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A Probabilistic Planning Framework for Planar
Grasping Under Uncertainty

Jiaji Zhou, Robert Paolini, Aaron M. Johnson, J. Andrew Bagnell, and Matthew T. Mason

Abstract—How can a robot design a sequence of grasping actions
that will succeed despite the presence of bounded state uncertainty
and an inherently stochastic system? In this letter, we propose a
probabilistic algorithm that generates sequential actions to itera-
tively reduce uncertainty until object pose is uniquely known (sub-
ject to symmetry). The plans assume encoder feedback that gives
a geometric partition of the post-grasp configuration space based
on contact conditions. An offline planning tree is generated by
interleaving computationally tractable open-loop action sequence
search and feedback state estimation with particle filtering. To
speed up planning, we use learned approximate forward motion
models, sensor models, and collision detectors. We demonstrate
the efficacy of our algorithm on robotic experiments with more
than 3000 grasp sequences using different object shapes, press-
ure distributions, and gripper materials where the uncertainty re-
gion is comparable to the size of the object in translation and with
no information about orientation.

Index Terms—Grasping, manipulation planning, probability
and statistical methods.

1. INTRODUCTION

N ORDER for robots to be successful in the real world, they

must be aware of the ubiquitous uncertainty in the world.
Much of the grasping literature focuses on planning grasping
points to optimize a criterion, e.g., force closure [1], while as-
suming perfect knowledge of the world. However, traditional
grasp planning is prone to failures. Consider the process of
closing a parallel jaw gripper, the object will slide when the first
finger engages contact and pushes the object before the other
one touches the object. If the object does not end up slipping
out, it can be jammed at an undesired position or grasped at
an unexpected position. Pose uncertainty and the complete task
mechanics of grasping need to be taken into consideration to
achieve robust success.

This letter focuses on planar grasping under bounded uncer-
tainty. We propose a tree-based probabilistic planning algorithm
for a particle belief space with discretized action choices. Ac-
tion selection for each node expansion uses a fixed depth open
loop search subroutine. We use learned models from simulations
based on the high fidelity mechanics model to significantly speed
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Fig. 1. A sequence of grasps with finger encoder feedback can shrink a
bounded pose uncertainty to a singleton pose. Red boxes indicate the post-grasp
gripper pose and filled rectangles with blue boundary correspond to object poses.
The belief distribution of pose particles, whose density is proportional the dark-
ness, is updated after observing the post-grasp finger distance. This sequence is
only one of the many possible sequences (sensor histories) represented as paths
from the root to leaf node in the tree in Fig. 6.

up this planning. We assume that the geometry of the robot grip-
per and the object is known. The mechanics model upon which
the simulation is based assumes quasi-static rigid body mechan-
ics with Coulomb friction (however the learned forward motion
models could be adjusted to incorporate experimental data).

II. PROBLEM DEFINITION AND APPROACH OVERVIEW

Problem: We are given an object of known geometry with
bounded initial uncertainty d,, d,, dy, a robot gripper with en-
coder feedback o, a set of grasping actions A. Design a de-
terministic strategy a;; = 7(Z;) that maps sensor history
Z; ={z1,..., %} toacollision-free action a;;1 € A such that
the uncertainty size shrinks to an approximate singleton (be-
low some tolerances €., €,, €9) after a sequence of actions, as
illustrated in the top row of Fig. 1.

The following observations are key to our approach:

1) Contact conditions parametrized by the post-grasp finger
distance observations partition the object configuration
space into a few feasible subspaces.

2) Given an initial uncertainty, the post-grasp sensor history
is a sufficient representation of the current belief distribu-
tion over poses. Hence, a natural choice for the policy 7
is tree-structured that splits on new observations.

2377-3766 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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A tree-based plan generated by our algorithm for a butterfly-shaped
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Fig. 2.
object.

