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Abstract— Regrasping is the process of adjusting the position
and orientation of an object in one’s hand. The study of robotic
regrasping has generally been limited to use of theoretical
analytical models, and cases with little uncertainty. Theoretical
analytical models and simulations have so far proven unable to
capture the complexity of the real world. Empirical statistical
models are more promising, but collecting good data is difficult.
In this paper, we collect data from over 3000 robot regrasps,
and use this data to learn two probability functions: 1) The
probability that the object is still in the robot’s hand after a
regrasp action; and 2) Given an initial pose, action, and the
object is still grasped, the probability distribution of the object
pose after the regrasp. Both of these functions are learned using
kernel density estimation with a similarity metric over object
pose. We show that our data-driven models achieve comparable
accuracy to a geometric model and an off the shelf simulator
in classification and prediction tasks, while also enabling us to
predict probability distributions.

I. INTRODUCTION

Humans are experts at reorienting objects in their hands.
They use this skill to adjust the grip of a pencil to write with
it, or to adjust the grip of a key from its teeth to its head
to unlock a door. By contrast, once a robot has picked up
an object, it generally maintains the same grasp as long as
the object is in contact with the hand. If a robot does adjust
an object grip, it is generally a predetermined operation with
deterministic results, and only works for a constrained set of
initial and desired final grasp poses. In contrast, humans can
adapt to different objects, with arbitrary initial and desired
final poses. One possible explanation of this discrepancy
is that humans have better models of how the object pose
changes as a function of their actions. In this paper, we show
how robots can build better models of regrasp actions.

By a regrasp action, we mean any sequence of movements
that results in a change of the object pose with respect to the
hand. Often, the final pose of an object is critical to a task.
If the initial pose of an object is arbitrary, then the robot
must use models to determine what regrasps to use to move
the object to the desired pose. Physics-based models can only
take us so far. Modeling multiple contacts along with impact,
friction, and uncertainty in object size, mass, finger shape,
dirt, etc can make it difficult to compute models a priori. In
this paper, we encapsulate the noise and uncertainty in the
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Fig. 1. Place and pick regrasp action studied in this paper. Initially, the
robot is holding a block between its fingers. Then, it moves downwards to a
specific pose above the platform, where the block may move to conform to
the new contact. It then opens its fingers and repositions itself at a certain
position and orientation with respect to the edge of the platform. It then
closes its fingers and moves upwards, completing the regrasp. There are
several scenarios where the robot will not be holding the block in step 6.
In step 1, the object could slip out of the hand. In step 2, the object-hand
system could collide with the table. In step 5, the robot could miss the block
and fail to pick it up.

Fig. 2. Place and pick regrasp data collection setup. We use an industrial
arm with a parallel jaw gripper and place an pick objects. A three
dimensional vision system based on point clouds is used to record the object
position before and after a regrasp. In the event of a failure, the robot either
picks up the dropped block from on top of the platform or retrieves a new
block from a stack of fresh blocks. With this setup, the robot performed
over 3000 regrasp experiments. We use this data to fit models for predicting
the probability of not dropping the object, and estimating the final pose of
the block after a regrasp.

model as a probability distribution. A simple Gaussian is not
a good model of the probability distribution. Manipulation
is the iconic non-Gaussian problem. Flipping a coin, or
the difference in object pose based on whether or not
contact occurs, cannot be represented as a unimodal Gaussian



distribution. In this paper, we look at other ways to handle
the modeling challenges presented by regrasps.

To accurately model manipulation actions, a lot of real
world data is necessary. For this paper, we performed over
3000 robot regrasp experiments by reducing human interven-
tion.

We study a place and pick regrasp of a cube (Figure 1) as
a first step to understand the challenges involved in statistical
modeling of regrasp actions. We collect real world data to
learn two models: 1) Given an initial object pose and regrasp
action, how likely is it that the object remains grasped? and
2) Given an initial pose and action, where do we expect
the object to end up?. We show that our learned model,
despite not having any prior knowledge of the task, achieves
comparable accuracy to simulation and a geometric model.

