Accuracy reported is averaged over 100 different training and testing partitions.
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Table 2: Classification accuracies at different times of the aKS solution, using different
classification approaches. Classification of times ¢ = 15 and 20 result in accuracies similar
to t =10.

Time Time Time

Classification Approach t=3 t=5 t=10

Subspace Discriminant Ensemble, Resized Surfaces | 26.0 % | 19.3% | 19.3 %
Variance Normal Distribution Classifier 20.74% | 75.2% | 77.62 %
Subspace Discriminant Ensemble, Hy PIs 583 % | 96.0 % | 94.7 %
Subspace Discriminant Ensemble, H; Pls 67.7% | 87.3 % | 93.3%
Subspace Discriminant Ensemble, Hy and Hy; PIs | 72.7 % | 95.3 % | 97.3 %

Variance of a surface is reflected in its sublevel set filtration (see §A.3 for more details)
PD. Yet, the PD and the subsequent PI contain additional topological structure, which
may reveal other influences of the anisotropy parameter on the evolution of the surface.
Persistence diagrams were computed using the sublevel set filtration, and Pls were generated
with resolution 10 x 10 and a Gaussian with variance ¢ = 0.01. We think of our pipeline
to a PI as a dimensionality reduction in this case, taking a surface which in actuality is
a very high-dimensional point and producing a much lower dimensional one that retains
meaningful characteristics of the original surface.

We again use a subspace discriminant ensemble to classify Pls by parameter. Table 2
compares these results to the same technique applied to low dimensional approximations
of the raw surfaces and the normal distribution-based classifier built from surface variance
alone. At each time in the system evolution, the best classification accuracy results from us-
ing Pls, improving accuracies over using either low resolution approximations of the surfaces
or variance of surface height alone by at least 20%, including at early times in the evolution
of the surface when pattern amplitudes are not visibly differentiated (see Figure 7). We
postulate that PlIs capture more subtle topological information that is useful for identifying
the parameter used to generate each surface.

As we observed in §6.4.1, concatenating Hy and H; Pls can notably improve the clas-
sification accuracy over either feature vector individually. We again note that classification
accuracy appears insensitive to the PI parameters. For example, when the variance of the
Guassians used to generate the PIs was varied from 0.0001 to 0.1, the classification accuracy
of the Hy PlIs, changed by less than one percentage point. The classification accuracy for Hy
fluctuated in a range of approximately five points. For a fixed variance, when the resolution
of the image was varied from 5 to 20, the Hy accuracy varied by little more than three points
until the accuracy dropped by six points for a resolution of 25.

PIs performed remarkably well in this classification task, allowing one to capitalize on
subtle structural differences in the patterns and significantly reduce the dimension of the
data for classification. There is more to be explored in the realm of pattern formation and
persistence that is outside the scope of this paper.
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7. Conclusion

PIs offer a stable representation of the topological characteristics captured by a PD. Through
this vectorization, we open the door to a myriad of ML tools. This serves as a vital bridge
between the fields of ML and topological data analysis and enables one to capitalize on
topological structure (even in multiple homological dimensions) in the classification of data.

We have shown Pls yield improved classification accuracy over PLs and PDs on sampled
data of common topological spaces at multiple noise levels using K-medoids. Additionally,
computing distances between Pls requires significantly less computation time compared to
computing distances between PDs, and comparable computation times with PLs. Through
Pls, we have gained access to a wide variety of ML tools, such as SSVM which can be used
for feature selection. Features (pixels) selected as discriminatory in a PI are interpretable
because they correspond to regions of a PD. We have explored data sets derived from
dynamical systems and illustrated that topological information of solutions can be used for
inference of parameters since Pls encapsulate this information in a form amenable to ML
tools, resulting in high accuracy rates for data that is difficult to classify.

