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Synopsis Host-associated microbiomes are integral components of host health, but microbiome community structure
varies among and within hosts. Reconciling community variability with the apparent dependence of hosts on community
function, and characterizing how functional divergence proceeds across niches, remains challenging. Here, through the
study of gut microbiomes and diets of three insectivorous bat species we characterize how community structure is
shaped by predicted functional properties of community members. We found that while host diet and microbiome
community composition do not significantly relate to each other, host diet and metagenome function do, suggesting that
diet directly selects metagenomic functions rather than communities. We use a novel inference framework to show how
the discordance between community structure and functional variation derives from functional equivalence and is
influenced by the continuum of shared and derived gene sets across microbial lineages. Our findings help clarify how
metagenome community structure—function relationships contribute to deterministic processes in community assembly,

and describe the basis for metagenomic differences across ecologically similar hosts.

Introduction

Microbiomes, the microbial communities inhabiting
environments, are nearly ubiquitous on Earth, in-
habiting soil, water, ice, and extreme environments,
as well as a variety of external and internal surfaces
of macro-organisms (Lozupone and Knight 2005).
Host-associated microbiomes are often considered
extensions of their hosts, reflecting the contribution
of microbial communities to host tissue structural
integrity (Kumar and Mason 2015), wound healing
(Wolcott et al. 2016), immune function (Round and
Mazmanian 2009; Lathrop et al. 2011), and nutrient
acquisition (Sommer et al. 2016), among others.
Generally, the maintenance of these communities at
host-optimal compositions is associated with health
and fitness of hosts (e.g., Turnbaugh et al. 2007),
while disruption of community structure (i.e., dys-
biosis) has commonly been shown to negatively
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affect host health and limit microbiome services
(e.g., Turnbaugh and Gordon 2009).

In terms of biomass, gut microbiomes are the
most abundant microbial systems co-occurring with
mammals, and are largely a consequence of both the
nutrient-rich environment of mammalian digestive
systems and the beneficial functions these communi-
ties provide to their hosts (Muegge et al. 2011).
Primarily, digestive microbiomes benefit hosts by
providing nutrients through both catabolic and ana-
bolic pathways (Hollister et al. 2014). Trends in
community composition across digestive micro-
biomes of mammalian species are in large part ex-
plained by the host’s dietary guild (Ley et al. 2008;
Phillips et al. 2012); there are consistent differences
in gut-microbiome diversity among dietary strategies
(e.g., carnivory vs. herbivory). However, differences
in microbial metagenome structure and function
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among host species that occupy overlapping dietary
niche space is less clear (Bolnick et al. 2014). This is
an important consideration because the ability of
microbiome communities to respond to modest trait
differences among hosts should facilitate host adap-
tive success. Given the large size of metagenomes
relative to genomes, sufficient metagenomic variation
should exist to allow for the formation of locally
optimized microbial communities. Yet, how the
host environment, compositional variability, and
functional repertoire interact is poorly understood.

The composition of ecological communities is gov-
erned by the interplay of filtered colonization of spe-
cies from a historically-constrained regional pool,
interactions among species within the community,
and dispersal among communities (Leibold et al
2004). These processes may be deterministic, that is
influenced by species attributes, or stochastic and
hence neutral with respect to species’ traits (Hubbell
2006). More specifically, niche-appropriation theory
posits that observed community structure is the result
of competition among potential community members
for niche space in a given environment (Ricklefs and
Travis 1980). Trait combinations that confer a com-
petitive advantage to species are retained in the com-
munity, and are ultimately the basis for selection
(Schmidt et al. 2015). Similarly, membership in micro-
biome communities should be influenced by direct
selection of the genes in microbial genomes that confer
a functional advantage to the microbe, such as those
that respond to host diet. However, because genes are
shared across microbial lineages, comparable commu-
nity function may be achieved by different combina-
tions of lineages, that is, communities may differ in
taxonomic composition but be functionally similar.
This has been observed in microbiomes across human
body sites, which are broadly divergent in community
composition, but appear to have highly conserved
functional attributes (Human Microbiome Project
2012). Recognizing the relationship between genes
and lineages would allow a role for metagenome func-
tion in the deterministic processes that may shape
community composition, and would help explain
high levels of variation common to datasets of host
species (Shafquat et al. 2014).