The rest of the paper is outlined as follows. In Section II
we look at prior work in this area. In Section III we outline
our method for modeling regrasps. In Section IV we explain
the data collection process and experiments performed. In
Section V we compare our model with an off-the-shelf sim-
ulator and geometric model, and in Section VI we summarize
our work and discuss future directions.

II. PRIOR WORK

Regrasping has been studied for a long time, starting
with Paul [1], Tournassoud et al. [2], Fearing [3], and
Brock [4]. Early regrasping work assumed a known world
model with deterministic actions. Most regrasping work falls
under 3 categories: pick and place [2], [5], [6], closed-
loop dynamic regrasping [7][8][9], or what is generally
referred to as dexterous manipulation or finger gaiting [3],
[10][11][12][13][14][15]. Chavan Dafle et al. [16] present
work on “extrinsic dexterity”, which uses gravity, inertia,
and external contacts to vary the pose of the object within
the hand.

Uncertainty during manipulation has been represented
using two approaches: “possibilistic” and probabilistic. The
“possibilistic” approach [17][18] maintains a set of possible
object poses, and the robot makes motions that reduce the
size of the set. Brost [19] uses pushing, squeezing and offset
grasping with a parallel jaw gripper to reliably grasp objects
with high position uncertainty. Dogar and Srinivasa [20]
explicitly propagate object uncertainty regions to plan ro-
bust grasp plans. Probabilistic approaches [21][22][23][24]
maintain a probability distribution of object poses in order
to plan the best action. Bayesian estimation [25][26] and
particle filters [27][28] are the most common ways to deal
with the non-Gaussian, multi-modal probability distributions
inherent in manipulation tasks.

To model manipulation actions, researchers often use
simulation[29], [30], imitation learning[31], or build models
with collected robot data [32][33]. In this paper, we expand
on prior work by using real data to model uncertain manip-
ulation actions.

The most similar work to ours is probably the work
of Kopicki et. al. [34]. They use regression to learn the
resulting motions of real robotic push actions. They also fit

multi-modal probability distributions to their data and show
improvement over regression. Our work focuses on learning
both the probability of maintaining a grasp after a regrasp
and the resulting probability distributions of robotic regrasp
actions, along with paying closer attention on how to collect
a large amount of robot manipulation data.

III. METHOD

A. Task Description

The regrasp action we will learn is shown in Figure 1.
The robot moves down vertically to a fixed height above a
platform, releases the object, and then grasps it again at a
specified position in the workspace. Note that in step 2, the
object pivots and slides in the fingertips when it comes into
contact with the platform, which we expect to be difficult
for physics based models to capture. Our regrasp action a is
parameterized by 3 continuous variables, d, z, and α, which
correspond to the pose of the hand frame with respect to the
edge of the platform.

Fig. 3. State space we will be using in this paper. While the world is
6-dimensional, because we are grasping a cube with a parallel jaw gripper,
we can reduce the state space to 3 dimensions. Note that as the cube is
symmetric, we only allow θ to be between −π/4 and π/4.

Our state space is shown in Figure 3. Our state s is repre-
sented by 3 continuous variables, x, y, and θ, corresponding
to the relative pose of the cube with respect to the hand.
Note that this is a planar state space; we will not consider
out of plane rotations or grasps. Any grasps of this kind will
be considered “not grasped” for the purposes of this paper.

In order for the robot to successfully model this regrasp
action, we must learn two probability functions:

1) The probability that the object is still in the robot’s
hand after a regrasp action, P (grasped|s,a)

2) Given an initial state, action parameters, and that the
object is still grasped, what the distribution of the final
state is, P (s′|s,a, grasped)

Note that if the object is not still grasped after a regrasp
action, it’s final state s′ does not exist, since s′ is the in-
hand pose of the object. Learning these two probability
distributions enables us to solve problems in the future such
as: 1) what action maximizes the chance of maintaining a
grasp? or 2) what action maximizes the chance of the center
of the object being at most 1cm away from the center of
the fingers? In this paper, we focus solely on learning the
above distributions from data, and leave planning with these
models as future work.



