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Abstract. When electron spin and momentum couple in a solid, one generally obtains intriguing and
unexpected phenomena. Metallic ferromagnetic nanotubes of cobalt with circular magnetization, which
have been prepared by us and others, are a particularly interesting system. Here the spins of the conduction
electrons are frustrated. They would like to align parallel to the magnetic field of the magnetization, but
as the electrons move quickly around the tube the spins cannot follow the magnetization direction. In a
previous short theoretical paper we solved the spin dynamics using a classical model. Here we generalize our
work to a quantum mechanical model. The surprising result is that the spin of most conduction electrons
is not parallel or anti-parallel to the circumferential magnetization but mostly parallel or anti-parallel to
the axis of the nanotube. This result means that such a cobalt nanotube is a different ferromagnet from a
cobalt film or bulk cobalt.

1 Introduction

Magnetic nanostructures show exciting physical proper-
ties and have many potential applications in engineer-
ing such as magnetization switching, memory devices and
spintronic elements [1–7]. Furthermore there are applica-
tions in medicine such as magnetic-based gene delivery,
new diagnostic tools, magnetic-field assisted biosepara-
tion, biointeraction, and drug delivery [8–11], and in neu-
roscience magnetic stimulation of ganglion neurons [12].

The orientation of the magnetization is particularly
interesting in ferromagnetic nanotubes. A number of ex-
perimental studies have shown that states exist in these
materials where the magnetic polarization is oriented cir-
cumferentially around the axis of the tube [6,13–17]. In
these materials one has together with the circular magne-
tization an exchange field B = B0

̂φ that is parallel to the
surface along the circumference. The interplay between
the spin of the conduction electrons and the magnetiza-
tion of these nanotubes represents a fascinating problem.

The magnetic moment �μ and spin of the electron have
opposite directions �μ = γs (with the gyromagnetic ratio
γ = −2μB/� = −e/m). It is often more convenient to use
the spin s in physical drawings such as Figure 1 and in
discussions. The spin feels a torque in the presence of the
magnetic field B due to the magnetization and reacts with
a change of direction as

ds
dt

= �μ×B = s×
(

γB0
̂φ
)

= s×�ωB

a e-mail: bergmann@usc.edu
b e-mail: rsthom@usc.edu

where we introduce the spin field

�ωB = γB0
̂φ = − (2μBB0/�) ̂φ (1)

which is opposite to the magnetic field.
In a previous investigation [18] we studied the dy-

namics of the conduction electron spin in a classical cal-
culation. We found interesting and unusual results. The
electron propagates with angular velocity �ωe = (vφ/R)̂φ
around the nanotube (vφ is the electron velocity along the
circumference of the cylinder). On first thought, one might
expect the electron spin s to align with the direction of the
circular spin field �ωB = γB0

̂φ (opposite to magnetization)
while traveling around the nanotube. However, it turned
out that the spin dynamics do not allow this behavior be-
cause the electron with the velocity vφ travels too fast for
the spin to follow the changing direction of �ωB.

We found it convenient to study the spin dynamics
in a coordinate system that is travelling along with the
electron and also spinning to follow the magnetization di-
rection. Then the axes of an electron’s coordinate system
(x̂, ŷ, ẑ) are parallel to the unit vectors in cylindrical co-
ordinates (r̂, ̂φ, ẑ). This system moves with the electron
and spins with �ωe = ωeẑ. We call the orbiting and spin-
ning frame S in contrast to the inertial laboratory frame
S0. The resulting behavior of the electron spin is shown
in Figure 1.

In the spinning non-inertial frame S the electron
spin experiences an inertial torque of −�ωe × s, which
can be expressed as a large spin field ωeẑ in the z-
direction. Together the inertial spin field ωeẑ and the
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Fig. 1. The dynamics of the electron spin in the classical cal-
culation. The circular magnetic field acts on the spin as a spin
field �ωB and the spinning frame introduces an inertial spin
field �ωe. Both are shown in the figure and add up to Ω. In
the orbiting and spinning frame S all spin fields are constant.
In the direction of Ω the spin is stationary. If the spin orien-
tation s deviates from the direction of Ω, for example by the
angle ζ, then the spin precesses clockwise about the Ω-axis
with the frequency Ω.

exchange spin field −ωB
̂φ form an effective spin field

Ω = ωeẑ−ωB
̂φ = �ωe + �ωB that is stationary in the orbit-

ing and spinning system S. When the spin is aligned paral-
lel or antiparallel to Ω it is in a stationary state in the sys-
tem S. Otherwise the spin precesses clockwise (cw) about
the spin field axis ̂Ω with the frequency Ω.

Another important result of the classical calculation is
that the magnetic energy of the electrons is reduced from
the usual value −μBB0 where B0 is the exchange field of
the magnetization in the nanotube.

In the current paper we examine the quantum mechan-
ical treatment of this problem. In our calculation we use
a few simplifications that have no effect on the results:
(a) a nanotube is used with zero wall thickness. Then the
nanotube is a two-dimensional cylindrical surface with a
circumference of 2πR and length L. (b) We ignore the
velocity vz of the electrons in the z-direction. The only
effect of vz is to reduce the value of vφ = ±√v2

F − v2
z ,

where vF is the Fermi velocity. In addition, we assume an
infinite mean free path of the electrons (which is not a
trivial experimental challenge).

2 Quantum theoretical calculation

The potential energy of an electron spin in a magnetic
field is U = −�μ·B = s·�ωB. But when the electron passes
through regions with different magnetic field orientations
then the interplay of torque and precession is no longer
able to align the spin parallel to the magnetization and to
optimize the potential energy. In the case in which we are
interested, an electron in a circular magnetic nanotube,
the electron must possess eigenstates that combine the
orbital and the spin state. However, the interaction of an
electron spin with its orbital motion can be rather compli-
cated if one wants to go the traditional path: constructing

a Lagrangian for angular rotational motion including spin
and deriving a Hamiltonian from the Lagrangian.

