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ABSTRACT: For the first time, trapped ion mobility spectrometry (TIMS) in tandem with
Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) is applied to the
analysis of the low energy water accommodated fraction (WAF) of a crude oil as a function of the
exposure to light. The TIMS-FT-ICR MS analysis provided, in addition to the heteroatom series
identification, new insights into the WAF isomeric complexity (e.g., [m/z; chemical formula;
collision cross section] datasets) for a better evaluation of the degree of chemical and structural
photo-induced transformations. Inspection of the [m/z; chemical formula; collision cross section]
datasets shows that the WAF composition changes as a function of the exposure to light in the first
115 hours by initial photo-solubilization of HC components and their photo-oxidation up to Oas.s
of mainly high double bond equivalence species (DBE > 9). The addition of high resolution TIMS
(resolving power of 90-220) to ultrahigh resolution FT-ICR MS (resolving power over 400k)

permitted the identification of a larger number of molecular components in a single analysis (e.g.,



over 47k using TIM-MS compared to 12k by MS alone), with instances of over 6-fold increase in
the number of molecular features per nominal mass due to the WAF isomeric complexity. This
work represents a stepping stone towards a better understanding of the WAF components and
highlights the need for better experimental and theoretical approaches to characterize the WAF

structural diversity.
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INTRODUCTION

The complex nature of crude oil and its incorporation in aquatic systems results in complex
chemical transformations mainly via bio-!"® and photo- degradation.’'* Natural and anthropogenic
release of crude oil and hydrocarbons!>: ° to seawater is a frequent process and recent studies have
highlighted the importance of characterizing released crude oil at the molecular level.!” For
example, the characterization of hetero-atom (O, N, and S) poly aromatic hydrocarbons (h-PAHs)
have exhibited increased levels of toxicity compared to pure hydrocarbons.'® Moreover, PAHs are
photo active, undergoing oxygenation upon exposure to light, which can lead to chemical products
that have increased biological accumulation and activity.!®>> The presence of crude oil in water
provides the means for the exposure of a large number of molecules to chemical and enzymatic

2628 a5 well as the interaction with a

transformation, their transportation across environments,
variety of organisms.?® Many of these chemical changes, as well as the means of exposure to
organisms, occur in the water accommodated fraction, where low energy mixing introduces

components of the oil into the water, without the formation of detectable emulsions.? The main

analytical challenge during the analysis of the low energy water accommodated fraction (WAF)



remains the identification and quantitation of both the primary molecular species, as well as the

transformation intermediates and products.

Over the past years, most of the efforts for the WAF analysis has been focused on the use of gas

chromatography — mass spectrometry (GC-MS)” % 10- 13, 30-36

and two dimensional gas
chromatography (GCXGC-MS) with heavy standards.?" 37 While progress has been made in the
WAF characterization, these approaches are limited to the volatility range of molecules that can
be analyzed by GC, which typically excludes large and highly polar molecules.*® These analytical
limitations narrow the type of studies that can be performed and our understanding of the crude oil
transformations in seawater; especially, since the molecular species that are inaccessible or form
unresolvable ‘humps’, known as the unresolved complex mixture (UCM), can make up most of
the WAF content.*” *° The analytical challenges associated with the molecular characterization of
the UCM has led to the use of alternative tools in order to unravel its chemical complexity. For
example, studies utilizing ultra-high mass resolution mass spectrometry (e.g., FT-ICR MS) #-#

have enabled the identification of chemical formulas using the isotopic resolution and the high

mass accuracy (sub ppm) with a variety of atmospheric pressure ionization sources (e.g.,