B. Predicting the Probability of Maintaining a Grasp

To estimate the probability of retaining the object after a
regrasp action, we will use kernel density estimation with
Bayes discriminant rule [35], [36]. The basic idea is to
estimate the probability of retaining and not retaining the
object using kernel density estimation, and then for a query
point, determine which of the two probabilities are greater.
That is, we would like to calculate:

P (πi|s,a) =
piP (s,a|πi)∑g
j pjP (s,a, πj)

where pi = P (πi) is the prior probability of a randomly
selected observation being in class πi, g is the total number of
classes, and P (s,a|πi) is the conditional probability density
of an observation given that it is in class πi. In our case, we
have two classes, grasped and not grasped, so we will learn
two probability densities using kernel density estimation:

P (s,a|πi) =
1

Ni

Ni∑
j

Ks
h1
(s, sj)K

a
h2
(a,aj)

where Ni is the number of training observations belonging
to class πi. Note that we set pi = Ni/

∑g
j Nj as our prior

probabilities.
We define our kernel functions by first expressing dis-

tances in state and action space, and then use a Gaussian
kernel over these distance functions:
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Where ρ is the radius of gyration for the object, which

allows us to properly trade off distance and angle, while ηs
and ηa normalize the kernels so they represent probability
distributions. Note that for the state distance function, we
use a cosine function to handle angle wrap around for object
pose (i.e. −π = π). Both of the distance functions Da and
Ds represent squared distance in action and state space. The
units for d, z, x, and y are mm, while α and θ are in radians.
Thus, our distance functions have units of mm2, and our
bandwidths h1 and h2 have units of mm.

We choose the values of bandwidths h1 and h2 that
minimize the cross-validated negative log likelihood of the
observed data:

NLL(h1, h2) = −
1

Ni

Ni∑
j

P̂j(sj ,aj |πi)

P̂j(s,a|πi) =
Ni∑
k 6=j

Ks
h1
(s, sk)K

a
h2
(a,ak)

C. Predicting the Final Object Pose

To predict the resulting probability distribution of the cube
after a regrasp action, we will use kernel conditional density
estimation. We formulate our conditional density estimate
using our kernels from above and roughly following Hall,
Racine and Li[37]:

P (s′|s,a, gra) = P (s′, s,a|grasped)
P (s,a|grasped)

P (s′, s,a|gra) = 1

m

m∑
i
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We will choose values for h3, h4 and h5 that minimize the
integrated squared error, again using cross validation (see
[37] for more details):

ISE(h3, h4, h5) =

∫ (
P̂ssa − Pssa

)2
Psads dads

′

where

Pssa = P (s′|s,a, grasped) and Psa = P (s,a|grasped)

Note that for both P (grasped|s,a) and
P (s′|s,a, grasped), we could have chosen more complex
kernels or used different learning algorithms. However, in
this paper we select rather simple models to understand
the viability of a data-driven framework for modeling
regrasps. In our future work, we plan to evaluate different
non-parametric methods for estimating these probability
functions.

IV. DATA COLLECTION

Our data collection setup is shown in Figure 2. For our
experiments, we use an ABB IRB 140 industrial robot arm
and a Robotiq C-85 2-fingered gripper that place and pick an
object from a metal platform. We use a 50mm wooden cube
as our object. Initially, the block is resting on the platform
and the robot locates it and picks it up. The vision system
records the initial state s. Then, the robot places the cube
and picks it up again using an action a. The a parameters
[d, z, α] are sampled uniformly at random and cover the
entire range of actions we wish to model for this regrasp.
The vision system first checks whether or not the cube is in
the robot’s hand and then records the final state s′. If the
object is grasped, it repeats the process with a new action a.
If the object is not grasped, it enters a recovery procedure and
then runs a new regrasp experiment after that. In this way, we
collect a series of D = (s,a, grasped, s′) data points. In this
paper, we collected 3304 data points. The robot successfully
maintained its grasp of the object after a regrasp 2642 times,
and failed 662 times.

