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Inertial spin alignment in a circular magnetic nanotube
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In cobalt nanotubes with a curling magnetization, the orbital motion of the conduction electrons interacts 
with their spin. As the spin goes around the nanotube it cannot follow the magnetization, since with the 
Fermi velocity it moves too fast. Instead, we predict that the spin precesses about an axis that is almost 
parallel to the axis of the nanotube and that rotates with the angular velocity of the electron. Therefore, 
the (absolute) value of the magnetic energy of the spin |μ · B| is strongly reduced. The physics of the 
ferromagnet is considerably modified.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Nanotubes and nanowires of both metals and semiconductors 
have been extensively studied for electric charge transport. How-
ever, the electron spin has been often ignored. How to control and 
manipulate the spin degree of freedom in nanostructures is of vital 
importance not only for fundamental science, but also for techno-
logical applications in micromagnetism and spintronics. This has 
stimulated much research effort in the synthesis and character-
ization of ferromagnetic nanowires and nanotubes. These quasi-
one-dimensional magnetic nanostructures have exhibited unique 
and intriguing physical properties. As an example a number of 
magnetic nanotubes of different materials show the remarkable 
property that their magnetic polarization is circumferential around 
the axis of the tube [1–6] (see Fig. 1). For example, in our ex-
periments [2] there was no observable magnetic field outside the 
cobalt nanotube, demonstrating that the magnetization is looped 
inside the tube.

In such a circular magnetic nanotube (CMNTB) the conduction 
electrons experience a change of direction of the internal exchange 
field B during their propagation. This yields some interesting ef-
fects on the spin of the electrons.

2. Theory

For a theoretical discussion we treat the CMNTB as a tube with 
zero thickness and large (infinite) mean free path of the electrons. 

* Corresponding authors.
E-mail addresses: bergmann@usc.edu (G. Bergmann), rsthom@usc.edu

(R.S. Thompson).
http://dx.doi.org/10.1016/j.physleta.2015.06.036
0375-9601/© 2015 Elsevier B.V. All rights reserved.
Fig. 1. a) A magnetic cobalt nanotube with the magnetization circular about the axis 
of the tube. b) The cross section in the limit of zero thickness.

We consider an electron with the velocity v = v ẑz + vφφ̂ where vz
is the component of the Fermi velocity v F parallel to the axis and 
vφ is the circular velocity. The z-component of the electron veloc-
ity vz has no bearing on the results of the following consideration. 
The radius of the tube is R . Then the electron circles the CMNTB 
with the angular frequency ωe = (

vφ/R
)

ẑ where |ωe| ≤ (v F /R)

(v F = Fermi velocity).
The electron has a spin s and a magnetic moment of μ where 

μ = γ s with γ = −2μB/h̄ = −e/m (we set the Lande factor g for 
the conduction electrons equal to 2). The circular magnetization 
acts as a magnetic field of strength B0 on the magnetic moment of 
the electron. In the inertial lab frame S0 the magnetic field causes 
a torque τ on the magnetic moment of the electron

τ = μ × B = γ s × B (1)
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Along the circular path of the electron with the angular velocity 
ωe the direction of the magnetic field changes. At the position 
(R, φ, z) (in cylindrical coordinates) the magnetic field is given by

B = B0 (− sin φ, cosφ,0) (2)

As a consequence the torque constantly changes its direction for 
an electron whose position is given by (R,ωet, z) with φ = ωet . 
The fast angular velocity does not give the electron enough time 
to precess about the direction of the local magnetic field.

In the following we treat the motion of the electron in the 
frame S that rotates with the electron, i.e. with the frequency ωe . 
We assign coordinate axes (̂x, ŷ, ẑ) to the electron position which, 
at t = 0, are equal to (̂e1, ê2, ê3) of the lab system. We attach these 
axes (̂x, ŷ, ẑ) rigidly to the cylindrical surface of the tube (at the 
position of the electron). In the next step the cylinder, electron 
and local axes (̂x, ŷ, ẑ) rotate together with frequency ωe (so that 
(̂x, ŷ, ẑ) = (̂

r, φ̂, ẑ
)
).

In the rotating system S any vector Q that is constant in the 
inertial system S0 changes its value according to(

dQ

dt

)
S
= −ωe × Q (3)

(See for example [7]. An analogous consideration yields the Coriolis 
and centrifugal forces on the surface of the earth.)

For the spin this means that ds/dt in the rotating system is 
given by(

ds

dt

)
S
=

(
ds

dt

)
S0

− ωe × s (4)

Here (ds/dt)S0
is the change of the spin due to the torque in the 

inertial system S0, i.e.(
ds

dt

)
S0

= τ = γ s × B (5)

In the rotating system the magnetic field is constant B = (0, B0,0), 
and we obtain the for ds/dt(

ds

dt

)
S
= γ s × B + s × ωe = γ s ×

(
B + ωe

γ

)
(6)

yielding(
ds

dt

)
S
= γ s × Beff (7)

with

Beff = B + 1

γ
ωe = (0, B0,ωe/γ ) (8)

The z-component of Beff is not an actual magnetic field but a kine-
matic result of the rotating coordinate system.