145 46 14749

electrospray ionization, ES atmospheric pressure chemical ionization, APC

atmospheric pressure photo-ionization, APPI,>*->3

and atmospheric pressure laser ionization,
APLIP*®1), The use of a variety of atmospheric pressure ionization sources has enabled, in turn,
the study of different molecular fractions at the molecular level and has provided evidence of the
high structural diversity of the WAF components in their functional groups, aromaticity, and

polarity.52-64

The high structural diversity of the WAF samples has prompted the need to complement ultrahigh

resolution mass analysis (e.g., FT-ICR MS measurements) with pre-separation techniques (e.g.,
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liquid and gas chromatography), in order to better discriminate the components along a second
axis of separation, permitting some isomeric separation and increasing the dynamic range of the
FT-ICR MS measurement.>” ¢%-65-6° However, the biggest challenge in the coupling of liquid and
gas chromatography is that it limits the FT-ICR MS analysis time, and thus the ability to better
separate isobaric species, due to the slow acquisition rates needed for ultrahigh resolution mass
acquisitions.*® % Alternatively, other post-ionization, gas-phase separations have been proven to
be a better match for FT-ICR MS analysis.”®” In particular, ion mobility spectrometry (IMS)
presents many advantages for the analysis of complex mixtures, providing orthogonal separation
to FT-ICR MS that is based on the tri-dimensional structure of the molecule.’**? Initial work
showed the potential of IMS-MS analysis for the characterization of complex hydrocarbon
mixtures using complementary IMS-MS and FT-ICR MS measurements (e.g., IMS-TOF MS and
FT-ICR MS of the same sample).?**> More recently, with the development of trapped ion mobility
spectrometry (TIMS),”*° several reports have shown the potential of TIMS-MS to decouple the
mobility (K) separation from the MS analysis time for fast, gas-phase separation and for molecular
structural elucidation.’> ¥ %117 In particular, the advantages of TIMS over traditional IMS
analyzers has been shown for fast screening®® and targeted” analysis of molecular ions from
complex chemical mixtures; the study of isomerization kinetics of small molecules,”® peptides,
DNA, proteins and their complexes in the absence of the bulk solvent;”% the influence of the
collision partner on the molecular structure;!® and the factors that affect molecular-adduct
complex lifetime and stability during TIMS measurements.'% A significant feature to note is the
high resolving power of TIMS analyzers (Rtivs up to 400'%7) and accuracy in measuring ion-
neutral collision cross section (CCS, <0.6% error). In the case of crude oils and complex mixtures,

their characterization by TIMS-FT-ICR MS has allowed the measurement of the CCS, accurate



mass and accurate isotopic fine structure in a single experiment for a series of h-PAHs. For
example, a recent report of Oversampling Selective Accumulation Trapped Ion Mobility
Spectrometry (OSA-TIMS) coupled to FT-ICR MS showed high mobility resolving powers (over
250), high mass accuracy (<I ppm), and ultrahigh mass resolution (over 1,200,000 at m/z 400)

during the analysis of a complex mixture of polyaromatic hydrocarbons (PAH) from coal tar. !%

In the present work, for the first time, we apply tandem OSA-TIMS and FT-ICR MS for the
analysis of WAF samples as a function to their exposure to light. While preliminary work has
shown that WAF can undergo chemical and increase the solubilization as a function to the
exposure to light, * little is known about the WAF structural variability and transformation
pathways. In this study, as an initial step, the analysis focuses on the PAH compounds accessible
to ionization by an APLI source (e.g., mostly conjugated molecules) which typically exhibit higher
reactivity to light resulting in more hazardous byproducts.!'® In addition to the new analytical
advantages of TIMS-FT-ICR MS, a Software Assisted Molecular Elucidation (SAME) package
was developed for the unsupervised processing of the OSA-TIMS-FT-ICR MS datasets. As shown
below, this work highlights the need for high mobility resolution and ultra-high resolution MS for
the analysis of the highly isomeric, complex WAF mixtures while providing [m/z; chemical

formula; K; CCS] in a single experiment.

