Calibrating amino acid $\delta^{13}C$ and $\delta^{15}N$ offsets between polyp and protein skeleton to develop proteinaceous deep-sea corals as paleoceanographic archives

Kelton W. McMahon a,b,c,* , Branwen Williams c, Thomas P. Guilderson d,e, Danielle S. Glynn d, Matthew D. McCarthy d

a Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA
b Institute of Marine Sciences, University of California – Santa Cruz, Santa Cruz, CA 95064, USA
c W.M. Keck Science Department of Claremont McKenna College, Pitzer College, and Scripps College, Claremont, CA 91711, USA
d Ocean Sciences Department, University of California – Santa Cruz, Santa Cruz, CA 95064, USA
e Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

Received 29 August 2016; accepted in revised form 26 September 2017; Available online 9 October 2017

Abstract

Compound-specific stable isotopes of amino acids (CSI-AA) from proteinaceous deep-sea coral skeletons have the potential to improve paleoreconstructions of plankton community composition, and our understanding of the trophic dynamics and biogeochemical cycling of sinking organic matter in the Ocean. However, the assumption that the molecular isotopic values preserved in protein skeletal material reflect those of the living coral polyps has never been directly investigated in proteinaceous deep-sea corals. We examined CSI-AA from three genera of proteinaceous deep-sea corals from three oceanographically distinct regions of the North Pacific: Primnoa from the Gulf of Alaska, Isidella from the Central California Margin, and Kulamanamana from the North Pacific Subtropical Gyre. We found minimal offsets in the $\delta^{13}C$ values of both essential and non-essential AAs, and in the $\delta^{15}N$ values of source AAs, between paired samples of polyp tissue and protein skeleton. Using an essential AA $\delta^{13}C$ fingerprinting approach, we show that estimates of the relative contribution of eukaryotic microalgae and prokaryotic cyanobacteria to the sinking organic matter supporting deep-sea corals are the same when calculated from polyp tissue or recently deposited skeletal tissue. The $\delta^{15}N$ values of trophic AAs in skeletal tissue, on the other hand, were consistently 3–4‰ lower than polyp tissue for all three genera. We hypothesize that this offset reflects a partitioning of nitrogen flux through isotopic branch points in the synthesis of polyp (fast turnover tissue) and skeleton (slow, unidirectional incorporation). This offset indicates an underestimation, albeit correctable, of approximately half a trophic position from gorgonin protein-based deep-sea coral skeleton. Together, our observations open the door for applying many of the rapidly evolving CSI-AA based tools developed for metabolically active tissues in modern systems to archival coral tissues in a paleoceanographic context.

© 2017 Elsevier Ltd. All rights reserved.

Keyword: Deep-sea coral; Compound-specific stable isotope analysis; Amino acid; Paleoceanography; Trophic dynamics; Biogeochemistry; Isotope fractionation

Abbreviations: AA, amino acid; CSI-AA, compound-specific stable isotopes of amino acids; SIA, stable isotope analysis; SIAR, stable isotope analysis in R; TP_{CSI-AA}, trophic position from compound-specific stable isotopes of amino acids

* Corresponding author at: Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA.
E-mail addresses: kelton_mcmahon@uri.edu (K.W. McMahon), bwilliams@kecksci.claremont.edu (B. Williams), guilderson1@llnl.gov (T.P. Guilderson), dglynn@ucsc.edu (D.S. Glynn), mdmccar@ucsc.edu (M.D. McCarthy).

https://doi.org/10.1016/j.gca.2017.09.048
0016-7037/© 2017 Elsevier Ltd. All rights reserved.
1. INTRODUCTION

A diverse array of analytical tools is used to examine ocean ecosystem and biogeochemistry cycling responses to changing climatic conditions (Gordon and Morel, 1983; Henderson, 2002; Rothwell and Rack, 2006; Katz et al., 2010). However, there is a critical gap in resolution between short-term, high-resolution instrumental records, such as remote satellite sensing, and most long-term, paleoceanographic sediment records. The geochemical composition of well preserved, accretionary biogenic tissues (hereafter bioarchives) has the potential to close this gap, shedding light on the structure and function of past ocean ecosystems and their responses to changing climatic and oceanographic conditions on the scale of decades to millennia (Druifel, 1997; Barker et al., 2005; Ehrlich, 2010; Robinson et al., 2014).

Deep-sea (azooyxannelate) corals were discovered over two hundred years ago (Roberts and Hirshfield, 2004), yet their potential as bioarchives of past ocean conditions is just starting to be fully appreciated (Robinson et al., 2014). They are found on hard substrates in every ocean from near the surface to over 6000 m water depth (Carins, 2007). They provide a direct link to surface ocean processes by feeding opportunistically on recently exported surface-derived, sinking particulate organic matter (POM) (Ribes et al., 1999; Orejas et al., 2003; Roark et al., 2009). In the case of proteinaceous deep-sea corals, their skeletons are made of an extremely durable, cross-linked, fibrillar protein that is among the most diagnostically resistant proteinaceous materials known (Goldberg, 1974; Ehrlich, 2010; Strzepek et al., 2014). Proteinaceous skeletons are deposited in growth layers that are not metabolically reworked post-deposition (Roark et al., 2009; Sherwood and Edinger, 2009), and many species can live for hundreds to thousands of years (Roark et al., 2006, 2009; Guilderson et al., 2013). As such, proteinaceous deep-sea corals can be long-term (millennial), high-resolution (annual to decadal) bioarchives of past ocean conditions.

Much of the recent proxy development work with proteinaceous deep-sea corals has focused on stable isotope analysis (SIA) of total (“bulk”) skeletal material, as a proxy for changes in surface ocean conditions (e.g., Heikoop et al., 2002; Sherwood et al., 2005, 2009; Williams et al., 2007; Hill et al., 2014). A main challenge to interpreting bulk stable isotope data in a paleocontext is determining whether changes in bulk stable isotope values are due to (1) changes in baseline dissolved inorganic carbon (DIC) or N\textsubscript{2}O values, (2) changes in plankton community composition, (3) changes in trophic dynamics of organic matter exported from the surface ocean (export production) or corals themselves, (4) changes in microbial reworking of sinking POM, or some combination of all of these factors (Wakeham and Lee, 1989; Meyers, 1994; Lehmann et al., 2002; Post, 2002). Compound-specific stable isotopes of individual amino acids (AA) offer a powerful suite of new tools to begin teasing apart these confounding variables (reviewed in Ohkouchi et al., 2017).

The potential of CSI-AA in paleoceanographic studies lies in the differential fractionation of individual AA between diet and consumer. With respect to δ15N, there is a high degree of metabolic diversity in essential AA syntheses pathways among distinct lineages of primary producers (Hayes, 2001; Scott et al., 2006), which leads to unique essential AA δ15N “fingerprints” of primary producers (Larsen et al., 2009, 2013; McMahon et al., 2011, 2015a). While the phylogenetic specificity of this approach is still coarse and will inherently be limited by the underlying diversity in central metabolism pathways among primary producers, our ability to identify primary producers at finer taxonomic scales using CSI-AA is improving (e.g., Larsen et al., 2009, 2013; McMahon et al., 2015a). These isotopic fingerprints are passed on to upper trophic level consumers, virtually unmodified, because animals acquire essential AAs directly from their diet (Reeds, 2000) with little to no isotopic fractionation between diet and consumer (Hare et al., 1991; Howland et al., 2003; McMahon et al., 2010). As a result, essential AA δ15N fingerprinting tools are now rapidly developing, with the ultimate goal of quantifying the primary producer sources in food webs (e.g., Arthur et al., 2014; Nielsen and Winder, 2015; McMahon et al., 2016).