Note that reducing uncertainty to almost a singleton is often
desired in most manufacturing settings. In many other appli-
cations reducing the poses to a smaller set is sufficient, which
our planner is capable to deal with by changing the progress
evaluation function (the SingletonRatio function in Section VI)
properly. Fig. 2 shows a tree-based plan generated by our
algorithm for a butterfly-shaped object where the centers are
uniformly distributed in a circle of radius 10 mm and the frame
angles are completely unknown. In each node, red boxes indi-
cate the expected final gripper pose and filled rectangles with
blue boundary correspond to particle-based belief distribution
of the object poses where density is proportional the darkness.
The actions choices are four different angled squeezes with the
same hand center. A grasping action is applied at each non-
terminal node which branches out child nodes depending on the
observed post-grasp distances between fingers. At the terminal
nodes (boxed in green), the robot predicts the average pose, with
counts of successful and unsuccessful predictions for a total of
856 experimental grasp trials. Note that the tree is generated
offline with stored action choice at each non-terminal node, and
during execution time only the sensor history is recorded to lo-
calize the current node in the tree. No belief distribution needs
to be stored (except the singleton average pose at the leaf node)
nor any inference for action choice is required.

III. RELATED WORK

Our work is related to the general framework of planning
manipulation actions with funnels, i.e., the set of poses associ-
ated with a robot action that are guaranteed to reach a partic-
ular goal set. Sensorless uncertainty reduction techniques have
proven to be successful in many applications, often using a
possibilistic approach and assuming worst case motion error.
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Erdmann and Mason [2] demonstrated a parts feeding strategy
using tray-tilting where mechanical motion alone can eliminate
uncertainty. Lozano-Perez et al. [3] (Preimage backchaining)
and Erdmann [4] (Backprojection) developed strategies to chain
a sequence of operations to guarantee operation success despite
uncertainty. With sensors, sequential composition of active feed-
back controllers with overlapping funnels can achieve the de-
sired result, as studied in [5], [6]. The planner presented here
builds a tree structure to reason about these relationships—prior
work has built similar trees from contact conditions explicitly
as a stratified set [7], simplicial complex [8], or general state
transition graph [9].

The planar manipulations studied here involve finite motions
on a supporting surface with indeterminate pressure and friction
distribution. Mason [10] first studied the mechanics of quasi-
static pushing and came up with the voting theorem which dic-
tates the sense of rotation given a push action and the center of
pressure despite an uncertain pressure distribution. Close to our
work is [11] where a 2 dimensional operational space based on
the voting theorem is constructed for planning sensorless push-
squeeze operations. This result includes worst case guarantee.
However, many unrealistic assumptions are made in order to re-
duce the state space and create finite discrete transitions, includ-
ing infinitely long fingers approaching the object from infinitely
far away. Additionally, the execution length of each action is
not addressed. Goldberg [12] proposed a Bayesian approach
to plan a sequence of squeezing actions to reduce orientation
uncertainty. The use of a diameter function along with the as-
sumption of simultaneous contacts of frictionless infinitely long
parallel jaw grippers enables a discrete transition analysis. These
assumptions deviate from practical hardware and task settings.
The open loop component of our algorithm eliminates these
assumptions and reasons over all factors including hand and ob-
ject geometry, finite friction, and potential collisions in between
actions.

When the goal is only to generate a uncertainty-aware stable
grasp, Dragiev et al. [13] used Gaussian process implicit sur-
face to model shape and pose uncertainty with tactile feedback
to tradeoff grasp exploration and exploitation while assuming
objects remain static and the exact contact points on the hand
can be detected. Laaksonen et al. [14] presented a probabilis-
tic approach to maximize the posterior grasp stability through
several grasp attempt using learned motion and sensor model.
Our approach bears similar spirit but additionally leverages the
geometrical structure of the configuration space for grasping to
enable exact tree policy generation offline. In execution time,
no belief distribution is stored nor any inference computation is
required. Only the sensor history is maintained. Additionally, ro-
bustness is built into our planner since we can perform efficient
and physically consistent sampling to capture the stochastic
properties of the system mechanics.

Our work is also related to uncertainty reduction via tac-
tile sensing. Koval et al. [15] proposed the manifold filtering
algorithm which alleviates the particle starvation problem for
pushing applications. Localization through performing a se-
quence of guarded moves is studied in [16], [17]. Paolini et al.
[18] used a learned tactile model based on a simple hand with



ZHOU et al.: PROBABILISTIC PLANNING FRAMEWORK FOR PLANAR GRASPING UNDER UNCERTAINTY

0,05 0.05F

-0.05 005
-0.05 ] 0.05 -0.05 (] 0.05

0,05 0.05¢

-0.05 -0.05
-0.05 0 0.05 -0.05

0
(c) (d)

0.05

Fig. 3. Simulation results based on [19] illustrating the process of a parallel
jaw gripper squeezing along the y axis when the butterfly-shaped object is
placed at different initial poses. The initial, final, and intermediate gripper
configurations and object poses are in black, red, and grey, respectively. Blue
plus signs trace out the center of mass trajectory of the object. (a) Slipped to
free space. (b) Jamming. (c) Grasped with offset. (d) Grasped with offset.

finger encoder feedback to localize the in-hand object pose. Our
algorithm for generating sensored plans assume simple finger
encoder readings for determining the post-grasp distance be-
tween fingers.

