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Abstract This paper presents a tool for analyzing the
motion of two-link nonholonomic swimmers. We refer to
these systems as Land-sharks, which are a generaliza-

tion of the well known Roller Racers. By exploiting the
symmetry of the system, we are able to reduce the equa-
tions of motion and construct the scaled momentum
evolution equation. This unveils a very useful and intu-

itive Land-shark motion analysis tool based on the par-
titioning of the mass and geometry parameter space. In
particular, this partitioning reveals that, as opposed to

the Roller Racer, the Land-shark’s momentum can be
increased and decreased i.e., the system can be stopped.
This is done through the use of steering, which is the

system’s only input. Furthermore, we explore the prob-
lem of modeling frictional slip by assessing the appli-
cability of a previously proposed friction model to the
oscillatory locomotion of the Land-shark. Results show

that the proposed friction model is generally applicable
to two-link nonholonomic mechanical systems, which is
an important step towards establishing the generality
of the friction model for nonholonomic mechanical sys-
tems.
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1 Introduction

Locomotion, the act of self-propulsion, is an inherent
ability in animals. Legged animals walk, fish swim, birds

fly and bacteria use their flagella as propellers. Of the
different gaits utilized, the undulatory and oscillatory
gaits that are observed in snakes and fish respectively,

have distinctly made their way into robotic locomotion.
Using tools from geometric mechanics, Ostrowski [1]
decomposed undulatory locomotion into two principal
components: changes in the internal shape of a system

and changes in position and orientation of the system.
This led to the observation that the relationship be-
tween shape changes and locomotion stems from a con-

nection on a trivial principal fibre bundle.

Several mechanical systems mimicking undulatory
and oscillatory locomotion have been presented in lit-
erature. In [2] Hirose and Morishima designed and im-
plemented an articulated robot that ‘crawls’ in a man-
ner similar to snakes. Lewis et al. [3] used cyclic varia-
tions in the base space to produce net displacement in

the fiber space of their famous undulatory locomotor,
the Snakeboard. More recently, Kelly et al. [4] demon-
strated oscillatory locomotion in the Chaplygin Beanie,
whereby oscillations in the heading generated longitu-
dinal translation. In 1995, Krishnaprasad and Tsakiris
[5] studied the motion and control of the Roller Racer.
The Roller Racer is a two-link planar mechanical sys-

tem with passive wheels attached at the center of mass
of each link; it is a single module SE(2)-snake. This
system undergoes oscillatory locomotion through cyclic
variations of the interlink angle, which generates for-
ward propulsion. Even though it is the simplest mobile
articulated system, the Roller Racer produces rich dy-
namics. Jouffroy [6], Jouffroy and Jouffroy [7] were at-
tracted by this fact and used the racer as a framework
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for studying Central Pattern Generators, which arise
in many biological activities such as digestion and loco-
motion. Moreover, being a mechanical system with non-
holonomic constraints and symmetry, Bullo and Zefran
[8] and Lewis [9] explored its controllability through
methods of affine connections and Lie brackets. In [10],
a commercial scooter referred to as the Trikke, was
modeled as a modified Roller Racer due to the large
resemblance between the two.

Throughout the literature, every dynamic analysis
of the racer assumes that the mass and linear momen-
tum of one of the links is much smaller than the other
and thus can be ignored. This is evident in the Trikke
and in the prototype built in [5]. In this paper, we
present a generalization of the racer commonly treated
in literature, by admitting two links with masses of the
same order of magnitude. We refer to this system as
the Land-shark. The Land-shark closely resembles the
Landfish developed in [17], with the difference that the
nonholonomic constraints are imposed at both ends of

the system rather than one, meaning that the Land-
shark is more general. This introduces a new complexity
to the system. This simple modification reveals that the

mass and geometric parameters of the system can give
significant insight about the locomotive capabilities of
the system, and that for specific combinations of mass

and geometry, changing the pattern of movement (i.e.,
gait) being used does not affect these capabilities. The
more important result is that, for certain mass and ge-
ometric parameters, the derivative of the nonholonomic

momentum can sometimes change sign throughout its
course. It follows that, as opposed to the Trikke and
Roller Racer, and subject to certain geometric condi-
tions, starting from rest, the Land-shark can be be ac-
celerated, decelerated, and brought to a complete halt by
solely using its single control input.

Furthermore, this paper extends the motion analy-
sis to include the effects of frictional slip on the Land-
shark’s locomotive capabilities. To do this, a friction
model proposed by the authors in [11] is used. The
aforementioned friction model was initially proposed for
modeling skidding effects on the nonholonomic rolling
motion of a unicycle. By applying it to the Land-shark
we explore its scope of applicability to nonholonomic
systems that exhibit oscillatory motion.