With respect to δ13C, individual AAs are commonly divided into trophic and source AAAs (after Popp et al., 2007) based on their relative δ13C fractionation with trophic transfer (δ13C(DIC)) (reviewed in McMahon and McCarthy, 2016; Ohkouchi et al., 2017). Source AAs (e.g., phenylalanine: Phe) exhibit minimal nitrogen isotope fractionation during trophic transfer (McClelland and Montoya, 2002; Chikaraishi et al., 2009; McMahon et al., 2015b). Thus δ13C, δ15N, and δ15N fractionation (degree of transamination/deamination; Braun et al., 2014) are largely independent from the processes for AA δ15N fractionation (degree of transamination/deamination; Braunitz et al., 2014) and ability to synthesize carbon side chains; Hayes, 2001), providing complementary but distinct insight into the processing of organic matter.

In recent years, CSI-AA has increasingly been applied to proteinaceous deep-sea corals, with both AA δ13C and δ15N analyses used to understand shifting current systems on the Atlantic margin (Sherwood et al., 2011), changes in plankton community composition and nitrogen-fixation in the central Pacific (Sherwood et al., 2014; McMahon et al., 2015a), effects of long-term land use change on Gulf of Mexico N cycling (Prouty et al., 2014), and stability of mesophotic primary productivity in the western Pacific warm pool (Williams et al., 2016). However, a fundamental assumption for all such CSI-AA applications is that individual AA stable isotope values of bioarchival skeleton
material reflect the same AA isotope values in the metabolically active polyp tissue at the time of deposition. While AA stable isotope values have been well studied in metabolically active consumer tissues (reviewed in McMahon and McCarthy, 2016), these structural proteins typically have very different AA compositions and turnover rates (Ehrlich, 2010), which could potentially lead to differences in fractionation processes (e.g., Schmidt et al., 2004; Chikaraishi et al., 2014; Hebert et al., 2016). To our knowledge, this underlying question of AA δ¹³C and δ¹⁵N preservation in structural tissues of deep-sea corals has never been directly evaluated.

Here we present the first quantitative examination of individual AA stable isotope values (δ¹³C and δ¹⁵N) in paired coral polyp tissue and recently deposited protein skeleton for three genera of deep-sea proteinaceous coral from three oceanographically distinct regions of the North Pacific (Fig. 1; Appendix A): Red Tree Coral Primnoa pacifica (Family: Primnoidae) from the Gulf of Alaska, Bamboo Coral Isidella sp. (Family: Isididae) from the California Current System, and Hawaiian Gold Coral Kulamanamana haumeaeae (Family: Parazoanthidae) from the North Pacific Subtropical Gyre (NPSG), hereafter referred to as Primnoa, Isidella, and Kulamanamana, respectively. We tested the hypothesis that there would be no differences in individual AA δ¹³C and δ¹⁵N values between polyp tissue and recent skeletal material. We then tested whether metabolically active polyp tissue and proteinaceous skeleton produced the same results for two commonly used CSI-AA proxy approaches. First, we compared plankton community composition reconstructions from the paired tissue types using an AA δ¹³C fingerprinting approach (e.g., McMahon et al., 2015a). Second, we reconstructed the trophic structure and baseline δ¹⁵N values from both tissues, in corals spanning oligotrophic open ocean gyres to coastal eutrophic margins using AA δ¹⁵N values (e.g., Sherwood et al., 2014).

2. METHODS

2.1. Study specimens and locations

2.1.1. Red Tree Coral: Primnoa

Primnoa pacifica (Cairns and Bayer, 2005) is an octocoral in the family Primnoidae that forms a large fan-shaped gross morphology comprised of a proteinaceous skeleton...
with radially alternating couplets of calcite and gorgonian material (Risk et al., 2002; Fig. A.1). These corals are slow growing, with radial growth rates of 100–300 μm yr\(^{-1}\) and lifespans of several hundred years (Andrews et al., 2002; Williams et al., 2007).

Here, five Primnoa specimens were collected from the Gulf of Alaska. Four live Primnoa were collected in 25–200 m water depth in the Gulf of Alaska in summer 2013, two using the H2000 ROV aboard the FSV Alaska Provider from Scripps University and two via bottom trawl. One dead specimen was collected from an unknown depth via bottom trawl in summer 2010 (Fig. 1; Table A.1). The coastal regions of the Gulf of Alaska are iron-rich, sourced from cross-shelf exchange and vertical mixing (Bruland et al., 2001; Childers et al., 2005; Ladd et al., 2005), which support high primary productivity characterized by diatoms and flagellates (Sambrotto and Lorenzen, 1986; Strom et al., 2006). In deeper water (400 m), \(\delta^{15}N\) value of the nitrate is 4–5‰ (Wu et al., 1997). There is a strong seasonal cycle in nitrogen dynamics in the coastal region reflecting the supply of nutrients to the surface waters via upwelling during the early summer followed by rapid nutrient drawdown by summer phytoplankton blooms as the summer progresses and upwelling stops (Wu et al., 1997).

2.1.2. Bamboo coral: Isidella

Isidella sp. (Gray, 1857) is an octocoral in the family Isididae that forms a skeleton of high magnesium calcite internodes several centimeters long interspersed by proteinaceous gorgonian organic nodes (4–25 mm long) (Fig. A.1). These coral grow in candelabra-like shapes to heights greater than 2 m (Fig. A.1). They are slow growing (radial growth rates of 50–150 μm yr\(^{-1}\)), with lifespans reaching several hundred years (Thresher et al., 2004; Roark et al., 2005).

Here, five live specimens of the genus *Isidella* were collected in 1125–1250 m water depth from the California Margin (Sur Ridge) offshore of central California using the Monterey Bay Area Research Institute (MBARI) ROV Doc Ricketts in the summer of 2014 (Fig. 1; Table A.1). The California Margin is one of the most productive zones of the World Ocean, with strong seasonal coastal upwelling from April through early winter (Strub et al., 1987; García-Reyes and Largier, 2012) generating a nutrient-rich environment supporting substantial productivity (Bruland et al., 2001). Sur Ridge in the Central California Margin is a high nutrient and low chlorophyll (HNLC) zone (Hutchins and Bruland, 1998; Walker and McCarthy, 2012). The southward-flowing California Current bathes this region with NO\(_3\) of oceanic origin, while the northward-flowing California Undercurrent and the weaker nearshore Davidson Current entrain \(^{15}N\)-enriched NO\(_3\) associated with denitrification from the high productivity, low oxygen Eastern Tropical North Pacific (Altabet et al., 1999; Voss et al., 2001; Collins et al., 2003).