The vision system consists of four Microsoft Kinect v2
sensors arranged so that we have multiple views of the object
both on the platform and in the robot’s hand. Depth point
clouds are fused together and after an initialization, Iterative
Closest Point is used to find the closest match between our



object model and the point cloud. In practice, we were able
to achieve accuracies on the order of 5mm.

The recovery procedure is split into 2 parts. If the object
is not in the robot’s hand, it is either resting on the platform,
or has fallen off the platform. If it is resting on the platform,
we command the robot to pick up the object and continue
with the next experiment. If the object has fallen off of the
platform, we consider the object lost, and grasp a new block
from a queue of identical blocks resting on the table.

V. VALIDATION

We now compare our learned model with an off the shelf
simulator and a rudimentary geometric model on our data
set D. We randomly select a hold out test set of 1000 data
points, which we will use to compare all 3 methods. We
describe the geometric and simulation models below.

A. Geometric Model

The challenging part of this regrasp to model is what
happens during step 2 of Figure 1, as there are many possible
contact modes including: no contact followed by an impact
and settling, sliding / pivoting in finger tips, sliding / rotating
against the platform. For simplicity, we’ll say that during step
2, once an object corner contacts the platform, the object
rotates about the contact point until it is lying flat on the
platform. Given an initial object pose s = [x, y, θ], if c is
the distance from the center of the hand to the edge of the
platform when placing and w is the width of the block, we
can calculate the distance from the edge of the platform to
the center of the block q as:

q =

{
θ ≥ 0, c+ y + w

2 (sin(θ)− cos(θ) + 1)

θ < 0, c+ y + w
2 (sin(θ) + cos(θ)− 1)

Now, given an action a = [d, z, α], if g is the maximum
horizontal distance away from the center of the block that
the robot can still grasp the object without missing it, then
we will successfully grasp the block if |d− q| ≤ g, and that
final pose will be:

s′ =

x′y′
θ′

 =

(q − d) cos(α) + (z − w/2) sin(α)
(q − d) sin(α)− (z − w/2) cos(α)

γ


with γ =

{
0 ≤ α ≤ π/4, α

π/4 ≤ α ≤ π/2, (α− π/2)

Creating probability distributions from this kinematic
model is difficult, as we do not know the distribution of
errors on our parameters. Note that even if we did, even for
this rudimentary model, the probability distributions would
be multimodal and non-Gaussian.

B. VREP with ODE as a Simulation Model

Figure 4 shows our simulation framework with
VREP [38]. We have put in an ABB IRB 140 robot
with a Robotiq C-85 2-fingered gripper just as in our real
experimental setup. The platform is placed in the same

Fig. 4. Simulation environment used in the paper. Using VREP, we have
put in the same industrial robot arm and gripper we are used in our real
experiments, along with placing the platform in the same relative location.
We place the block in the simulated robot’s hand in the same initial pose as
our real trials, and record whether or not the regrasp succeeds in simulation,
and if it does, what the final pose of the block is.

location, and we use a 50mm cube with the same density
and frictional properties as our real wooden cube. We can
now place the object into the simulated robot’s hand at a
given initial state s, ask the robot to perform the regrasp
action a, and then we can observe whether the object was
grasped, and if so, what the final state s′ was. Note that
getting the simulator to work was a challenge in and of
itself. Even the well-tuned ODE in VREP still cannot handle
parallel grasping well, and once the block is also made to
slide against the table and in the hand, it is difficult to get
stable results.