IV. GRASPING MECHANICS

This section describes the mechanics model (detailed in [19])
to resolve the instantaneous object motion (if any) given the
intended motion of the hand. All physical vector quantities in
this section are with respect to the local object frame. The sim-
ulation software uses Matlab ode45 and polygonal collision
geometry where curves are approximated by dense points along
the boundary. Fig. 3 shows example grasping simulation results
on a non-trivial butterfly-curved object.

When the hand moves the object on a frictional support-
ing surface quasi-statically (with negligible inertia force), the
applied wrench should balance the reaction frictional wrench
from the surface. We refer the readers to [10], [20] for a de-
tailed treatment on planar sliding mechanics. The principle of
maximum dissipation as a generalized Coulomb’s Law for point
friction is formalized in [21]. Goyal et al. [20] further extended
to planar frictional wrench and proved that all the possible static
and sliding frictional wrenches, regardless of the pressure dis-
tribution, form a convex set whose boundary is called as limit
surface. Zhou et al. [22] proposed a convex polynomial level-set
representation identifiable through sum-of-squares relaxation.
Denote by H(F) the convex polynomial function for the limit
surface, the resultant body twist V for the applied body frictional
wrench F is parallel to the gradient VH (F):

V =sVH(F) s >0, (1)
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where s is a positive scalar.

A. Multi-Contacts

The force-motion model can be combined with a linear com-
plementarity treatment of unilateral frictional contacts [23] to
derive the quasi-static mechanics. Denote by p; the ¢th contact
point and the Jacobian matrix J,,, = [(1) ? _ppﬁ ]. The total applied
wrench F is the sum of normal and frictional wrenches over all
applied contacts:

m
F= ngi(f“inpi +Dpifti) 2)
i=1
where m is the total number of contacts, fy, is the normal force
magnitude along normal n;, and f;, is the vector of tangen-
tial friction force magnitudes along the column vector basis of
D,, = [ty , —t,.]. The velocity at the contact point p; on the
object is given by J;,, V. The applied velocity by the hand at p;
is denoted by vp,,. The first order complementarity constraints
on the normal force magnitude and the relative velocity are
given by:

0< fu, L () (Jp,V—vp,)) >0, 3)

where | means the product between the left symbol and the
right symbol equals zero. The complementarity constraints for
Coulomb friction are given by:

0<f, L (D}, (Jp,V—vp)+eh) >0, 4)
0<a L (/Li,fn,; - eTft,-) > 07 (5)

where p; is the coefficient of friction at p; and e = [1; 1]. 4; isan
positive auxiliary variable as part of enforcing sliding/sticking
complementarity [23]. It can be shown [19] that if we use a
convex quadratic form (ellipsoid limit surface), i.e., H(F) =
FT AF, then the entire problem (equations 1 to 5) is a standard
linear complementarity problem (LCP). For generic high order
convex polynomial form, it’s equivalent to solving a sequence
of LCP problems. Importantly, the no-solution case corresponds
to the object being jammed or grasped by the gripper in which
case the simulation terminates.

To model the stochastic nature of the sliding mechanics, we
sample physically consistent polynomial parameters for H (F')
and coefficients of friction between the hand and object, as
detailed in [19]. Throughout the letter, the degree of freedom’
ngy in the Wishart distribution [24] for sampling positive semi-
definite (PSD) matrices is set as 100.