Novel approaches that compare functional profiles
and community composition from the same samples
are needed to better resolve the relationship between
structure and function and clarify assembly mecha-
nisms. In this study, we progress this goal by char-
acterizing how variance in community composition
statistically relates to variance in predicted metage-
nome function. We develop our approach utilizing
16S amplicon sequencing due to the ability to link
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function and taxonomy to an extent that is currently
challenged for complex communities using shotgun
sequencing; however, the method can be applied to
any dataset in which microbial taxonomy and func-
tion are jointly known. We provide an R package
(FunkyTax; https://github.com/genotyper/FunkyTax)
that includes functions to implement the novel com-
ponents of this analysis workflow, as well as the data
for this study. We focus on the gut microbiome of
three insectivorous bat species. Bats exhibit the
broadest range of dietary evolution among mammals
over comparable timescales (Dumont et al. 2012),
and distinct dietary strategies (e.g., insectivory, fru-
givory, sanguivory) are associated with consistent
differences in microbiome composition (Phillips
et al. 2012; Carrillo-Araujo et al. 2015). However,
the majority of bat species are insectivorous and
have evolved morphological and echolocation char-
acteristics that enable fine-scale partitioning of the
insect prey base (Denzinger and Schnitzler 2013).
Among observed foraging strategies, insectivorous
bats include fast-flying aerial hawking and slower-
flying forest interior specialists. These diverse forag-
ing strategies lead to differences in accessible insect
prey species (Denzinger and Schnitzler 2013), pro-
viding a system in which host phenotypic differences
select for modest and predictable dietary differences
that may translate to selection differences on respec-
tive microbiomes. To characterize the interaction be-
tween microbiome structure and function, we used
gut microbiome samples from three species of insec-
tivorous bat from Kenya that differ in foraging strat-
egy. We tested the hypothesis that metagenome
variation can be explained by differences in dietary
composition within a single trophic niche, and clar-
ify the relationship between predicted metagenome
function and microbiome community composition.
We also discuss how metagenome functional differ-
ences among ecologically similar host species could
be adaptive to respective ecologies.

Materials and methods
Collection and processing

Insectivorous bat species Hipposideros beatus
(Hipposideridae) and Kerivoula cuprosa
(Vespertilionidae) were captured at Kakamega forest,
Kakamega County, Kenya. Neoromicia tenuipinnis
(Vespertilionidae) was captured on the shores of
Lake Victoria, Kisumu County, Kenya. The bat
species K. cuprosa and H. beatus are forest interior
foraging specialists, whereas N. tenuipinnis is a
forest-edge aerial hawking species. Individuals were
captured using harp traps and mist nets. Sex and
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reproductive status were documented for each indi-
vidual. Bats were held individually in new cloth
holding bags until they defecated, then fecal material
was collected and homogenized in RNALater (Life
Technologies, Carlsbad, CA, USA). Total DNA was
isolated from fecal samples using a MO BIO
PowerMag Soil DNA Isolation Kit Optimized for
Kingfisher (MO BIO Laboratories, Inc., Carlsbad,
CA, USA) on an automated Kingfisher Flex platform
(Thermo Scientific, Waltham, MA, USA).

16S amplification and sequencing

Samples were amplified for sequencing using a for-
ward and reverse fusion primer encompassing vari-
able regions 1 through 3 of the 16S gene. The
forward primer was constructed with (5-3") the
Mlumina i5 adapter (AATGATACGGCGACCACCG
AGATCTACAC), an 8-10bp barcode, a primer
pad, and 28F (GAGTTTGATCNTGGCTCAG;
Wolcott et al. 2009). The reverse fusion primer was
constructed with (5'-3’) the Illumina i7 adapter
(CAAGCAGAAGACGGCATACGAGAT), an 8-10bp
barcode, a primer pad, and 519R (GAGTTTGATCN
TGGCTCAG; Wolcott et al. 2009). Amplifications
were performed in 25 pL reactions with Qiagen
HotStar Taq master mix (Qiagen Inc., Valencia,
CA, USA), 1ul of each 5uM primer, and 1ul of
template. Reactions were performed on ABI Veriti
thermocyclers (Applied Biosystems, Carlsbad, CA,
USA) using the following thermal profile: 95°C for
5min, then 35 cycles of 94°C for 30sec, 54°C for
40 sec, 72°C for 1 min, followed by 1 cycle of 72°C for
10 min and 4°C hold. Amplification products were vi-
sualized with eGels (Life Technologies, Grand Island,
New York). Products were pooled equimolar and each
pool was size selected in two rounds using Agencourt
AMPure XP (Beckman Coulter, Indianapolis, IN, USA)
in a seven-tenths ratio of AMPure to product. Size
selected pools were quantified using the Qubit 2.0 fluo-
rometer (Life Technologies) and loaded on an Illumina
MiSeq (Illumina, Inc. San Diego, CA, USA) 2 x 300
flow cell at 10 pM.