EXPERIMENTAL

Sample preparation
Low-energy water accommodated fractions (WAF) were generated according to the standardized
protocol established by the Chemical Response to Oil Spills: Ecological Research Forum

(CROSERF).!'!%-12% Briefly, WAFs were prepared at room temperature in 2-L aspirator bottles with



20% headspace by volume using artificial filtered saltwater (pore size: 0.45um, salinity=33 parts-
per-thousand) prepared with Instant Ocean® (Aquarium Systems, Mentor OH). Oil from the Marlin
Platform was added to the water surface using a gastight syringe at an oil-to-water loading of
1:1000 (1 g oil/L seawater). The bottles were covered in aluminum foil and allowed to mix for 24h
at low speed (100 rpm) in the dark.

WAF exposure to light and extraction

WAF samples were irradiated up to 115h with a Suntest XLS+ Sunlight Exposure System equipped
with a 1500W xenon arc lamp and light intensity of 765 W/m? (Atlas, Chicago, IL, USA). The
aspirator bottles containing the WAF and the oil were placed in a water bath system set to 25°C.
At specific irradiation times (0, 16, and 115h), 150 ml aliquots of the WAF were removed and
subjected to liquid-liquid extraction in three 50 mL lots of methylene chloride to increase
extraction efficiency. Aliquots were dried over Na;SO4 and concentrated down to 1 mL under a
stream of nitrogen. The final samples were then diluted 1:100 in 1:1 v/v methanol/toluene for FT-

ICR MS and TIMS-FT-ICR MS analysis.

FT-ICR MS analysis

WAF samples were analyzed in positive ion mode with an APLI source coupled to a custom-built
TIMS — FT-ICR MS instrument based on the 7T Solarix FT-ICR MS spectrometer (Bruker
Daltonics Inc., MA). Briefly, the APLI source utilizes a 266 nm excimer laser (CryLas GmbH,
Berlin, Germany; Type:1HP266-50); the sample was introduced at 200 uL/h through a short
nebulizer in a vaporizer set to 300 °C into the source chamber where the gas stream was ionized
by the excimer laser.®> The APLI generates radical ((M]") and protonated ([M+H]") ions in the
source region that are introduced to the TIMS-FT-ICR MS via a 0.6 mm inner diameter, single-

bore resistive glass capillary tube, allowing the nebulizer to be maintained at ground potential,



while the ends of the capillary can be independently biased. Typical APLI operating conditions
were 1 L/min dry gas flow rate, 2.1 bar nebulizer gas pressure, and 220 °C dry gas temperature.
FT-ICR MS ion optics were optimized as follows: -900 V endcap source capillary voltage, 180 V
endcap TIMS capillary voltage, SkHz 400 peak-to-peak voltage (Vpp) segmented hexapole, 2kHz
1900 Vpp collision cell, and 4kHz 400 Vpp ion guide transfer line. The FT-ICR MS experiments
were performed by co-adding 200 16 Megaword (8 second) transients, which were zero-filled to
32Megaword, processed using a half-sine apodization followed by fast-Fourier transform (FFT)
and broadband phase correction (absorption spectra using absorption mode processing, AMP); an

experimental MS resolving power with AMP at m/z 400 of ~2,000,000 was obtained.

TIMS-FT-ICR MS Analysis

The concept behind TIMS is the use of an electric field to hold ions stationary against a moving
gas, so that the drag force is compensated by the electric field and ion packages are separated
across the TIMS analyzer axis based on their mobility. *>> During mobility separation, a
quadrupolar field confines the ions in the radial direction to increase trapping efficiency. A
simplified schematic of a TIMS analyzer is shown in the Supporting Information (Figure S1). The

mobility, K, of an ion in a TIMS cell is described by:

K=Y4—-__4
E (Velution_ Vout)

(1

where vg, E, Veuion and Voue are the velocity of the gas, applied electric field, elution voltage and
tunnel out voltage, respectively. TIMS separation was performed using nitrogen as a bath gas at
ca. 300 K, front end P; = 3.0 and back end P> = 1.1 mbar pressures, a constant Vour = 35 V and
constant RF (840 kHz and 240 Vpp) in all electrodes of the entrance funnel, mobility separating

section and exit funnel. Details regarding Oversampling Selected Accumulation TIMS (OSA-



