Integrative and Comparative Biology

Integrative and Comparative Biology, volume 57, number 4, pp. 756–769 doi:10.1093/icb/icx104

Society for Integrative and Comparative Biology

SYMPOSIUM

Links between Natural Variation in the Microbiome and Host Fitness in Wild Mammals

Taichi A. Suzuki¹

Department of Integrative Biology, Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA

From the symposium "With a Little Help from My Friends: Microbial Partners in Integrative and Comparative Biology (SICB wide)" presented at the annual meeting of the Society for Integrative and Comparative Biology, January 4–8, 2017 at New Orleans, Louisiana.

¹E-mail: taichis@berkeley.edu

Synopsis Recent studies in model organisms have shown that compositional variation in the microbiome can affect a variety of host phenotypes including those related to digestion, development, immunity, and behavior. Natural variation in the microbiome within and between natural populations and species may also affect host phenotypes and thus fitness in the wild. Here, I review recent evidence that compositional variation in the microbiome may affect host phenotypes and fitness in wild mammals. Studies over the last decade indicate that natural variation in the mammalian microbiome may be important in the assistance of energy uptake from different diet types, detoxification of plant secondary compounds, protection from pathogens, chemical communication, and behavior. I discuss the importance of combining both field observations and manipulative experiments in a single system to fully characterize the functions and fitness effects of the microbiome. Finally, I discuss the evolutionary consequences of mammal—microbiome associations by proposing a framework to test how natural selection on hosts is mediated by the microbiome.

Introduction

Recent studies in animal models have shown that variation in the microbiome can affect the host phenotype in many ways, including through traits related to digestion, development, immunity, and behavior (McFall-Ngai et al. 2013). These findings suggest that compositional differences in symbiotic microbial communities may play a fundamental role in host ecology and evolution. Understanding the beneficial effects of the mammalian microbiome in natural populations is particularly important for understanding human health as well as for generalizing the findings from laboratoryreared models and domestic animals. Although the importance of microbes in host health has been wellestablished mainly using culturing methods, we know less about how natural variation in the microbiome can affect host fitness in wild mammals.

The idea that the microbes may play a beneficial role in host fitness is not new. For example, one of the best studied beneficial functions of the mammalian microbiome is its role in the digestion of plant materials, such as cellulose. In the late 1800s, microbial fermentation

was proposed as a mechanism of cellulose digestion (Zuntz 1879) and was supported empirically (Tappeiner 1884). In the 1940s, protozoa (Hungate 1942, 1943) and bacteria (Hungate 1947; Sijpesteijn 1948) with capabilities to digest cellulose were isolated from the stomach of ruminants. Fermentation products, such as volatile fatty acids, have been shown to be absorbed by the host from the rumen wall into the blood system as energy sources (Barcroft et al. 1944). The concentration of these fatty acids is highest in the fermentation chambers compared with the rest of the gastrointestinal tract in herbivores (Elsden et al. 1946). These findings led to classic reviews and books on gut microbiota and digestion (Hungate 1966; Van Soest 1994; Stevens and Hume 1995; Hume 1999).

In the last decade or so, the advancement of DNA sequencing technology has made it possible to investigate variation of the entire microbial community (which was impossible to study based on culturing methods alone). For example, the host-associated microbiome varies between species as well as within and between natural populations. Interspecific

variation in microbiomes exists both in captivity (Ley et al. 2008; Muegge et al. 2011) and in the wild (Ochman et al. 2010; Phillips et al. 2012). Between-population variation in the microbial composition has been observed in rodents (Linnenbrink et al. 2013; Kohl et al. 2014b; Kreisinger et al. 2015) and primates (Amato et al. 2013; Moeller et al. 2013a) including humans (Suzuki and Worobey 2014). Within-population variation in the microbiome has also been observed in humans (Arumugam et al. 2011), chimpanzees (Moeller et al. 2012), and house mice (Wang et al. 2014). Most of the work has focused on the gut microbiome, but studies have also described microbes associated with other body sites of the host (Costello et al. 2009; Huttenhower et al. 2012).

In principle, variation in the microbiome could have a positive effect, a negative effect, or no effect on host fitness. However, it appears unlikely that compositional differences in microbiome would have no impact on host fitness given the known role of microbes in digestion (Hungate 1966; Van Soest 1994; Stevens and Hume 1995; Hume 1999), the abundant biomass of symbiotic microbes associated with hosts (Sender et al. 2016), the known association between microbes and host immunity (Round and Mazmanian 2009), and the observations that even rare microbes are suggested to play a large role in microbial ecosystem functions (reviewed in Jousset et al. 2017). Nevertheless, it is possible that some rare and transient microbes have little or no effect on host fitness. The current examples of positive and negative effects of microbes on host fitness are sometimes restricted to studies of a single bacterial lineage. For example, the positive effects of bacteria in sap-sucking insects are well-established including the role of bacteria in providing essential nutrients (Baumann 2005), defense from pathogens (Oliver et al. 2003), and tolerance to heat (Dunbar et al. 2007). The negative effects of microbes on host fitness have also been studied, primarily in the context of microbial pathogens including protists (Allison 1964), bacteria (Lowy 1998), and viruses (Piertney and Oliver 2006). However, fitness effects of variation in an entire microbial community are not well understood. Understanding the association between variation of the microbiome and variation of host fitness requires molecular tools to characterize differences in microbial community composition in natural populations.

Here, I review studies over the last decade investigating inter- and intraspecific variation in the mammalian microbiome that suggest a link between variation in the microbiome and variation in host phenotype and thus fitness (Table 1). Although most of the evidence is correlational, these studies suggest that natural

variation in host-associated microbiomes play a role in mammalian host biology including aspects of digestion, detoxification, immunity, and behavior. I then identify potential future research directions, including the need for manipulative experiments.

Assistance of energy uptake from diet

A series of studies by Gordon and colleagues using fecal transplant experiments in mouse models showed that the gut microbiome can affect fat storage and energy extraction from the diet (Bäckhed et al. 2004; Turnbaugh et al. 2006). Distantly related mammalian host species kept in zoos show convergence in the microbiome by diet types despite the significant effects of host phylogeny and numerous other factors affecting the composition of the microbial community (Ley et al. 2008; Muegge et al. 2011). Furthermore, differences in the microbiome may reflect functional differences in digestion. For example, the microbiomes of mammalian herbivores are enriched for microbial genes that synthesize amino acids compared with those of carnivores which are enriched for microbial genes that degrade amino acids (Muegge et al. 2011). Together, the convergence in microbiomes in distant mammalian groups that share a similar diet suggests that the microbiome may play a fundamental role in the ability of mammals to specialize on a particular source of food.

Similar patterns of convergence of microbiomes associated with dietary types have been observed in wild mammals. For example, convergence in microbiomes has been observed among myrmecophagous mammals such as anteaters, aardvarks, and aardwolves that feed on ants and termites (Delsuc et al. 2014), among bat species that share similar diet types (Phillips et al. 2012; Carrillo-Araujo et al. 2015), between chimpanzees and gorillas that share a large fraction of fruit diet (Moeller et al. 2013a), and between carnivorous marine mammals (Nelson et al. 2013a, 2013b; Soverini et al. 2016). Population-level differences in the microbial composition of humans were also associated with differences in the amount of dietary fiber (De Filippo et al. 2010; Ou et al. 2013; Schnorr et al. 2014; Angelakis et al. 2016). Although these studies are consistent with the idea that convergent microbiomes are involved in dietspecific digestion, there are alternative explanations. For example, some of the observed patterns might be explained by common microbes in the shared diet or co-variation with other aspects of the shared environment (Moeller et al. 2013a; Suzuki and Worobey 2014). Thus, convergence of microbiomes among distant mammalian lineages does not, by itself, provide definitive evidence of the beneficial effects of the

Table 1 Suggestive evidence of compositional and functional variation of the microbiome affecting the host phenotype in natural or semi-natural populations of mammals using cultureindependent techniques