Cytochrome oxidase | amplification and sequencing

In order to maximize arthropod prey species detec-
tion, two separate arthropod Cytochrome oxidase I
(COI) mini-barcode primer assays were employed.
Library construction of these assays was performed
in a series of two polymerase chain reaction (PCR)
reactions. The first assay used MS_Art_1cF (AGATA
TTGGAACWTTATATTTTATTTTTGG) and MS_
Art_2cR (WACTAATCAATTWCCAAATCCTCC) from
Pons (2006). Thermal profile for first round PCR of
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this assay was 94°C for 3 min followed by 16 cycles
of 94°C for 30sec, 57°C for 30sec (decreasing by
0.5C per cycle) and 72°C for 30sec followed by 24
cycles of 94°C for 30sec, 53°C for 30sec and 72C°
for 30sec followed by a final extension at 72°C for
10 min. The second COI assay used MS_LeplF
(ATTCAACCAATCATAAAGATAT) and MS_LEP2R
(CTTATATTATTTATTCGTGGGAAAGC)  from
Hebert et al. (2004). Thermal profile for first round
PCR of this assay was 94°C for 1min, 6 cycles of
94°C for 1min, 45°C for 1min 30sec, 72°C for
Imin 15sec, followed by 36 cycles of 94°C for
1min, 51°C for 1min 30sec, and 72°C for 1min
15sec, followed by a final extension at 72°C for
5min. For both assays, second round amplifications
incorporated the Illumina i5 and i7 adapters, 8—-10bp
barcodes, and used the same thermal profiles used in
first-round reactions. All subsequent molecular meth-
ods were conducted same as described above.

Data processing

Sequence read pairs were stitched using PEAR
(Zhang et al. 2014), and chimera-checking, opera-
tional taxonomic unit (OTU) clustering, community
matrix development, and taxonomic assignment was
conducted using standardized protocols described in
Supplementary Information. All subsequent statisti-
cal analyses were conducted in R (Team 2015) using
phyloseq (McMurdie and Holmes 2013), vegan
(Oksanen et al. 2016), ape (Paradis et al. 2004),
phytools (Revell 2012), and FunkyTax.

Community structure

Sequencing effort coverage was visually assessed us-
ing alpha diversity rarefaction curves of number of
OTUs and phylogenetic diversity (PD; Faith 1992).
Rarefaction was conducted with a step size of 250,
between 250 and 15,000 classified reads, and 10 it-
erations at each step size. Differences in alpha diver-
sity among bat species calculated from the full
dataset were assessed using analysis of variance
(ANOVA). Community compositional differences
among species were summarized using both taxo-
nomic (Bray—Curtis; Bray and Curtis 1957) and phy-
logenetic (UniFrac; Lozupone and Knight 2005)
metrics. Inter-individual relationships based on re-
sulting distance matrices were decomposed using
non-metric multidimensional scaling non-metric
multidimensional scaling (NMDS) and effects of spe-
cies, sex, and the interaction of these variables was
assessed using permutational analysis of variance
using distance matrices (ADONIS) (Anderson
2001). Following a significant result for only host
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species (o =0.05), post hoc ADONIS was repeated in
a pairwise fashion between host species pairs. To
further characterize microbiome community compo-
sitional differences among host species, the Euclidian
distance of each individual from their respective
group centroid resulting from NMDS was recorded
and differences in group dispersion among bat spe-
cies were assessed using ANOVA. Bacterial OTUs
with significantly different abundances among host
species were identified by assessing the effect of host
species on OTU abundances. For this analysis, OTU
count distributions were modeled using generalize lin-
ear models with a negative binomial error term as
implemented in DESeq2 (Love et al. 2014). A false
discovery rate of 5% was controlled using a
Benjamini-Hochberg  multiple  testing  correction
(Benjamini and Hochberg 1995).