Usually a different approach is taken by going into a
system that moves with electron. A well-known example
is the calculation of the spin-orbit interaction (see for ex-
ample [19]). In our case we have an additional choice: the
orientation of the axes in the moving frame which we de-
note as (x̂, ŷ).

In the present paper we use two different approaches
for the moving system. They are sketched in Figure 2,
which shows a cross section through the nanotube per-
pendicular to the z-axis. Both coordinate systems have the
same z-axis. The position of the electron (at the dot on
the circumference in Fig. 2) is given in the system (x̂0, ŷ0)
by the angle φ. The spin function, i.e., the spin orientation
is measured in the coordinate system (x̂, ŷ).

Lab system

In Figure 2a the orientation of the axes are the same:
(x̂, ŷ)=(x̂0, ŷ0). In the lab system the spin function χ (φ, t)
of a single electron is a function of φ and t. For the dis-
cussion we choose the position φ marked by the dot. The
electron moves with the angular velocity ωe counterclock-
wise (ccw) along the circumference of the cylinder. The
magnetic field at the position r = (R, φ, z) depends only
on φ in this coordinate system.

B = B0 (− sinφ, cosφ, 0) .

Orbiting system

In Figure 2b an orbiting coordinate system is used that
moves with the electron with the angular velocity ωe. The
angle φo (o for orbiting) denotes a position in the orbiting
system. An electron that starts at t = 0 from the position
φo = φ propagates in the finite time t to the position in
the lab system at φ with

φ = φo + ωet.

The magnetic field in the orbiting system becomes time
dependent. The spin orientation is measured in the coor-
dinate system (x̂, ŷ) which is parallel to (x̂0, ŷ0). When
we have determined the spin function χ (φo, t) in the or-
biting system then it can be transformed back into the
lab system. This orbiting system is actually the frame
in which Thomas determined the relativistic spin-orbit
interaction [19].

Orbiting and spinning system

In Figure 2c the coordinates (x,y) orbit as in Figure 1b.
The electron position is given by φo, the same as in the
orbiting system. In addition, the coordinate system (x̂, ŷ)
of the spin space is also rotated ccw by ωet. As a conse-
quence ŷ is parallel to the tangent at the position r of the
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Fig. 2. A cross section through the nanotube. The electron
orbits along the circumference with the angular velocity ωe.
(a) The coordinate axes are fixed in the lab system. (b) The
coordinate axes (x̂, ŷ) of the spin in the orbiting system are
kept parallel to the axes (x̂0, ŷ0) of the lab system. (c) The
coordinate axes (x̂, ŷ) of the spin in the orbiting and spinning
system spin with frequency ωe so that ŷ is parallel to the tube
circumference. In this system the magnetic field B points in
the ŷ direction.

electron. Therefore one obtains the same magnetic field
for every φo in this coordinate frame

B = B0ŷ.

When the spin function is determined in this orbiting-
spinning system χ̃ (φo, t) then the spin function can be
rotated back into the lab system (x̂0, ŷ0).

In the orbiting system one obtains a time-dependent
Hamiltonian. In the orbiting and spinning system one ob-
tains an inertial torque in addition to the exchange field

torque acting on the spin. We include both torques to-
gether to construct a potential energy of the spin in this
system, and the resulting Hamiltonian for the spin func-
tion can be easily solved. Finally one has to transform
both results back into the lab system.

2.1 Thomas precession

Since the electron experiences acceleration along its path
on the cylindrical surface one has to consider in principle
relativistic effects, including the Thomas precession [19].
We estimated the magnitude of the Thomas precession in
our classical calculation [18] for an electron with the Fermi
velocity of 106 m/s. The resulting Thomas precession was
several orders of magnitude smaller than the effects pre-
dicted here. Therefore, we can neglect it in our present
calculation.

2.2 Electron propagation in the orbiting system

In our first approach we use the orbiting coordinate sys-
tem as shown in Figure 2b. Here the spin frame (x̂, ŷ) is
parallel to the lab frame (x̂0, ŷ0). We consider the elec-
tron at the position (R, φo, z) (the properties depend only
on φo). The corresponding position in the lab system is
given by φ = φo + ωet. The magnetic field in the orbiting
system is

B = B0 (− sin (φo + ωet) , cos (φo + ωet) , 0) .

2.2.1 Hamiltonian

The potential energy of the electron’s magnetic moment
�μ in the magnetic field is

U = −�μ·B = −γes ·B =
2μB

�
s ·B = μB�σ·B, (2)

where γ = −gμB/� = −2μB/� is the gyromagnetic ra-
tio, g is set to g = 2, and �σ = (σx, σy, σz) are the Pauli
matrices.

The resulting Hamiltonian has the form

H = μBB0

(

0 −i exp [−i (φo + ωet)]

i exp [i (φo + ωet)] 0

)

.

(3)
The time-dependent Schrödinger equation for the spin χ =
(α, β)T takes the form

i�

⎛

⎝

◦
α

◦
β

⎞

⎠ = μBB0

×
(

0 −i exp [−i (φo+ωet)]

i exp [i (φo+ωet)] 0

)

×
(

α

β

)

. (4)
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We make the ansatz

α (t) = α0 exp (−iωαt) ,
β (t) = β0 exp (−iωβt) .

After a short calculation one obtains

�ωαα0 = −iβ0μBB0 exp [i (−φo − (ωe − ωα + ωβ) t)] ,
(5)

�ωββ0 = iα0μBB0 exp [i (φo + (ωe − ωα + ωβ) t)] .