TIMS) modes of operation'? and specifics compared to traditional TIMS and IMS can be found
elsewhere.”%°® Briefly, OSA-TIMS experiments were performed by scanning Vi, from -40 to -
210 Vusing a 1 V ramp size and 0.2 V increments per step, accumulating 40 mobility experiments
per FT-ICR MS spectrum (4Megaword, 3s transient, with six transients co-added per MS). TIMS-
FT-ICR MS spectra were processed using sine-squared apodization followed by FFT, in magnitude
mode resulting in an experimental MS resolving power of R ~ 400,000 at m/z 400. Mobility spectra
were calibrated using a Tuning Mix calibration standard (Tunemix, G2421A, Agilent
Technologies, Santa Clara, CA) with the following reduced mobility (Ko,) values m/z 622
Ko=1.025, m/z 922 K¢=0.840, m/z 1222 K¢=0.724, m/z 1522 K¢=0.643 cm? V-'s!. Mobilities were

correlated with CCS () using the equation:

Q=

1/2 1/2
(187)” =z [1 1} 1760 T 1 @)

16 (k,T)" m,| K P 27315N

m.m,

where z is the charge of the ion, kB is the Boltzmann constant, N is the number density and m,

and m, refer to the masses of the ion and bath gas, respectively.!?! Under these conditions, the

experimental TIMS resolving power for Tuning Mix (m/z 622-1522) was ~100-250 as determined

by equation 3.

Q

- 3)

Data Processing

FT-ICR MS spectra were externally mass calibrated using the Tuning Mix standard. A peak list
was generated allowing a signal to noise ratio of 6 and the data were internally, recalibrated (post-
acquisition) using a double bond equivalence of 9 Oy series to improve overall mass accuracy.'*?

The formulae calculations from the exact mass domain were performed using Composer software
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(Version 1.0.6, Sierra Analytics, CA) and confirmed with Data Analysis (Bruker Daltonics v 4.2)

using formula limits of Ci-100H1-100N0-200-7S0-2, odd and even electron configurations were

allowed, and M™ and [M+H]" ion forms. A root mean square deviation for the mass assignments

of 0.3 ppm was observed. From the generated ion formulas, the double bond equivalence (DBE)

was calculated by the equation:

DBE=C—Z+>+1 )

where C, H and N are the number of carbons, hydrogens, and nitrogen in the chemical formula.

The peak list was used for extraction of the ion mobility spectra from the TIMS-FT-ICR MS
datasets using batch processing in the Data Analysis package (Version v. 4.2, Bruker Daltonics,
CA) followed by external mobility calibration using the Tuning Mix standards. The TIMS
spectrum for each molecular formula was processed using a custom-built Software Assisted
Molecular Elucidation (SAME) package — a specifically designed 2D TIMS-FT-ICR MS data
processing script written in Python v2.7. SAME package utilizes noise removal, mean gap filling,
“asymmetric least squares smoothing” base line correction,’® peak detection by continuous wavelet
transform (CWT)-based peak detection algorithm (SciPy package),'?* 1>* and Gaussian fitting with
non-linear least squares functions (Levenberg-Marquardt algorithm).'>> SAME final outcome is
[m/z; chemical formula; K; CCS] for each 2D TIMS-FT-ICR MS dataset. The 2D TIMS-FT-ICR
MS contour plots were generated in DataAnalysis (Version v. 4.2, Bruker Daltonics, CA) and all

the other plots were generated using matplotlib'?® and OriginPro 2016 (Originlab Co., MA).