2.1.3. Hawaiian Gold Coral: Kulamanamana

Kulamanamana haumeae (Sinniger et al., 2013) is a parasitic zoantharian in the family Parazoanthidae that secretes a scleroprotein skeleton that covers and eventually extends beyond its host coral colony. This coral forms a sea fan shape with heights of several meters (Parrish, 2015; Fig. A.1). It is a very long-lived, slow growing coral, with lifespans of thousands of years and radial growth rates of 25–100 μm yr\(^{-1}\) (Roark et al., 2006, 2009; Guilderson et al., 2013).

Here, three live *Kulamanamana* colonies were collected in 350–410 m water depth from seamounts in the Hawaiian Archipelago using the HURL/NOAA Pisces V submersible in the summer of 2004 and 2007 (Fig. 1; Table A.1) (Guilderson et al., 2013). The NPSG is characterized by exceedingly low dissolved nutrients (<10 nmol NO\(_3\) in the mixed layer) and is dominated by small cell prokaryotic cyanobacterial production (Karl et al., 2001). The nitrogen balance and controls on new production in this system are not strictly limited by available fixed nitrogen (Eppley et al., 1977), and there is significant nitrogen fixation with characteristically low \(\delta^{15}N\) values (Karl et al., 2008; Church et al., 2009).

2.2. Sample preparation and analysis

2.2.1. Sample Preparation

All coral colonies were rinsed with saltwater followed by distilled water and air-dried prior to being transferred to onshore laboratories. Encrusted polyp tissue was then peeled as a single mass from the skeleton of each coral colony with forceps and dried again at 50 °C for 24 h. After drying, the polyp tissue was homogenized, reflecting a colony wide composite sample. Deep-sea coral polyp tissues are very lipid rich (Hamoutene et al., 2008), and therefore polyp tissue samples were lipid extracted three times following the conventional methanol/chloroform protocol of Bligh and Dyer (1959) prior to analysis of CSI-AA to improve chromatography. The proteinaceous nodes of *Isidella* were separated from the carbonate internodes with a scalpel according to Schiff et al. (2014). Both *Primnoa* and *Kulamanamana* skeletons were sectioned at the base and polished according to Sherwood et al. (2014). The outermost edge of the protein skeleton (~200 μm radial depth, 5–7 mm band parallel to the growth axis) from all three coral genera was sampled with a computerized Merchantek micromill. Skeleton samples were individually acid washed in 1 N HCl in glass vials for four hours, rinsed three times in Milli-Q water, and dried overnight at 50 °C to remove calcium carbonate prior to analysis of CSI-AA to improve chromatography.

2.2.2. Stable isotope analysis

Bulk \(\delta^{13}C\) and \(\delta^{15}N\) values and elemental ratios for coral skeleton material as well as coral polyp material before and after lipid extraction (Appendix B; Table B.1) were conducted at the University of California – Santa Cruz using standard protocols of the Stable Isotope Laboratory (http://emerald.ucsc.edu/~silab/). Isotope values were corrected using an internal laboratory acetanilide standard, and in turn referenced to international IAEA standards. More detailed descriptions of coral tissue bulk analyses and data interpretation are given in Appendix B.
CSI-AA was conducted on polyp tissue and proteinaceous skeleton using 3 mg for δ^{13}C and 6 mg for δ^{15}N. Samples were acid hydrolyzed in 1 ml of 6 N HCl at 110 °C for 20 h to isolate the total free AAs and then evaporated to dryness under a gentle stream of ultra-high purity N_2. All samples were redissolved in 0.01 N HCl and passed through 0.45 μm Millipore glass-filter followed by rinses with additional 0.01 N HCl. Samples were then passed through individual cation exchange columns (Dowex 50WX[®] 400 ion exchange resin), rinsed with 0.01 N HCl, and eluted into muffled glassware with 2 N ammonia hydroxide. Dried samples were derivatized by esterification with acidified iso-propanol followed by acylation with trifluoroacetic anhydride (Siller et al., 1991). Derivatized samples were extracted with P-buffer (KH₂PO₄ + Na₂HPO₄ in Milli-Q water, pH 7) and chloroform three times with centrifugation (600 g) and organic phase extraction between each round (Ueda et al., 1989). Samples were evaporated to dryness under a gentle stream of ultra-high purity N_2 prior to neutralization with 2 N HCl at 110 °C for 5 min. Dried samples were acetylated once again and then brought up in ethyl acetate for CSI-AA analysis.

For AA δ^{13}C analyses, the derivatized AAs were injected in split mode at 250 °C and separated on a DB-5 column (50 m × 0.5 mm inner diameter; 0.25 μm film thickness; Agilent Technologies, Santa Clara, California, USA) in a Thermo Trace Ultra gas chromatograph (GC) at the University of California – Santa Cruz. The separated AA peaks were analyzed on a Finnegan MAT Delta^{Plus} XL isotope ratio mass spectrometer (IRMS) interfaced to the GC through a GC-C III combustion furnace (960 °C) and reduction furnace (630 °C). For AA δ^{15}N analyses, the derivatized AAs were injected in splitless mode at 250 °C and separated on a BPX5 column (60 m × 0.32 mm inner diameter, 1.0 μm film thickness; SGE Analytical Science, Austin, Texas, USA) in the same CG-C-IRMS interfaced through a combustion furnace (980 °C), reduction furnace (650 °C), and a liquid nitrogen trap.

For carbon, we assigned glutamic acid (Glu), aspartic acid (Asp), alanine (Ala), proline (Pro), glycine (Gly), and serine (Ser) as non-essential AAs, and threonine (Thr), leucine (Leu), isoleucine (Ile), valine (Val), and phenylalanine (Phe) as essential AAs (Reeds, 2000). For nitrogen, we assigned Glu, Asp, Ala, Leu, Ile, Pro, Val as trophic AAs, and Phe, Methionine (Met), and Lysine (Lys) as source AAs (Popp et al., 2007). Gly, Ser, and Thr were kept as separate groups given the lack of consensus on degree of trophic fractionation between diet and consumer (reviewed in McMahon and McCarthy, 2016). It should be noted that acid hydrolysis converts glutamine (Gln) and aspartamine (Asn) into Glu and Asp, respectively, due to cleavage of the terminal amine group, resulting in the measurement of combined Gln + Glu (referred to hereby as Glu), and Asn + Asp (referred to hereby as Asp).

Standardization of runs was achieved using intermittent pulses of a CO₂ or N_2 reference gas of known isotopic value and internal nor-Leucine standards. All CSI-AA samples were analyzed in triplicate along with AA standards of known isotopic composition (Sigma–Aldrich Co.). The variability reported for δ^{13}C and δ^{15}N value of each AA measured (Tables C.1–C.4) therefore represents the analytical variation for $n = 3$ replicate GC-C-IRMS measurements. The long-term reproducibility of stable isotope values in a laboratory algal standard provides an estimate of full protocol reproducibility (replicate hydrolysis, wet chemistry, and analysis): δ^{13}C = ±0.7‰ and δ^{15}N = ±0.3‰ (calculated as the long-term SD across >100 separate full analyses, averaged across all individual AAs).

