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Synopsis The role that host-associated microbes play in animal biology is gaining attention in comparative biology.
Numerous research groups study the roles that microbes play in human health and nutrition, or in enhancing the
production of agricultural animals. However, inclusion of host-associated microbes into research questions of integrative
and comparative biology has lagged behind. We hosted a symposium to bring together top researchers in the field of
host-associated microbes who also incorporate aspects of integrative and comparative biology. In this introduction, we
highlight recent research demonstrating the profound roles that host-associated microbes play in many aspects of animal
biology, such as immune function, endocrinology, and even behavior. It is our hope that integrative and comparative
biologists will begin to include aspects of host-associated microbes into their research programs, enhancing both the
fields of comparative biology and host-microbe interactions.

Introduction researchers that investigate host-microbe interactions

Recent studies have revealed that animals are not indi-  in the context of ecology and evolution. The work pre-

vidual organisms, but rather are collectives that host
highly diverse and interactive communities of
microbes. These microbial communities contain bac-
teria, archaea, protozoa, fungi, and viruses that provide
a number of services and functions to their hosts
(McFall-Ngai et al. 2013). It has been proposed that
animals and their microbes may collectively form a
“holobiont” upon which natural selection acts
(Bordenstein and Theis 2015; Shapira 2016; Theis
et al. 2016), though this idea has been debated
(Moran and Sloan 2015; Douglas and Werren 2016).
For the most part, investigations into host—microbial
interactions have been focused on humans or model
systems targeted at human health (Colston and
Jackson 2016). However, research into the roles that
microbes play in the ecology and evolution of their hosts
is a rapidly growing area. We conducted a symposium
that brought together and galvanized a number of
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sented at our symposium was highlighted in Science
magazine (Pennisi 2017), and is reported in subse-
quent articles in this issue. The purpose of this article
is to introduce the area of host-microbe interactions
and to present the justification for the symposium.
Studies focused in model laboratory animals and
humans have revised our understanding of how host-
associated microbes can impact physiology, perfor-
mance, and health. These studies provide the proof of
concept and impetus for studying host-associated
microbes in natural systems. Below, we highlight recent
studies relating to numerous divisions of the Society for
Integrative and Comparative Biology that supported
our symposium. While this paper largely focuses on
examples of gut microbial communities, similar studies
have been conducted on other body sites (skin
[Kueneman et al. 2014], oral cavity [Stothart et al.
2016], scent glands (Theis et al. 2013], etc.).
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These studies are only a sampling of the recent inves-
tigations that are beginning to uncover the importance
of host-associated microbes in the integrative biology
of natural systems.

Ecology and evolution

Numerous studies have investigated how environmen-
tal characteristics and relatedness between host species
dictate the composition of host-associated microbial
communities. Controlled, experimental trials within
single host species have demonstrated the role that
diet (Kohl et al. 2016), temperature (Chevalier et al.
2015; Kohl and Yahn 2016), and other environmental
variables can play in determining the structure of host-
associated microbial communities. Additionally, large-
scale, comparative studies have demonstrated that
many factors contribute to structuring microbial com-
munities across animal hosts. For example, the diver-
sity and function of the mammalian gut microbiota are
sculpted by host diet, phylogeny, and gut anatomy (Ley
etal. 2008; Muegge et al. 2011). Across distantly related
mammals, a diet of ants (myrmecophagy) has resulted
in convergence of the gut microbial community struc-
ture (Delsuc et al. 2014). The avian gut microbiota is
shaped by host taxonomy and diet (Kohl 2012; Waite
and Taylor 2014; Hird et al. 2015). In fish, gut microbial
community structure is affected by salinity, trophic
level, and host phylogeny (Sullam et al. 2012). The re-
peated finding that host taxonomy/phylogeny influen-
ces microbial community composition gave rise to the
hypothesis of “phylosymbiosis”, which states that sim-
ilarities in community composition of host-associated
microbes should be concordant with the phylogeny of
host species. Phylosymbiosis has indeed been demon-
strated in several clades of host species (Brooks et al.
2016), though the mechanistic basis for phylosymbiosis
is an open area ripe for future investigation. Last, gut
microbial communities can impact ecological interac-
tions, such as plant-herbivore interactions (Kohl et al.
2014), or the capacity for insects to serve as vectors for
diseases (Azambuja et al. 2005).

Ecoimmunology and disease ecology

Host-associated microbial communities can have large
impacts on immune function and associated disease
susceptibility. Microbial colonization of the gut drasti-
cally alters the gene expression and function of the gut,
especially in regards to training of the immune system
(Hooper et al. 2001). In turn, microbes may provide
protection against pathogens and parasites. For exam-
ple, locusts hosting microbial communities with higher
diversity exhibit enhanced resistance to a pathogenic
bacterium (Dillon et al. 2005). Additionally, bumble
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bees transmit a gut microbial community that offers
protection against a parasitic protozoan (Koch and
Schmid-Hempel 2011). Last, the microbes that live
on amphibian skin are thought to be important in sus-
ceptibility to the emerging pathogen of chytrid fungus
(Harris et al. 2009). An area begging for further re-
search is the integration of host-associated microbial
communities into theories and methods associated
with the field of ecoimmunology. One promising study
system is the use of various stickleback populations that
exhibit differential immune responses to gut microbial
populations (Milligan-Myhre et al. 2016).