Host phenotype		Mammalian host species		Links between variations of the microbiome and the host	References
Energy uptake from diet	Plant fiber digestion	Humans	Homo sapiens	Population differences in fiber-rich diet were associated with differences in the microbiota in a way that is consistent with the findings in experimental studies.	De Filippo et al. 2010; Ou et al. 2013; Schnorr et al. 2014; Angelakis et al. 2016
		Tammar Wallaby ^a	Macropus eugenii	The foregut microbiome varied compositionally from other herbivores, but the microbiome converged functionally in plant fiber breakdown pathways using metagenomics.	Pope et al. 2010
		Giant panda ^a	Ailuropoda melanoleuca	Genes involved in cellulose metabolism and lignin oxidation were identified, but the microbiome differs compositionally from other herbivores and similar to carnivorous bears.	Zhu et al. 2011; Fang et al. 2012; Xue et al. 2015
		Flying squirrel White-throated woodrat	Petaurista alborufus lena Neotoma albigula	Convergence in microbiota of fermentation chambers along the gastrointestinal tract was observed (e.g., fermentation chambers tend to have greater alpha-diversity compared with the small intestines regardless of the presence or absence of the foregut chambers).	Lu et al. 2014 Kohl et al. 2014a
		House mouse	Mus musculus		Suzuki and Nachman 2016
	Chitin digestion	Baleen Whales	Mysticeti sp.	The microbial composition is distinct from other mammals and enriched in bacterial genes associated with chitin degradation using metagenomics.	Sanders et al. 2015
		Myrmecophagous mammals ^a	(e.g., echidna, aardvark, anteater, tamandua, armadillo, aardwolf, etc.)	Convergence of microbiota was observed across a wide range of myrmecophagous mammals.	Delsuc et al. 2014
	Fish digestion	Marine mammals ^a	Mirounga leonina, Hydrurga leptonyx, Dugong dugong	Convergence of microbiota was observed among marine carnivorous, distinct from the rest of marine and terrestrial mammals.	Nelson et al. 2013a, 2013b
		Bottlenose dolphins ^a	Tursiops truncatus	Convergence of microbiota was observed between bottlenose dolphins and carnivores fish that share precocious diet.	Soverini et al. 2016
	Fruit digestion	Chimpanzee and Gorilla	Pan and Gorilla	Convergence of microbiota was observed between chimpanzees and gorillas that share large fraction of a fruit diet.	Moeller et al. 2013a
	Seasonal diet shifts	Lemurs	Lemur catta and Propithecus verreauxi	Seasonal shifts in diet were associated with the shifts in microbiota.	Fogel 2015
		Wood mouse	Apodemus sylvaticus		Maurice et al. 2015
		Reindeer ^a	Rangifer tarandus tarandus		Salgado-Flores et al. 2016
		Gorilla	Gorilla gorilla sp.	Seasonal shifts in diet were associated with shifts in the microbiota and the metabolome.	Gomez et al. 2015

		Black Howler Monkey	Alouatta pigra	Seasonal shifts in diet were associated with shifts in the microbiota and volatile fatty acids.	Amato et al. 2014
		Tibetan Macaques	Macaca Thibetana	Seasonal shifts in diet were associated with shifts in microbiota and predicted bacterial gene functions.	Sun et al. 2016
	Mucin digestion during food limitation	Thirteen-lined ground squirrel	Ictidomys tridecemlineatus Urocitellus parryii	Fasting was associated with changes in the microbiota. The increase in acetate (%) was associated with the increase in acetate producing bacteria (%) during fasting and hibernation.	Carey et al. 2013 Stevenson et al. 2014
		Syrian hamster ^a	Mesocricetus auratus	Fasting was associated with changes in the microbiota and the increases in acetate producing bacteria.	Sonoyama et al. 2009
Detoxification of plant dietary toxins	Oxalate detoxification	White-throated woodrat	Neotoma albigula	Bacterial communities that are associated with oxalate-degradation are most abundant in the foregut compared with the rest of the gastrointestinal tract	Miller et al. 2014
	Resin detoxification	Desert woodrat	Neotoma lepida	Population differences in microbial composition and functions were associated with creosote diet. Antibiotic treatment and transplant experiments demonstrated a causal link.	Kohl et al. 2014b
	Tannin detoxification			Transferring the microbiome of woodrats to a laboratory rats revealed that differences in the microbial community structure can increase the ability of recipients to consume tannic acid.	Kohl et al. 2016b
Immunity and pathogen defense	pathogen Interaction with viruses	Humans	Homo sapiens	Immunodeficiency due to viral infection was associated with shifts in the microbiota.	reviewed in Salas and Chang 2014, Williams et al. 2016
		Chimpanzee	Pan troglodytes		Moeller et al. 2013b
		Gorilla	Gorilla gorilla gorilla		Moeller et al. 2015
		House mice	Mus musculus domesticus	Antibody-based viral infection status was positively correlated with alpha-diversity of microbiota.	Weldon et al. 2015
	Interaction with macroparasites			Infection statuses of nematodes and mites were negatively correlated with alpha-diversity of the microbiota.	
		Yellow-necked mouse	Apodemus flavicollis	A weak association was observed between microbial composition and helminth composition.	Kreisinger et al. 2015
	Immune gene expression	House mice	Mus musculus spp.	Aberrant immune gene expression and intestinal histopathology in hybrids were associated with differences in the microbiota in relation to the parental species.	Wang et al. 2015
Chemical communication and behavior	Olfactory signaling in scent glands	Spotted and Striped hyenas	Crocuta crocuta and Hyaena hyaena	The microbiota including odor-producing bacteria in scent gland secretions differed among species, social groups, sex, and reproductive status using pyrosequencing.	Theis et al. 2012, 2013

-
atinile
<u></u>
Table 1
_

Host phenotype	Mammalian host species		Links between variations of the microbiome and the host phenotype	References
	Meerkat	Suricata suricatta	The microbiota (based on ARISA) in scent secretion differed Leclaire et al. 2014 among sex, age, and social groups.	Leclaire et al. 2014
	Musk deer ^a	Moschus berezovskii	The chemical and microbial composition of musk secretion Li et al. 2016 differed between mated and unmated males using pyrosequencing.	Li et al. 2016
	European Badger	Meles meles	The chemical and microbial composition (based on T-RFLP) of Sin et al. 2012 subcaudal gland secretion were significantly correlated and varied by age and female reproductive status.	Sin et al. 2012

Note: See text for culture-based studies and functional studies for further evidence on microbiome functions. ^aCaptive individuals in semi-natural environment were used mostly or entirely.

microbiome on the host. In fact, microbes can compete for resources with the host when the nutrients, such as simple sugars and iron, can be utilized by both hosts and microbes (Wasielewski et al. 2016).

The best evidence of the beneficial role of microbes in energy extraction comes from components of the diet that cannot be utilized directly or easily by the host, such as cellulose. Mammalian herbivores have evolved two major mechanisms for breaking down plant polysaccharides; foregut fermentation (as in ruminants) and hindgut fermentation (Stevens and Hume 1995; Feldhamer et al. 2007). In the case of foregut fermenters, the stomach and/or esophagus are modified and enlarged, while in hindgut fermenters, the main site of fermentation can be either the large intestine or the enlarged cecum. Foregut and hindgut fermenters each have distinct microbial communities that contain high densities of microbes which aid in digestion (Lev et al. 2008; Muegge et al. 2011). As mentioned briefly above, the role of microbes in ruminant digestion has been studied extensively in large part due to its economic and agricultural importance (Hungate 1966; Van Soest 1994; Stevens and Hume 1995; Hume 1999). This is now being followed up using molecular techniques (McCann et al. 2014). Culture-based studies have suggested a role for protozoa, bacteria, and fungi in plant digestion not only in domestic animals, but also in various wild herbivores (Sahu and Kamra 2002). Shotgun metagenomic studies have revealed that microbiomes of herbivorous mammals contain bacterial genes involved in fiber fermentation (Pope et al. 2010; Zhu et al. 2011; Fang et al. 2012).

Species-rich microbial communities may be important for digestion of plant fibers. From interspecific comparisons, the gut microbial communities of herbivores often have the highest species richness (i.e., alphadiversity) compared with those of other dietary types (Ley et al. 2008; Muegge et al. 2011; Phillips et al. 2012). An exception to this pattern is the giant panda which has one of the lowest alpha-diversity measures across mammals (Ley et al. 2008; Xue et al. 2015). Although microbial genes involved in cellulose degradation and lignin oxidation were identified in panda feces (Zhu et al. 2011; Fang et al. 2012), their poor digestion rate may be due to deficiencies in cellulose-digesting bacteria and low alpha-diversity (Xue et al. 2015). Interestingly, even within an individual's gastrointestinal tract, there appears to be an association between alpha-diversity and plant fermentation. The foregut and hindgut fermentation chambers have greater alpha-diversity compared with the small intestine in multiple species of wild-caught rodents (Kohl et al. 2014a; Lu et al. 2014; Suzuki and Nachman 2016). The stability-diversity relationship (Tilman and

Downing 1994), an observation that species-rich communities are more stable, resilient, and recover faster from disturbance, has been suggested as an explanation for the species-rich communities observed in herbivores' fermentation chambers (Lu et al. 2014; Suzuki and Nachman 2016).