Since the left side is time independent one has to require

(ωe − ωα + ωβ) = 0 (6)

yielding

�ωαα0 = −iβ0μBB0 exp (−iφo) , (7)
�ωββ0 = iα0μBB0 exp (iφo) .

Then equations (7) yield

α0 = −iβ0
μBB0 exp (−iφo)

�ωα
,

β0 = iα0
μBB0 exp (iφo)

�ωβ
,

�ωα�ωβ = μ2
BB

2
0 . (8)

Equations (6) and (8) yield the frequencies ωα and ωb.
Setting

�ωB = 2μBB0, Ω =
√

ω2
e + ω2

B (9)

one obtains

ωa =
1
2
ωe ± 1

2
Ω, (10)

ωβ = −1
2
ωe ± 1

2
Ω. (11)

Using the identity

ω2
B = Ω2 − ω2

e = (Ω + ωe) (Ω − ωe)

one can write the eigenvectors of the Hamiltonian.

2.2.2 Solution in orbiting system without spinning

For the first solution with the plus sign in equations (10)
and (11) one obtains

α0 = −iβ0
ωB

Ω + ωe
exp (−iφo) ,

β0 = iα0
ωB

Ω − ωe
exp (iφo) ,

|α0|2 =
1

2Ω
(Ω − ωe)

2

Ω − ωe
=

1
2Ω

(Ω − ωe) ,

α0 =
1√
2Ω

√

(Ω − ωe) exp (−iφo/2) ,

β0 = i
1√
2Ω

√

Ω + ωe exp (iφo/2) ,

χ1 (φo, t) =

(

α1 (t)

β1 (t)

)

=
1√
2Ω

( √

(Ω − ωe) exp
[− i

2ωet− i
2φo

]

i
√

(Ω + ωe) exp
[

+ i
2ωet+ i

2φo

]

)

× exp
(

− i

2
Ωt

)

. (12)

Similarly

χ2 (φo, t) =

(

α2 (t)

β2 (t)

)

=
1√
2Ω

(

i
√

(Ω + ωe) exp
[− i

2ωet− i
2φo

]

√
Ω − ωe exp

[

+ i
2ωet+ i

2φo

]

)

× exp
(

i

2
Ωt

)

. (13)

2.2.3 Lab system

The axes (x̂, ŷ) for the spin in the orbiting system are
parallel to the axes (x̂0, ŷ0) in the lab system. Since the
electron propagates on the cylinder with the angular veloc-
ity ωe the term ωet is equivalent to the angle ωet = φ−φo

on the cylinder.
Replacing ωet by (φ− φo) in equations (12) and (13)

yields the spin functions χ1(φ, t) and χ2(φ, t) in the lab
system

χ1 (φ, t) =
1√
2Ω

(√

(Ω − ωe) exp
(− i

2φ
)

i
√

(Ω + ωe) exp
(

i
2φ
)

)

exp
(

− i

2
Ωt

)

,

(14)

χ2 (φ, t) =
1√
2Ω

(

i
√

(Ω + ωe) exp
(− i

2φ
)

√
Ω − ωe exp

(

i
2φ
)

)

exp
(

i

2
Ωt

)

.

(15)
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The expectation value of the magnetic energy is

Ei = 〈χi (φ) |μB�σ·B|χi (φ)〉
=

1
2

�ωB 〈χi (φ, t)|

×
(

0 −i exp (−iφ)

i exp (+iφ) 0

)

|χi (φ, t)〉

E1,2 = ±1
2

�ω2
B

Ω
. (16)

2.2.4 Eigenoperator of the spin state

In our classical derivation [18] it was shown that the elec-
tron experiences an effective magnetic field Beff where

Beff = B+
1
γ
�ωe =

1
γ
Ω (17)

is composed of the actual exchange field B and an inertial
field �ωe/γe. To calculate the component of the Pauli ma-
trix vector �σ in the local direction of Beff we define n as

n = ̂Beff =
1
Ω

(−ωB sinφ, ωB cosφ,−ωe) . (18)

Then we obtain

σn = n · �σ =

( −ωe −iωB exp (−iφ)

iωB exp (iφ) ωe

)

.

We apply the operator σn to the spin state χ1(φ)

σnχ1 (φ) =
1
Ω

( −ωe −iωB exp (−iφ)

iωB exp (iφ) ωe

)

χ1 (φ)

= − 1√
2Ω

1
Ω

×
⎛

⎝

√
Ω − ωe

(

ωe − ωB

√
ωe+Ω√
Ω−ωe

)

e−
1
2 iφ

−i√ωe +Ω
(

ωe + ωB

√
Ω−ωe√
ωe+Ω

)

e
1
2 iφ

⎞

⎠ .

Using

ωB =
√

(Ω − ωe) (Ω + ωe) yields

=
1√
2Ω

(√
Ω − ωee

− 1
2 iφ

i
√
ωe +Ωe

1
2 iφ

)

= χ1 (φ) .

The result
σnχ1 (φ) = χ1 (φ)

shows that χ1 (φ) is an eigenstate of σn with the eigen-
value one. Similarly χ2(φ) is an eigenstate of σn with the
eigenvalue −1.

2.3 Electron in orbiting and spinning system S

For the derivation in the orbiting system we followed an
electron along its orbit as a function of time. This means
that at any given time t we considered the electron at
the specific position (R, φo, z). This is a rather classical
approach. Only after solving the Schrödinger equation did
we split the time dependence into a (φ, t)-dependence in
the lab system.