3. Results

The solutions to Eq. (7) (in the system S) are those for a free 
electron spin in a constant field Beff . The spin has a stable constant 
solution (when μ is parallel to Beff ) and a metastable solution 
(when μ is anti-parallel to Beff ). For a finite angle between μ and 
Beff the spin performs a precession about the direction of Beff .

In components this yields

(
d

dt

)
S

⎛
⎝ sx

sy

sz

⎞
⎠ =

⎛
⎝ ωesy − γ B0sz

−ωesx

γ B0sx

⎞
⎠ (9)

For the stationary solutions in the rotating system we set 
(ds/dt)S = 0. This yields
Fig. 2. The classical spin s in the frame S that rotates with ωe . The vector Beff

is fixed in the frame S and the spin s precesses about Beff with angular velocity √
ω2

e + ω2
B . In the inertial lab frame S0 the precession axis Beff rotates itself with 

ωe about the z-axis.

sy = γ B0

ωe
sz (10)

sx = 0 (11)

So the unit vector of the spin is in S

ŝ = ± 1

X
(0,−ωB ,ωe) (12)

with h̄ωB = 2μB B0 and X =
√

ω2
e + ω2

B . The magnetic moment 
μ is parallel to Beff for the stable solution or anti-parallel in the 
metastable solution.

If the spin is not parallel or anti-parallel to Beff then it pre-
cesses about the effective field Beff with a precession frequency of

ωpcs = γ
∣∣Beff

∣∣ =
√

ω2
e + (γ B0)

2 =
√

ω2
e + ω2

B (13)

In the rotating system the effective field Beff is fixed with the 
coordinates given by Eq. (8). In the inertial system Beff rotates with 
ωe about the z-axis. This rotation and the precession about Beff
have opposite senses.

This is drawn in Fig. 2. Here Beff is the constant effective field in 
the rotating frame S . For s parallel or anti-parallel to Beff the spin 
is stationary in a stable or metastable orientation (in S). If s has an 
arbitrary angle with Beff then s precesses about the axis Beff with 

the precession frequency 
√

ω2
e + ω2

B . (To simplify the drawing we 
treated s and μ as parallel.)

The physical picture in the inertial lab system S0 is the follow-
ing. The axis of precession Beff rotates itself with the frequency ωe

about the z-axis. Furthermore the spin s precesses about Beff (see 
Fig. 2). The rotation of the Beff axis with frequency ωe and the 

precession about this axis with frequency 
√

ω2
e + ω2

B have oppo-
site senses.

For ωe >> ωB the actual precession in the lab system is ap-
proximately the difference

ωpcn ≈

√
ω2

e + ω2
B − ωe ≈

ω2
B

2ωe
(14)

This is a much smaller precession frequency than ωB = ∣∣γ ∣∣ B0 =
2μB B0/h̄ which one would observe for a constant magnetic field 
of B 0̂z in the z-direction.

In addition the lowest magnetic energy of the electron magnetic 
moment in the field B is reduced to

Emag = −μ · B = −μB B0 cos θ (15)
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where θ is the angle between Beff and B with

tan θ = ωe

ωB
, cos θ = ωB√

ω2
e + ω2

B

(16)

Thomas precession: In our non-relativistic calculation we had 
two coordinate systems, (̂x, ŷ, ẑ) for the rotating system S and 
(̂e1, ê2, ê3) for the inertial system S0. Classically the system S is 
rotating with ωe with respect to system S0. However, the rotating 
system S experiences a time-dependent acceleration a. In a rela-
tivistic calculation this acceleration yields an additional precession 
of the axes of the orbiting system which was first calculated by 
Thomas [8] and is given by

ωTh = − 1

2c2
v × a (17)

In our case we have

a =
(
−Rω2

e cos (ωet) ,−Rω2
e sin (ωet) ,0

)
which yields a Thomas precession about the axis of the nanotube 
of

ωTh = − R2ω3
e

2c2
(18)

The Thomas precession changes the observed precession of the 
electron spin in the inertial lab system by ωTh . Below we esti-
mate the contribution of the different terms and conclude that the 
Thomas precession can be neglected.

4. Discussion

For a quantitative discussion essentially two parameters are re-
quired, the maximal angular frequency ωe , given by the radius and 
the Fermi velocity and the magnetic field acting on the conduction 
electrons. Here one has two extreme cases:

1) Ferromagnets which are described by the Stoner model. Here 
one assumes essentially only one band which is generally the 
d-band of transition metal ferromagnets. The Stoner model 
connects the Stoner field B0 with the Curie temperature 
TC through the relation B0 ≈ kB TC /μB . This yields fields 
in the range of a few 103 T. Due to the flat d-bands the 
Fermi velocity is generally a factor of 10 smaller than in 
(s, p)-metals.