RESULTS AND DISCUSSION

The analysis of the WAF samples by APLI-FT-ICR MS can be characterized by a Gaussian-like
distribution, centered at m/z 300 (Figure 1). Prior to exposure to light (t-Oh), ~700 peaks were
observed in the FT-ICR MS spectra. After the WAF was exposed to light (t-115h), the distribution
increased in size, and the center shifted to m/z 500, resulting in ~ 12,000 peaks, which represents
a ~17-fold increase relative to the unexposed WAF (t-Oh). The change in the MS distribution
suggest an increased partitioning of the oil in the WAF (e.g., photo-solubilization) as well as
potential chemical transformations within the WAF as a function of the exposure to light. The use
of ultra-high resolution mass analyzers allowed the assignment of chemical formulas and to follow
the WAF changes as a function of the exposure to light (see Figure S2-4). A follow up analysis
using OSA-TIMS in tandem with FT-ICR MS enabled further molecular separation of the WAF
content by their mobility (isomeric content) followed by ultra-high resolution mass analysis. For
example, the number of molecular features increased from ~700 to ~5.2 k and from ~12k to ~47k
for the t-0 and t-115h WAF samples, respectively, by adding the TIMS separation to the FT-ICR
MS analysis. Moreover, the isomeric content of the WAF samples is such that TIMS separation
increases the number of features in up to 6-fold at the nominal mass level (see Figure 1). That is,
OSA-TIMS in tandem with FT-ICR MS enabled a more comprehensive analysis of the WAF
content by increasing the peak capacity of the analysis using complementary, orthogonal TIMS

and FT-ICR MS separations.

Inspection of the 2D-TIMS-FT-ICR MS contour plots indicated that the observed chemical species
from the WAF samples using the APLI source are mostly condensed/aromatic molecules (see more
details on interpreting 2D-IMS-MS contour plots in reference '°°). This observation is consistent

with previous analysis using APLI sources that showed better ionization efficiencies for molecules
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containing conjugated bonds.% Closer inspection of the 2D TIMS-FT-ICR MS WAF data reveals
the spectral complexity in both the mass and mobility dimensions. Particularly, the presence of
multiple isobaric interferences (e.g., -Cs to -SHa splits, Am=3.4 mDa, requiring ~150,000 resolving
power at m/z 489), such as C31H370, C2sH4108S, and C25sH450S>, as well as multi-band ion mobility
projections confirm the need for high resolution TIMS analysis during the study of the WAF
samples (TIMS resolving power up to 220 is shown in Figure 2). For example, at m/z 327, 14 MS
peaks are detected and chemical formulas are assigned (Table 1). For each chemical formula, an
extracted ion mobility chromatogram was generated, resulting on 47 peaks with assigned chemical
formula, mobility and CCS. Notice that this detailed separation is only possible due to the high
resolving power of the TIMS device, the OSA-TIMS method providing sufficient points across
the mobility profile, and the ultra-high resolution and mass accuracy of the FT-ICR MS. Moreover,
the processing of the 2D-TIMS-FT-ICR MS data using the SAME package is able to deconvolute
the mobility profile in a minimum number of isomers (see example for C22H3102" and C21H2703"
in Figure 2). A similar complexity can be observed at m/z 489, where 17 peaks are resolved in the
FT-ICR MS and 123 peaks in the 2D TIMS-FT-ICR MS. The time independent nature of the OSA-
TIMS analysis permits the acquisition of high mass resolution FT-ICR MS spectra, thus
maximizing the analytical potential of both techniques while providing precise collision cross
section (less than 1% variability between replicates). It should be pointed out that these results
provide a new reference point for the IMS-MS analysis; commonly accessible IMS-MS platforms
are limited to IMS resolving power of ~30-60 (with instances up to 100) and to TOF MS detectors

with MS resolving power up to 60k.53!