To demonstrate that this yields the correct wave func-
tion we perform a second derivation where we treat the
electron spin in the frame S which orbits together with
the electron with the angular velocity ωe (as before), but
whose spin frame (x̂, ŷ, ẑ) is kept parallel to the unit vec-
tors of the cylinder (r̂, ̂φ, ẑ). This means that the axes of
the electron frame S are spinning with respect to lab frame
S0 with the angular velocity �ωe. The unit vectors of the
lab frame are (x̂0, ŷ0, ẑ0). This is shown in Figure 2c. The
frame S is the same that was used in our classical calcula-
tion [18]. For the frame S the potential energy is modified
due an inertial torque. Then the Hamiltonian in the frame
S with its new potential energy is time independent.

First we consider classically the electron spin in the
frame S. The orientation of the spin s changes due to the
facts: (a) that we are in a spinning system and (b) that
the magnetic field creates a torque. The relation between
ds/dt in the inertial system S0 and the orbiting and spin-
ning system S is given by (see for example [20])

(

ds
dt

)

S0

=
(

ds
dt

)

S

+ �ωe × s (19)

(the same approach is used to calculate the Coriolis and
centrifugal force on earth). With (ds/dt)S0 = γs×B in
the inertial lab system one obtains in the system S a total
(ds/dt)S which corresponds to an effective torque �τeff

(

ds
dt

)

S

=s× (γB+�ωe) = γs× Beff = �τeff .

Here we set

Beff =
ωe

γ
ẑ +B0ŷ, Ω = γBeff = ωeẑ + γB0ŷ.

Beff is a (local) effective field. In the system S it is con-
stant and lies in the ŷ-ẑ-plane (which corresponds to ̂φ-ẑ-
plane in the lab system). The vector Ω is anti-parallel to
Beff . It is considered as a spin field. We define the angle
between Ω and the z-axis as α with

tanα =
2μBB0

�ωe
=
ωB

ωe
.

The integration of �τeff yields the classical potential energy
in the spinning system

U = −�μ·Beff = −γs ·Beff = −s · Ω.
Now we use the Hamiltonian H = U . The solution of
the time-independent Schrödinger equation Hχ̃ = Eχ̃ is
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straight forward and yields the spin states in the system
S with the eigenvalues E = ±�Ω/2 = ±�

√

ω2
e + ω2

B/2

χ̃1 (t) =
1√
2Ω

( √
Ω − ωe

i
√

(Ω + ωe)

)

exp
(

− i

2
Ωt

)

, (20)

χ̃2 (t) =
1√
2Ω

(

i
√
Ω + ωe√
Ω − ωe

)

exp
(

+
i

2
Ωt

)

. (21)

In the system S the spin states χ̃1(t) and χ̃2(t) possess no
angular dependence. This calculation has the advantage
that it treats the position and time independently.

The φ-dependence of the spin state in the coordinates
of the orbiting system is obtained by performing a spin
rotation of the spin states in equations (20) and (21)
by (φo + ωet) about the z-axis. The general form for the
rotation of angular momentum states J is

R (�η) = exp (−iJ·�η/�) ,

where η̂ gives the axis of rotation and η is the an-
gle of rotation. For spin 1/2 one has J =�

2�σ, and here
�η= (φo + ωet) ẑ. This gives

R ((φo + ωet) ẑ)

=

(

exp (−i (φo + ωet) /2) 0

0 exp (i (φo + ωet) /2)

)

.

Rχ̃i yields the spin states χi as given in equations (12)
and (13) in the orbiting system. The transformation of
the spin states from the orbiting system to the lab system
is discussed in Section 2.2.3.

3 Discussion

3.1 Quantization direction

In our classical derivation [18] it was shown that the elec-
tron experiences an effective magnetic field Beff . If its spin
is aligned parallel or antiparallel to Beff the spin is sta-
tionary in the orbiting and spinning system S. Here

Beff = B+
1
γ
�ωe

is composed of the actual exchange field B and an iner-
tial field �ωe/γe. The corresponding spin field is given by
Ω =γBeff = −2μBBeff/� and has the opposite direction.

In Section 2.2.4 we defined the component of the Pauli
matrix vector s in the local direction of Beff in the lab
frame S0 as σn = n·�σ with the unit vector n =̂Beff and
showed for χ1 (φ, t) that

σnχ1 (φ, t) = χ1 (φ, t) .

This demonstrates that χ1(φ, t) is an eigenstate of the
(spin) operator σn with the eigenvalue 1. In other words
the direction of n = ̂Beff = −̂Ω is the direction of quan-
tization. The state χ1(φ, t) is the local spin-up state with
respect to ̂Beff , and χ2(φ, t) is the corresponding spin-
down state.

y

z

x0

0

0

(a)

�

�B

�e

(b)

Fig. 3. (a) An electron circles the nanotube with ωe in an

exchange field of B = B0
̂φ. This figure shows the components

−ωB
̂φ and ωeẑ of the spin field Ω in the nanotube in the lab

system as thin circular and vertical arrows. (b) Shows the com-

ponents of Ω enlarged. The sum Ω = −ωB
̂φ + ωeẑ of the two

components is the total spin field and is shown as thick arrows.
Its unit vector ̂Ω gives the quantization direction. The expec-
tation value of 〈�σ〉 is either +̂Ω or −̂Ω for the two eigenstates.

(��ωB = −2μBB0
̂φ).

3.2 Spin expectation values

In Appendix A the expectation values of the spin, i.e. the
Pauli matrices 〈σx〉, 〈σy〉 and 〈σz〉 for χ1(φ) and χ2(φ) are
calculated. They are equal to the components of the unit
vector of Ω, i.e. 〈�σ〉 = ±̂Ω with the plus sign for χ2(φ).