2.3. Data analysis

We used principal component analysis to visualize multivariate patterns in the δ^{13}C values of individual AAs (Ala, Asp, Gly, Glu, Ile, Leu, Phe, Pro, Ser, Thr, Val) in polyp tissue and skeleton of the three deep-sea coral genera (Appendix C, Table C.5). Individual AA stable isotope offsets were calculated as the difference in isotope value (δ^{13}C or δ^{15}N) between paired polyp and skeleton samples for each individual from the three genera of deep-sea coral. We used separate one-sample t-tests to determine if individual AA δ^{13}C and δ^{15}N offsets between polyp and skeleton were significantly different from zero ($x = 0.05$). For all statistical analyses $n = 5$ individuals for Primnoa and Isidella and $n = 3$ individuals for Kulamanamana. All data conformed to the assumptions of their respective statistical tests.

We used an AA isotope fingerprinting approach to examine the composition of primary producers fueling export production to deep-sea corals in each of the three study regions: Gulf of Alaska (Primnoa), Central California Margin (Isidella), and NPSG (Kulamanamana) (sensu McMahon et al., 2015a; see Appendix C for details). Briefly, we calculated the relative contribution of key plankton end members (eukaryotic microalgae, prokaryotic cyanobacteria, and heterotrophic bacteria) contributing carbon to each coral colony via export production in a fully Bayesian stable isotope mixing framework (Parnell et al., 2010; Ward et al., 2010) within the Stable Isotope Analysis in R (SIAR) package (R Core Team, 2013). We used published essential AA δ^{13}C data (Thr, Ile, Val, Phe, and Leu) from eukaryotic microalgae, cyanobacteria, and heterotrophic bacteria (Larsen et al., 2009, 2013; Lehman, 2009) as the source data set for the mixing model (Table C.6). We used normalized essential AA δ^{13}C values of end members and coral tissues (polyp and skeleton) to facilitate comparisons of the AA δ^{13}C fingerprints across different regions and growing conditions (see Appendix C for justification). To do this, we subtracted the mean of all five essential AA δ^{13}C values from each individual essential AA δ^{13}C value for each sample (sensu Larsen et al., 2015). In SIAR, we ran 500,000 iterations with an initial discard of the first 50,000 iterations as burn-in. We used separate One-Way Analyses of Variance (ANOVA) with Tukey’s Honestly Significant Difference (HSD) post hoc tests ($x = 0.05$) to look for differences in relative contribution of each end member among the three coral genera. We used separate one-sample t-tests to see if the differences in the relative contribution of potential end members calculated from coral polyp tissue vs. skeleton were significantly different from 0 ($x = 0.05$).
We examined the differences in mean trophic AA $\delta^{15}N$ offsets (calculated as the mean $\delta^{15}N$ offset between polyp and skeleton averaged across all trophic AAs for each coral) among the three genera of coral using a One-Way ANOVA and Tukey’s HSD post hoc test ($z = 0.05$). We calculated separate TPCSI-AA values of deep-sea corals based on the AA $\delta^{15}N$ values from polyp tissue and skeleton using the single TDF$_{Glu-Phe}$ approach of Chikaraishi et al. (2009):

$$TP_{CSI-AA} = \frac{\delta^{15}N_{Glu} - \delta^{15}N_{Phe} - \beta}{TDF_{Glu-Phe}}$$

where $\delta^{15}N_{Glu}$ and $\delta^{15}N_{Phe}$ represent the stable nitrogen isotope values of coral Glu and Phe, respectively, β represents the difference in $\delta^{15}N$ between Glu and Phe of primary producers (3.4‰ for aquatic cyanobacteria and algae (McClelland and Montoya, 2002; Chikaraishi et al., 2010)), and TDF$_{Glu-Phe}$ is the literature trophic discrimination factor value of 7.6‰ (Chikaraishi et al., 2009). We then used separate one-sample t-tests to see if the differences in TPCSI-AA offsets calculated from coral polyp tissue vs. skeleton were significantly different from 0 ($z = 0.05$). All statistics were performed in R version 3.0.2 using RStudio interface version 0.98.501 (R Core Team, 2013).

3. RESULTS

3.1. Bulk elemental and isotopic composition

Detailed analysis of bulk isotopic and elemental composition for coral skeleton and polyp material is given in Appendix B. The $\delta^{13}C$ values for coral skeleton material ($-15.9 \pm 0.9‰$) was $\sim3.5‰$ more enriched than lipid-intact polyp material ($-19.4 \pm 1.0‰$), though both tissues had consistent $\delta^{13}C$ values across all three genera examined (Table B.1). The $\delta^{13}C$ values of lipid extracted polyp material ($-15.5 \pm 0.7‰$) were 4‰ lower than lipid-intact polyps and very similar to corresponding skeleton material (mean offset $-0.4 \pm 0.5‰$) (Table B.1). Lipid extraction also altered polyp tissue C/N ratios. Lipid-extracted polyp tissues had much lower C/N ratios (3.1 ± 0.3) than lipid-intact polyps (4.8 ± 0.7) and were very similar to coral proteinaceous skeleton (2.9 ± 0.3). Much like $\delta^{13}C$ values, C/N ratios were consistent across all three genera examined. In contrast, the $\delta^{15}N$ values were more variable among the three genera for both skeleton (mean 13.8 ± 1.0‰ for Primnoa; 16.0 ± 0.7‰ for Isadella, and 10.3 ± 0.3‰ for Kulamanamana) and lipid-intact polyp tissue (mean 11.2 ± 0.4‰ for Primnoa; 14.8 ± 0.6‰ for Isadella, and 8.3 ± 0.3‰ for Kulamanamana) (Table B.1). On average, coral polyp tissue was 1.9 ± 0.8‰ more enriched in ^{15}N than coral skeleton (Table B.1).

3.2. Amino acid carbon isotopes

Individual AA $\delta^{13}C$ values differed significantly among the three coral genera (Fig. 2), with Primnoa from the Gulf of Alaska and Isadella from the Sur Ridge generally having more positive AA $\delta^{13}C$ values than Kulamanamana from the NPSG. Given the substantially larger differences in $\delta^{13}C$ values among different coral genera compared to among individuals within a genus, all three corals were separated in multivariate space based on...
principal component analysis of all eleven AA δ¹³C values (Fig. 3, Table C.5).

There was little to no variation in individual AA δ¹³C values between skeleton and polyp tissue within an individual: mean δ¹³C offset was −0.2 ± 0.4‰ for Prionmoa, 0.0 ± 0.2‰ for Isidella and 0.2 ± 0.6‰ for Kulamanamana (calculated as the average offset for all AAs analyzed, averaged across all individuals within a genus; Fig. 4). No individual AA δ¹³C offsets between skeleton and polyp tissue were greater than 1‰, and only the non-essential AA Pro in Prionmoa had a δ¹³C offset that was significantly different from 0‰ (−1.0 ± 0.7‰; Table 1). As a result, the skeleton and polyp tissue from a single genus always clustered together in multivariate space (Fig. 3, Table C.5).

Using an AA isotope fingerprinting approach in a Bayesian stable isotope mixing model, we compared estimates of the relative contribution of eukaryotic microalgae and prokaryotic cyanobacteria to corals calculated from both coral skeleton and polyp tissue. The relative contribution results were very similar regardless of tissue type (Fig. 5).