Functional prediction

A community matrix based on closed-reference OTU
picking using the UCLUST algorithm against the
Greengenes database (DeSantis et al. 2006) was con-
structed, and the count table subsequently corrected
for 16S genomic copy number variation. A KEGG
term-based (Kanehisa and Goto 2000) function matrix
was developed from this matrix by comparing anno-
tations of published bacterial genomes following the
PICRUSt algorithm developed by Langille et al
(2013). Function was described at all KEGG annota-
tion levels. Functional representation was assessed by
linear regression comparing summary statistics includ-
ing sum of function occurrences, number of unique
functions, and number of reads. To gauge metage-
nomic predictive power, the nearest sequenced taxon
index (NSTL; Langille et al. 2013) which summarizes
weighted average divergence of observed bacterial lin-
eages from those represented in the genomic database,
was calculated for each sample. Compositional differ-
ences in species metagenomes were assessed using
Bray—Curtis dissimilarities, ADONIS, and NMDS.
Following a significant effect only for host species
(=0.05), post hoc ADONIS was repeated in a pair-
wise fashion between host species pairs.

Functional community categories

To clarify the relationship between structure and
predicted function we characterized functional com-
munity categories by asking whether individual func-
tions differed in frequency among host species, and
then compared the community components contrib-
uting individual predicted functions. We conducted
univariate tests for effect of host species on the
abundance of each predicted function using
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generalized linear modeling as implemented in
DESeq2 (Love et al. 2014). Next, for each function,
matrices were constructed consisting of hosts (indi-
vidual bats) by bacterial OTUs inferred to contribute
a given function. To alleviate compositionality bias
Hellinger data transformations (Legendre and
Gallagher 2001) were performed on each matrix then
host x host Bray-Curtis dissimilarities were calculated.
Effect of host species on the composition of bacterial
OTUs contributing to a predicted function was as-
sessed with ADONIS. For all tests a false discovery
rate of 5% was controlled using a Benjamini—
Hochberg multiple testing correction (Benjamini and
Hochberg 1995). The above data parsing and statistical
tests can be implemented using R function TaFuR
(available in package FunkyTax). Comparison of uni-
variate and multivariate test results provided the basis
of functional classification, illustrated in Fig. 1, and
these comparisons can be made using R function
CatFun. Briefly, this approach first assessed whether
functions significantly differed in frequency across
host species. It then determined whether non-
significant functions were due to similarity in bacterial
community composition among hosts (i.e., conserved
community components), or contributed by homolo-
gous gene sets shared across different bacterial line-
ages (i.e., equivalent community components).
Divergence in function correlated with divergence in
taxonomic composition as expected in some cases
(divergent community components), but divergent
functions also resulted from abundance differences
(i.e., enhanced community components).

To understand how the distribution of predicted
functions across lineages may influence abundances
and classifications to functional community catego-
ries, we quantified each predicted function’s phyloge-
netic and taxonomic distribution. An overall bacterial
phylogeny was estimated from full length Greengenes
16S sequences corresponding to observed OTUs,
which were aligned using SSU-ALIGN (Nawrocki
and Eddy 2010) and phylogeny estimated using
FastTree2. Next, separate phylogenetic trees were cre-
ated for bacterial OTUs contributing to each pre-
dicted function by pruning away from the overall
phylogeny any bacterial OTUs not inferred to contrib-
ute to the frequency of each function. The sums of
branch lengths were computed from resulting phylog-
enies. From this, the sum branch length contributing
to each function was used as a measure of each func-
tion’s phylogenetic distribution. A taxonomic compo-
nent was provided by summarizing each function’s
contributing number of phyla. The relationship be-
tween function rank abundance and contributing phy-
logenetic branch length or phyla were summarized by
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Fig. 1 Diagram illustrating the statistical testing and inferences used to classify microbiomes into functional community categories. An
effect of a factor of interest (i.e., host species) on the abundance of each function is assessed through univariate testing (generalized
linear modeling; Love et al. 2014). Because each metagenome function is contributed by a subset of the community, separate com-
munity matrices per function summarize how OTU composition contributing a function differs among individual hosts. Multivariate
testing (ADONIS; Anderson 2001) is applied to each community matrix to test for an effect of a factor or interest (in this case host
species) on composition (R function TaFuR). The results of both tests are used to classify functions (R function CatFun). Benjamini—
Hochberg multiple testing correction (Benjamini and Hochberg 1995) is used to control the false discovery rate.