Accordingly, the main contributions of the paper are
as follows. We show that the momentum of the Land-
shark can be increased and decreased by merely control-

ling its only input (the inter-link/steering angle), which
allows for bringing the system to a complete stop. Fur-
thermore, we develop a tool for analyzing the motion
of two-link nonholonomic swimmers is presented. This
tool is based on the partitioning of the parameter space

of possible masses and geometries depending on the mo-
mentum behavior, which is possible after reducing the
equations of motion. This reveals that the mass and
geometric parameters of the system can give significant
insight about the locomotive capabilities of the system.
It can also be used as a preliminary tool for designing
Land-sharks, given the desired momentum behavior. In
principle, parameter space partitioning should be ex-
tendable to analyze the motion of other mobile articu-
lated systems, after reducing their respective equations
of motion. Finally, We explore the generality and appli-
cability of a previously proposed model of locomotion in
the presence of frictional slip to the oscillatory locomo-
tion of the Land-Shark. The advantage of this friction
model is that it preserves the inherent symmetry of the
equations of motion, hinting at the ‘possibility’ for their
reduction even in the presence of skidding effects.

The remainder of this paper is organized as follows.
In Section II we analyze the dynamics and then reduce
the equations of motion. In Section III we present the
partitioning of the parameter space and highlight its
usefulness in designing gaits. In Section IV we inves-

tigate the locomotion of the system in the presence of
frictional slip and we verify a friction model proposed
in earlier work. Finally, Section V discusses the impor-

tance of the proposed friction model and Section VI
concludes the paper and explores the directions of fu-
ture work.

2 Dynamics of the Land-shark

In this section we develop the dynamic model of the
Land-shark by identifying its configuration space, pa-
rameters and the nonholonomic constraints acting on it.
After computing the Euler-Lagrange equations of mo-

tion, we use tools from geometric mechanics to achieve
a reduced set of equations of motion. Finally, by defin-
ing the scaled nonholonomic momentum [13], we further
simplify the system and the result is a reduction of the
number and order of the equations of motion from six
equations (four second order and two first order) to four
first order equations.

2.1 Configuration Space

The Land-shark comprises two planar links connected
by an actuated revolute joint. A passive wheel set is
attached at the center of mass of each link, with the
wheel axis perpendicular to the line joining the link’s
center of mass to the revolute joint. This gives rise to
nonholonomic constraints that prevent skidding of the
wheel sets.
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Fig. 1 Configuration variables of the Land-shark.

Fig. 1 above illustrates the configuration variables
of the Land-shark (The discrepancy between the sizes

of the links is for illustrative purposes only). Let 2L1

and 2L2 denote the lengths of the links, M1 and M2

denote their masses, and J1 and J2 their moments of

inertia about their centers of mass. The configuration
of the Land-shark is described by the four dimensional
vector of generalized coordinates q = (x, y, θ, φ) where
(x, y) denotes the position of the center of mass of the

robot, θ denotes its orientation, all expressed relative
to the fixed inertial frame {X,Y }, and φ denotes half
the inter-link angle. We consider the orientation of the
robot to be aligned parallel to the bisector of the inter-
link angle. As such, denoting by α and β the angles
that the first and second links make with the horizontal
respectively, then the inter-link angle is β−α = 2φ and

the orientation of the robot is θ = α + φ. For further
clarification of the choice of generalized coordinates, we
have attached the body frame at the robot’s center of
mass in Fig. 1.

2.2 Euler-Lagrange Equations

The next step is to use the Lagrangian formulation to
develop the equations of motion. Let p1 and p2 denote
the locations of the centers of mass, with respect to the
fixed inertial frame, and therefore the locations of the
wheel sets, as can be seen in Fig. 1. Let

p1 = (u, v), (1)

then

p2 =

(u+ L1 cosα+ L2 cosβ, v + L1 sinα+ L2 sinβ). (2)

To compute the positions of the centers of mass in terms
of the configuration variables, qi, we must perform a
change of variables from (u, v, α, β) to (x, y, θ, φ). Since,
(x, y) denotes the center of mass, we have

(x, y) =
M1p1 +M2p2
M1 +M2

, (3)

One can compute the required change of variables to
be:

u = x− M2

M1 +M2
(L1 cosα+ L2 cosβ) (4)

v = y − M2

M1 +M2
(L1 sinα+ L2 sinβ) (5)

α = θ − φ (6)

β = θ + φ. (7)

Since the potential energy is zero, the Lagrangian is
equal to the kinetic energy:

L =
M1

2
vT1 v1 +

M2

2
vT2 v2 +

M1L
2
1

2
α̇2 +

M2L
2
2

2
β̇2, (8)

where vi = d
dtpi. As mentioned earlier, the passive wheels

attached to each link constrain the motion of the respec-

tive contact point. The wheels are not allowed to slide
sideways and this kinematic restriction can be modeled
as two nonholonomic constraints, each acting on one
wheel set. Assuming ideal, no-slipping conditions, the

constraints are given by

C1 :
(
− sinα cosα

)
v1 = 0, (9)

C2 :
(
− sinβ cosβ

)
v2 = 0. (10)

Rewriting the above constraints in terms of the config-
uration variables and expressing them in matrix form
we arrive at

ω(q)q̇ = 0, (11)

where

ω(q) =


− sin(θ − φ) − sin(θ + φ)
cos(θ − φ) cos(θ + φ)

−L1−cos(2φ)L2
M1
M2

+1

cos(2φ)L1+L2

1+
M2
M1

L1−cos(2φ)L2
M1
M2

+1

L2−cos(2φ)L1

1+
M2
M1


T

. (12)

These nonholonomic constraints are the essence of the
self-propulsion of the system. When the Land-shark
undergoes oscillatory motion through the actuation of
the inter-link angle, the reaction/constraint forces that
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arise to enforce the nonholonomic constraints propel
the system and allow locomotion.

Finally, one can compute the governing equations of
motion by using the Euler-Lagrange equations:

d

dt

∂L(q, q̇)

∂q̇i
− ∂L(q, q̇)

∂qi
+ λjω

j
i (q) = τi, (13)

where, λj , are the Lagrange multipliers that represent
the reaction forces enforcing the nonholonomic constraints
and τi is the vector of generalized forces given by

τ =
(
0 0 0 τφ

)T
, (14)

where τφ is the torque control input of the inter-link
angle, the only actuated degree of freedom.

2.3 Reduced Equations of Motion

The configuration space of the Land-shark Q has a prin-
cipal fiber bundle structure Q = G × R = SE(2) × S
with fiber coordinates g = (x, y, θ) and base coordinate

r = φ. From the literature [19], it is well known that
the Lagrangian and the nonholonomic constraints are
invariant under group action, and this symmetry can
be exploited to reduce the equations of motion. This is

done by expressing the Lagrangian and the constraints
in terms of the body-frame coordinates. The reduced
Lagrangian and constraints are defined as follows

l(r, ṙ, ξ) = L(g−1g, r, TgLg−1 ġ, ṙ) (15)

ci(r, ṙ, ξ) = Ci(g
−1g, r, TgLg−1 ġ, ṙ), (16)

where ξ is the body velocity, defined as the group ve-
locity pulled back to the Lie Algebra

ξ = TgLg−1 ġ. (17)

Similarly, one can compute the reduced constraint ma-

trix, ω̃(r), to arrive at

ω̃(r) =


sin(φ) − sin(φ)
cos(φ) cos(φ)

−L1−cos(2φ)L2
M1
M2

+1

cos(2φ)L1+L2

1+
M2
M1

L1−cos(2φ)L2
M1
M2

+1

L2−cos(2φ)L1

1+
M2
M1


T

. (18)

It is worth noting that, due to the invariance with re-
spect to the fiber group action, ω̃(r) is independent of
any fiber variable.

Since the fiber space, SE(2), is three-dimensional
and since there are two nonholonomic constraints acting
on the system, there must be a direction along which
the constraints do not act. It is along this direction, that

one can define the nonholonomic momentum variable
[19], p, as

p = N (ω̃(r))
∂l(r, ṙ, ξ)

∂ξ
(19)

where N (ω̃(r)) is a basis for the null space of ω̃(r). For
the Land-shark, the nonholonomic momentum is given
by

p =
M1M2

2

sin(φ)

((
L2

M1
+
L1

M2

)
cos(2φ) +

L1

M1
+
L2

M2

)
ξx

+

M1M2

2

cos(φ)

((
L2

M1
− L1

M2

)
cos(2φ) +

L1

M1
− L2

M2

)
ξy

+
m1 +m2 + l0

m0
ξθ +

m2 −m1

m0
φ̇, (20)

where l0 = 2L1L2M1M2 cos(2φ), m0 = M1 +M2, m1 =
L2
1M1 (M1 + 2M2), and m2 = L2

2M2 (2M1 +M2). Us-
ing this nonholonomic momentum alongside the reduced

nonholonomic constraints, we can develop the recon-
struction equation [1], which allows us to reconstruct
the group trajectory and unfold the global motion of
the system. Following that, using the first three equa-

tions of (13), i.e., the equations of motion of the Lie
group variables, the inverse of the pull back action in
(17) and its derivative, and the reconstruction equation,

one can develop the momentum evolution equation, gov-
erning the behavior of ṗ. We omit the reconstruction
and momentum evolution equations for now since we

will present a reduced and much simpler form in the
next subsection.