The mean absolute value difference in relative contribution calculated from polyp vs. skeleton was 6 ± 3% for Prionmoa, 4 ± 2% for Isidella, and 5 ± 2% for Kulamanamana (calculated as the absolute value of the difference in relative contribution for each end member between polyp tissue and skeleton, averaged across all three end members for all individuals within a coral genera). This 4–6% variability between tissue types was within the variance in model output after 500,000 iterations of the SIAR mixing model (8 ± 1%).

We did find significant differences in the relative contribution of cyanobacteria-derived carbon (One-way ANOVA, \(F_{2,10} = 235.5, \ p = 3.9 \times 10^{-9}\)) and eukaryotic microalgae-derived carbon (One-way ANOVA, \(F_{2,10} = 410.5, \ p = 2.5 \times 10^{-10}\)) among the three corals (calculated from polyp tissue, but the results were the same for skeleton). Both Prionmoa from the Gulf of Alaska (77 ± 2%) and Isidella from the Central California Margin (68 ± 4%) relied heavily on export production fueled by eukaryotic microalgae (Tukey’s HSD, \(p < 0.05\)) (Fig. 5). Conversely, Kulamanamana from the NPSG received relatively little input from eukaryotic microalgae (9 ± 5%) (Tukey’s HSD, \(p < 0.05\)), instead receiving the majority of its carbon from cyanobacteria-fixed carbon (74 ± 1%) (Tukey’s HSD, \(p < 0.05\)) (Fig. 5). All three corals showed a small and relatively consistent contribution of carbon from heterotrophic bacteria (12 ± 4% averaged across all three genera) (Fig. 5).

3.3. Amino acid nitrogen isotopes

As with carbon, individual AA δ¹⁵N values differed significantly among the three coral genera (Fig. 6), with Isidella from the California Margin having the highest AA δ¹⁵N values and Kulamanamana from the NPSG having the lowest AA δ¹⁵N values. The trophic AAs were more positive than the source AAs, and Thr had the characteristic most negative δ¹⁵N values.

δ¹⁵N values did not differ significantly between coral skeleton and polyp tissue for any of the measurable source AAs: Phe (mean offset across all three genera = −0.1 ± 0.1‰), Lys (0.3 ± 0.1‰), and Met (0.1‰; however, Met was only present in sufficient quantity for analysis in Prionmoa) (Fig. 7; Table 1). However, the mean offset in trophic AA δ¹⁵N values between skeleton and polyp were significantly greater than 0‰ for all three genera: Prionmoa = −2.8 ± 0.2‰ (one sample t-test, \(t_4 = 32.4, \ p = 5.4 \times 10^{-6}\)), Isidella = −3.5 ± 0.4‰ (one sample t-test, \(t_4 = 32.0, \ p = 2.5 \times 10^{-5}\)), and Kulamanamana = −3.2 ± 0.1‰ (one sample t-test, \(t_2 = 56.8, \ p = 3.1 \times 10^{-4}\)) (averaged across all trophic AAs within an individual and then averaged across all individuals within a genus) (Fig. 7). In particular, the mean offset for the canonical trophic AA Glu was remarkably consistent across all three coral genera: Prionmoa = −3.4 ± 0.5‰, Isidella = −3.4 ± 0.5‰, and Kulamanamana = −3.4 ± 0.2‰ (averaged across individuals within a genus) (Fig. 7, Table 1). Thr δ¹⁵N values were consistently offset between skeleton and polyp tissue for all three genera (mean offset across all three genera = 2.8 ± 0.6‰), but in the opposite direction as the trophic AAs (Fig. 7, Table 1). Gly and Ser had variable δ¹⁵N offsets among the three genera though they were always closer to 0‰ than the trophic AAs and Thr (Fig. 7, Table 1).

All three coral genera had similar TPCSI-AA values when calculated from polyp tissue: Prionmoa = 2.4 ± 0.2, Isidella = 2.4 ± 0.1, and Kulamanamana = 2.6 ± 0.1 (averaged across individuals within a genus). However, given the large -3.4‰ offset in δ¹⁵N value of Glu between skeleton and polyp tissue, coincident with no appreciable offset in Phe δ¹⁵N value, TPCSIAA estimates were nearly half a trophic level lower when calculated from skeleton AA δ¹⁵N data, compared to estimates from polyp data. The mean TPCSIAA offsets between skeleton and polyp were very similar among genera: for Prionmoa = −0.4 ± 0.1 (one sample t-test, \(t_4 = 15.7, \ p = 9.5 \times 10^{-5}\)), Isidella = −0.4 ± 0.1
Table 1

Mean (±SD) offset (skeleton minus polyp tissue) of individual amino acid 13C and 15N values for three genera of proteinaceous deep-sea coral. One sample t-tests determined if mean offsets were significantly different from 0. All columns were in conventional three-letter abbreviation format. Essential and non-essential amino acids designated with E and N, respectively; trophic and source amino acids designated with T and S, respectively; amino acids with poorly characterized fractionation during trophic transfer designated with ?. Na = not analyzed.