V. CONFIGURATION SPACE PARTITION AND FAST
APPROXIMATE MODELS

A. Post-Grasp Configuration Space Partition

Contact conditions parametrized by the post-grasp distance
between the fingers naturally partition the configuration space
to lower dimensional subspaces. Fig. 4 shows the partitions of

'When we sample the PSD matrix A in H(F) = FT AF, the variance of

A;j equals nl,f (A?j + Ai,-fijj), where A is an initial estimate for a given
,

pressure distribution.
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Fig. 4. Partition of the configuration space of a rectangle (30 x 21 mm) based

on the post-grasp distance between the fingers. Red boxes correspond to the
average gripper pose. (a) Free space: the object slips out or is not touched. (b)
The first constrained space: the object is grasped at the long edges. (c) The
second constrained space: the object is jammed between the diagonal vertices.
(d) The third constrained space: the object is grasped at the short edges.

the object poses based on different grasping outcomes indicated
by the post-grasp finger widths. The results are generated by
first simulating trajectory roll-outs of a squeezing action with
different initial poses using the grasping mechanics model de-
scribed in section IV, and then performing k-means clustering
of the final finger distances. In this case, k equals 4. The choice
of k depends on the minimum number of characteristic equi-
libria. Note that the gripper widths within the same cluster has
nonzero variance which matches the non-negligible real world
sensor noise.

B. Fast Approximate Models

Our planning algorithm requires three components:

1) A forward motion model that maps an initial object pose
to a final object pose, both in the hand frame. Note that all
the squeezing actions with the same initial finger opening
width (in general the same initial finger configuration)
can share the model since the post-action object poses are
always transformed to the hand frame for the subsequent
action.

2) A sensor model that maps a final object pose to the post-
grasp observation (in this case, expected finger width).

3) A collision detector that checks whether a given object
pose is in collision with the initial placement of the hand.

Although they are all available through trajectory roll-out

simulations, planning with particle based belief representation
needs to be orders of magnitude faster. We need to compute
a forward model of planar grasping. A small deviation in ini-
tial pose can be the difference between a successful grasp and
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a missed one. By probabilistically modeling a planar grasp,
we can capture this behavior. We use kernel conditional density
estimation (KCDE) [25] to capture the inherent non-linear, mul-
timodal nature of the distribution. Denote by q = [z,y,6]” the
object pose in the hand frame and let § = [z, y, pf]” be the nor-
malized pose [26] with consistent unit per dimension, where p is
the radius of gyration (or any meaningful characteristic length)
of the object. Denote the RBF kernel by

R 1 N N
Kn(@1,42) = EGXP (—llar — @el*/(2n%)),

where 7 is a normalization term and A is the bandwidth param-
eter. Suppose we have collected a data set {g’, G/} of N initial
and final object poses. The conditional probability of a final
normalized pose §’* to occur given an initial normalized pose
q'* is given by:

) K (a7, &) K, (6, 4))
SN K, (@, d)

The bandwidths h; and hy throughout the experiments are set
as 0.5. To sample from this conditional distribution, note that
given an initial pose ¢'*, (6) becomes a mixture of Gaussians:

P@a")

(6)

N
PEg) = wiK, (@ q), (7)
J
where
K, (47, 4))
U}j = N : :'*]*i . (8)
Zj Khl (ql aqj)

To sample §/*, we can first sample a center qf according

j
to the weights w;, and then sample from that corresponding

Gaussian. Further speed-up is achieved by only using k nearest
neighbors for sampling. On a 2.4 GHz i5 core, it takes about
1 second to roll out 5000 particles for a KCDE model trained
with 10000 data points and using 400 nearest neighbors (with
kd-tree representation) for prediction, compared with 0.5 to
3 seconds for rolling out 1 particle in simulation.

We use a regression tree to predict the post-grasp finger dis-
tance given a final pose. The collision detector is trained using
a binary classification tree.

C. Belief Update With Subspace Projection

The predictions from the KDCE model often have non-zero
variance in the full SE(2) space. However, if we know that
a particle belongs to a constrained subspace as indicated by
the observation, then the residuals orthogonal to the subspaces
(manifolds) should be eliminated. Koval et al. [15] used this
idea to improve filtering algorithm that samples particles from
the constrained manifold with weights proportional to the mo-
tion model probability (dual sampling), when the tactile sensor
indicates that the contacts are active. In our experiments, we
have found that a projection onto the constrained subspace is
sufficient. The free space and constrained subspaces are rep-
resented by storing final poses associated with the observation
clusters through many trajectory roll-outs. These roll-outs start
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Algorithm 1: ExpandTree.