2.4 Scaled Momentum

In [13] and [14], Shammas et al. introduced the notion
of the scaled momentum, ρ. By noting that the mo-
mentum evolution equation ṗ is first order and it has
an integrating factor, f(r), Shammas defined the scaled
momentum as follows

ρ = f(r)p (21)

=
sin(φ) cos(φ)√

2L2L1 cos(2φ) + L2
1 + L2

2

p. (22)

This scaled momentum allows for further simplification
of the reconstruction equation and the momentum evo-
lution equation. Thus, we have reduced the original set

of six equations of motion (two first order in (11) and
four second order in (13)) to four first order equations,
namely the reconstruction equation and the scaled mo-
mentum evolution equation. These are shown in (23)
and (24).
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ξ =


2L1L2(L1M1−L2M2) sin(2φ) cos(φ)

m0(2L2L1 cos(2φ)+L2
1+L

2
2)

−2L1L2(L1M1+L2M2) sin(φ) sin(2φ)

m0(2L2L1 cos(2φ)+L2
1+L

2
2)

(L1−L2)(L1+L2)
2L2L1 cos(2φ)+L2

1+L
2
2

 φ̇+


2 cos(φ)(L1(cos(2φ)M1+M2)+L2(M1+cos(2φ)M2))√

L2
1+2cos(2φ)L2L1+L

2
2m

2
0

−2 sin(φ)(L1(cos(2φ)M1−M2)+L2(M1−cos(2φ)M2))√
L2

1+2cos(2φ)L2L1+L
2
2m

2
0

2 sin(2φ)√
L2

1+2cos(2φ)L2L1+L
2
2m0

 ρ (23)

ρ̇ = −
(

2L1L2(L2L1(M1−M2) cos(2φ)+L2
1M1−L2

2M2)
(2L2L1 cos(2φ)+L2

1+L
2
2)3/2

)
φ̇2 (24)

3 Parameter Space Partitioning

Inspecting the scaled momentum evolution equation
(24) one can solve for robot parameters, M1, M2, L1,
and L2, for which the scaled momentum, ρ, has a par-
ticular desired behavior. The sign of the first derivative
of the scaled momentum is indicative of this behavior.
A positive sign indicates that the scaled momentum is
increasing and thus the system is accelerating, whereas
a negative sign indicates that the Land-shark is decel-

erating. On this basis, one may partition the parameter
space into different regions, each representing a charac-
teristic response of the scaled momentum.

3.1 Monotonically Increasing Momentum

In order for the scaled momentum to be increasing
monotonically, we require that ρ̇ > 0 at all times. Ex-
amining equation (24), this condition reduces to(
L2L1 (M2 −M1) cos(2φ)− L2

1M1 + L2
2M2

)
> 0,

since the denominator is always positive. Rearranging
the inequality, we arrive at

cos(2φ) >
L2
1M1 − L2

2M2

L1L2 (M2 −M1)
for

M2

M1
> 1,

or

cos(2φ) <
L2
1M1 − L2

2M2

L1L2 (M2 −M1)
for

M2

M1
< 1.

Denoting
L2

1M1−L2
2M2

L1L2(M2−M1)
as Λ, the inequalities derived

above will hold at all times when

Λ < −1 for
M2

M1
> 1,

or

Λ > 1 for
M2

M1
< 1 ,

since −1 < cos(2φ) < 1.

Lemma 1. The scaled momentum will increase mono-
tonically at all times for the following geometric param-
eters of the Land-shark: Either (M2

M1
> 1 & L2

L1
> 1) or

(M2

M1
< 1 & M2

M1
> L1

L2
).

The proof of Lemma 1 can be found in Appendix A.

3.2 Monotonically Decreasing Momentum

To achieve a monotonically decreasing momentum, the
first derivative of the scaled momentum should remain
negative at all times. Following the same analysis used
in the previous section, this requirement reduces to

cos(2φ) < Λ for
M2

M1
> 1,

or

cos(2φ) > Λ for
M2

M1
< 1.

The inequalities expressed above will be respected at

all times provided that

Λ > 1 for
M2

M1
> 1,

or

Λ < −1 for
M2

M1
< 1.