Invertebrate zoology

The associations between invertebrate hosts and micro-
bial partners have been of great interest to ecologists
and evolutionary biologists. Insect hosts harbor endo-
symbiotic bacteria that synthesize essential vitamins or
amino acids for their hosts (Douglas 2009).
Additionally, a number of marine invertebrates harbor
chemosynthetic bacterial symbionts that provide
nutrients to their hosts (Dubilier et al. 2008). More
recently, studies have investigated the roles that com-
plex microbial associations play in invertebrate zool-
ogy. For example, gut bacterial communities likely
facilitated the repeated evolution of herbivory in ants
(Russell et al. 2009), and the gut microbiota of locusts
can improve resistance to pathogens (Dillon et al.
2005). Invertebrate model systems have greatly en-
hanced our understanding of the basic principles of
host-microbe interactions (e.g., Drosophila fruit flies
[Ridley et al. 2012], Nasonia wasps [Brucker and
Bordenstein 2013], hydra [Bosch 2012], nematode
worms [Berg et al. 2016], squid [McFall-Ngai 2014],
and others). Given the large diversity of invertebrates
and their associated ecology, they represent promising
systems for expanding our knowledge of the role mi-
crobial partnerships play in ecology and evolution.

Comparative physiology and
biochemistry

Host-associated microbes can have large impacts on
hosts at the physiological and biochemical levels (Kohl
and Carey 2016). Colonization by microbes signifi-
cantly alters an animal’s metabolome, or the collection
of small metabolites in the body (Wikoft et al. 2009).
Many of the physiological interactions between gut
microbes and hosts relate to nutrition and energy ho-
meostasis. For example, after exposure to cold temper-
atures, mice exhibit longer intestines, altered intestinal
gene expression, and increased insulin sensitivity
(Chevalier et al. 2015). Remarkably, these physiological
changes can be recapitulated in naive, germ-free mice
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by transplanting the gut microbiota from cold-
acclimated mice (Chevalier et al. 2015). Similarly,
germ-free mice that receive the gut microbiota from
summer bears (preparing for hibernation) gain more
fat mass than mice inoculated with the microbiota from
hibernating bears, demonstrating a functional role of
the microbiota in pre-hibernation fattening (Sommer
et al. 2016). There have also been demonstrated links
between host-associated microbes and respiratory
(Moreno-Indias et al. 2015; O’Connor et al. 2016), car-
diovascular (Crawford et al. 2009), and hepatic physi-
ology (Claus et al. 2011) that could be further studied in
an integrative and comparative context.

Comparative endocrinology

Host-associated microbes can interact with the endo-
crine system in a myriad of ways (Clarke et al. 2014).
The field of “microbial endocrinology” was proposed
over 20years ago (Lyte 1993), and subsequently
reviewed (Lyte 2013), to investigate the roles that
microbially-produced neuroactive compounds play in
host physiology. Conversely, host-produced hormones
can influence microbial physiology and community
structure (Freestone et al. 2008; Escallon et al. 2017).
Catecholamines, such as norepinephrine, are produced
by hosts in response to stressful stimuli, and enteric
bacteria exposed to these compounds increase rates of
horizontal gene transfer (Peterson et al. 2011). Gut
microbes may also modify host-produced signaling
molecules: the human gut microbe Clostridium scin-
dens can convert glucocorticoids, such as cortisol,
into androgens (Ridlon et al. 2013). Other studies
have also demonstrated potential connections between
endocrinology and host-associated microbes. For ex-
ample, transplanting the microbiome from male mice
into female mice resulted in higher testosterone levels
in recipients (Markle et al. 2013). Additionally, squir-
rels with higher measurements of fecal glucocorticoid
metabolites harbored oral microbial communities with
lower diversity (Stothart et al. 2016).

Neurobiology, neuroethology, and
sensory biology

As mentioned above, gut microbes can produce, mod-
ify, and respond to a number of neuroactive com-
pounds, which could in turn influence animals’
neurobiology. Germ-free mice lacking a gut microbiota
exhibit altered concentrations of neurotransmitters
and differential gene expression in the brain (Heijtz
et al. 2011; Clarke et al. 2013). Microbial effects on
neurobiology appear to scale up to influence animal
behavior. For example, gut microbes have been shown
to influence mating preferences in flies (Sharon et al.

671

2010) and anxiety behavior in mice (Bravo et al. 2011).
The social interactions of baboons can have profound
effects on the structure of gut microbial communities
(Tung et al. 2015). Also, microbial communities asso-
ciated with the scent glands of hyenas may mediate
communication between individuals (Theis et al.
2013). Understanding how microbial communities
might influence animal behavior in an ecological and
evolutionary sense is a growing area of interest (Ezenwa
et al. 2012; Shropshire and Bordenstein 2016).

Microscopy

Most microbiome studies utilize sequencing techni-
ques to inventory microbial communities. However,
such sequence-based approaches only provide simple
snapshots into the community composition and lack
information about spatial arrangement, changes over
time, or potential interactions between microbial
members. Advances in microscopy and imaging tech-
niques have helped to expand our understanding of the
organization of these communities. Fluorescent in situ
hybridization allows researchers to visualize particular
microbial members to investigate spatial organization
(Moter and Gobel 2000). These images can also be
quantified to assess the impacts of diet or other varia-
bles on the spatial arrangement of microbes (Earle et al.
2015). Additionally, a recently developed technique,
light sheet fluorescence microscopy, allows researchers
to visualize microbial communities colonizing the guts
of live zebrafish, allowing both spatial and temporal
resolution (Jemielita et al. 2014).

Conclusion

It is now being appreciated that host-associated
microbes can influence many aspects of animal biol-
ogy. The time is ripe for integrative and comparative
biologists to incorporate aspects of microbial ecology
into their study questions. The examples here and in
the following papers offer the proof of concept, as
well as the tools and techniques for including host-
associated microbial communities into future re-
search programs.
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