<table>
<thead>
<tr>
<th>Genus</th>
<th>13C Offset (‰)</th>
<th>15N Offset (‰)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primnoa pacifica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AlaE, T</td>
<td>0.3 ± 0.6 (1.06)</td>
<td>0.4 ± 0.4 (1.89)</td>
</tr>
<tr>
<td>ArgE, N</td>
<td>0.5 ± 0.1 (0.35)</td>
<td>0.6 ± 0.1 (0.35)</td>
</tr>
<tr>
<td>AspN, T</td>
<td>0.0 ± 0.8 (0.02)</td>
<td>0.4 ± 0.7 (1.39)</td>
</tr>
<tr>
<td>CysN, T</td>
<td>0.0 ± 0.3 (0.08)</td>
<td>0.3 ± 1.2 (0.47)</td>
</tr>
<tr>
<td>GluN, T</td>
<td>0.6 ± 0.3 (1.39)</td>
<td>0.2 ± 0.3 (1.06)</td>
</tr>
<tr>
<td>GlyN, ?</td>
<td>0.2 ± 0.8 (0.59)</td>
<td>0.2 ± 0.2 (2.05)</td>
</tr>
<tr>
<td>HisE, T</td>
<td>0.0 ± 0.3 (0.08)</td>
<td>0.3 ± 1.2 (0.47)</td>
</tr>
<tr>
<td>IleE, T</td>
<td>0.0 ± 0.6 (0.09)</td>
<td>0.3 ± 1.2 (0.47)</td>
</tr>
<tr>
<td>LeuE, T</td>
<td>0.0 ± 0.6 (0.09)</td>
<td>0.3 ± 1.2 (0.47)</td>
</tr>
<tr>
<td>LysE, S</td>
<td>0.3 ± 0.6 (1.06)</td>
<td>0.4 ± 0.4 (1.89)</td>
</tr>
<tr>
<td>MetE, S</td>
<td>0.1 ± 0.6 (0.54)</td>
<td>nan</td>
</tr>
<tr>
<td>PheE</td>
<td>0.2 ± 0.6 (0.09)</td>
<td>0.5 ± 0.1 (0.35)</td>
</tr>
<tr>
<td>ProE</td>
<td>0.0 ± 0.3 (0.08)</td>
<td>0.3 ± 1.2 (0.47)</td>
</tr>
<tr>
<td>SerE, T</td>
<td>0.0 ± 0.6 (0.09)</td>
<td>0.3 ± 1.2 (0.47)</td>
</tr>
<tr>
<td>ThrE, ?</td>
<td>0.0 ± 0.8 (0.02)</td>
<td>0.4 ± 0.7 (1.39)</td>
</tr>
<tr>
<td>ValE, T</td>
<td>0.0 ± 0.6 (0.09)</td>
<td>0.3 ± 1.2 (0.47)</td>
</tr>
<tr>
<td>Total</td>
<td>1.6 ± 0.2 (1.53)</td>
<td>0.9 ± 0.5 (3.87)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Isidella sp.</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AlaE, T</td>
<td>0.3 ± 0.6 (1.06)</td>
<td>0.4 ± 0.4 (1.89)</td>
</tr>
<tr>
<td>ArgE, N</td>
<td>0.5 ± 0.1 (0.35)</td>
<td>0.6 ± 0.1 (0.35)</td>
</tr>
<tr>
<td>AspN, T</td>
<td>0.0 ± 0.8 (0.02)</td>
<td>0.4 ± 0.7 (1.39)</td>
</tr>
<tr>
<td>CysN, T</td>
<td>0.0 ± 0.3 (0.08)</td>
<td>0.3 ± 1.2 (0.47)</td>
</tr>
<tr>
<td>GluN, T</td>
<td>0.6 ± 0.3 (1.39)</td>
<td>0.2 ± 0.3 (1.06)</td>
</tr>
<tr>
<td>GlyN, ?</td>
<td>0.2 ± 0.8 (0.59)</td>
<td>0.2 ± 0.2 (2.05)</td>
</tr>
<tr>
<td>HisE, T</td>
<td>0.0 ± 0.3 (0.08)</td>
<td>0.3 ± 1.2 (0.47)</td>
</tr>
<tr>
<td>IleE, T</td>
<td>0.0 ± 0.6 (0.09)</td>
<td>0.3 ± 1.2 (0.47)</td>
</tr>
<tr>
<td>LeuE, T</td>
<td>0.0 ± 0.6 (0.09)</td>
<td>0.3 ± 1.2 (0.47)</td>
</tr>
<tr>
<td>LysE, S</td>
<td>0.3 ± 0.6 (1.06)</td>
<td>0.4 ± 0.4 (1.89)</td>
</tr>
<tr>
<td>MetE, S</td>
<td>0.1 ± 0.6 (0.54)</td>
<td>nan</td>
</tr>
<tr>
<td>PheE</td>
<td>0.2 ± 0.6 (0.09)</td>
<td>0.5 ± 0.1 (0.35)</td>
</tr>
<tr>
<td>ProE</td>
<td>0.0 ± 0.3 (0.08)</td>
<td>0.3 ± 1.2 (0.47)</td>
</tr>
<tr>
<td>SerE, T</td>
<td>0.0 ± 0.6 (0.09)</td>
<td>0.3 ± 1.2 (0.47)</td>
</tr>
<tr>
<td>ThrE, ?</td>
<td>0.0 ± 0.8 (0.02)</td>
<td>0.4 ± 0.7 (1.39)</td>
</tr>
<tr>
<td>ValE, T</td>
<td>0.0 ± 0.6 (0.09)</td>
<td>0.3 ± 1.2 (0.47)</td>
</tr>
<tr>
<td>Total</td>
<td>1.6 ± 0.2 (1.53)</td>
<td>0.9 ± 0.5 (3.87)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kulamana lusitanica</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AlaE, T</td>
<td>0.3 ± 0.6 (1.06)</td>
<td>0.4 ± 0.4 (1.89)</td>
</tr>
<tr>
<td>ArgE, N</td>
<td>0.5 ± 0.1 (0.35)</td>
<td>0.6 ± 0.1 (0.35)</td>
</tr>
<tr>
<td>AspN, T</td>
<td>0.0 ± 0.8 (0.02)</td>
<td>0.4 ± 0.7 (1.39)</td>
</tr>
<tr>
<td>CysN, T</td>
<td>0.0 ± 0.3 (0.08)</td>
<td>0.3 ± 1.2 (0.47)</td>
</tr>
<tr>
<td>GluN, T</td>
<td>0.6 ± 0.3 (1.39)</td>
<td>0.2 ± 0.3 (1.06)</td>
</tr>
<tr>
<td>GlyN, ?</td>
<td>0.2 ± 0.8 (0.59)</td>
<td>0.2 ± 0.2 (2.05)</td>
</tr>
<tr>
<td>HisE, T</td>
<td>0.0 ± 0.3 (0.08)</td>
<td>0.3 ± 1.2 (0.47)</td>
</tr>
<tr>
<td>IleE, T</td>
<td>0.0 ± 0.6 (0.09)</td>
<td>0.3 ± 1.2 (0.47)</td>
</tr>
<tr>
<td>LeuE, T</td>
<td>0.0 ± 0.6 (0.09)</td>
<td>0.3 ± 1.2 (0.47)</td>
</tr>
<tr>
<td>LysE, S</td>
<td>0.3 ± 0.6 (1.06)</td>
<td>0.4 ± 0.4 (1.89)</td>
</tr>
<tr>
<td>MetE, S</td>
<td>0.1 ± 0.6 (0.54)</td>
<td>nan</td>
</tr>
<tr>
<td>PheE</td>
<td>0.2 ± 0.6 (0.09)</td>
<td>0.5 ± 0.1 (0.35)</td>
</tr>
<tr>
<td>ProE</td>
<td>0.0 ± 0.3 (0.08)</td>
<td>0.3 ± 1.2 (0.47)</td>
</tr>
<tr>
<td>SerE, T</td>
<td>0.0 ± 0.6 (0.09)</td>
<td>0.3 ± 1.2 (0.47)</td>
</tr>
<tr>
<td>ThrE, ?</td>
<td>0.0 ± 0.8 (0.02)</td>
<td>0.4 ± 0.7 (1.39)</td>
</tr>
<tr>
<td>ValE, T</td>
<td>0.0 ± 0.6 (0.09)</td>
<td>0.3 ± 1.2 (0.47)</td>
</tr>
<tr>
<td>Total</td>
<td>1.6 ± 0.2 (1.53)</td>
<td>0.9 ± 0.5 (3.87)</td>
</tr>
</tbody>
</table>

(One sample t-test, t₁ = −14.1, p = 1.5e−4, and Kulamana lusitanica = −0.5 ± 0.1 (one sample t-test, t₂ = −11.1, p = 0.008).

4. DISCUSSION

Overall, the AA δ13C and δ15N offsets between coral polyp tissue and skeleton were consistent across three proteinaceous deep-sea coral genera. We found minimal offsets in the δ13C values of both essential and non-essential AAs, as well as the δ15N values of source AAs between polyp tissue and protein skeleton. However, the δ15N values of trophic AAs in skeletal material were consistently 3-4‰ less than polyp tissue for all three genera. These observations suggest that these patterns of δ13C and δ15N offset between coral polyp tissue and proteinaceous skeleton are likely robust for gorgonin-based proteinaceous corals, linked to fundamental aspects of central metabolism and tissue synthesis. Our observations open the door for applying many of the rapidly evolving CSI-AA based tools developed for metabolically active tissues in modern systems to archival coral tissues in a paleoceanographic context.