In Figure 3 the components −ωB
̂φ and ωeẑ of the spin

field Ω are shown as thin arrows on top of the nanotube.
�ωB = −ωB

̂φ is the component due to the magnetic ex-
change field and ωeẑ is the result of an inertial torque.
The thick arrows represent Ω, which determines the di-
rection of quantization for the spin states.

Interestingly we obtained the same components in
the classical calculation. The important difference is, of
course, that in the classical treatment the electron is at a
given time only at one place, while in quantum treatment
the electron and its spin are distributed over the volume
of the nanotube.

3.3 The full wave function of the electron

In the absence of a magnetic field (and impurities) the mo-
menta of the electrons on the two-dimensional cylindrical
surface are quantized as

qφ = nφ
1
R
, qz = nz

2π
L
,

http://www.epj.org
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where (qz, qφ) are the wave vectors in z- and φ-direction
for a cylinder of length L and radius R with periodic
boundary conditions in the z-direction.

In the presence of the circular magnetic field the spin
functions χi(φ, t)

χi (φ, t) =

(

α0,i exp
(− i

2φ
)

β0,i exp
(

+ i
2φ
)

)

exp
(

∓ i

2
Ωt

)

change their sign after a full circle of 2π due to the factors
exp(± i

2φ) so that

χi (2π, t) = −χi (0, t) .

This phase shift of π has to be absorbed by the quantiza-
tion of qφ, which is now

qφ =
(2nφ + 1)π

2πR
=
(

nφ +
1
2

)

1
R
. (22)

Then the full wave function of the electron on the two-
dimensional cylindrical surface is

ψ (φ, z) = exp
{

i

[(

nφ +
1
2

)

φ+ nz
2πz
L

]}

×
(

α0,i exp
(− i

2φ
)

β0,i exp
(

+ i
2φ
)

)

.

The quantization in the Ω direction should be valid even
if the circular magnetic field is very small.

3.4 Quantum theoretical precession

For a spin 1/2 particle one observes precession when the
spin state is a superposition of the two spin eigenstates
and these states have different frequencies. In our case
the precessing spin function has the form

χ (φ, t) = Aχ1 (φ, t) +Bχ2 (φ, t) . (23)

We define the precession angle, the angle between the spin
s and Ω, as ζ. We set A = sin(ζ/2) and B = cos(ζ/2)eiδ.
The phase δ determines the initial orientation of the spin.
The spin function χ(φ, t) is normalized, |A|2 + |B|2 = 1.

A = sin (ζ/2) , B = cos (ζ/2) eiδ,

|B|2 − |A|2 = cos ζ, 2AB = sin ζeiδ. (24)

In addition, the angle between Ω and the z-axis is defined
as α. In terms of α and φ the unit vector of the total spin
field Ω is

̂Ω = (sinα sinφ,− sinα cosφ, cosα) . (25)

The spin expectation value becomes

〈σx (φ, t)〉 = 〈χ (φ, t) |σx|χ (φ, t)〉
= sin2 (ζ/2) 〈χ1 (φ, t) |σx|χ1 (φ, t)〉

+ cos2 (ζ/2) 〈χ2 (φ, t) |σx|χ2 (φ, t)〉
+

1
2

sin ζeiδ 〈χ1 (φ, t) |σx|χ2 (φ, t)〉

+
1
2

sin ζe−iδ 〈χ2 (φ, t) |σx|χ1 (φ, t)〉 .

The diagonal matrix elements are time independent, but
the off-diagonal ones oscillate with the energy difference
between the two spin eigenstates. In Appendix A the ma-
trix elements are calculated, and in Appendix B the time-
independent and time-dependent expectation values of the
spin are calculated. The results of this calculation are col-
lected below. The time-independent parts of 〈�σ〉 are

〈σx〉0 = cos ζ sinα sinφ
〈σy〉0 = − cos ζ sinα cosφ
〈σz〉0 = cos ζ cosα (26)

and the time-dependent parts are

〈σx〉t = sin ζ [cosφ cos (Ωt+ δ) + cosα sinφ sin (Ωt+ δ)] ,
〈σy〉t = sin ζ [sinφ cos (Ωt+ δ) − cosα cosφ sin (Ωt+ δ)] ,
〈σz〉t = − sin ζ sinα sin (Ωt+ δ) . (27)

The expectation values of the time-dependent part 〈�σ〉t
and the time-independent part 〈�σ〉0 are orthogonal to each
other 〈�σ〉0 · 〈�σ〉t = 0. By setting δ = π/2 the spin expec-
tation value of 〈�σ〉 at t = 0 lies in the plane spanned by
ẑ and �ωB, which is the tangential plane to the cylinder at
φ (as do 〈�σ〉t, 〈�σ〉0, �ωe, and Ω). We use this value of δ in
the following figures.

Equations (26) show that the constant component of
the spin is just equal to the spin in the state χ1(φ) mul-
tiplied by the cosine of the precession angle cos ζ. This is
a very intuitive result. It yields the expectation values of
the eigenstates for ζ = 0 and ζ = π.

The time-dependent part of the spin expectation value
precesses locally everywhere with the frequency Ω. The
total z-component oscillates between the maximum value
of cos ζ cosα + sin ζ sinα = cos(α − ζ) and the minimum
value cos ζ cosα−sin ζ sinα = cos(α+ζ). These are the z-
components of a spin that forms the angles of α± ζ with
the z-axis. That is exactly what one expects if the spin
moves along a cone about Ω with an angle of ζ. The same
applies to the x- and y-components of the spin. So locally
the spin precesses everywhere in the nanotube about the
local quantization direction Ω with the constant preces-
sion angle ζ and the precession frequency Ω.