Lemma 2. The scaled momentum will decrease mono-
tonically at all times for the following geometric param-

eters of the Land-shark: Either (M2

M1
< 1 & L2

L1
< 1) or

(M2

M1
> 1 & M2

M1
< L1

L2
).

The proof of Lemma 2 can be found in Appendix A.

3.3 Gait-dependent Momentum

Throughout the analysis in the previous sections, the
behavior of the scaled momentum was independent of
the gaits, i.e., for any Land-shark with parameters sat-

isfying Lemma 1 or Lemma 2, the momentum would
increase or decrease monotonically, regardless of the lo-
comotive gait employed. We would like to explore the
possibility of finding a region in the parameter space
whereby the behavior of the momentum is not mono-
tonic and that in fact, it may increase or decrease de-
pending on the gait being utilized. More formally, in
this section we seek to answer the following question: Is
it possible to find regions in the parameter space of the
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Land-shark where the momentum behavior is not mono-
tonic but rather gait-dependent?( i.e., ρ̇ may switch sign).

Studying the inequalities presented in the previous
sections, one can deduce that this gait-dependent be-
havior is attainable when

−1 < Λ < 1.

Lemma 3. A non-monotonic behavior of the scaled
nonholonomic momentum, whereby it may increase or
decrease depending on the gait, will be observed for the
following geometric parameters of the Land-shark: Ei-
ther (M2

M1
> 1 & M2

M1
> L1

L2
& L2

L1
< 1) or (M2

M1
<

1 & M2

M1
< L1

L2
& L2

L1
> 1).

The proof of Lemma 3 can be found in Appendix A.

Lemma 3 presented above is a very important re-
sult and it serves as the fundamental difference be-
tween the Land-shark and the two-link systems pre-
sented in literature. In [10] and [5], the authors proved
for the Trikke and the Roller Racer respectively, that

these systems cannot be stopped after motion start-
ing from rest using only the actuated inter-link angle.
However, this is not the case for the Land-shark. As
opposed to the Roller Racer and Trikke, certain re-

gions exist within the parameter space of the Land-shark
whereby the first derivative of the scaled nonholonomic
momentum changes sign. This indicates that it is pos-

sible to stop the system after motion starting from rest
by solely oscillating the only actuated degree of freedom
i.e., the inter-link angle. For these transition regions,
the first derivative of the scaled nonholonomic momen-

tum changes sign whenever the state of the following
inequality changes from True to False or from False to
True:

cos(2φ) < Λ . (25)

We refer to this inequality as the Momentum Transition
Inequality (MTI).

Fig. 2 illustrates the results expressed in Lemmas 1,
2 and 3 by partitioning the parameter space depend-
ing on the sign of the first derivative of the scaled non-
holonomic momentum. Four different regions exist, each
with a distinct behavior of the scaled momentum. The
regions labeled by +© and −© depict the parameter ratios
for which the first derivative of the scaled momentum is
respectively either positive or negative for any arbitrary
input. The other two regions labeled as ±© and ∓© de-
note regions for which the first derivative of the scaled
momentum will change sign from positive to negative
or from negative to positive, for certain base variable
values. The difference between these two regions is that
violating the MTI produces an acceleration in the ±©
region and a deceleration in the ∓© region.

0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

2.0

2.5

3.0

M2/M1

L
2
/
L
1

+©

−©
±©

∓©

Fig. 2 Parameter space partitioning based on the sign of ρ̇.

Fig. 2 serves as an intuitive tool for designing Land-
sharks, depending on the desired momentum behavior.
If one requires that the Land-shark moves in a manner

such that the scaled momentum increases monotoni-
cally and keeps building up, then the only requirement
is that the parameters must belong to the +© region

and any arbitrary gait can be used. The same analysis
applies to the −© region. If one desires that the Land-
shark build up momentum for some time and then start

decelerating then the parameters must belong to the ±©
region and the gait designed must violate the MTI for
the first portion of the gait and comply with it for the
second portion of the gait. Or it must belong to the ∓©
region and the gait must violate the MTI at first and
then satisfy it.

3.4 Simulations

For the sake of experimental validation of the partition-
ing presented above, we present 4 different simulations
of the Land-shark, ranging over different regions of the
parameter space. Table I displays the parameters and
gaits used for simulating motion in each region. Fig.
3 presents the results of the simulations by showing
the evolution of the system’s velocity in the x-direction
versus time (since all the gaits chosen moved the Land-
shark in the x-direction only).