In our opinion, the two most difficult phenomena to model
in simulation / with physics is 1) how the contact patch
between the parallel jaws and the cube changes as the hand
slightly loosens its grip on the object, and 2) what happens
to the cube at the onset of contact with the platform.

Again, creating probability distributions using a simulator
is difficult, as the simulation is deterministic. We could vary
initial parameters slightly and observe results, however it is
unclear how much to vary parameters by in order to get
plausible results.

Classification Accuracy
Geometric Simulation Data-Driven

In Hand 74.8 % 72.8 % 76.2 %
Platform 89.3 % - 90.7 %

TABLE I
PREDICTING WHETHER THE OBJECT IS STILL GRASPED FOR DIFFERENT

MODELS

C. Validation Results: Predicting if the Object is Still
Grasped

Table I show our results for predicting if the object is still
grasped after a regrasp action. We compared the classification
accuracy of the three models for two separate conditions.
First, we look at the condition where we are given the pose of
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Fig. 5. Comparison between the experimental and predicted probability of
maintaining the object after a regrasp
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Fig. 6. Precision-recall curve for predicting whether the robot is still
holding the object after a regrasp

the object in the robot’s hand and the parameterized regrasp
action it is to perform. Second, we look at the condition
where we know the pose of the object on the platform, and
predict the probability of whether or not the robot will be
able to successfully pick it up. All three models perform
comparably, even though our data-driven model is given no
prior information about the task.

In Figure 5, we have binned our predicted probability, and
then looked at the percentage of those points where the object
was still grasped, and plotted the results. If our predictions
are good, the mean of the true grasp probability should
follow the straight line. Our predicted probabilities for the
platform condition match better than the in-hand condition,
which is expected. If we can predict the probability of
maintaining the object after a regrasp, this means we can
adjust the decision boundary to achieve different precision
and recall values. This is plotted in Figure 6. Note that
the platform case gives us a much better precision-recall
curve, and that these precision-recall curves are not easily
achievable without a data-driven model.

Mean Pose Estimation Accuracy (mm)
Geometric Simulation Data-Driven

In Hand 11.7 10.8 13.0
Platform 5.7 - 6.3

TABLE II
MEAN POSE ESTIMATION ACCURACY AMONG DIFFERENT MODELS
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Fig. 7. Histogram of Prediction Errors. Note that most of the error is less
than 10mm, and the data-driven approach achieves comparable accuracy to
the other approaches.

D. Validation Results: Final Pose Estimation

To evaluate the predictive power of our pose estimation
models, we looked at the mean pose estimation accuracy. We
used the square-root of our distance function Ds(s1, s2) as
a measure of accuracy. Note that if the distribution is multi-
modal, this measures does not reward capturing that multi-
modality. However, since we do not have the true underlying
distribution, we use the mean pose estimation accuracy as a
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Fig. 8. Cumulative Histogram of Prediction Errors. Over 80% of the
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baseline. Our results are shown in Table II, Figure 7 and
Figure 8. Again, our data-driven model achieves comparable
accuracy with no prior information.

With our data-driven model, we can also calculate the
entire resulting probability distribution in pose space, which
is shown in Figure 9. Note the multi-modal nature of the

distribution.

VI. CONCLUSIONS

In this paper, we introduced a way to model robotic
regrasping using a large amount of real data. First, we briefly
discussed how we collected the real robot manipulation data
needed for our models. We then showed how to predict
the probability of maintaining the grasp of an object given
an initial position and robot regrasp action using this data.
In addition, we showed how to estimate the probability
distribution of where the object will end up in the robot’s
hand given an initial pose and a robotic regrasp action. We
compared our models with a simulator and a rudimentary
physics model and showed that our data-driven models have
comparable performance even with no prior knowledge of
the task.

In the future, we are interested in extending these models
to other objects, regrasp actions, and hands. We are especially
interested in extending our models to SE(3) space to handle
three dimensional rigid body transformations. We are also
interested in exploring other non-parametric models in an
attempt to achieve higher fidelity.
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