Input: current node C, singleton tolerance values € and
threshold ratio r;, max subtree search depth d

Output: Planning Tree

if C.r > ry then

MarkTerminalNode(C);

Return;

else

a,X,Z = OpenLoopSearch(C, ¢, d) ;

C.action = a;

foreach partition (X;,Z;) based on observations do
r; = SingletonRatio(X;, €);
N = CreateNode(X;, Z;, r;, E.d+1);
AddToTree(C,N,Z;) ;
ExpandTree(N, &€, ry, d);

end

end

with randomly sampled initial poses from a large enough un-
certainty area which covers all the possible poses during the
grasping sequence.

To perform belief updates after rolling out the KCDE forward
motion, we use the sensor model to predict the post-grasp gripper
distance for each particle. For particles that belong to the same
subspace based on the predicted observation, we perform pro-
jection onto the subspace using a nearest neighbor association.

VI. PLANNING

The offline planning tree generation algorithm is summarized
in Algorithm 1. We need to first perform three pre-planning
steps:

1) Sample initial poses from a large enough uncertainty (ex-
pect to be larger than the specified perception uncertainty)
and do trajectory roll out simulations for a hand squeezing
action.

2) Perform K-means clustering on the post-grasp finger
distances and construct subspace partitions. Train ap-
proximate motion models, sensor models and collision
detectors.

3) Sample initial poses from a query initial uncertainty and
construct the root node with associated initial belief par-
ticles before calling Algorithm 1 to construct an offline
sensored tree plan.

Note that different query initial uncertainty for the same ob-
ject can share the approximate models so the first two time-
consuming simulation steps only need to be done once. Our
goal is to increase the singleton ratio using the shortest number
of actions. We list the following key functions as below:

1) SingletonRatio(X,e€): Computes the ratio of a given set
of poses X within tolerance values € = [e,, €, €g] with
respect to the average pose. To compute the average pose
of a given set of poses: we mapped the poses [z, y, 0] to the
augmented space [z,y, cos(26),sin(20)] (for rotational

Algorithm 2: OpenLoopSearch.

condition Input: Node element E to search for action,

singleton tolerance values &, search depth d
Output: Action a*, Particle pose-observation value pairs
(X.2)

Q = EmptyQueue();
AddQueueElement(Q, E);
while subtree depth < d do

H = PopQueueElement(Q);

UpdateBestAction(a*,H) ;

OpenLoopSearchBFSExpand(H, &, Q)
end

X = ForwardMotionModel-KCDE(E . X, a*);
Z = SensorModel-RegressionTree(X);
X = BeliefUpdateProjection(X, Z);

symmetry) to take the average and then map back to the
original space.

2) MarkTerminalNode(C'): Marks the node C' as a terminal
(leaf) node when the singleton ratio of its pose particles
is beyond a threshold r,. The average pose is treated as
the final prediction and no more action is needed. We use
rs = 0.95 throughout the experiments.

3) CreateNode(X,Z,r,d): Creates a new node C where
C.X is the pose particles, C.Z is the observations (op-
tional), C'.r is the singleton ratio and C'.d is the depth in
the tree.

4) ForwardMotionModel-KCDE(X , a): Maps the initial set
of poses X to a final set of poses for a given action a.
Inside the function, the initial poses are first transformed
to hand frame, then the final poses are sampled from the
learned KCDE model, before finally transformed back to
the world frame.

5) CollisionFree-Decision(X, a): Checks whether given ob-
ject poses X are in collision with the initial placement of
the hand parameterized by the action a.

6) SensorModel-RegressionTree(X ): Given a set of final ob-
jectposes X , use the learned regression tree to predict the
observations Z, i.e., expected post-grasp gripper widths.

7) BeliefUpdateProjection(X, Z): Project the particle poses
X onto the corresponding constrained manifold indicated
by the observations Z.

8) AddToTree(C,N,Z): Add N as a child node to C' and
label the edge with observation Z.

9) UpdateBestAction(a*, H): When an queue element’s ac-
tion sequence results in a larger singleton ratio, update the
best first action to apply.

The sensorless subroutine OpenLoopSearch described in
Algorithm 2 uses a breadth-first search to find the optimal
length-d sequence of actions that maximizes the ratio of sin-
gletons. Algorithm 3 describes the single-level expansion pro-
cedure inside Open LoopSearch. We use a pruning criteria that
avoids expansion if the singleton ratio decreases by (1 — «)
compared with its parent. « is set as 0.75 throughout the ex-
periments. The first action in the sequence returned by the open
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Algorithm 3: OpenLoopSearchBFSExpand.