The classification accuracy is robust to the choice of parameters for building Pls, pro-
viding evidence that it is not necessary to perform large-scale parameter searches to achieve
reasonable classification accuracy. This indicates the utility of PIs even when there is not
prior knowledge of the underlying data (i.e., high noise level, expected holes, etc.). The
flexibility of Pls allows for customization tailored to a wide variety of real-world data sets.
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Appendix A. Homology and Data

Homology is an invariant that characterizes the topological properties of a topological space
X. In particular, homology measures the number of connected components, loops, trapped
volumes, and so on of a topological space, and can be used to distinguish distinct spaces
from one another. More explicitly, the k-dimensional holes of a space generate a homology
group, Hi(X). The rank of this group is referred to as the k-th Betti number, B, and counts
the number of k-dimensional holes of X. For a comprehensive study of homology, see the
textbook of Hatcher (2002).
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A.1 Simplicial Complexes and Homology

Simplicial complexes are one way to define topological spaces combinatorially. More pre-
cisely, a simplicial complex S consists of vertices (0-simplices), edges (1-simplices), triangles
(2-simplices), tetrahedra (3-simplices), and higher-dimensional k-simplices (containing k + 1
vertices), such that

e if o is a simplex in S then S contains all lower-dimensional simplices of ¢, and
e the non-empty intersection of any two simplices in .S is a simplex in S.

The following setup is necessary for a rigorous definition of (simplicial) homology. To a
simplicial complex, one can associate a chain complex of vector spaces over a field F (often
a finite field Z/pZ for p a small prime),

Ok+1 o]
i Ol —= Cp 2 Chq = -+ -

Here, vector space C} consists of all F-linear combinations of the k simplices of S, and has
as a basis the set of all k-simplices. The linear map 0y, : Cy, — Ci_1, known as the boundary
operator, maps a k-simplex to its boundary, a sum of its (k — 1)-faces. More formally, the

boundary map acts on a k-simplex [vg,v1, ..., vk by
k
On([vo, o1, - ok]) = D (=) [vo, - i, -, v,
i=0
where [vg,...,T;,...,vx] is the (k — 1)-simplex obtained from [vy,...,vx] by removing ver-

tex v;. We define two subspaces of Cy: subspace Zp = ker(Jk) is known as the k-cycles,
and subspace By = im(9Jx+1) = Ok+1(Ck+1) is known as the k-boundaries. The boundary
operator satisfies the property 0 o Ox+1 = 0, which implies the inclusion By C Zj.

Homology seeks to uncover an equivalence class of cycles that enclose a k-dimensional
hole—that is, cycles which are not also boundaries of k-simplices. To this end, the k-th
order homology is defined as Hy(S) = Zy /By, a quotient of vector spaces. The k-th Betti
number f = dim(Hg(S)) is the dimension of this vector space, and counts the number
of independent holes of dimension k. More explicitly, 5y counts the number of connected
components, 31 the number of loops, By the number of trapped volumes, and so on. Betti
numbers are a topological invariant, meaning that topologically equivalent spaces have the
same Betti numbers.

A.2 Persistence Diagrams from Point Cloud Data

One way to approximate the topological characteristics of a point cloud data set is to build
a simplicial complex on top of it. Though there are a variety of methods to do so, we re-
strict attention to the Vietoris—Rips simplicial complex due to its computational tractability
(Ghrist, 2008). Given a data set Y (equipped with a metric) and a scale parameter € > 0,
the Vietoris—Rips complex S¢ has Y as its set of vertices and has a k-simplex for every
collection of k 4+ 1 vertices whose pairwise distance is at most e. However, it is often not
apparent how to choose scale €. Selecting € too small results in a topological space with
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a large number of connected components, and selecting € too large results in a topological
space that is contractible (equivalent to a single point).

The idea of persistent homology is to compute homology at many scales and observe
which topological features persist across those scales (Ghrist, 2008; Carlsson, 2009; Edels-
brunner and Harer, 2008). Indeed, if ¢ < €2 < ... < ¢, is an increasing sequence of
scales, then the corresponding Vietoris—Rips simplicial complexes form a filtered sequence
Sey €8¢, € ... CS,,,. As e varies, so does the homology of S¢, and for any homological
dimension k we get a sequence of linear maps Hy(Se,) = Hi(Se,) — ... = Hp(Se,,). Per-
sistent homology tracks the homological features over a range of values of €. Those features
which persist over a larger range are considered to be true topological characteristics, while
short-lived features are often considered as noise.