4.1. Carbon isotopes

Amino acid carbon isotope fingerprinting has the potential to be used to reconstruct the main sources of primary production fueling consumers (e.g., Larsen et al., 2013; Arthur et al., 2014; McMahon et al., 2016). However, to apply this technique to paleoarchives, the δ13C values of individual AAs in archival structural tissues, such as proteinaceous skeletons, must accurately reflect the δ13C values of those same AAs in the metabolically active tissue. Our data showed only small, non-systematic offsets in AA δ13C values between coral polyp tissue and proteinaceous skeleton. This observation indicates that deep-sea corals do not exhibit substantially different carbon isotope fractionation of AAs during the synthesis of metabolically active tissues and structural proteins from a shared dietary AA pool. As a result, we conclude that information obtained from the δ13C values of AAs in a proteinaceous coral skeleton reflects the same information that would be obtained from the metabolically active tissue. While the average offset in AA δ13C value between tissues (averaged across all AAs) was close to 0‰, there was notable variation about that mean δ13C offset of individual AAs (typically <1‰) (Table 1). This variability likely reflects a combination of analytical uncertainty, small offsets in the temporal window represented by the different integration times of polyp and skeleton tissues, and potentially small differences in isotope fractionation during metabolism. However, as noted in Section 2.2.2, our best estimate of the full intra-sample variability for average δ13C AA measurements using this protocol is ±0.7‰. As such, differences in AA δ13C values among samples likely cannot be reliably interpreted near or less than 0.7‰.

To our knowledge, there is only one prior study comparing AA δ13C values in paired metabolically active and bioarchival structural tissues (McMahon et al., 2011). In that study, McMahon et al. (2011) found minimal offsets...
in AA δ13C values between fish muscle and the protein in biomineralized otoliths, which they similarly attributed to utilization of a shared AA pool for biosynthesis of both tissue types. Taken together, our data suggest that the AA δ13C values preserved in biomineralized tissues provide a faithful record of the AA δ13C values of metabolically active tissues across phylogenetically distant consumer taxa. However, it is important to remember that given the differences in incorporation rates between coral polyps (relatively fast) and proteinaceous skeleton (skeleton), corals that experience strong seasonal changes in food source (sinking POM) could exhibit offsets in the geochemical signals recorded in these two tissues.

One promising paleo-application for proteinaceous coral skeletons is using essential AA δ13C values within Bayesian mixing models to reconstruct past changes in algal community composition supporting export production (e.g., Schiff et al., 2014; McMahon et al., 2015a). The central observation for our study’s main question was that both living tissue (polyp) and coral skeleton give identical (within error) estimates of plankton community composition using this technique (Fig. 5). This supports our original hypothesis that δ13C AA fingerprinting approaches applied to coral skeletons produce the same result as if those analyses were conducted on metabolically active tissue integrating over the same time period.

While not the main focus of our study, our mixing model results of relative contribution of prokaryotic cyanobacteria and eukaryotic microalgae fueling export production were consistent with expectations based on phytoplankton community composition in the three oceanographically distinct regions (Fig. 5). For example, both Primnoa from the Gulf of Alaska and Isidella from the California Margin (77 ± 2% and 68 ± 4% respectively) relied heavily on export production fueled by eukaryotic microalgae, as expected for these regions with strong seasonal upwelling dominated by large eukaryotic phytoplankton (Chavez et al., 1991; Lehman, 1996; Odate, 1996; Strom et al., 2006). Conversely, Kulamanamana received the majority of their essential AAs from cyanobacteria-fixed carbon (74 ± 1%), consistent with the cyanobacteria-
dominated plankton composition of the oligotrophic NPSG euphotic zone (Karl et al., 2001). Our Bayesian mixing model results suggest that very little of the exported POM fed upon by any of these proteinaceous deep-sea corals was derived from heterotrophic bacteria, consistent with past estimates of direct heterotrophic bacterial contribution to sinking POM (Fuhrman, 1992; Azam et al., 1994; Wakeham, 1995). Caution must be taken when interpreting small differences (<10%) in relative contribution of end members, given the observed variability in AA δ15N offsets between polyp and skeleton (Table 1), variability in the molecular isotopic training set (Table C.6), and variance in the mixing model output (±8%). As such, the fact that the relative contribution results were consistent between polyp tissue and protein skeleton within estimates of uncertainty supports our hypothesis that the proteinaceous skeletons of deep-sea corals faithfully record the same geochemical signals as metabolically active tissue over the same integration time.

4.2. Nitrogen isotopes

4.2.1. Source AA δ¹⁵N as a proxy for δ¹⁵N_{baseline}

As we hypothesized, we found no significant offsets in source AA δ¹⁵N values between proteinaceous skeleton and polyp tissue for any of the coral genera in this study (Table 1). Since source AA δ¹⁵N values provide a robust proxy for δ¹⁵N_{baseline} (reviewed in McMahon and McCarthy, 2016), these results provide strong validation for using source AA δ¹⁵N values in proteinaceous coral records to infer past changes in the sources and cycling of nitrogen fueling export production (e.g. Sherwood et al., 2011, 2014). For instance, we found significant differences in the δ¹⁵N_{Phe} values among the three coral genera from oceanographically distinct regions (Fig. 6), which were generally consistent with oceanographic regime. Kulamana-mana corals from the NPSG had the lowest source AA δ¹⁵N values (2.6 ± 0.2‰), consistent with the expected strong influence of ¹⁵N-deplete nitrogen fixation in this region (Sherwood et al., 2014). Conversely, Primnoa from the Gulf of Alaska (δ¹⁵N_{Phe} = 7.3 ± 0.6‰) and Isidella from the California Margin (δ¹⁵N_{Phe} = 10.0 ± 0.6‰) had more enriched δ¹⁵N_{Phe} values, again consistent with the nitrogen supporting these coastal eutrophic upwelling systems (Wu et al., 1997; Altabet et al., 1999; Voss et al., 2001; Collins et al., 2003). Isidella, in particular, had the highest source AA δ¹⁵N values among the specimens. This likely reflects upwelling of ¹⁵N-enriched nitrate transported from regions of strong denitrification in the Eastern Tropical North Pacific via the California Undercurrent (Volkshoorni and McCarthy, 2014; Ruiz-Cooley et al., 2014).

4.2.2. Trophic AAs and TP_{CSI-AA}

Being able to estimate accurate TP_{CSI-AA} values in bioarchives is central to many CSI-AA paleoceanographic applications. TP_{CSI-AA} has been developed in coral records and sediments as a new proxy for tracking the trophic structure of planktonic ecosystems, which is likely tightly linked to overall nitrogen supply and nitricline depth (e.g., Sherwood et al., 2014; Batista et al., 2014). Measuring TP_{CSI-AA} in a paleorecord is also critical to determine the degree to which shifts in δ¹⁵N values of exported POM over time are driven by shifts in planktonic ecosystem structure or “baseline” changes in the sources and cycling of nitrogen at the base of the food web (e.g. Batista et al., 2014).