It is evident from Fig. 3 that the partitioning of the

parameter space presented above is genuine. Indeed, the
Land-shark possessing parameters within the +© region
accelerated endlessly, irrespective of whether the gait
switched or not, whereas the one lying in the −© re-
gion decelerated monotonically. As for the ±© and ∓©
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Table 1 Simulation parameters and gaits

Region M2

M1

L2

L1
Gait - φ(t) Sign of ρ̇

+© 2 2 0.05 sin(t) ρ̇ > 0
−© 1 0.5 0.1 sin(t) ρ̇ < 0

±© 2.1 0.5
0.1 sin(9.2t), 0 < t < 10π

0.46 sin(2t), 10π < t < 20π
ρ̇ > 0
ρ̇ < 0

∓© 0.48 2
0.1 sin(9.2t), 0 < t < 10π

0.46 sin(2t), 10π < t < 20π
ρ̇ < 0
ρ̇ > 0

regions, it is evident that the system’s velocity can in-
crease or decrease by switching the gait as one desires.
It is noteworthy to mention that a change in the sign
of ẋ indicates that the Land-shark has started to move
and build up momentum in the opposite direction.

In order for the system to reach a complete stop
(note that this is only possible in the ±© and ∓© regions),
one has to simply stop actuating the inter-link angle at
the instant when the system’s velocity becomes zero,
and before the Land-shark starts moving and building
momentum in the opposite direction. Fig. 4 illustrates
the motion in the x−y plane of the linkage point of the
±© Land-shark simulated in Fig. 3. It is clear that after
moving about 1.8 meters,the Land-shark is merely mov-
ing in place and seizing actuation at this point would
keep it in place. If the gait is applied for a longer time,

the Land-shark would proceed to move in the opposite
direction (to the left).

As such, we have successfully demonstrated that
Land-sharks within this region can be stopped using
only the inter-link angle. In [5], this was only achiev-

able by locking the inter-link angle i.e., φ̇(t) = 0, and
including friction in the model.

4 Locomotion in the Presence of Frictional Slip

In this section we consider an additional complexity
to the locomotion: frictional slip. In reality, the ideal
nonholonomic constraints imposed by the wheels are

Fig. 3 Simulation results for Land-sharks in different regions
of the parameter space.

Fig. 4 Reaching a complete stop with a Land-shark from the
±© region.

sometimes violated due to wheel skidding and slipping,
and this gives rise to nonideal constraints [15, 16]. To
exaggerate these frictional effects, we investigate the
locomotion of the Land-shark under conditions of high

wheel slippage, such as roads covered with loose dirt,
ice or oil and/or driving conditions that cause tire de-
formation. This need arises in many applications such

as search and rescue operations or unmanned missions
to the moon.

In earlier work [11] we devised a novel friction model,

and applied it to the nonholonomic rolling motion of a
vertical disk (unicycle). We successfully demonstrated
its validity by comparing it to a dissipative friction

model from the literature [12]. For the scope of this
paper, we build upon the results of the previous work
and take things one step further by applying the meth-
ods of this friction model to the oscillatory locomotion

of the Land-shark, in order to explore its scope of ap-
plicability and validity. Assessing the friction model’s
validity for two different methods of nonholonomic lo-

comotion is an important step towards establishing its
generality for nonholonomic mechanical systems in fu-
ture analysis.

4.1 Friction Models

It is well known that there are two types of slipping;
lateral and longitudinal. Lateral slipping is referred to
as skidding. When a wheel skids, it slides in a direc-
tion perpendicular to that towards which it is point-
ing. Longitudinal slipping occurs when the wheel slips
along its direction of motion. Since the wheel sets of the
Land-shark are passive and are not actuated, we will
only consider skidding effects. A skidding wheel moves
along a direction different than that towards which it

is pointing (i.e., the wheel heading). In other words,
the velocity vector of the wheel forms an angle δ with
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Wheel Heading

Direction of No Skidding
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X

Y
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Wheel
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Fig. 5 (a) A wheel undergoing normal motion (b) A wheel
undergoing lateral slipping

its heading α, which we refer to as the skid angle. Fig.
5 clarifies this by comparing the motion of a normal

wheel to that undergoing skidding.