For each choice of homological dimension k, the information measured by persistent
homology can be presented as a persistence diagram (PD), a multiset of points in the plane.
Each point (x,y) = (e,€') corresponds to a topological feature that appears (is ‘born’) at
scale parameter € and which no longer remains (‘dies’) at scale €. Since all topological
features die after they are born, this is an embedding into the upper half plane, above the
diagonal line y = x. Points near the diagonal are considered to be noise while those further
from the diagonal represent more robust topological features.

A.3 Persistence Diagrams from Functions

Let X be a topological space and let f: X — R be a real-valued function. One way
to understand the behavior of map f is to understand the topology of its sublevel sets
f1((—o0,¢€]), where € € R. Indeed, given ¢; < e < ... < ¢, one can study map f
using the persistent homology of the resulting filtration of topological spaces, known as the
sublevel set filtration:

FH (=00, a]) € fH(=00,e0]) © ... C FTH((—00, €m]).

If X is a simplicial complex, then one can produce an increasing sequence of simplicial com-
plexes using a modification of this procedure called the lower star filtration (Edelsbrunner
and Harer, 2010). Similarly, if X is a cubical complex (an analogue of a simplicial complex
that is instead a union of vertices, edges, squares, cubes, and higher-dimensional cubes),
then one can produce an increasing sequence of cubical complexes.

In §6.4.2, we study surfaces u: [0,1]> — R produced from the Kuramoto-Sivashinsky
equation. The domain [0,1]? is discretized into a grid of 512 x 512 vertices, i.e., a 2-
dimensional cubical complex with 5122 vertices, 511 - 512 horizontal edges, 511 - 512 vertical
edges, and 5112 squares. We produce an increasing sequence of cubical complexes as follows:

e A vertex v is included at scale € if u(v) <.
e An edge is included at scale € if both of its vertices are present.
e A square is included at scale € if all four of its vertices are present.

Our PDs are obtained by taking the persistent homology of the sublevel set filtration of this
cubical complex.
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We remark that PDs from point cloud data in §A.2 can be viewed as a specific case of
PDs from functions. Indeed, given a data set X in some metric space (M, d), let dx: M — R
be the distance function to set X, defined by dx(m) = inf,cx d(z,m) for all m € M. Note
that dy'((—oo,€]) is the union of the metric balls of radius e centered at each point in X.
For ¢; < e < ... < €y, the persistent homology of

a3 (~o0,e1]) € di! ((—00,e2)) €.

. Cd ((—00, ém))

is identical to the persistent homology of a simplicial complex filtration called the Cech
complex. Furthermore, the persistent homology of the Vietoris—Rips complex is an approx-
imation of the persistent homology of the Cech complex (Edelsbrunner and Harer, 2010,
Section III.2).

Appendix B. Examples of Persistence Images

Figure 9: Examples of PIs for homology dimension H; arising from a noisy circle with a
variety of resolutions and variances. The first row has resolution 5 x 5 while the second has
50 x 50. The columns have variance o = 0.2, ¢ = 0.01, and ¢ = 0.0001, respectively.
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1.
Bl |

Figure 10: Examples of Pls for homology dimension H; arising from a noisy torus with a
variety of resolutions and variances. The first row has resolution 5 x 5 while the second has
50 x 50. The columns have variance o = 0.2, ¢ = 0.01, and ¢ = 0.0001, respectively.

Appendix C. Proofs of Equation (3) and Lemma 8

Let u,v € R and a,b > 0. Equation (3) states that ||ag,—bg,||1 = F(v—u), where F: R — R
is defined by

F2) {\a—b[ if z=0
z) = 224202 In(a/b) —224202In(a/b) .
‘aErf (T\/i) — bErf <W) ‘ otherwise.

Proof If v = u then the statement follows from the fact that g, and g, are normalized to
have unit area under the curve. Hence we may assume u # v.