2) A two-band ferromagnet where the magnetic properties are 
defined by the d-electrons and the conduction electrons are 
(s, p)-electrons. In this case it is more difficult to estimate 
the B0 field and the Fermi velocity. In the literature values 
for the Fermi energy of spin-up and -down conduction elec-
trons are given. In Ref. [9] tunnel experiments into CoFe and 
NiFe alloys are evaluated with values for the Fermi energy 
of εF↑ ≈ 2.2 eV and εF↓ = 0.5 eV, yielding in a free electron 
model v F↑ ≈ 0.88 × 106 m/s and v F↓ ≈ 0.42 × 106 m/s. One 
of the authors [10] investigated the normal and anomalous 
Hall effect of amorphous Co films and obtained 0.5 conduc-
tion electrons per Co atom in the high field region where the 
anomalous Hall effect is saturated.

We use for the following estimate the value v F ≈ 106 m/s. This 
yields for a Co nanotube with the radius R = 25 nm the maximal 
value ωe ≈ 4.0 × 1013 s−1. Only when the angle between Beff and 
the z-axis is small can one use the simple relation (14) for the 
precession frequency in the lab frame. In Table 1 this angle α =
� 

(
Beff , ẑ

)
is given in degrees for different values of B0. Only for 

B0 = 10 T is this angle small, and one obtains a smooth precession 
Table 1
The ratio ωB/ωe and the resulting angle α between Beff and the z-axis are calcu-
lated for different values of B0.

B0 ωB/ωe α = tan−1 ωB
ωe

10 T 4.4 × 10−2 2.5◦
102 T 4.4 × 10−1 24◦
103 T 4.4 77◦

of ωpcn ≈ 3.9 × 1010 s−1. For the larger values the superposition 
of the rotation and precession in the rotating system S yields a 
complicated wobbling motion in the lab system S0.

For the Thomas precession frequency we obtain a value of 
ωTh ≈ −2.2 × 108 s−1. This value is much smaller than precession 
frequency ωprc and can be neglected.

5. Conclusions

The main finding of our calculation is that in a circular magne-
tized ferromagnetic nanotube the spin of the conduction electrons 
is not oriented parallel or anti-parallel to the magnetization but is 
tilted towards the positive or negative z-axis. The odd alignment 
of the electron spins in a magnetic nanotube with circular mag-
netization has a number of interesting effects which modify the 
magnetic properties. A few shall be considered here qualitatively. 
In the following we assume that the mean free path of the conduc-
tion electrons is sufficiently long so that the conduction electrons 
can circle the nanotube several times before they are scattered.

Our theory is purely classical, but we make the hypothesis that 
the (individual) direction of Beff will be the spin quantization di-
rection in a quantum theoretical calculation. Our preliminary quan-
tum theoretical calculation confirms this hypothesis. In the ground 
state the spins of the conduction electrons align parallel or antipar-
allel to this direction.

Our present theoretical consideration suggest a number of in-
teresting questions:

(1) The ground-state energy of the circular magnetic state is in-
creased. In a regular ferromagnetic metal the conduction elec-
trons align parallel or anti-parallel to the exchange field B and 
lower their energy by N0 (μB B0)

2 where N0 is the (conduc-
tion) electron density of states per spin. In the nanotube with 
circular magnetization this energy reduction is much smaller 
and therefore the ground-state energy is increased by almost 
the same amount.

(2) This energetic effect should be particularly important for 
Stoner magnets. Here the magnetic moments are band elec-
trons (generally d-electrons) which are not localized and 
possess a finite (group) velocity vd (k) = (1/h̄) ∂εd (k) /∂k. 
In a magnetic field the spin-up and -down d-electrons are 
shifted in opposite directions on the energy scale. The re-
sulting magnetization acts back on the d-moments through 
the Coulomb exchange field, and the magnetization becomes 
Stoner enhanced. For a sufficiently large product of NdU
(Nd = d-electron density of states, U = Coulomb exchange 
energy) the d-band makes a transition into a Stoner band mag-
net. This mechanism would be dramatically disturbed if the 
propagating d-electrons don’t align their moments in the di-
rection of the circular magnetization but (almost) parallel and 
anti-parallel to the cylinder axis. If the φ-component of vd
is sufficiently large then half the d-electrons align their mo-
ments (roughly) parallel and the other half anti-parallel to the 
cylinder axis, canceling the exchange field. A conclusive an-
swer requires, of course, a detailed band structure calculation 
for the Stoner system under consideration.

(3) The interaction between spin waves and the conduction elec-
trons will be altered. The excitation of a spin wave means 
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the transfer of an angular momentum h̄ from a conduction 
electron into the spin wave. Normally this is a simple trans-
fer because the electron spin and the magnetization have the 
same quantization direction. However, in the CMNTB the two 
quantization directions are almost orthogonal to each other. 
The investigation of this interaction is to be considered in the 
future.

(4) By covering the circular magnetic Co nanotube with another 
ferromagnet or a superconductor one can investigate a cylin-
drical proximity effect. We expect a considerable potential for 
new and interesting effects.

(5) Another interesting system would be a circular magnetic 
nanoring. Our conclusions apply essentially also to these mag-
netic systems.
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