Chitin is the second most abundant biopolymer on the planet and common in the cell walls of fungi and the exoskeletons of arthropods. Although chitin can be broken down by both mammalian and microbial enzymes, microbes may play a particularly important role in chitin degradation (Herwig et al. 1984; Simunek et al. 2001; Delsuc et al. 2014; Sanders et al. 2015). Chitinase-producing bacteria have been isolated in insectivorous bats (Whitaker et al. 2004) as well as in herbivorous and omnivorous mammals that are not adapted uniquely to a chitin-rich diet (Simunek et al. 2001). Chitinase activity has also been detected in the stomach of nine-banded armadillos (Smith et al. 1998) and the intestines of insectivorous bats (Whitaker et al. 2004). The involvement of microbes in chitin degradation has been suggested in myrmecophagous mammals that show convergence in their microbial composition (Delsuc et al. 2014). Baleen whales also feed on prey that is rich in chitin, and their foregut stomach has been suggested to play a role in the microbial degradation of chitin (Herwig et al. 1984). In fact, a recent metagenomic study found an enrichment of bacterial genes associated with chitin degradation in baleen whales (Sanders et al. 2015).

Seasonal changes in diet and gut microbial composition in wild mammals also support the involvement of the microbiome in energy extraction. In multiple species of primates (Amato et al. 2014; Fogel 2015; Gomez et al. 2015; Sun et al. 2016), wood mice (Maurice et al. 2015), and reindeer (Salgado-Flores et al. 2016), microbial composition was found to vary seasonally. The seasonal change in the microbial composition was correlated with the changes in the metabolic profiles in gorilla (Gomez et al. 2015) and howler monkeys (Amato et al. 2014). Hibernation and torpor are perhaps the most extreme cases of seasonal shifts in diet, requiring both hyperphagia and fasting (Carey et al. 2003). The microbiota is known to differ between active seasons and hibernation periods in 13-lined ground squirrels (Carey et al. 2013; Dill-Mcfarland et al. 2014) and arctic ground squirrels (Stevenson et al. 2014). Microbially-provided energy sources such as short-chain fatty acids (SCFAs) have been suggested to serve as a source of fuel during hibernation by bacteria degrading host-derived polysaccharides such as mucins (Carey et al. 2013). Although hibernation reduces the total amount of cecal SCFAs, the relative proportion of acetate (a specific SCFA) increases during hibernation compared with active seasons in the two species of ground squirrels (Carey et al. 2013; Stevenson et al. 2014). The increase in acetate-producing bacteria such as *Akkermansia muciniphila* that degrades mucins (Derrien et al. 2008) was observed in fasting and hibernating ground squirrels (Carey et al. 2013; Stevenson et al. 2014) and fasting Syrian hamsters (Sonoyama et al. 2009).

Together, these studies are consistent with the hypothesis that variation in the gut microbiome is associated with the variation in energy extraction from diverse diets in mammalian hosts.

Detoxification of plant dietary toxins

Plants defend themselves from herbivores by producing plant secondary compounds or dietary toxins. Thus, detoxifying dietary toxins is a critical challenge for herbivores specializing on plant diets. Mammalian hosts often rely on microbes to detoxify plant toxins. For example, culture-based studies have isolated dietary toxin-degrading bacteria from a wide range of mammalian hosts including various domestic species (Osawa and Sly 1992; Nemoto et al. 1995), marsupials (Osawa 1990; Osawa and Sly 1992; Nemoto et al. 1995), Ethiopian ruminants (Ephraim et al. 2005), and rodents (Sasaki et al. 2005; Dai et al. 2014; Miller et al. 2014; Kohl et al. 2016b). The occurrence of toxin degrading bacteria was associated with mammals that consume tannin rich diet (Osawa and Sly 1992), but not in others (Nemoto et al. 1995). Although detoxification enzymes can be produced both by the host tissue and the microbes, microbial enzyme activity per unit protein greatly exceeds that of the host in spiny mice (Kohl et al. 2016a) consistent with the findings in laboratory rats (Nakano and Gregory 1995). Two species of woodrats that consume dietary toxins in the wild converged on microbial community composition when they were fed dietary toxins in a common environment (Kohl et al. 2012). Dietary toxin feeding experiments in Japanese large wood mice demonstrated that individuals that have prior experience to dietary toxins were associated with a greater abundance of toxin-degrading bacteria and have better performance measured by weight change over time (Shimada et al. 2006).

A series of elegant papers by Kohl and Dearing used manipulative experiments to show that microbes aid woodrats in detoxifying plant secondary compounds (reviewed in Kohl and Dearing 2016). Microbes cultured from woodrat guts can degrade plant secondary compounds (Miller et al. 2014; Kohl et al. 2016b), and the ability of woodrats to consume dietary toxins is impaired when rats are given antibiotics (Kohl et al. 2014b). When feces of woodrat donors that regularly

consumed dietary toxins were fed to woodrat recipients that were naive to the dietary toxin, the recipients showed an increased ability to feed on the dietary toxin (Kohl et al. 2014b). Similarly, microbial transplant experiments from woodrats to laboratory rats increased the ability of laboratory rats to consume tannic acids (Kohl et al. 2016b). Together, these studies provide strong evidence that differences in the gut microbiome in natural populations are involved in detoxification of dietary toxins of herbivores.

Pathogen defense and development of immune system

While the microbiome clearly plays an important role in digestion and detoxification, another well-studied role is its effect on host immunity (Round and Mazmanian 2009). In model organisms, the microbiota has been shown to benefit hosts by occupying the niche space of pathogens or by priming the development of the immune system. Recently, viruses in the gut mucus layer were suggested to play a role in protection against bacterial pathogens (Barr et al. 2013). Understanding the role of the microbiome in host immunity in wild mammals is another growing research area.

The microbiome of a host may help provide protection from lethal pathogens in natural populations. For example, white-nose syndrome is an emerging infectious disease in North American hibernating bats caused by the fungus, *Pseudogymnoascus destructans* (Warnecke et al. 2012). Recent studies isolated bacteria from the skin of healthy bats and showed anti-fungal effects against *P. destructans*, suggesting a beneficial role of skin microbes in pathogen defense (Hoyt et al. 2015; Hamm et al. 2017). A similar link has been identified in chytrid fungus infections in amphibians (reviewed in Rollins-Smith et al. 2011; Colombo et al. 2015). Thus, natural variation in the non-pathogenic microbial community may affect the susceptibility and transmission of fungal diseases in wild mammals.

Infections of viruses and macroparasites are also associated with differences in the gut microbiota in wild mammals. Immunodeficiency virus infection (e.g., HIV in case of humans) was associated with changes in the microbiota of humans (reviewed in Salas and Chang 2014; Williams et al. 2016), chimpanzees (Moeller et al. 2013b), and domestic cats (Weese et al. 2015), but not in gorillas (Moeller et al. 2015). After HIV infection in humans, gut microbiomes may affect the progression of the disease (Vujkovic-Cvijin et al. 2013). Microbial communities seem to respond differently towards different infectious agents. For example, in wild-caught house mice, the degree of viral infection was positively correlated with alpha-diversity of the gut

microbial community, whereas the degree of nematode and mite infection was negatively correlated with the alpha-diversity (Weldon et al. 2015). Aberrant immune gene expression and intestinal histopathology in hybrid house mice were associated with changes in the microbial community composition compared with the two parental species (Wang et al. 2015). Associations between helminth infection and the microbial composition were observed in yellow-necked mice, although the effect size was very low (Kreisinger et al. 2015). These correlations between host immunity and the microbial composition in wild mammals are interesting, but the correlations alone cannot disentangle the cause and the consequence of the association. Nor is it always clear whether these associations reflect positive or negative effects on host fitness. Manipulative experiments including infection trials are necessary to understand the role of microbial communities in host immunity.