Taking advantage of the high mobility resolution and ultra-high mass separation of TIMS-FT-ICR

MS, the WAF [m/z; chemical formula; K; CCS] components can be followed as a function of the
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exposure to light for each chemical class (see example in Figure 3). The increase in the number of
molecular species from the HC class as a function of the exposure to light suggest that WAF is
initially subject to photo-solubilization of the surface slick into the water, in good agreement with
previous observations.*! Results show that an increase in the DBE of a molecule increases is
associated with a reduction in the CCS for a given carbon number. For example, for Cs4 the lowest
CCS of 210 A2 corresponds to DBE 14, while DBE 5 has the greatest CCS of 252 A2. This indicates
that the degree of condensation (e.g., rings and double bonds) imposes structural boundaries,
reducing the CCS of a molecule.® 2" In addition to the initial photo-solubilization, as the exposure
of the WAF to light increases, a greater number of assignments with carbon numbers greater than
40 are observed, particularly comparing 16 and 115h. Furthermore, there is an increase in the
number of oxygenated classes and a decrease in the HC class, particularly for compounds with
DBE>9. In particular, the identified formulas for the O4 and Os classes have DBE ranges between
8-20 and 9-18, respectively. These identified formulas occupy a narrow structural space in the
condensed region of the mobility domain, which may indicate that these are products of the higher
photosensitive and reactive aromatic HC structures.'”® Although the WAF transformation
mechanisms are not well understood, our results suggest that the photo-transformation of the HC
molecules in WAF leads to the observation of oxygenated species of the O4.5 class in the first 115h

of exposure to light.

Changes in the WAF composition can be also followed by the presence of specific chemical
formulas as a function of the exposure to light. For example, inspection of the WAF [m/z; chemical
formula; K; CCS] components at different time points can be used to infer the degree of chemical
transformations (see Figure 4). For example, the unexposed WAF, t-Oh, has few identifications for

the HC class (black bars); however, at t-16h (red bars) there is a significant increase in the number
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of assignments, 420 new identifications based on MS alone and 3000 based on TIMS-MS followed
by a decrease in the number of non-oxygenated molecules (e.g., HC and N class molecules) at t-
115h.* This result suggest that there are several chemical transformations occurring as a
consequence of the photo-solubilization of the surface oil (e.g., indicated by the new identifications
for the HC class at t-115h) and increased oxygenation of previously dissolved WAF components
(e.g., the three-fold increase in the number of identifications for the O3 class, and the appearance
of the O4 and Os class with 1140 and 420 identifications, respectively). The oxygenated molecules
are also highly isomeric, with up to 9 ion mobility bands per chemical formula. The observation
of the Ous classes at later irradiation times (t-115h) suggest that these molecules were not
originally present in the WAF, but are a consequence of the oxygenation process that took place
over time, either by the generation of new molecules, or by a decrease in matrix effects due to a
lower number of UV absorbent molecules. That is, a reduction of molecules that are highly
absorbent of the 266 nm excimer laser may result in greater sensitivity for less absorbent and low
concentration molecules. Note that the increase in oxygenation is in good agreement with other
MS reports of WAF exposure to light.!?- 130 Small differences were observed between the number
of identifications, such as the HC class, by TIMS-MS and MS alone due to the reduced TIMS
trapping efficiency for low m/z ions and low abundant ions when performing a broad range
mobility analysis; however, this limitation can be overcome by performing targeted analysis for

smaller PAHs (e.g., naphthalene) as previously reported.”®

While this work showcases the unique advantages of OSA-TIMS in tandem with FT-ICR MS and
represents a major step towards the analytical characterization (i.e., high mobility resolving power
over 220 combined with ultrahigh mass resolution over 400k) of the WAF samples at the

molecular level in a single experiment, further experiments and developments are needed. For
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example, a more complete characterization of the WAF content and their transformation products
and intermediates will require the use of a suite of ionization sources, in both positive and negative
polarities, in order to cover a larger range of chemical species during the analysis.®* ! Further
interpretation of the WAF [m/z; chemical formula; K; CCS] components can be made with the use