Input: Node element E, singleton tolerance values &€,
queue Q

foreach action a do

if CollisionFree-DecisionTree(E.X,a) then

X, = ForwardMotionModel-KCDE(X;, a);

r = SingletonRatio(Xy, §);

if » > aE.r then
N = CreateNode(Xy, {}, r, E.d+1);
AddQueueElement(Q, N);

end

end
end

loop search will be recorded as the action choice for the current
node, followed by expansions of children nodes which split on
the possible sensor observations. Note that we can also execute
the entire open loop action sequence and perform expansions
afterwards. At the extreme is complete sensorless planning
where the open loop planner keeps searching until the best
singleton ratio exceeds the threshold 7, given time budget.’

If we view the planner as approximately solving a
POMDP [27], the OpenLoopSearch can be treated as a com-
putational tractable heuristic in choosing the action rather than
subtree search that also splits the nodes using predicted obser-
vations, hence reducing the branching factor from k| A| to |A.

VII. EXPERIMENTS

The algorithm is implemented in Matlab. Example trees in
Fig. 6 (large uncertainty) and Fig. 2 (small uncertainty) take
less than 2 hours and 5 minutes to generate offline, respectively.
For all trees in the experiments, we first generate simulation data
through 9000 trajectory roll-outs with initial poses sampled from
aregion 3 times the size of uncertainty. Convex quadratic forms
of H(F) are fitted [22] assuming the same kind of pressure
distributions around the boundary of the objects, despite using
various different pressure distributions for experiments, demon-
strating robustness of plans with respect to model parameters.
The uncertain coefficient of friction between the object and the
robot hand is uniformly sampled from 0.4 to 0.6. The gripper
fingers are modeled as 27.5 mm X 9.5 mm rectangles. We then
use the simulation data to train KCDE-based forward motion
models, sensor models and collision detectors. To generate the
tree plan, we uniformly sample 6000 particles from the initial
uncertainty region. The tolerance values ¢, and ¢, both equal
2.5 mm, and €y equals 5 degrees. Additionally we construct a
kd tree and use 400 nearest neighbors for KCDE-based forward
motion model prediction.

2We have found that feasible and better plans are much easier to generate
with feedback whereas completely open loop plans. For example, the best 4
step open loop plans with the same action choices (increasing search depth does
not improve performance) for the high friction low uncertainty experimental
settings (columns 1 to 3 of Table I) do not exceed 70 percent success due to
unrecognizable repeated jamming.
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Fig.5. Experimental Setup (a) Grasping platform showing ABB arm, Robotiq
gripper, object to grasp, transparent table, and underneath camera for verifica-
tion. (b) Test objects: (top) rectangular with boundary pressure distribution,
(middle) rectangular (glued with hard letter) with discrete point pressure distri-
bution, (bottom) butterfly with boundary pressure distribution.

A. Setup

The experimental setup for planar grasping is shown in
Fig. 5a. We use a 6 degree-of-freedom ABB-120 industrial
robot. We attach to the arm a Robotiq C-85 2-fingered parallel
jaw gripper [28]. The two fingers open and close simultane-
ously. The robot wrist is synchronized with the finger motion
to maintain the tip at fixed height during grasping. The vision
system consists of a Logitech ¢930e webcam looking through a
transparent acrylic table. We attach an AprilTag [29] to the bot-
tom of the object for ground truth verification with the predicted
singleton pose. We obtain a 0.3 mm object pose estimation ac-
curacy near the center of the table, and a 1.5 mm accuracy near
the edge of the table. If the object or robot during a grasp would
be too close to the edge of the table, the robot drags the object
back to the center before starting its next grasp.

B. Results Analysis

During execution, we read the finger distance from the
Robotiq hand encoders and descend to the child node with the
closest expected observation. The robot stops execution when
terminal node is reached and reads the ground truth object pose
value from the vision system. Define the combined distance
metric between the predicted pose ¢ = [x1, 41, 6] at the ter-
minal node and the ground truth pose g» = [z, Y2, 02] from the
camera as follows:

d(q1,42) = /(&1 — 2)% + (1 — y2)? + pd(01,65)
d(91,02) = mln(|91 792‘7271'7 |91 792‘). (9)

A grasp sequence is considered successful if the combined met-
ric is smaller than 3 mm. Table I shows the experimental results
of over 3000 experiments on the robot. The orientations are
completely unknown. The centers of the objects are uniformly
distributed in a circle of radius specified in the third row. For
low uncertainty settings (experiments 1 to 4), the action space
consists of 4 different angles with one fixed hand frame center.
For high uncertainty settings (experiments 5 to 8), the action
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Fig. 6.
frame angles are completely unknown. A total of 20 action choices are used.