The main characteristic of our friction model is that
the nonholonomic constraints are rotated by an angle δ,
the skid angle. This is done because, as the wheel skids,

the effective direction of zero velocity i.e., the effective
direction of no skidding, is no longer perpendicular to
α but it is rather perpendicular to α+δ, as can be seen

in Fig. 5. The new nonholonomic constraints become

C1 :
(
− sin(α+ δ) cos(α+ δ)

)
v1 = 0, (26)

C2 :
(
− sin(β + γ) cos(β + γ)

)
v2 = 0, (27)

where δ and γ are the skid angles of the first and sec-

ond wheel sets respectively. Expressing the constraints
in this manner, we preserve their frictionless property
and thus we can now approximate frictional slip effects
without adding dissipative forces to the equations of
motion. This is a significant feature of the model, which
will prove useful later on. In [11] we hypothesized that
the skid angles are related to the constraint forces act-
ing on the respective wheel, and three different friction
models were developed, each with a distinct relation.
Regarding the Land-shark, we will use the Linear La-

grange Multipliers friction model. This model assumes
that the relation between the skid angles and the con-

straint forces is as follows,

δ(t) = a1λ1(t), (28)

γ(t) = a2λ2(t), (29)

where, as mentioned earlier, λj , are the respective La-
grange multipliers that enforce the nonholonomic con-
straints and the constants a1 and a2 are parameters
that depend on several factors, mainly the road condi-
tions [11].

4.2 Simulations

To explore the validity of this friction model, we simu-
lated it on several Land-sharks from different parameter
space regions and compared to those simulated under
the Sidek model, a dynamic dissipative friction model
for wheeled mobile robots with lateral slip [12]. Fig.
6 displays the results of four of these simulations, by
showing the evolution of the x coordinate versus time,

since the gaits used caused a net displacement in the x
direction only. The results of the ideal, no slip case are
also shown for comparison purposes.

It is evident from the simulation results that the
proposed Linear model closely follows the Sidek model
and this proves the validity of the model to a great

extent. In fact, we do not expect an exact match be-
tween our proposed model and the Sidek model for sev-
eral reasons. The Sidek model is devised for Wheeled

Mobile Robots undergoing typical nonholonomic mo-
tion through active wheels. It is not guaranteed that
such a model can be extended to oscillatory and un-

dulatory types of locomotion such as those at hand.
Moreover, the Sidek model employs the Pacejka Magic
Formula [18] for the skid angle. This formula is tailored
to suit race cars where the wheels are deformed elasti-
cally and the speeds and masses of the cars are many
orders of magnitude larger than those witnessed in the
Land-shark.

Another important observation is the effect of fric-
tional slip on the motion of the Land-shark. As one

can deduce from Fig. 6 by comparing to the ideal no-
slip case, wheel slippage merely affects the magnitude
of the displacement, and hence the magnitude of the
momentum, over the period of the simulation. How-
ever, the overall behavior of the system, in terms of in-
creasing or decreasing momentum exactly follows that
of the ideal case. In other words, if the ideal case shows
an increase in velocity then so does the slipping case,
and the same applies for a decrease in velocity. This
can be inferred from the fact that the shape of the
curve of displacement remains quadratic after includ-
ing slippage effects. In fact, the results are intuitive;
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Fig. 6 Simulation results for Land-sharks in the presence of frictional slip (a) +© region (b) −© region (c) ±© region (d) ±© region

the system behaves in the same manner in the presence
of frictional slip but achieves smaller magnitudes of ac-

celeration/deceleration due to the dissipation of energy.
The implications of this result will be discussed shortly.
It is noteworthy to mention that Krishnaprasad and

Tsakiris [5], investigated the effects of viscous friction
and concluded that it results in restricting the Roller
Racer to a constant velocity and prevents it from build-

ing up momentum monotonically. This was manifested
in the linear graph of displacement produced by includ-
ing the viscous friction effects.

4.3 Parameter Space Partitioning with Frictional Slip

Now that the correctness of the friction model has been
verified we are ready to tackle problem of partitioning

the parameter space in the presence of frictional slip.
In particular we would like to determine if the nonholo-
nomic momentum of the system will exhibit an identi-
cal behavior in the presence of frictional slip, and thus
whether the utilization of this partitioning as a motion
analysis tool remains appropriate in the case of wheel
slippage. The results of the simulations in Fig. 6 can
be employed to arrive at a solution to the parameter
space partitioning problem in the presence of slippage
effects. As was deduced earlier, wheel slippage only af-

fects the magnitudes of the attainable momentum, yet
the overall behavior, whether be it increasing or de-

creasing, remains unchanged. This paves the way for
utilizing the parameter space partitioning developed in

Fig. 2 to analyze the motion of the Land-shark even in
the presence of frictional slip. To conclude, the param-
eter space partitioning can be employed as a motion

analysis tool for Land-sharks in both the ideal, no-slip
case and for the case of slipping.