Modification of chemical communication and host behavior

Emerging evidence suggests that the microbiome can alter the behavior of mammalian hosts in two ways; (1) changes in olfactory signaling by microbial communities in the scent glands (Ezenwa and Williams 2014), and (2) changes to the central nervous system by microbial communities in the gut (Sampson and Mazmanian 2015). The relationship between the host behavior and the microbiome can be reciprocal in the sense that social interactions between hosts can affect variation in the microbiome (Archie and Tung 2015; Tung et al. 2015; Moeller et al. 2016a). Using computer models, Lewin-Epstein et al. (2017) suggested that microbes might play a role in the evolution of host altruism. The implications of the microbiome in behavioral ecology have been reviewed elsewhere (Archie and Theis 2011; Archie and Tung 2015).

In mammals, olfactory communication plays an important role in various behaviors, including mate preference and individual and species recognition (Ezenwa and Williams 2014). The fermentation hypothesis of chemical recognition is the idea that microbial communities in mammalian scent glands play an important role in the production of volatile odors (Albone et al. 1974; Albone and Perry 1976; Gorman 1976; Albone 1984). There is now evidence for microbe-produced signals in a variety of animals (reviewed in Ezenwa and Williams 2014). In wild mammals, the microbiomes in scent glands are known to differ among closely related species (Theis et al. 2013), social groups (Theis et al. 2012, 2013; Leclaire et al. 2014), individuals (Gorman 1976; Merritt et al. 1982) and individuals with different sex (Gassett et al. 2000; Alexy et al.

2003; Voigt et al. 2005; Theis et al. 2013; Leclaire et al. 2014), reproductive status (Sin et al. 2012; Li et al. 2016), and age (Sin et al. 2012; Leclaire et al. 2014). Furthermore, bacteria-mediated odor significantly altered the outcomes of choice tests in Indian mongooses (Gorman 1976) and Brazilian guinea pigs (Zechman et al. 1984), consistent with findings in laboratory mice (Li et al. 2012).

Involvement of microbes in olfactory signaling has been observed in humans as well. Humans exhibit MHC-dependent mate preference and kin recognition based on odors (Wedekind et al. 1995; Wedekind and Füri 1997; Weisfeld et al. 2003). Axillary odors are known to be associated with microbial composition (Leyden et al. 1981) and there is evidence that microbes transform odorless host axillary secretions into volatile odors (James et al. 2013). Bacteria-produced odorant was more similar between monozygotic twins compared with unrelated individuals (Kuhn and Natsch 2009) supporting the potential involvement of axillary microbes in inbreeding avoidance and kin recognition in humans. The behavioral, hormonal, and neurochemical effects of gut microbiomes through the gutbrain axis has been studied in humans and laboratory mice including the role of the microbiota on anxietylike behavior, depression-like behavior, Parkinson's disease, Alzheimer's disease, and autism spectrum disorder (reviewed in Sampson and Mazmanian 2015). However, outside of humans and laboratory mice, the implications of the gut-brain axis in the ecology and evolution of wild mammals are largely unexplored.

Manipulative experiments are needed

Overall, the studies presented above are consistent with the idea that natural variation in the microbiome can affect differences in host fitness. One of the advantages of omics-approaches (metagenomics, transcriptomics, proteomics, and metabolomics) is the ability to connect the compositional variation in the microbiome to functional variation in the microbiome, and eventually to the differences in host phenotypes and fitness. However, most of the current evidence is correlative (Table 1). Manipulative experiments in controlled settings are needed to identify causal relationships.

The effects of the microbiome on host phenotype have commonly been tested in model organisms mainly using two approaches; (1) measuring the phenotype of the host without the microbiome by knocking-down the microbial community with antibiotics or by using germ-free animals, or (2) measuring the phenotype of the host with a modified microbiome through transplant experiments, either using bacterial isolates or a whole bacterial

community. Although the use of antibiotics has been criticized by having many confounding effects (reviewed in Lundberg et al. 2016), there are several advantages over germ-free models such as studying the depletion of microbiome at different developmental stages and the ability to target bacterial groups by using different classes of antibiotics. While germ-free models also have their own limitations, germ-free models still seem to be the best system for microbial transplant experiments (Lundberg et al. 2016). For example, germ-free laboratory mice exhibit a variety of abnormalities including the development of the gut, immune system, and brain (Martín et al. 2016). Fecal transplant experiments have demonstrated a causal role of the microbiome in fat storage (Turnbaugh et al. 2006), anxiety-like behavior (Heijtz et al. 2011), and priming the immune system (Olszak et al. 2012). Conducting manipulative experiments to test hypotheses generated by field observations would greatly increase our understanding of the functions of the compositional variation of the microbiome in wild mammals (Kohl et al. 2014b, 2016b; Brooks et al. 2016).

A particularly powerful approach would be to combine field observations and manipulative experiments in a single species. In human microbiome research, laboratory mice are often used as a stand-in for human subjects because conducting manipulative experiments in humans can be difficult or impossible (Nguyen et al. 2015). However, results from mice may not translate easily to humans due to differences in anatomy, physiology, and genetics (Nguyen et al. 2015) as well due to the existence of species-specific bacterial lineages (Moeller et al. 2016b) and communities (Ochman et al. 2010; Phillips et al. 2012; Brooks et al. 2016). A system that can combine both observations in natural populations and manipulations in the laboratory would be useful for assessing the role of microbiome variations on host fitness. Rodents are a particularly tractable group for combining these two approaches for microbiome research in general (Kohl et al. 2014b, 2016b; Brooks et al. 2016).

Evolutionary consequence of microbiome functions

Evolutionary change in a host that is driven by natural selection could be mediated by microbiome in cases where microbes are faithfully transmitted from one generation to the next. The implications of the fitness effects of the microbiome for host evolution have been widely discussed in the literature (Margulis and Fester 1991; Rosenberg et al. 2007; Zilber-Rosenberg and Rosenberg 2008; McKnite

764 T. A. Suzuki

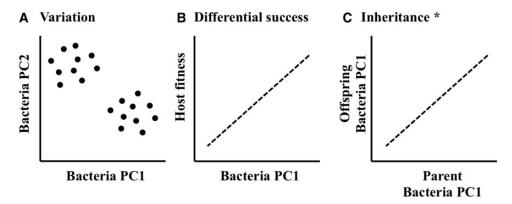


Fig. 1 Three components of natural selection applied to the host-associated microbiome. (A) Evidence of variation in the microbiome represented by hypothetical PCA plot of microbial taxa or genes. (B) Evidence of the differential success of the host based on the differences in the microbiome. (C) Evidence of inheritance of the microbiome, where offspring microbiome resembles the parent microbiome. All three components are required for the host to evolve in response to the natural selection on the microbiome across multiple generations. *See the text for genetic and non-genetic mechanisms of microbiome inheritance.

et al. 2012; Bordenstein and Theis 2015; Moran and Sloan 2015). Here, I propose a framework for testing for evidence of host evolution mediated by the microbiome.

The three components of natural selection can be applied to the microbiome; variation, differential success, and inheritance (Fig. 1). First, in order for natural selection to act on the microbiome, variation in the microbiome is required. Second, some of the variation in the microbiome must affect the host fitness. Lastly, inheritance of the microbiome associated with the host fitness is also required, where the offspring microbiome resembles the parent microbiome. Providing evidence of each of the three components in a single system will support the idea that natural selection on hosts is mediated by the microbiome. However, resemblance of the microbiome among related individuals can be generated by a variety of processes and the mechanism is largely unexplored especially in natural populations.

Resemblance of the microbiome between parent and offspring can occur through genetic and nongenetic mechanisms. For example, reciprocal transplant experiments between zebrafish and mice have demonstrated that the host genotype can assemble species-specific microbial communities (Rawls et al. 2006). Genes with immune and behavioral functions are known to affect the microbiome from gene knockout mouse strains (Spor et al. 2011). In contrast, the mammalian offspring can acquire beneficial microbes either vertically (e.g., mother's vaginal canal, milk, skin) or horizontally (e.g., environment) without host genotype effects. For example, rodents and lagomorphs often acquire microbes through coprophagy (e.g., eat mother's feces), whereas young ungulates commonly consume soil to acquire microbes (Feldhamer et al. 2007). Some insect hosts can acquire beneficial bacteria that confer insecticide resistance from the soil every generation (Kikuchi et al. 2012). In laboratory mice, exposure to a different temperature resulted in different assemblages of microbiome that improves host energy metabolism by plasticity, without any genotypic differences (Chevalier et al. 2015; Ziętak et al. 2016). Therefore, studying the degree and the stability of the inheritance of the beneficial microbiome including genetic and non-genetic mechanisms is important to understand the evolutionary outcomes of the host.