LOESS plots over a 10-function rank sliding window
and statistically assessed using linear regression.
Differences in the distribution of branch lengths for
functions contributed by functional community cate-
gories (i.e., conserved, equivalent, divergent, enhanced
communities; Fig. 1) were tested using ANOVA.

Molecular dietary analysis

A dietary data matrix was developed from COI arthro-
pod barcode sequencing effort (see Supplementary
Information). The dietary matrix was summarized
from OTU through ordinal levels, and the ability of
host species to explain differences in diet among indi-
viduals was assessed using ANOVA. Compositional dif-
ference in prey communities consumed across host
species was assessed using Bray—Curtis dissimilarities,
ADONIS, and NMDS. Following a significant effect
only for host species on overall dietary compositional
variation (o = 0.05), post hoc ADONIS was repeated in
a pairwise fashion between host species pairs.

Comparisons of microbiome community structure,
predicted function, and host diet

To assess effects of host dietary composition on
microbiome community structure and function,

procrustes rotations were conducted. This approach
was employed because the procrustean superimposi-
tion approach (Gower 1971), which compares ordi-
nation solutions rather than single distance
measures, has been shown to be more powerful
than Mantel testing over a range of scenarios
(Peres-Neto and Jackson 2001). Rotations comparing
microbiome community composition and diet, or
metagenome function and diet, were based on re-
sults of distance-based redundancy analysis using
Bray—Curtis dissimilarities, and separate compari-
sons were made with community composition and
diet summarized at different taxonomic levels.
Significance of procrustes rotations were assessed
by comparison of observed residuals to null distri-
butions obtained by randomizing samples in the
rotated matrix through 1000 permutations
(Jackson 1955) using function protest in the R pack-
age, vegan (Oksanen et al. 2016).

Results and Discussion

Effect of host species on microbiome diversity and
community composition

Rarefaction curves of number of bacterial OTUs and
Faith’s PD as a function of sequencing effort
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Fig. 2 Alpha diversity of microbiomes of three host species estimated as: (A) OTU richness; and (B) Faith’s PD. F statistics and P-values
are for ANOVA test of effect of bat species on alpha diversity estimate. H = Hipposideros, K= Kerivoula, N = Neoromica.

approached asymptote across samples, suggesting the
estimated community matrix was not biased by poor
sampling  effort  (Supplementary  Fig. 1,
Supplementary Table 1). Additionally, the distribu-
tion of observed OTUs was not significantly differ-
ent from that estimated by Chaol (F=0.64,
P=0.83), an estimator that uses the frequency of
singletons and doubletons to estimate missed diver-
sity. No significant differences in unique OTUs or
PD were observed among host species (Fig. 2A and
B). Also, no differences in alpha diversity were
found when the identified outlier (TK182019, Xz
outlier test P-values 0.01 and 0.043 for OTUs and
PD, respectively) was removed and comparisons
were repeated (OTUs, F=0.48, P=0.63; PD,
F=1.35, P=0.29). Variation in community com-
position among individuals and host species was
characterized with Bray—Curtis and UniFrac mea-
sures of taxonomic and phylogenetic multivariate
distance. Host species explained a significant pro-
portion of the variation in the community matrix
(R*=0.19-0.24, Fig. 3A and B, Supplementary
Table 2), and significance was generally observed
when comparisons were made in a pairwise fashion
between host species (Supplementary Table 2). In
addition to compositional membership effects, sig-
nificant group differences can also be generated by
differences in levels of within-group variability.
However, levels of inter-individual variation in
community structure were similar across bat species
(Fig. 3C and D), so we concluded that the primary
difference in host species microbiome composition

is related to which bacterial lineages occur across
host species.

Because host species significantly affected commu-
nity composition, we next evaluated bacterial OTU
frequency differences in greater detail. Comparison
of the number of shared and unique bacterial OTUs
across host species revealed that H. beatus and K
cuprosa, the two ecologically similar forest interior
foragers shared 30% of study-wide observed OTUs,
while both shared 23% of all OTUs with the ecolog-
ically divergent N. tenuipinnis (i.e., 53 fewer com-
mon OTUs; Supplementary Table 3). When OTU
abundances were considered in a univariate screen
for group differences, the greatest number of signif-
icantly different OTUs were observed between
H. beatus and N. tenuipinnis, the two host lineages
that may be considered most different when phylo-
genetic distance and niche divergence are jointly
considered. Significantly different OTUs were dis-
tributed across 11 bacterial phyla, with Firmicutes
and Proteobacteria, the most commonly observed
classifications (Supplementary Fig. 2).