The precession is shown in Figure 4 in detail. Fig-
ure 4a shows a cross section through the nanotube. The
precession cones are shown for φ = 0, π/2, π and 3π/2.
The cones are locally rigid. Only the spin precesses. In
Figure 4b such a cone is shown enlarged. Its axis is the
effective spin field Ω, which is inclined in the direction of
the local field �ωB, (�ωB = −ωB

̂φ). The angle of the cone,
i.e. the angle between Ω and s, is ζ. On the upper cir-
cular surface the end point of the spin s is shown. One
recognizes the local angle of precession Ωt on the circular
surface of the cone at the time t. If one attaches all cones
rigidly to the circumference of the nanotube and rotates
the nanotube plus cones like a carousel (for example by
π/2) then one obtains the same figure.

We believe that one obtains an optimal insight into the
precession if one draws the different cones in space as well
as in time. This is done in Figure 5.
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�
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Fig. 4. The precession of the spin shown on a cross section
of the nanotube. In part (b) the precession cone in the box is
enlarged. The local precession axis Ω is drawn. The precession
cone has an angle of ζ between Ω and the spin s. The spin
circles on the cone with angle Ωt. The corresponding cones
at different positions can be easily constructed by attaching
the cone rigidly to the cross section of the nanotube and then
rotating the tube with the cone about the z-axis to the new
position.

3.5 Comparison between the classical
and the quantum theoretical calculations

The theoretical results for the precession in the classi-
cal calculation (CC) and the quantum theoretical calcu-
lation (QTC) agree in several essential points. In both
calculations a specific direction n(φ) emerges which is
the same in CC and QTC and given by equation (18).
The unit vector n(φ) is parallel to Beff , antiparallel to
Ω = γBeff = �ωB + �ωe and forms the constant angle α
with the z-axis. In the QTC n(φ) gives the direction of
quantization, and in the CC n(φ) gives the direction of the
two stationary states. When the spin is aligned parallel or
antiparallel to n(φ) there is no precession, neither in CC
nor in QTC. Precession is obtained when the spin forms
a finite angle ζ with the direction of n(φ). In Appendix C
the detailed motion of the spin in CC is described.

In Figure 5 the precession cones are drawn for the QTC
in an eagle-eye view from the top at different times and as
a function of the angle along the circumference. The hor-
izontal axis is the angle φ. The top row shows the cones
at t = 0 for four angles: φ = 0, π/4, 2π/4, 3π/4, and 4π/4.
This represents half a circumference. The φ-axis is shown
as the horizontal axis to allow a better comparison at dif-
ferent times. The orientation of the cones is the same as
on the nanotube at the corresponding angle.

We first discuss precession cones in the top row at t =
0. The thick arrows represent the axis of the cone with
the direction of Ω. The thin arrows from the center of
the circle to the rim of the cone point to the end of the
spin arrows (compare Fig. 4b). The spin expectation 〈�σ〉
is essentially given by equations (26) and (27). Going from
the left to the right each cone is rotated with respect to
the previous cone by Δφ = π/4 about the z-axis.

The different rows are redrawn for increasing time (go-
ing down) with Δt = Te/8 where Te = 2π/ωe is the

t = 0

Te

left

0 3�
44

��
4

	�
4

�
4

t =

t =

t = 8

Te

8

3

Te

8
2

�

right

Fig. 5. The precession cone of the spin in the quantum theo-
retical treatment in an eagle-eye view from the top at different
positions and times (see Fig. 4b). The horizontal axis gives the
position along half of the circumference in steps of π/4. The
time is shown on vertical axis in steps of Te/8 = π/(4ωe). The
top row shows the cones at t = 0. The thick arrows are the axes
of the cones and represent the time-independent part of the
spin. The thin arrows represent the time-dependent part of
the spin. The spin is the sum of the two arrows. In each time
step Δt each thin arrow progresses by ΩΔt. The cones with
the red (dark) circular surfaces progress in time and space with
the angular velocity ωe of the electron and yield a relatively
small effective precession in the orbiting system.

period for the electron to circle the nanotube one time.
We follow the cones for a given column in time steps of
Δt = Te/8. The orientation of the cone is not altered but
the spin has precessed around the cone axis with each Δt
by ΩΔt = ΩTe/4. So each column yields the local preces-
sion of the electron spin.

Figure 5 is well-suited to compare the classical pre-
cession with the quantum theoretical one. In the classical
picture the electron is point-like and circles the nanotube
with ωe. Now we follow the cones along the diagonal from
t = 0 to t = Te/8. During this time the electron has
propagated from the angle φ = 0 to π/4. So it moves
in Figure 5 from the top left (1, 1) position diagonally to
the (2, 2) position corresponding to the angular velocity of
Δφ/Δt = (π/4)/(Te/8) = 2π/Te = ωe. This means that
the cones along the diagonal in Figure 5 (with the red
(dark) circular surfaces) represent the classical motion of
an electron around the nanotube.

During the time Te/8 the electron orbits ccw just the
angle π/4 on the nanotube, i.e. it travels from one red
cone to the next one. This next red cone has a different
orientation by π/4 = ωeTe/4, i.e. the angle of the spin
field Ω at this next red cone is rotated counter-clockwise
by π/4 or 45◦. In addition, the spin direction has pre-
cessed about the Ω-axis clockwise by ΩTe/8 (in Fig. 5
we use ΩTe/8 = −55◦). Therefore the two rotations par-
tially cancel each other. The result is a wobbly precession
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because the z-component of the spin is not constant. For
small ωB the z- and Ω-axes are almost parallel, and the
effective precession frequency is in good approximation
given by the difference

ωpcn ≈ Ω − ωe =
√

ω2
e + ω2

B − ωe ≈
1
2
ω2

B

ωe
.