A generated tree-based plan for a rectangular object (30 mm * 21 mm) where the centers are uniformly distributed in a circle of radius 25 mm and the

TABLE 1
EXPERIMENTAL RESULTS OF GRASPING WITH DIFFERENT COMBINATIONS OF OBJECT SHAPES, FRICTIONAL MATERIALS,
SUPPORTING PRESSURE DISTRIBUTIONS AND UNCERTAINTY SIZES

experiment 1 2 3 4 5 6 7 8*
shape butterfly butterfly rectangle rectangle  rectangle  rectangle  rectangle  rectangle
pressure boundary  boundary  boundary points points boundary  boundary  boundary
uncertainty size 10 mm 15 mm 1275 mm  12.75 mm 25 mm 25 mm 25 mm 25 mm
gripper-object materials felt-abs felt-abs foam-abs steel-abs  felt-letter ~ foam-abs  steel-abs  steel-abs
grasp trials 856 327 682 968 193 202 95 100
success rate 0.939 0.835 0.972 0.872 0.917 0.896 0.768 0.851

The orientations are completely unknown. Note that the planner is unaware of the exact pressure distributions and coefficients of friction between the
object and the gripper. The motion and sensor models trained from stochastic simulations capture the uncertainty in system parameters. Experiment
8* is an improved result over experiment 7 after regulating grasping force via motor current monitoring.

space consists of 4 different angles with 5 different hand frame
centers along a line, hence a total of 20 actions. The most fre-
quent failures are due to unexpected dynamic behavior when
objects are jammed in an unstable equilibrium: the large force
applied by the stiff gripper on the light objects cause “fly away”
or slipping phenomenon not captured by the quasi-static sim-
ulation, particularly for the case of low friction steel gripper
material for large uncertainty in experiment 7 of Table I. Other
failure patterns include missing multi-modal patterns during
node expansion and cascading small amount of objects move-
ment when the gripper looses each grasp, both of which can
cause unexpected collision.

VIII. CONCLUSION AND FUTURE WORK

This letter presents a tree-based probabilistic planning
algorithm for planar grasping under uncertainty capable of gen-
erating action sequences with or without sensor feedback. To
improve planning speed, the forward motion model is approxi-
mated by kernel conditional density estimation. Regression and

classification trees are trained to approximate the sensor model
and the collision detector.

Learning from experimental data is crucial to capture high
variance input-output mappings that deviate from the underly-
ing physics model assumptions, e.g., initial object poses that can
“fly away” later during the grasp action. To avoid these issues
in the future, the planner could prioritize more stable actions
while making uncertainty reduction progress. We have not ad-
dressed the optimality of the plans. The trees generated are not
optimal: the sequences can be longer than necessary and some
terminal nodes are not visited. The system would also benefit
from automatic tuning of the bandwidth for the KCDE-based
forward motion model. The plan suffers from slow convergence
speed and generates redundant actions if the bandwidth is too
large, whereas low probability outcomes are missed during node
expansion if the bandwidth is too small. Using a larger set of
manipulation actions including pure pushing and push-grasps
can significantly increase the planner’s capability to deal with
more complicated object geometry and larger uncertainty re-
gion. We plan to use Monte Carlo Tree Search techniques [30]



2118

to deal with the computational challenges brought by a larger
branching factor.

The learned forward motion and sensor model is task-specific
to inputs of object geometry and gripper action type. It’s possi-
ble to encode these inputs as features of the learned models for
generalization purpose. Extending the framework to the three-
dimensional setting remains as a challenging open problem due
to increased state space and the necessity of intelligent design of
three-dimensional actions. Although our planner is capable of
generating open-loop plans with fewer assumptions compared
with existing literature, we note that planning is easier, faster,
and more robust with even the simplest feedback — finger en-
coder readings (available for most off-the-shelf robot hands).
This sets up a promising framework of integrating basic pro-
prioceptive feedback on an industrial robot arm and gripper
that produces more robust plans without the need for high cost
external sensors [31].
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