Effect of host species on predicted functional
capacity of the microbiome

We developed a metagenome functional matrix of
hosts by KEGG terms following Langille et al.
(2013) that comprised 5749 predicted functions.
Linear comparisons of the number of reads, OTUs,
and KEGG terms suggested that sequencing effort
was sufficient to characterize metagenome functional
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Fig. 3 Beta diversity of microbiomes of three host species estimated as: (A) NMDS based on Bray—Curtis dissimilarity index; (B)
weighted UniFrac; or (C) unweighted UniFrac; and group dispersion based on (D) Bray—Curtis dissimilarity index; (E) weighted
UniFrac; and (F) unweighted UniFrac. F statistics, R, and P- values for A) and B) are for ADONIS test of effect of bat species on
beta diversity estimates, and F statistics and P-values for C) and D) are for ANOVA test for variation in group dispersion explained

by bat species.

capacity (Supplementary Fig. 4). Values for the near-
est sequenced taxon index (NSTIL Supplementary
Fig. 4), a metric developed by Langille et al. (2013)
to assess divergence of observed bacterial lineages
from those represented in the database, were gener-
ally in the ranges observed for human microbiome
samples. This result suggested good predictive power
of the functional matrix, although NSTI values in
this range are associated with variation in metage-
nome prediction accuracy (Fig. 3 of Langille et al.
(2013)). There was an effect of host species on var-
iation in the functional matrix that explained 21—
23% of total variation, depending on whether or
not function frequencies were considered (ADONIS,
F=2.15, P<0.01 and F=2.44, P=<0.01, respec-
tively). When functional variation was considered in
a post hoc pairwise fashion among host species,
mixed patterns of significance were observed
(Supplementary Table 2).

Relationship between microbiome composition and
predicted function

Hosts exhibited substantial variation in the relative
abundance of dominant bacterial OTUs, but the

proportions of dominant microbiome predicted func-
tions were relatively consistent (Fig. 4), as in compar-
ison of microbiome composition among human body
sites (HMPC 2012). We hypothesized that the con-
trast between community structure and function
could be partly explained by the distribution of genes
across bacterial lineages. To provide insight into this
relationship we first rank-ordered all 5749 predicted
functions by frequency and then coded their occur-
rence by host species. Functions of higher rank-order
(approximately the highest 50% of ranks) were gen-
erally similar in frequency of occurrence across species
(Fig. 5A). In addition, we observed a strong linear
relationship between functional rank-order and num-
ber of contributing bacterial phyla (F=7326,
P<0.01), as well as functional rank-order and con-
tributing bacterial phylogenetic branch lengths
(F=8367, P<0.01; Supplementary Fig. 5A and B).
These data indicated that the rank abundance of a
given function was largely determined by its phyloge-
netic distribution. We further investigated this rela-
tionship by calculating the variance of each
function’s rank-order position across host species
(Supplementary Fig. 5C). Positional variation was
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Fig. 4 Bar plots by individual host and grouped by host species of (A) relative abundance of top 20 most common bacterial genera (or
reported at the lowest-level for which there was a confident assignment) and, (B) relative abundance of top 20 most commonly
predicted metagenome functions (summarized as level 3 KEGG terms), in individual bat hosts.

smallest for the most and least frequent functions,
with functions of intermediate overall rank-order dis-
playing the most variation in rank-order among host
species. Likely, the reduced rank-order variance of the
most common functions is a result of their ubiquitous
occurrence across all or most bacterial phyla and phy-
logenetic branch lengths (Supplementary Fig. 5A and
B). Conversely, the reduced rank-order variance of the
least common functions likely reflects their recent der-
ivation (Fig. 5A).