For u # v a straightforward calculation shows there is a unique real solution z* to
agy(z) = bgy(z), namely

o v? —u? +20%In(a/b)
N 2(v —u) ’

Note

*

z [e o]

agy(z) — bgy(2)dz + / bgy(z) — agy(2)dz| .

lagu—bgyll1 = /00 |ag.(2)—bgy(2)|dz = ‘/ *
(5)

—00 —0o0
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There are four integrals to compute, and we do each one in turn. We have

*

’ agy(z) dz = (z=w)?/20% g,
/ _9u(z) . Tw
(v— u)
/ by substitution ¢ = 3
P(v—u) 5
e at —i—/ e dt
0
— 5+ —Erf( (v— u))>
G <
g + Erf(P(v —u))),
where P(z) = %ﬁ%a/b). Nearly identical calculations show
o a
/ agy(z) dz =3 (1 — Erf(P(v —u)))
z* b
| bl dz= 3 (14 ErQ(u — )
*° b
[ bole) dz = 3 (- ExtQUo — ).
where Q(z) = _22#2\2(‘1/1)). Plugging back into (5) gives ||ag, — bgy||1 = F(v — u). [ ]

We now give the proof of Lemma 8.

Lemma 8. For u,v € R2, let gy, g»: R? = R be normalized 2-dimensional Gaussians. Then

ww%—mwms<wﬂ+J““”” ”ﬂwhmu

Proof The result will follow from the observation that we can reduce the two-dimensional
case involving Gaussians centered at u,v € R? to one-dimensional Gaussians centered at 0
and r = |lu — v|]2. Let u = (uy,uy) and v = (vg, vy); we may assume u; > v, w.lo.g. Let
(r,0) be the magnitude and angle of vector u — v when expressed in polar coordinates. The
change of variables (z,w) = Rp(z — vy, y — vy), where Ry is the clockwise rotation of the
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plane by 6, gives

| f(u )gv\h
/ / 2770_2 oo+ (y—uy)2) /202 _ me[(ma%(yvy)ﬂ/zoz dy do
:/ / / )267[w2+(zfr)2]/202 B éf(v)z o2 +22/202| g g
oo oo | 270 o
_/OO 1 6—7412/202 |:/OO (u) 6—(2—7’)2/202 _ f(’U) 6—22/202 d2‘:| dw
oV 2T —co | OV 2T o\ 2T

oo
1
=|f(u)gr — f(v)goHl/ e~%"/2" G with 90, gr 1-dimensional Gaussians

oo OV 21
= f(u)gr — f(v)gollr
<|f(u) = f(v)| + \/Emin{f(z), fw)} |lu —wvll2 by Lemma 7

< (IVfI MV ELLEO, “’”) Ju— vl

Appendix D. SSVM-based Feature Selection

We performed feature selection using one-against-all (OAA) SSVM on the six classes of
synthetic data with noise level = 0.05. The PIs used in the experiments were generated
from the H; PDs, with the parameter choices of resolution 20 x 20 and variance o = 0.0001.
Note that because of the resolution parameter choice of 20 x 20, each PI is a vector in
R4 and the selected features will be a subset of indices corresponding to pixels within
the PI. We trained an OAA SSVM model for Pls of dimension H;. In the experiment,
we used 5-fold cross-validation and obtained 100% overall accuracy. Feature selection was
performed by retaining the features with non-zero SSVM weights, determined by magnitude
comparison using weight ratios (Chepushtanova et al., 2014). The resulting six sparse models
contain subsets of discriminatory features for each class. Note that one can use only these
selected features for classification without loss in accuracy. These features correspond to
discriminatory pixels in the persistence images.

Figure 11 shows locations of pixels in the vectorized Pls selected by OAA SSVM that
discriminate each class from all the others.
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I h@

Figure 11: SSVM-based feature (pixel) selection for Hj PlIs from the six classes of the
synthetic data. The parameters used are resolution 20 x 20 and variance 0.0001, for noise
level 0.05. Selected pixels are marked by blue crosses. (a) A noisy solid cube with the two
selected pixels (indices 59 and 79 out of 400). (b) A noisy torus with the two selected pixels
(indices 59 and 98 out of 400). (c) A noisy sphere with the five selected pixels (indices 58,
59, 60, 79, and 98 out of 400). (d) Noisy three clusters with the one selected pixel (index
20 out of 400). (e) Noisy three clusters within three clusters with the seven selected pixels
(indices 20, 40, 59, 60, 79, 80, and 98 out of 400). (f) A noisy circle with the two selected
pixels (indices 21 and 22 out of 400).
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