Finally, a major goal in evolutionary genetics is to link genotypes to phenotypes that affect fitness. Identifying the genetic basis of host phenotypes (e.g., immunity, behavior) that interact with the microbiome is important for understanding how the host genome might regulate the functions of the microbiome (Spor et al. 2011). Host genomic regions that associate with the microbial composition have been identified in genome-wide association studies in humans (reviewed in Goodrich et al. 2016b) and quantitative trait locus mapping studies in mice (Benson et al. 2010; McKnite et al. 2012; Srinivas et al. 2013; Leamy et al. 2014; Wang et al. 2015). Conversely, "heritable" microbial taxa have been identified and can have significant effects on host phenotype such as weight gain (Goodrich et al. 2014, 2016a). Linking host genotype to microbiome variation that affects host fitness will help to understand the evolution of host-microbial interactions.

Acknowledgments

I thank Michael Nachman, Andrew Moeller, Noelle Bittner, Katya Mack, and anonymous reviewers for their valuable comments to improve the manuscript.

Funding

This work was supported by the National Science Foundation [IOS-1638630].

References

- Albone ES. 1984. Mammalian semiochemistry: the investigation of chemical signals between mammals. New York (NY): John Wiley & Sons.
- Albone ES, Eglinton G, Walker JM, Ware GC. 1974. The anal sac secretion of the red fox (*Vulpes vulpes*); its chemistry and microbiology. A comparison with the anal sac secretion of the lion (*Panthera leo*). Life Sci 14:387–400.
- Albone ES, Perry GC. 1976. Anal sac secretion of the red fox, *Vulpes vulpes*; volatile fatty acids and diamines: implications for a fermentation hypothesis of chemical recognition. J Chem Ecol 2:101–11.
- Alexy KJ, Gassett JW, Osborn DA, Miller KV, Russel S. 2003. Bacterial fauna of the tarsal tufts of white-tailed deer (*Odocoileus virginianus*). Am Midl Nat 149:237–40.
- Allison A. 1964. Polymorphism and natural selection in human populations. Cold Spring Harb Symp Quant Biol 29:137–49.
- Amato KR, Leigh SR, Kent A, Mackie RI, Yeoman CJ, Stumpf RM, Wilson BA, Nelson KE, White BA, Garber PA. 2014. The gut microbiota appears to compensate for seasonal diet variation in the wild black howler monkey (*Alouatta pigra*). Microb Ecol 69:434–43.
- Amato KR, Yeoman CJ, Kent A, Righini N, Carbonero F, Estrada A, Rex Gaskins H, Stumpf RM, Yildirim S, Torralba M, et al. 2013. Habitat degradation impacts black howler monkey (*Alouatta pigra*) gastrointestinal microbiomes. ISME J 7:1344–53.
- Angelakis E, Yasir M, Bachar D, Azhar EI, Lagier J-C, Bibi F, Jiman-Fatani AA, Alawi M, Bakarman MA, Robert C, et al. 2016. Gut microbiome and dietary patterns in different Saudi populations and monkeys. Sci Rep 6:32191.
- Archie EA, Theis KR. 2011. Animal behaviour meets microbial ecology. Anim Behav 82:425–36.
- Archie EA, Tung J. 2015. Social behavior and the microbiome. Curr Opin Behav Sci 6:28–34.
- Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto J-M, et al. 2011. Enterotypes of the human gut microbiome. Nature 473:174–80.
- Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI. 2004. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A 101:15718–23.
- Barcroft BYJ, Mcanally RA, Phillipson AT. 1944. Absorption of volatile acids from the alimentary tract of the sheep and other animals. J Exp Biol 20:120–9.
- Barr JJ, Auro R, Furlan M, Whiteson KL, Erb ML, Pogliano J, Stotland A, Wolkowicz R, Cutting AS, Doran KS, et al. 2013. Bacteriophage adhering to mucus provide a non-host-derived immunity. Proc Natl Acad Sci U S A 110:10771–6.
- Baumann P. 2005. Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu Rev Microbiol 59:155–89.

- Benson AK, Kelly SA, Legge R, Ma F, Low SJ, Kim J, Zhang M, Oh PL, Nehrenberg D, Hua K, et al. 2010. Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc Natl Acad Sci U S A 107:18933–8.
- Bordenstein SR, Theis KR. 2015. Host biology in light of the microbiome: ten principles of holobionts and hologenomes. PLoS Biol 13:1–23.
- Brooks AW, Kohl KD, Brucker RM, van Opstal EJ, Bordenstein SR. 2016. Phylosymbiosis: relationships and functional effects of microbial communities across host evolutionary history. PLoS Biol 14:e2000225.
- Carey HV, Andrews MT, Martin SL. 2003. Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol Rev 83:1153–81.
- Carey HV, Walters WA, Knight R. 2013. Seasonal restructuring of the ground squirrel gut microbiota over the annual hibernation cycle. Am J Physiol Regul Integr Comp Physiol 304:33–42.
- Carrillo-Araujo M, Tas N, Alcántara-Hernández RJ, Gaona O, Schondube JE, Medellín RA, Jansson JK, Falcón LI. 2015. Phyllostomid bat microbiome composition is associated to host phylogeny and feeding strategies. Front Microbiol 6:1–9.
- Chevalier C, Stojanovic O, Colin DJ, Suarez-Zamorano N, Tarallo V, Veyrat-Durebex C, Rigo D, Fabbiano S, Stevanovic A, Hagemann S, et al. 2015. Gut microbiota orchestrates energy homeostasis during cold. Cell 163:1360–74.
- Colombo BM, Scalvenzi T, Benlamara S, Pollet N. 2015. Microbiota and mucosal immunity in amphibians. Front Immunol 6:1–15.
- Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. 2009. Bacterial community variation in human body habitats across space and time. Science 326:1694–7.
- Dai X, Zhang B, Wu X, Jiang L, Zou Z, Wang A, Wei W, Yang S. 2014. Identification of tannin-degrading microorganisms in the gut of plateau pikas (*Ochotona curzoniae*) and root voles (*Microtus oeconomus*). Symbiosis 63:1–9.
- De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P. 2010. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 107:14691–6.
- Delsuc F, Metcalf JL, Wegener Parfrey L, Song SJ, Gonzalez A, Knight R. 2014. Convergence of gut microbiomes in myrmecophagous mammals. Mol Ecol 23:1301–17.
- Derrien M, Collado MC, Ben-Amor K, Salminen S, De Vos WM. 2008. The mucin degrader *Akkermansia muciniphila* is an abundant resident of the human intestinal tract. Appl Environ Microbiol 74:1646–8.
- Dill-Mcfarland KA, Neil KL, Zeng A, Sprenger RJ, Kurtz CC, Suen G, Carey HV. 2014. Hibernation alters the diversity and composition of mucosa-associated bacteria while enhancing antimicrobial defence in the gut of 13-lined ground squirrels. Mol Ecol 23:4658–69.
- Dunbar HE, Wilson ACC, Ferguson NR, Moran NA. 2007. Aphid thermal tolerance is governed by a point mutation in bacterial symbionts. PLoS Biol 5:1006–15.
- Elsden SR, Hitchcock MWS, Marshall RA, Phillipson AT. 1946. Volatile acid in the digesta of ruminants and other animals. J Exp Biol 22:191–202.