Functional community categories

Because functional frequency trends across metage-
nomes are influenced by the pattern of shared and
derived genes across microbial phylogeny, we devel-
oped an analytical framework to characterize how
community structure contributes to conservation and
divergence of predicted functions across hosts (Figs. 1
and 5B). We found that a large proportion (about
three-quarters) of all functions have frequency distri-
butions that do not differ significantly across host spe-
cies. However, for the community components

predicted to contribute these functions, we identified
two classifications based on taxonomic compositions
across host species. The first classification, “equivalent”
community components, are those that contribute sim-
ilar functional frequencies across hosts, but differ sig-
nificantly in community composition. Functions
arising from “equivalent” community components
were disproportionately the most phylogenetically
widespread (Fig. 5C), and exhibited conserved frequen-
cies across hosts owing to the broad array of microbial
lineages contributing these functions. The second
classification, from “conserved” community compo-
nents, were similar in both composition and func-
tion  frequencies  across  hosts.  Generally,
“conserved” community components contributed
functions occurring at the lower half of the rank-
order distribution and were phylogenetically more
derived than most ‘equivalent’ functions. We sug-
gest that functions shared with similar frequencies
across host species may represent the proposed core
metagenome (Tettelin et al. 2005; Shafquat et al.
2014) among this set of host species.
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Fig. 5 Microbiome predicted function frequency distribution and corresponding functional community categories for each function: (A)
base-level KEGG terms ordered from left to right by rank abundance and colored according to the percentage of each predicted

function’s occurrence in each bat species; (B) results of functional

assignment to community categories; (C) distributions of phyloge-

netic branch length contributing to each function and summarized by community category. F statistic and P-value are results of ANOVA
test for differences in branch length distribution among categories. See Supplementary Fig. 1 and text for details.

Predicted functions that significantly differed in
frequency across host species may be influenced by
host lineage-specific selection on community struc-
ture for specific functional characteristics. We were
able to identify this group of functions and further
characterize the community components contribut-
ing these functions. The first group, “enhanced”
community components, did not significantly differ
in taxonomic composition across hosts. Frequency
differences in these functions were signified by equi-
table increases in the abundance of lineages contrib-
uting the functions. In comparison, “divergent”
community components significantly differed in the
community composition of the lineages contributing
a given function. Notably, both enhanced and diver-
gent functions were disproportionately distributed in
the lower half of the rank-order distribution (Fig. 5B
and C), and were contributed by fewer bacterial
OTUs, phyla, and phylogenetic branch length
(Supplementary Fig. 5). This suggests that differences
in selection on metagenomes by host lineages with
similar dietary ecologies may occur by selection for

relatively derived metagenome functions. It should
be noted that while “divergent” and “enhanced”
functions disproportionately involved energetically-
relevant traits (see below), relatively derived traits
may also be more likely to experience lateral gene-
transfer (Vos et al. 2015). Future assembly-based
studies could help determine the relationship be-
tween transfer and functional divergence among
environments.

Potential adaptive significance of enhanced and
divergent functions

We categorized predicted functions that differed
among hosts into their respective hierarchical
KEGG categories. We found that “enhanced” and
“divergent” functions contributing to significantly
different level 3 KEGG terms among host species
were disproportionately children of “Metabolic
Processes” as opposed to all other level 1 KEGG
categories (y>=4.31, P=0.04, Supplementary Fig.
6), suggesting that host lineage-specific metagenome
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Fig. 6 Summary of dietary dataset for each host species with: (A) alpha diversity as number of unique OTUs (richness) represented in
the diets of bat species. F statistics and P-values are for ANOVA test of effect of bat species on alpha diversity estimate; (B) Beta
diversity as NMDS based on unweighted UniFrac. F statistics, R, and P-values are for ADONIS test of effect of bat species on beta

diversity estimates.

divergence has occurred for genes relevant to ener-
getic demands. Among metabolic functions with sig-
nificant group differences there was considerable
diversity in cellular processes. Some functions were
not apparently relevant to differences among host
species (e.g., flagellar assembly, bladder cancer, spor-
ulation). The inclusion of such functions might be
related to the genomic linkage of their genes to ge-
nomic regions that are under selection to increase
metagenomic abundance, an incomplete annotation
of their functions, or effects of the one-to-many re-
lationship of genes to higher-level pathways.
However, it is notable that significant functions in-
cluded metabolism or biosynthesis of proteins, lipids,
and carbohydrates. Given that comparisons were
made among insectivorous host species, frequency
differences for metagenome functions pertaining to
macromolecule metabolism may reflect host lineage-
specific metabolic fine-tuning. Metabolism or bio-
synthesis of several amino acids were different
among hosts, including biosynthesis of essential
amino acid lysine, and metabolism of essential nu-
trient ascorbate. The presence of arachidonic acid
metabolism and fatty acid biosynthesis on this list
may indicate an important role for metagenomes
in sequestering cell membrane molecules, some of
which are hypothesized to stabilize organs during
body temperature reductions such as torpor (Ruf
and Arnold 2008). Also, a significant increase in lipid
metabolic functions were inferred for K. cuprosa rel-
ative to N. tenuipinnis. Utilization of intrinsic lipid
metabolic pathways of insectivorous bats has been
hypothesized as a mechanism for meeting energetic

demands of volant flight (Voigt et al. 2010; McGuire
et al. 2013; Phillips et al. 2014). Current data support
a role for metagenomes in bat-specific lipid
requirements.