5 Discussion

It is noteworthy at this point to mention the impor-
tance of the proposed friction model and its desirable
features. The locomotion of nonholonomic mechanical

systems and the reduction of their equations of motion
in the presence of dissipative forces was treated in [20-
23]. However, the dissipative forces considered therein
were simple viscous forces, which were assumed to be
linear in the generalized velocities and derivable from a
Rayleigh dissipation function. The reduction techniques
employed in these works are therefore not applicable to
the problem at hand, where complex, nonlinear dissi-
pative forces arise due to wheel skidding, such as the
tire forces modeled by Pacejka’s Magic formula [18]. For
the proposed friction model, the aim was to develop a
model that approximates frictional slip but without the
need to add dissipative forces, in order to preserve any
underlying symmetries in the equations of motion, for

the sake of reduction.
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The results in Fig. 6 show that the proposed fric-
tion model can accurately capture the effect of wheel
slippage on the motion of the Land-shark, without the
need to add nonlinear dissipative forces to the equations
of motion. We hypothesize that such a model for fric-
tional slip (eqs. 30-33) will not impede the reduction of
the equations of motion of the system. This is because
the skid angles are a modeled as functions of the La-
grange multipliers, which are in turn a function of the
base space variables and velocities. This means that the
constraints should in principle remain invariant under
the group action, and hence retain their original sym-
metry. However, we do not have a formal proof of this
yet, and this will be the focus of future work.

6 Conclusions and Future Work

In this paper, a generalization of two-link mobile ar-
ticulated systems, referred to as the Land-shark, is in-
troduced. It resembles the common Roller Racer with
the slight variation that the mass of one of the links is

not ignored. Through reduction tools commonly used
in geometric mechanics, the equations of motion are
reduced to only four first order equations; the three di-

mensional reconstruction equation and an equation de-
scribing the evolution of the scaled nonholonomic mo-
mentum. This reduction revealed that the simple vari-
ations in the system parameters has drastic effects on

its dynamics. By partitioning the parameter space into
regions based on the sign of the derivative of the mo-
mentum, two regions are discovered within which the

momentum changes sign depending on whether a cer-
tain inequality involving the base variable is satisfied or
not. This led to the conclusion that, as opposed to the

Roller Racer, the Land-shark can use its only actuated
degree of freedom to come to a halt.

In addition to that, a friction model developed in
earlier work was applied in an effort to gain some insight
about its scope of applicability. The model proved to
be of good accuracy and it displays an advantageous

feature towards solving the motion planning problem
in the presence of frictional slip.

For future work, we aim to exploit this advantageous
feature of the friction model, namely the symmetry-
preserving property, to reduce the equations of motion
for Land-sharks navigating in the presence of frictional

slip. The authors are also interested in investigating
time-optimal gaits and trajectories for this system.
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8 Appendix

A Proofs of Lemmas

A.1 Proof of Lemma 1

Proof.

For
M2

M1
> 1

L2
1M1 − L2

2M2

L1L2 (M2 −M1)
< −1

L2
1M1 − L2

2M2 < L1L2 (M1 −M2)

L2
1M1 − L1L2M1 < L2

2M2 − L1L2M2(
L2
1 − L1L2

)
M1 <

(
L2
2 − L1L2

)
M2(

L1

L2
− 1

)
M1 <

(
L2

L1
− 1

)
M2

If
L2

L1
> 1

=⇒ M2

M1
> −L1

L2

(always holds since masses and lengths are positive)

If
L2

L1
< 1

=⇒ M2

M1
< −L1

L2

(never holds since masses and lengths are positive)

For
M2

M1
< 1

L2
1M1 − L2

2M2

L1L2 (M2 −M1)
> 1

L2
1M1 − L2
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L2
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(
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M2(
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)
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A.2 Proof of Lemma 2

Proof.

For
M2

M1
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(never holds since masses and lengths are positive)

If
L2
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=⇒ M2

M1
> −L1

L2

(always holds since masses and lengths are positive).
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A.3 Proof of Lemma 3

Proof.

For
M2
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For
M2

M1
< 1

L2
1M1 − L2

2M2

L1L2 (M2 −M1)
< 1

L2
1M1 − L2

2M2 > L1L2 (M2 −M1)(
L1

L2
+ 1

)
M1 >

(
L2

L1
+ 1

)
M2

=⇒ M2

M1
<
L1

L2

L2
1M1 − L2

2M2

L1L2 (M2 −M1)
> −1

L2
1M1 − L2

2M2 < L1L2 (M1 −M2)(
L1

L2
− 1

)
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(
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(always holds since masses and lengths are positive)
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Electronic Supplementary Material

Click here to access/download
Electronic Supplementary Material

Land-Shark.mp4

http://www.editorialmanager.com/nody/download.aspx?id=325059&guid=6801dc1b-efe4-49ac-91da-ffeb4bdc92bb&scheme=1