766 T. A. Suzuki

- Ephraim E, Odenyo A, Ashenafi M. 2005. Isolation and characterization of tannin-degrading bacteria from faecal samples of some wild ruminants in Ethiopia. Anim Feed Sci Technol 118:243–53.
- Ezenwa VO, Williams AE. 2014. Microbes and animal olfactory communication: where do we go from here? BioEssays 36:847–54.
- Fang W, Fang Z, Zhou P, Chang F, Hong Y, Zhang X, Peng H, Xiao Y. 2012. Evidence for lignin oxidation by the giant panda fecal microbiome. PLoS One 7:1–10.
- Feldhamer GA, Dickamer LC, Vessey SH, Merritt JF, Krajewski C. 2007. Mammalogy: adaptation, diversity, ecology. 3rd ed. Baltimore (MD): The Johns Hopkins University Press.
- Fogel AT. 2015. The gut microbiome of wild lemurs: a comparison of sympatric *Lemur catta* and *Propithecus verreauxi*. Folia Primatol 86:85–95.
- Gassett JW, Dasher KA, Miller KV, Osborn DA, Russell SM. 2000. White-tailed deer tarsal glands: sex and age-related variation in microbial flora. Mammalia 64:371–7.
- Gomez A, Rothman JM, Petrzelkova K, Yeoman CJ, Vlckova K, Umaña JD, Carr M, Modry D, Todd A, Torralba M, et al. 2015. Temporal variation selects for diet-microbe cometabolic traits in the gut of *Gorilla spp.* ISME J 10:514–26.
- Goodrich JK, Davenport ER, Beaumont M, Jackson MA, Knight R, Ober C, Spector TD, Bell JT, Clark AG, Ley RE. 2016a. Genetic determinants of the gut microbiome in UK twins. Cell Host Microbe 19:731–43.
- Goodrich JK, Davenport ER, Waters JL, Clark AG, Ley RE. 2016b. Cross-species comparisons of host genetic associations with the microbiome. Science 352:29–32.
- Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, Beaumont M, Van Treuren W, Knight R, Bell JT, et al. 2014. Human genetics shape the gut microbiome. Cell 159:789–99.
- Gorman ML. 1976. A mechanism for individual recognition by odour in *Herpestes auropunctatus* (Carnivora: Viverridae). Anim Behav 24:141–5.
- Hamm PS, Caimi NA, Northup DE, Valdez EW, Buecher DC, Dunlap CA, Labeda DP, Lueschow S, Porras-Alfaro A. 2017. Western bats as a reservoir of novel *Streptomyces* species with antifungal activity. Appl Environ Microbiol 83:e03057.
- Heijtz RD, Wang S, Anuar F, Qian Y, Björkholm B, Samuelsson A, Hibberd ML, Forssberg H, Pettersson S. 2011. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci U S A 108:3047–52.
- Herwig RP, Staley JT, Nerini MK, Braham HW. 1984. Baleen whales: preliminary evidence for forestomach microbial fermentation. Appl Environ Microbiol 47:421–3.
- Hoyt JR, Cheng TL, Langwig KE, Hee MM, Frick WF, Kilpatrick AM. 2015. Bacteria isolated from bats inhibit the growth of *Pseudogymnoascus destructans*, the causative agent of white-nose syndrome. PLoS One 10:1–12.
- Hume ID. 1999. Marsupial nutrition. Cambridge: Cambridge University Press.
- Hungate RE. 1942. The culture of *Eudiplodinium neglectum* with experiments on the digestion of cellulose. Biol Bull 83:303–19.
- Hungate RE. 1943. Further experiments on cellulose digestion by the protozoa in the rumen of cattle. Biol Bull 84:157–63.

Hungate RE. 1947. Studies on cellulose fermentation. III. The culture and isolation for cellulose-decomposing bacteria from the rumen of cattle. J Bacteriol 53:631–45.

- Hungate RE. 1966. The rumen and its microbes. New York (NY): Academic Press.
- Huttenhower C, Fah Sathirapongsasuti J, Segata N, Gevers D, Earl AM, Fitzgerald MG, Young SK, Zeng Q, Alm EJ, Alvarado L, et al. 2012. Structure, function and diversity of the healthy human microbiome. Nature 486:207–14.
- James AG, Austin CJ, Cox DS, Taylor D, Calvert R. 2013. Microbiological and biochemical origins of human axillary odour. FEMS Microbiol Ecol 83:527–40.
- Jousset A, Bienhold C, Chatzinotas A, Gallien L, Gobet A, Kurm V, Küsel K, Rillig MC, Rivett DW, Salles JF, et al. 2017. Where less may be more: how the rare biosphere pulls ecosystems strings. ISME J 11:853–62.
- Kikuchi Y, Hayatsu M, Hosokawa T, Nagayama A, Tago K, Fukatsu T. 2012. Symbiont-mediated insecticide resistance. Proc Natl Acad Sci U S A 109:8618–22.
- Kohl KD, Dearing DM. 2016. The woodrat gut microbiota as an experimental system for understanding microbial metabolism of dietary toxins. Front Microbiol 7:1–9.
- Kohl KD, Dearing MD, van Dam N. 2012. Experience matters: prior exposure to plant toxins enhances diversity of gut microbes in herbivores. Ecol Lett 15:1008–15.
- Kohl KD, Miller AW, Marvin JE, Mackie R, Dearing MD. 2014a. Herbivorous rodents (*Neotoma* spp.) harbour abundant and active foregut microbiota. Environ Microbiol 16:2869–78.
- Kohl KD, Samuni-Blank M, Lymberakis P, Kurnath P, Izhaki I, Arad Z, Karasov WH, Dearing MD. 2016a. Effects of fruit toxins on intestinal and microbial β -glucosidase activities of seed-predating and seed-dispersing rodents (*Acomys* spp.). Physiol Biochem Zool 89:198–205.
- Kohl KD, Stengel A, Dearing MD. 2016b. Inoculation of tannin-degrading bacteria into novel hosts increases performance on tannin-rich diets. Environ Microbiol 18:1720–9.
- Kohl KD, Weiss RB, Cox J, Dale C, Denise Dearing M. 2014b. Gut microbes of mammalian herbivores facilitate intake of plant toxins. Ecol Lett 17:1238–46.
- Kreisinger J, Bastien G, Hauffe HC, Marchesi J, Perkins SE. 2015. Interactions between multiple helminths and the gut microbiota in wild rodents. Philos Trans R Soc Lond B Biol Sci 370 published online (doi: 10.1098/rstb.2014.0295).
- Kuhn F, Natsch A. 2009. Body odour of monozygotic human twins: a common pattern of odorant carboxylic acids released by a bacterial aminoacylase from axilla secretions contributing to an inherited body odour type. J R Soc Interface 6:377–92.
- Leamy LJ, Kelly SA, Nietfeldt J, Legge RM, Ma F, Hua K, Sinha R, Peterson DA, Walter J, Benson AK, et al. 2014. Host genetics and diet, but not immunoglobulin A expression, converge to shape compositional features of the gut microbiome in an advanced intercross population of mice. Genome Biol 15:552.
- Leclaire S, Nielsen JF, Drea CM. 2014. Bacterial communities in meerkat anal scent secretions vary with host sex, age, and group membership. Behav Ecol 25:996–1004.
- Lewin-Epstein O, Aharonov R, Hadany L. 2017. Microbes can help explain the evolution of host altruism. Nat Commun 8 published online (doi: 10.1038/ncomms14040).

- Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML, Tucker TA, Schrenzel MD, Knight R, et al. 2008. Evolution of mammals and their gut microbes. Science 320:1647–51.
- Leyden JJ, McGinley KJ, Hölzle E, Labows JN, Kligman AM. 1981. The microbiology of the human axilla and its relationship to axillary odor. J Invest Dermatol 77:413–6.
- Li D, Chen B, Zhang L, Gaur U, Ma T, Jie H, Zhao G, Wu N, Xu Z, Xu H, et al. 2016. The musk chemical composition and microbiota of Chinese forest musk deer males. Sci Rep 6 published online (doi: 10.1038/srep18975).
- Li Q, Korzan WJ, Ferrero DM, Chang RB, Roy DS, Buchi M, Lemon JK, Kaur AW, Stowers L, Fendt M, et al. 2012. Synchronous evolution of an odor biosynthesis pathway and behavioral response. Curr Biol 23:11–20.
- Linnenbrink M, Wang J, Hardouin EA, Künzel S, Metzler D, Baines JF. 2013. The role of biogeography in shaping diversity of the intestinal microbiota in house mice. Mol Ecol 22:1904–16.
- Lowy F. 1998. Stapylococcus aureus infections. N Engl J Med 339:520–32.
- Lu H-P, Lai Y-C, Huang S-W, Chen H-C, Hsieh C, Yu H-T. 2014. Spatial heterogeneity of gut microbiota reveals multiple bacterial communities with distinct characteristics. Sci Rep 4 published online (doi: 10.1038/srep06185).
- Lundberg R, Toft MF, August B, Hansen AK, Hansen CHF. 2016. Antibiotic-treated versus germ-free rodents for microbiota transplantation studies. Gut Microbes 7:68–74.
- Margulis L, Fester R. 1991. Symbiosis as a source of evolutionary innovation: speciation and morphogenesis. Cambridge (MA): MIT Press.
- Martín R, Bermúdez-Humarán LG, Langella P. 2016. Gnotobiotic rodents: an in vivo model for the study of microbe–microbe interactions. Front Microbiol 7:1–7.
- Maurice CF, Cl Knowles S, Ladau J, Pollard KS, Fenton A, Pedersen AB, Turnbaugh PJ. 2015. Marked seasonal variation in the wild mouse gut microbiota. ISME J 9:1–12.
- McCann JC, Wickersham TA, Loor JJ. 2014. High-throughput methods redefine the rumen microbiome and its relationship with nutrition and metabolism. 8:109–25.
- McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Lošo T, Douglas AE, Dubilier N, Eberl G, Fukami T, Gilbert SF, et al. 2013. Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci U S A 110:3229–36.
- McKnite AM, Perez-Munoz ME, Lu L, Williams EG, Brewer S, Andreux PA, Bastiaansen JWM, Wang X, Kachman SD, Auwerx J, et al. 2012. Murine gut microbiota is defined by host genetics and modulates variation of metabolic traits. PLoS One 7:e39191.
- Merritt GC, Goodrich BS, Hesterman ER, Mykytowycz R. 1982. Microflora and volatile fatty acids present in inguinal pouches of the wild rabbit, *Oryctolagus cuniculus*, in Australia. J Chem Ecol 8:1217–25.
- Miller AW, Kohl KD, Dearing DM. 2014. The gastrointestinal tract of the white-throated woodrat (*Neotoma albigula*) harbors distinct consortia of oxalate-degrading bacteria. Appl Environ Microbiol 80:1595–601.
- Moeller AH, Foerster S, Wilson ML, Pusey AE, Hahn BH, Ochman H. 2016a. Social behavior shapes the chimpanzee pan-microbiome. Sci Adv 2:e1500997.

- Moeller AH, Caro-Quintero A, Mjungu D, Georgiev AV, Lonsdorf EV, Muller MN, Pusey AE, Peeters M, Hahn BH, Ochman H. 2016b. Cospeciation of gut microbiota with hominids. Science 353:380–2.
- Moeller AH, Degnan PH, Pusey AE, Wilson ML, Hahn BH, Ochman H. 2012. Chimpanzees and humans harbour compositionally similar gut enterotypes. Nat Commun 3:1179.
- Moeller AH, Peeters M, Ayouba A, Ngole EM, Esteban A, Hahn BH, Ochman H. 2015. Stability of the gorilla microbiome despite simian immunodeficiency virus infection. Mol Ecol 24:690–7.
- Moeller AH, Peeters M, Ndjango JB, Li Y, Hahn BH, Ochman H. 2013a. Sympatric chimpanzees and gorillas harbor convergent gut microbial communities. Genome Res 23:1715–20.
- Moeller AH, Shilts M, Li Y, Rudicell RS, Lonsdorf EV, Pusey AE, Wilson ML, Hahn BH, Ochman H. 2013b. Siv-induced instability of the chimpanzee gut microbiome. Cell Host Microbe 14:340–5.
- Moran NA, Sloan DB. 2015. The hologenome concept: helpful or hollow? PLoS Biol 13:1–10.
- Muegge BD, Kuczynski J, Knights D, Clemente JC, González A, Fontana L, Henrissat B, Knight R, Gordon JI. 2011. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332:970–4.
- Nakano H, Gregory JF III. 1995. Pyridoxine and pyridoxine-5'- β -D-glucoside exert different effects on tissue B-6 vitamers but similar effects on β -glucosidase activity in rats. J Nutr 125:2751–62.
- Nelson TM, Rogers TL, Brown MV. 2013a. The gut bacterial community of mammals from marine and terrestrial habitats. PLoS One 8:1–8.
- Nelson TM, Rogers TL, Carlini AR, Brown MV. 2013b. Diet and phylogeny shape the gut microbiota of Antarctic seals: a comparison of wild and captive animals. Environ Microbiol 15:1132–45.
- Nemoto K, Osawa R, Hirota K, Ono T, Miyake Y. 1995. An investigation of Gram-negative tannin–protein complex degrading bacteria in fecal flora of various mammals. J Vet Med Sci 57:921–6.
- Nguyen TLA, Vieira-Silva S, Liston A, Raes J. 2015. How informative is the mouse for human gut microbiota research? Dis Model Mech 8:1–16.
- Ochman H, Worobey M, Kuo C-H, Ndjango J-BN, Peeters M, Hahn BH, Hugenholtz P. 2010. Evolutionary relationships of wild hominids recapitulated by gut microbial communities. PLoS Biol 8:e1000546.
- Oliver KM, Russell JA, Moran NA, Hunter MS. 2003. Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc Natl Acad Sci U S A 100:1803–7.
- Olszak T, An D, Zeissig S, Vera MP, Richter J, Franke A, Glickman JN, Siebert R, Baron RM, Kasper DL, et al. 2012. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336:489–93.
- Osawa R. 1990. Formation of a clear zone on tannin-treated brain heart infusion agar by a *Streptococcus* sp. isolated from feces of koalas. Appl Environ Microbiol 56:829–31.
- Osawa R, Sly LI. 1992. Occurrence of tannin–protein complex degrading *Streptococcus* sp. in feces of various animals. Syst Appl Microbiol 15:144–7.

768 T. A. Suzuki

- Ou J, Carbonero F, Zoetendal EG, DeLaney JP, Wang M, Newton K. 2013. Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African-Americans. Am J Clin Nutr 98:111–20.
- Phillips CD, Phelan G, Dowd SE, McDonough MM, Ferguson AW, Delton HJ, Siles L, Ordóñez-Garza N, San Francisco M, Baker RJ. 2012. Microbiome analysis among bats describes influences of host phylogeny, life history, physiology and geography. Mol Ecol 21:2617–27.
- Piertney SB, Oliver MK. 2006. The evolutionary ecology of the major histocompatibility complex. Heredity (Edinb) 96:7–21.
- Pope PB, Denman SE, Jones M, Tringe SG, Barry K, Malfatti SA, McHardy AC, Cheng J-F, Hugenholtz P, McSweeney CS, et al. 2010. Adaptation to herbivory by the tammar wallaby includes bacterial and glycoside hydrolase profiles different from other herbivores. Proc Natl Acad Sci U S A 107:14793–8.
- Rawls JF, Mahowald MA, Ley RE, Gordon JI. 2006. Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. Cell 127:423–33.
- Rollins-Smith LA, Ramsey JP, Pask JD, Reinert LK, Woodhams DC. 2011. Amphibian immune defenses against chytridiomycosis: impacts of changing environments. Integr Comp Biol 51:552–62.
- Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I. 2007. The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol 5:355–62.
- Round JL, Mazmanian SK. 2009. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9:313–23.
- Sahu NP, Kamra DN. 2002. Microbial eco-system of the gastro-intestinal tract of wild herbivorous animals. J Appl Anim Res 21:207–30.
- Salas JT, Chang TL. 2014. Microbiome in human immunodeficiency virus infection. Clin Lab Med 34:733–45.
- Salgado-Flores A, Hagen LH, Ishaq SL, Zamanzadeh M, Wright ADG, Pope PB, Sundset MA. 2016. Rumen and cecum microbiomes in reindeer (*Rangifer tarandus tarandus*) are changed in response to a lichen diet and may affect enteric methane emissions. PLoS One 11:1–22.
- Sampson TR, Mazmanian SK. 2015. Control of brain development, function, and behavior by the microbiome. Cell Host Microbe 17:565–76.
- Sanders JG, Beichman AC, Roman J, Scott JJ, Emerson D, McCarthy JJ, Girguis PR. 2015. Baleen whales host a unique gut microbiome with similarities to both carnivores and herbivores. Nat Commun 6:8285.
- Sasaki E, Shimada T, Osawa R, Nishitani Y, Spring S, Lang E. 2005. Isolation of tannin-degrading bacteria isolated from feces of the Japanese large wood mouse, *Apodemus specio*sus, feeding on tannin-rich acorns. Syst Appl Microbiol 28:358–65.
- Schnorr SL, Candela M, Rampelli S, Centanni M, Consolandi C, Basaglia G, Turroni S, Biagi E, Peano C, Severgnini M, et al. 2014. Gut microbiome of the Hadza hunter–gatherers. Nat Commun 5:3654.
- Sender R, Fuchs S, Milo R. 2016. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 14:e1002533.