We found a mean 3–4‰ offset in trophic AA δ¹⁵N values between skeleton and polyp tissue (Fig. 7), which was in direct contrast to both our hypothesis and the widespread assumption of consistent trophic fractionation of AAs among tissues (McMahon and McCarthy, 2016). Given the minimal offset in source AA δ¹⁵N values between tissues, the estimated trophic position (TP_{CSI-AA}) of proteinaceous deep-sea coral from skeleton was approximately half a trophic level lower than when TP_{CSI-AA} was calculated from corresponding polyp tissue. The specific TP_{CSI-AA} values calculated from coral skeleton using Eq. (1) (mean 2.0 ± 0.1 across all three genera) also appear to be low based on expectations of POM feeding proteinaceous deep-sea corals. Direct TP_{CSI-AA} estimates from sinking POM, for example, have generally indicated average TP values near 1.5 (e.g., McCarthy et al., 2007; Batista et al., 2014), leading to a general expectation that coral TP_{CSI-AA} values should be near 2.5.

Our data indicate that a new correction factor (δ) is required for TP_{CSI-AA} reconstructions from proteinaceous deep-sea coral skeletons, reflecting the observed offset in trophic AA δ¹⁵N values between proteinaceous skeleton and polyp tissue. We propose a new TP_{CSI-AA} equation for use with proteinaceous deep-sea coral skeletons:

\[TP_{CSI-AA} = \frac{[\delta^{15}N_{Glu} + \delta^{15}N_{Phe} - \beta]}{TDF_{Glu-Phe}} \] (2)

which is modified from Eq. (1) by the addition of a correction factor (δ). For deep-sea corals with gorgonin protein (e.g. Primnoa, Isidella, Kulamana-mana), we found a remarkably consistent δ for Glu of 3.4 ± 0.1‰, which when applied to skeleton Glu δ¹⁵N values in Eq. (2), produced far more realistic TP_{CSI-AA} estimates (2.5 ± 0.1). This means that prior TP_{CSI-AA} values from deep-sea proteinaceous corals have likely been universally underestimated, however, it is important to note that comparisons of relative TP_{CSI-AA} estimates using the same tissue type would not be affected by this correction factor.

4.2.3. Potential mechanisms for trophic AA δ¹⁵N offsets

Our data bring up an important underlying mechanistic question: what is driving the consistent 3–4‰ offset in trophic AA δ¹⁵N values between proteinaceous coral skeleton and metabolically active polyp tissue? The fact that we only observed δ¹⁵N offsets for trophic AAs, but not source AAs (Fig. 7) suggests that the underlying mechanism is related to differential denamination/transamination during protein synthesis of these tissues. While confirming any specific mechanism is beyond the scope of our data, the ¹⁵N-depletion of trophic AAs in protein skeleton relative to metabolically active polyp tissue is most likely related to nitrogen flux from central Glutamine/Glutamate pool (in our protocols measured as Glu) during tissue synthesis.

The isotopic discrimination of AA nitrogen during metabolism is dependent on not only the number and iso-
We found that the δ13C values of AAs as well as the δ15N values of source AAs preserved in the proteinaceous skeletons of deep-sea gorgonin corals largely reflect the values recorded in the metabolically active polyp tissue. However, we did observe an unexpected but remarkably consistent δ15N offset between trophic AAs in proteinaceous skeleton and metabolically active polyp tissue, which must be accounted for via a correction factor (β) when calculating coral TP_C from proteinaceous skeletons. Future work will determine if the β calculated in this study applies to other proteinaceous structural tissues, such as chitonous Antipathes and Leiopathes deep-sea corals, mollusk shells, and foraminifera tests, all of which can also provide valuable high temporal resolution archives of past ocean conditions (Serban et al., 1988; Katz et al., 2010; Prouty et al., 2014). Our results open the doors for applying many of the rapidly evolving CSI-AA-based tools developed for metabolically active tissues in modern systems to archival tissues in a paleoceanographic context.

ACKNOWLEDGEMENTS

We thank Peter Etnoyer for initiating the funded proposal for portions of this work and assisting in the collection of Primnoa samples in the Gulf of Alaska. We thank the following captains and crew of the following groups for boat logistics during sample collection: (1) the RV Ka‘imikai-o-Kanaloa and the Hawaii Undersea Research Lab’s Pisces IV and V, (2) the Monterey Bay Area Research Institute (MBARI) ROV Doc Ricketts, and (3) the H2000 ROV and FSV Alaska Provider through Scripps University. We thank undergraduate students at Claremont McKenna (S. Barnes, D. Parks) and the University of California – Santa Cruz (J. Schiff, J. Liu) for assistance in sample preparation and Dr. E. Gier for assistance in compound-specific data analysis. Dr. Paul Koch (UCSC) provided input on hypotheses discussed in this paper. This work was supported by the NOAA National Undersea Research Program: West Coast and Polar Region (NA08OAR4300817) and the National Science Foundation (OCE 1061689 and OCE 1635527). A portion of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

APPENDIX A. SUPPLEMENTARY MATERIAL

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.gca.2017.09.048.

REFERENCES

the isotopic and elemental composition of skeletal structures in
Part II* 99, 199–206.

and Proctor C. (2004) Oceanic evidence of climate change in
southern Australia over the last three centuries. *Geophys. Res.
Lett.* 31, 2–5.

Tieszen L. L., Boutton T. W., Tesdahl K. G. and Slade N. A.
(1983) Fractionation and turnover of stable carbon isotopes in
animal tissues: implications for δ¹³C analysis of diet. *Oecologia*
57, 32–37.

Ueda K., Morgan S. L., Fox A., Gilbart J., Sonesson A., Larsson
L. and Odham G. (1989) D-alanine as a chemical marker for
the determination of streptococcal cell wall levels in mammalian
tissues by gas chromatography/negative ion chemical ionization

Vokhshoori N. L. and McCarthy M. D. (2014) Compound-specific
δ¹⁵N amino acid measurements in littoral mussels in the
California upwelling ecosystem: a new approach to generating
baseline δ¹⁵N isoscapes for coastal ecosystems. *PLoS ONE* 9,
e98087.

patterns in the oxygen-deficient waters of the Eastern Tropical

alteration of suspended particulate organic matter in oxy-
Part I* 42, 1749–1771.

Wakeham S. G. and Lee C. (1989) Organic geochemistry of
particulate matter in the ocean: the role of particles in oceanic

characterization of dissolved and particulate organic matter in a
unique California upwelling system: importance of size and
57, 1757–1774.

source uncertainty and prior information in the analysis of
4650.

Waterlow J. C. (1981) N end-product methods for the study of

the δ¹⁳C and δ¹⁵N of locusts and their biochemical components.
J. Exp. Biol. 201, 2903–2911.

Oceanographic changes in the North Pacific Ocean over the
Ecol. Prog. Ser.* 335, 85–94.

Williams B., Thibodeau B., Chikaraishi Y., Ohkouchi N., Walnum
amino acid composition offshore of Palau in the western Pacific
warm pool indicates no impact of decadal variability in
nitricline depth on primary productivity. *Limnol. Oceanogr.*

variations in the subarctic northeast Pacific: relationships to
nitrate utilization and trophic structure. *Deep Res. Part I* 44,
287–314.

Associate editor: Ruth Blake