If one follows the red precession cones in Figure 5 then one
moves with the angular velocity ωe, the angular velocity
of the electron. In this orbiting system the QTC yields the
identical result for the expectation value of the spin 〈s〉 as
a function of time as in the CC (where one always moves
with the electron). The latter is shown in Appendix C.
The classical x- and y-components of the spin are plotted
in Figures C.1 to C.3. The same plots give the expectation
values 〈sx〉 and 〈sy〉 in the quantum theoretical calculation
when moving with the electron.

However, this is not the traditional way how precession
is defined in a quantum system. Instead one considers φ
and t as independent variables and follows the precession
at a constant position φ as a function of time. This is
shown in the vertical columns in Figure 5. For constant φ
this precession frequency is Ω.

4 Conclusion

Our quantum theoretical calculation confirms the results
of the classical calculation: The spin of the conduction
electrons does not align parallel or anti-parallel to the
magnetization. Instead the quantization direction nσ =
̂Beff = −̂Ω has a dominant component parallel or anti-
parallel to the z-axis of the tube. The magnitude of this
component is proportional to the angular velocity of the
electron �ωe = (vφ/R)ẑ. The other component of nσ is
parallel and proportional to the spin field of the magneti-
zation ωB

̂φ. As a consequence nσ depends on the position
given by the angle φ, and the spin function changes sign
around a closed loop with Δφ = 2π. This alters the quan-
tization condition for angular momentum.

This unusual spin alignment has a number of interest-
ing effects that modify the band structure and magnetic
properties [18]: (i) the ground-state energy of the circular
magnetic state is increased, which will result in a reduc-
tion of the Curie temperature. (ii) This effect should be
particularly important for Stoner magnets because in a
one-band Stoner magnet there is a large feedback between
the total electron spin and the magnetization. (iii) The in-
teraction of the conduction electrons with the spin waves
of a circular magnetic nanotube should be particularly
interesting. A comparison of the electron-spin-wave inter-
actions between a circular magnetic nanotube and a thin
ferromagnetic film of the same material will yield interest-
ing insight into the role of the relative polarization of the
conduction electrons and the magnetization.
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Appendix A: Pauli matrix elements
between the spin eigenstates

In Section 2, equations (14) and (15) give the eigenstates
for an electron spin in a nanotube with circular magne-
tization in the lab frame S0. For the following discussion
it is useful to express these states in terms of the angle α
between the spin field Ω and the z-axis. This yields

cosα = ωe/Ω, sinα = ωB/Ω,

cos(α/2) =
√

(Ω + ωe)/
√

2Ω,

sin(α/2) =
√

(Ω − ωe)/
√

2Ω. (A.1)

Then one obtains

χ1 (φ) =

(

sin(α/2) exp
(− i

2φ
)

i cos(α/2) exp
(

i
2φ
)

)

,

χ2 (φ) =

(

i cos(α/2) exp
(− i

2φ
)

sin(α/2) exp
(

i
2φ
)

)

.

A.1 Diagonal matrix elements

We calculate 〈χ1 (φ) |σx|χ1 (φ)〉

=

(

sin(α/2) exp
(− i

2φ
)

i cos(α/2) exp
(

i
2φ
)

)†(
0 1

1 0

)

×
(

sin(α/2) exp
(− i

2φ
)

i cos(α/2) exp
(

i
2φ
)

)

= −2
(

cos
1
2
α sin

1
2
α

)

sinφ = − sinα sinφ.

Similarly one obtains the spin expectation values for σy

and σz and the expectation values of the Pauli ma-
trix with respect to χ2 (φ). The results are collected
in equation (A.2)

〈χ1 (φ) |σx|χ1 (φ)〉 = − sinα sinφ,

〈χ2 (φ) |σx|χ2 (φ)〉 = sinα sinφ,

〈χ1 (φ) |σy|χ1 (φ)〉 = sinα cosφ,

〈χ2 (φ) |σy|χ2 (φ)〉 = − sinα cosφ,

〈χ1 (φ) |σz|χ1 (φ)〉 = − cosα,

〈χ2 (φ) |σz|χ2 (φ)〉 = cosα. (A.2)
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The sum of the squares of the expectation values for both
χ1(φ) and χ2(φ) is

〈σx〉2 + 〈σy〉2 + 〈σz〉2 = 1.

A.2 Off-diagonal matrix elements of precession

Next we calculate the Pauli matrix elements between
χ1(φ, t) and χ2(φ, t). One obtains for

〈χ2 (φ, t) |σx|χ1 (φ, t)〉

=

(

i cos(α/2) exp
(− i

2φ
)

sin(α/2) exp
(

i
2φ
)

)†(
0 1

1 0

)

×
(

sin(α/2) exp
(− i

2φ
)

i cos(α/2) exp
(

i
2φ
)

)

e−iΩt

=
(

eiφ cos2
1
2
α+ e−iφ sin2 1

2
α

)

e−iΩt

= (cosφ+ i cosα sinφ) e−iΩt.

Similarly one obtains the spin expectation values for σy

and σz .The results are collected in equation (A.3)

〈χ2 (φ, t) |σx|χ1 (φ, t)〉 = (cosφ+ i cosα sinφ) e−iΩt

〈χ2 (φ, t) |σy |χ1 (φ, t)〉 = (sinφ− i cosα cosφ) e−iΩt

〈χ2 (φ, t) |σz |χ1 (φ, t)〉 = −i sinαe−iΩt. (A.3)

Appendix B: Quantum theoretical precession

We consider the spin function

χ (t)=Aχ1 (t)+Bχ2 (t)=sin(ζ/2)χ1 (t)+cos(ζ/2)eiδχ2 (t) .