Shimada T, Saitoh T, Sasaki E, Nishitani Y, Osawa R. 2006. Role of tannin-binding salivary proteins and tannaseproducing bacteria in the acclimation of the Japanese wood mouse to acorn tannins. J Chem Ecol 32:1165–80.

- Sijpesteijn AK. 1948. Cellulose-decomposing bacteria from the rumen of cattle [PhD thesis]. Eduard Ijdo NV, Leiden: Leiden University.
- Simunek J, Hodrová B, Bartonová H, Kopecný J. 2001. Chitinolytic bacteria of the mammal digestive tract. Folia Microbiol (Praha) 46:76–8.
- Sin YW, Buesching CD, Burke T, MacDonald DW. 2012. Molecular characterization of the microbial communities in the subcaudal gland secretion of the European badger (*Meles meles*). FEMS Microbiol Ecol 81:648–59.
- Smith SA, Robbins LW, Steiert JG. 1998. Isolation and characterization of a chitinase from the nine-banded armadillo, *Dasypus novemcinctus*. J Mammal 79:486–91.
- Sonoyama K, Fujiwara R, Takemura N, Ogasawara T, Watanabe J, Ito H, Morita T. 2009. Response of gut microbiota to fasting and hibernation in Syrian hamsters. Appl Environ Microbiol 75:6451–6.
- Soverini M, Quercia S, Biancani B, Furlati S, Turroni S, Biagi E, Consolandi C, Peano C, Severgnini M, Rampelli S, et al. 2016. The bottlenose dolphin (*Tursiops truncatus*) faecal microbiota. FEMS Microbiol Ecol 92:fiw055.
- Spor A, Koren O, Ley R. 2011. Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol 9:279–90.
- Srinivas G, Möller S, Wang J, Künzel S, Zillikens D, Baines JF, Ibrahim SM. 2013. Genome-wide mapping of genemicrobiota interactions in susceptibility to autoimmune skin blistering. Nat Commun 4:2462.
- Stevens CE, Hume ID. 1995. Comparative physiology of the vertebrate digestive system. 2nd ed. New York (NY): Cambridge University Press.
- Stevenson TJ, Duddleston KN, Buck CL. 2014. Effects of season and host physiological state on the diversity, density, and activity of the arctic ground squirrel cecal microbiota. Appl Environ Microbiol 80:5611–22.
- Sun B, Wang X, Bernstein S, Huffman MA, Xia D-P, Gu Z, Chen R, Sheeran LK, Wagner RS, Li J. 2016. Marked variation between winter and spring gut microbiota in free-ranging Tibetan Macaques (*Macaca thibetana*). Sci Rep 6 published online (doi: 10.1038/srep26035).
- Suzuki TA, Nachman MW. 2016. Spatial heterogeneity of gut microbial composition along the gastrointestinal tract in natural populations of house mice. PLoS One 11:1–15.
- Suzuki TA, Worobey M. 2014. Geographical variation of human gut microbial composition. Biol Lett 10:20131037.
- Tappeiner H. 1884. Untersuchungen über die gärung der cellulose insbesondere über deren lösung im darmkanale. Z Biol 20:52–134.
- Theis KR, Schmidt TM, Holekamp KE. 2012. Evidence for a bacterial mechanism for group-specific social odors among hyenas. Sci Rep 2:1–8.
- Theis KR, Venkataraman A, Dycus JA, Koonter KD, Schmitt-Matzen EN, Wagner AP, Holekamp KE, Schmidt TM. 2013. Symbiotic bacteria appear to mediate hyena social odors. Proc Natl Acad Sci U S A 110:19832–7.
- Tilman D, Downing JA. 1994. Biodiversity and stability in grasslands. Nature 367:363–5.

- Tung J, Barreiro LB, Burns MB, Grenier JC, Lynch J, Grieneisen LE, Altmann J, Alberts SC, Blekhman R, Archie EA. 2015. Social networks predict gut microbiome composition in wild baboons. eLife 4:e05224.
- Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. 2006. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–31.
- Van Soest PJ. 1994. Nutritional ecology of the ruminant. Ithaca (NY): Cornell University Press.
- Voigt CC, Caspers B, Speck S. 2005. Bats, bacteria, and bat smell: sex-specific diversity of microbes in a sexually selected scent organ. J Mammal 86:745–9.
- Vujkovic-Cvijin I, Dunham RM, Iwai S, Maher MC, Albright RG, Broadhurst MJ, Hernandez RD, Lederman MM, Huang Y, Somsouk M, et al. 2013. Dysbiosis of the gut microbiota is associated with HIV disease progression and tryptophan catabolism. Sci Transl Med 5:193ra91.
- Wang J, Kalyan S, Steck N, Turner LM, Harr B, Künzel S, Vallier M, Häsler R, Franke A, Oberg H-H, et al. 2015. Analysis of intestinal microbiota in hybrid house mice reveals evolutionary divergence in a vertebrate hologenome. Nat Commun 6:6440.
- Wang J, Linnenbrink M, Künzel S, Fernandes R, Nadeau M-J, Rosenstiel P, Baines JF. 2014. Dietary history contributes to enterotype-like clustering and functional metagenomic content in the intestinal microbiome of wild mice. Proc Natl Acad Sci U S A 111:E2703–10.
- Warnecke L, Turner JM, Bollinger TK, Lorch JM, Misra V, Cryan PM, Wibbelt G, Blehert DS, Willis CKR. 2012. Inoculation of bats with European Geomyces destructans supports the novel pathogen hypothesis for the origin of whitenose syndrome. Proc Natl Acad Sci U S A 109:6999–7003.
- Wasielewski H, Alcock J, Aktipis A. 2016. Resource conflict and cooperation between human host and gut microbiota: implications for nutrition and health. Ann N Y Acad Sci 1372:20–8.
- Wedekind C, Füri S. 1997. Body odour preferences in men and women: do they aim for specific MHC combinations or simply heterozygosity? Proc Biol Sci 264:1471–9.

- Wedekind C, Seebeck T, Bettens F, Paepke AJ. 1995. MHC-dependent mate preferences in humans. Proc R Soc B Biol Sci 260:245–9.
- Weese JS, Nichols J, Jalali M, Litster A. 2015. The rectal microbiota of cats infected with feline immunodeficiency virus infection and uninfected controls. Vet Microbiol 180:96–102.
- Weisfeld GE, Czilli T, Phillips KA, Gall JA, Lichtman CM. 2003. Possible olfaction-based mechanisms in human kin recognition and inbreeding avoidance. J Exp Child Psychol 85:279–95.
- Weldon L, Abolins S, Lenzi L, Bourne C, Riley EM, Viney M. 2015. The gut microbiota of wild mice. PLoS One 10:1–15.
- Whitaker JO, Dannelly HK, Prentice DA. 2004. Chitinase in insectivorous bats. J Mammal 85:15–8.
- Williams B, Landay A, Presti RM. 2016. Microbiome alterations in HIV infection a review. Cell Microbiol 18:645–51.
- Xue Z, Zhang W, Wang L, Hou R, Zhang M, Fe L, Zhang X, Huang H, Bridgewater LC, Jiang Y, et al. 2015. The bamboo-eating giant panda harbors a carnivore-like gut microbiota, with excessive seasonal variations. MBio 6:1–12.
- Zechman JM, Martin IG, Wellington JL, Beauchamp GK. 1984. Perineal scent gland of wild and domestic cavies: bacterial activity and urine as sources of biologically significant odors. Physiol Behav 32:269–74.
- Zhu L, Wu Q, Dai J, Zhang S, Wei F. 2011. Evidence of cellulose metabolism by the giant panda gut microbiome. Proc Natl Acad Sci U S A 108:17714–9.
- Ziętak M, Kovatcheva-Datchary P, Markiewicz LH, Ståhlman M, Kozak LP, Bäckhed F. 2016. Altered microbiota contributes to reduced diet-induced obesity upon cold exposure. Cell Metab 23:1216–23.
- Zilber-Rosenberg I, Rosenberg E. 2008. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32:723–35.
- Zuntz N. 1879. Gesichtspunkte zum kritischen Studium der neueren Arbeiten auf dem Gebiete der Ernahrung. Landwirtsch Jahrbücher 8:65–117.