79.96.97 and the implementation of

of standards, theoretical calculations of candidate structures,
complementary, post-ionization MS structural tools in tandem with TIMS-FT-ICR MS (e.g.,
MS/MS using CID, SID, IRMPD, BIRD, ExD, etc.)!?*!3® Although initial attempts have been
made towards the structural characterization,’’ the 2D TIMS-FT-ICR MS datasets contain a large
amount of analytical data (e.g., over 50k features) in need for further development of theoretical

‘petro-informatics’ and computational approaches capable of producing more detailed structural

information of the WAF photo-transformation products and intermediates.
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Figure and Table captions:

Figure 1. Typical FT-ICR MS spectrum and 2D TIMS-FT-ICR MS contour plot for the WAF (a)
at 0, and (b) 115h light exposed. The number of peaks identified per unit m/z in the MS domain
(black) and TIMS-MS (blue) domains are also shown for (a) and (b). Notice the significant
differences in the number of identifications between (a) and (b), as well as between the MS and

TIMS MS experiments, increasing the level of molecular feautres identified per analysis.
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Figure 2. Typical 2D TIMS-FT-ICR MS contour plot and MS projections for m/z a) 327 and b)
489. IMS projections for specific chemical formulas (connected scatterplot) with the unsupervised
fitting by SAME package of minimum number of mobility features is shown. Note that the SAME
package relies on the experimental profile of the distribution, which is able to show multiple
features due to the high resolving power of the TIMS analyzer. Formula assignments are provided

in table 1.

Figure 3. Typical size dependence (CCS) with carbon number for the Oo.4 chemical classes
observed in the WAF samples as a function to exposure to light (t-0, 16 and 115h). The color scale
corresponds to the number of rings and double bond equivalents (DBE) of a molecule. Note the
large increase in assignments between t-Oh and t-16h, as well as increases in oxygen content

between t-16h and t-115h.

Figure 4. Total number of molecular feature assignments based on chemical formula alone from
FT-ICR MS measurements and based on chemical formula and IMS profiling from TIMS-FT-ICR
MS measurements . Identifications unique to t-0, t-16, and t-115h are in black, red, and blue,
respectively. When using FT-ICR MS is used tracing the evolution of the chemical complexity is
incomplete, because the isomeric complexity is not taken into account. Particularly, taking into
account the isomeric variability indicates that the composition of the WAF at t-115h is

significantly more complex, and chemically unique, than is observed by FT-ICR MS alone.
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Table 1. Table of identified ion formulas for m/z 327 and 489 as found in figure 2.

m/z Exp. m/z Ion Formula | Error (ppb)
a | 327.078031 | C,H,NOS." -159
b | 327.101557 | C,H,O0;" 43
¢ | 327.104917 | C,H,0,S" 76
d | 327.137957 | C,H,,0, 3
e | 327.141345 | C,H,,0,S8" -55
f | 327.159052 | C,H,,0," 104
- g | 327.174325 C,H,,0" 52
o
« h | 327.177623 | C,H,, 08" 275
i | 327.195425 | C,H,,0;" 141
327.210673 C,H,," 165
k | 327.214774 C,,H,,S" 2066
1| 327231822 | C,,H,0,° 107
m | 327.235269 | C,,H;0,8 -125
n | 327.268202 C,,H,,0" 122
a | 489.169661 | C,,H, 0, 22
b | 489.172941 | C,,H,,0,S" 164
c | 489.190592 | C,,H,,0, 384
d | 489.205937 | C,;H,,0," 202
e | 489.209127 | C,H,,0,S" 572
f | 489.227101 | C,H,,0." 131
489.242320 | C,,H,,0," 206
489.245496 | C,H,.0,S8" 605
2 i | 489.263445 | C,H,,0," 217
489.266855 | C,;H, 08" 137
k | 489.270311 | C,H,,0.8," 37
1 | 489.278685 | C,H,,0," 249
m | 489.282768 | C,,H,0,S" -1206
n | 489.299809 | C;,H, 0, 260
o | 489.302875 | C,,H,O,S" 883
p | 489.336155 | C,H,O,° 341
q | 489.339652 | C,H,O,S" 84
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