Host diet, microbiome composition, and function

We hypothesized that host dietary ecology is a pri-
mary selective pressure on metagenome function and
characterized host diet using mitochondrial COI ar-
thropod barcode amplicon sequencing (Hebert et al.
2004; Pons 2006). A weak relationship was observed
between classified COI reads and OTUs (F=23.84,
P=0.07), indicating an effect of sampling effort on
inferred diets. However, there was no significant dif-
ference in sampling effort among host species
(F=0.91, P=0.43), which indicated that differences
in dietary composition among host species was not
influenced by sampling effort. There was variation in
the number of OTUs consumed across host species;
forest interior specialists on average consumed more
OTUs, with H. beatus consuming the most, and N.
tenuipinnis (aerial hawking species) consuming the
lowest prey diversity (Fig. 6A). In addition, a signif-
icant proportion of the dietary matrix was explained
by host species (R*=0.22, Fig. 6B). As expected
given the contrasts in host dietary niche, post hoc
pairwise testing revealed significant dietary differ-
ences between N. fenuipinnis and both forest interior
host species (H. beatus and K. cuprosa), whereas the
diets of these latter two did not significantly differ
(Supplementary Table 2).

Because community composition, predicted func-
tion, and dietary datasets all generally indicated the
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largest divergences occurred between the aerial
hawking species (N. tenuipinnis) and either of the
two forest interior specialists (H. beatus, K. cuprosa),
we assessed the congruence of community and func-
tional datasets to the dietary dataset using procrustean
superimposition (Jackson 1955; Peres-Neto and
Jackson 2001). Because effects of dietary composition
on community and functional variation may vary
with taxonomic level, we summarized community
and dietary datasets at multiple taxonomic levels,
and performed procrustean rotations for each rank.
Supporting a direct effect of dietary differences among
hosts on metagenome function, the overall strongest
correlation was observed between the dietary matrix
summarized at prey species-level and the predicted
functional matrix (Procrustean Correlation = 0.52,
P=0.03, Fig. 7A, Supplementary Table 4). There
was a trend in strength of correlation across dietary
taxonomy, with a decay occurring as diet was sum-
marized at higher taxonomic ranks, suggesting that
dietary effects distinguishing metagenome functional
profiles across host species are determined by nutri-
tional differences arising at the level of prey species or
genus. In contrast, no significant correlations were
observed between the community and dietary matri-
ces summarized at any taxonomic level (Fig. 7B,
Supplementary Table 5). These results suggest that
selection by host diet acts on metagenome function,
and only secondarily on bacterial lineages. That is,
because genes are shared across bacterial lineages,
multiple bacterial lineages can provide the same func-
tions and are effectively interchangeable. Lineage in-
terchangeability ~dilutes the directly measurable
response of microbiome community composition to
selection for metagenome function.

Direct selection for metagenome function in com-
bination with the distribution of functions across
microbiome communities contributes to complex pat-
terns describing relationships between hosts and
microbiomes. In this study we characterized how
microbiome communities may dynamically change,
and how compositional variation relates to predicted
function frequency across hosts. We applied our ana-
lytical approach to understand metagenome structure—
function relationships among similar host dietary ecol-
ogies, but our approach can be applied to a range of
environments with general predictions described in
Supplementary Fig. 7. In the present study we made
metagenome inferences from 16S amplicon data, an
approach unable to incorporate information on gene
gain/loss and lateral gene transfer specific to observed
lineages; however, this did not preclude detection of
statistical signal for diet—function relationships that
was more evident than diet-community structure
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relationships. As the challenges associated with using
shotgun sequencing for comprehensive taxonomic and
functional characterization diminish, the approach
presented here will aid in the integration of genome
evolution and community ecology.

Supplementary data
Supplementary data available at ICB online.
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