If we define ζ as the angle between the spin direction and
the Ω axis, we can set A = sin(ζ/2) and B = cos(ζ/2)eiδ.
Then we get

|B|2 − |A|2 = cos ζ 2AB = sin ζeiδ.

Next we calculate the spin expectation value

〈σx〉 = 〈χ (t) |σx|χ (t)〉
= sin2 (ζ/2) 〈χ1 (t) |σx|χ1 (t)〉

+ cos2 ζ 〈χ2 (t) |σx|χ2 (t)〉
+

1
2

sin ζeiδ 〈χ1 (t) |σx|χ2 (t)〉

+
1
2

sin ζe−iδ 〈χ2 (t) |σx|χ1 (t)〉 .

Further we use that

〈χ1 (t) |σx|χ2 (t)〉 = 〈χ2 (t) |σx|χ1 (t)〉∗

=
(

cosφ− i
ωe

Ω
sinφ

)

e+i(Ωt+δ).

Using equations (A.2) and (A.3) gives

〈σx〉 = sin2 (ζ/2) (− sinα sinφ) + cos2 ζ sinα sinφ

+
1
2

sin ζ (cosφ− i sinα sinφ) e+i(Ωt+δ)

+
1
2

sin ζ (cosφ+ i sinα sinφ) e−i(Ωt+δ).

This yields

〈σx〉 = cos ζ sinα sinφ+ sin ζ[cosφ cos (Ωt+ δ)

+ cosα sinφ sin (Ωt+ δ)].

Similarly we obtain the expectation values of 〈σy〉 and
〈σz〉. Then we split the results into the time-independent
parts

〈σx〉0 = cos ζ sinα sinφ,

〈σy〉0 = − cos ζ sinα cosφ,

〈σz〉0 = cos ζ cosα,

and the time-dependent parts

〈σx〉t = sin ζ [cosφ cos (Ωt+ δ) + cosα sinφ sin (Ωt+ δ)] ,

〈σy〉t = sin ζ [sinφ cos (Ωt+ δ) − cosα cosφ sin (Ωt+ δ)] ,

〈σz〉t = − sin ζ sinα sin (Ωt+ δ) .

These equations are denoted as (27) and (26) in Sec-
tion 4.1. Like for the eigenstates (A.2), one obtains for
the time-dependent precession states

〈σx〉2 + 〈σy〉2 + 〈σz〉2 = 1.

Appendix C: Details of the classical
precession

We recall briefly the dynamics of the CC, which is sketched
in Figure 1. The electron is treated in the orbiting and
spinning system S with local axes (x̂, ŷ) parallel to (r̂, ̂φ).
In the stationary states the spin aligns parallel or antipar-
allel to the spin field Ω, which is the sum of �ωB and �ωe,
both shown in Figure 1. In the lab system Ω rotates with
ωe counterclockwise about the z-axis. Its angle with the z-
direction is defined as α. If the spin is not aligned parallel
to ±Ω then it precesses about the Ω with the frequency Ω
in the opposite sense. The angle between Ω and the spin
is defined as ζ. The resulting motion of the spin s in space
and time can be rather complex. In Figures C.1 to C.3
the projection of the classical spin ŝ(t) onto the (x0,y0)-
plane of the lab system, i.e. [σx(t), σy(t)], is shown. (Here
we consider �σ(t) = (2/�)s(t) as a classical Pauli spin).

We introduce in the classical precession the “classical
Pauli spin �σ(t)” because we showed in the discussion that
there is an interpretation of the quantum precession in
which the expectation value of the Pauli matrix vector
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Fig. C.1. The projection of the spin direction in the classical
calculation for α = 0.2 and ζ = 0.1. The effective precession is
counter clockwise.

Fig. C.2. The projection of the spin direction in the classical
calculation for α = 0.2 and ζ = 0.3. The effective precession
is clockwise and the effective precession frequency is ωpcn =
Ω − ωe.

〈�σ〉 = (〈σx〉, 〈σy〉, 〈σz〉) is identical to the classical (unit
vector of the) spin ŝ and precesses exactly like the latter.

In Figure C.1 the projection of [σx(t), σy(t)] is plotted
as a function of time for α = 0.2 and ζ = 0.1. The dom-
inant part of the motion is the counter clockwise (ccw)
rotation of Ω with the frequency ωe about the z-axis (the
amplitude is given by sinα). On top of this cycle is the
clockwise (cw) precession of s with the frequency Ω with
the angle ζ between Ω and s. The direction of motion is
shown by the arrow on the left side. Since in Figure C.1
ζ < α this causes only a deformation of the circle, and
each cycle circles the z-axis.

If one defines the effective precession frequency as the
frequency with which the symmetry axis is (quasi)-circled
then this precession frequency would be essentially given
by ωe.

Fig. C.3. The projection of the spin direction in the classical
calculation for α = 0.2 and ζ = 0.2.

In Figure C.2 the parameters are α = 0.2 and ζ = 0.3.
Now the unit vector of the spin moves in small circles ccw
and the center of the circles moves cw about the z-axis.
The motion starts on the right side. The direction of mo-
tion is shown by the arrow on the left side. A single circle
contributes a rather small part to a circle about the cen-
ter. The effective frequency of the precession about the
z-axis is ωpcn = Ω − ωe. For α = 0.2 the value of ωpcn is
0.02ωe.

In Figure C.3 the classical motion of ŝ(t) is shown for
α = ζ = 0.2. Here the individual circles touch the z-axis.
The case α = ζ separates two different regions where a
discontinuous jump occurs in the frequency with which
the z-axis is cycled by the spin motion.
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