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Abstract. We study the polyhedral convex hull of a mixed-integer set S defined by a
collection of multilinear equations over the unit hypercube. Such sets appear frequently
in the factorable reformulation of mixed-integer nonlinear optimization problems. In
particular, the set S represents the feasible region of a linearized unconstrained binary
polynomial optimization problem. We define an equivalent hypergraph representation
of the mixed-integer set S , which enables us to derive several families of facet-defining
inequalities, structural properties, and lifting operations for its convex hull in the space
of the original variables. Our theoretical developments extend several well-known results
from the Boolean quadric polytope and the cut polytope literature, paving a way for
devising novel optimization algorithms for nonconvex problems containing multilinear
sub-expressions.

Keywords: binary polynomial optimization • polyhedral relaxations • multilinear functions • cutting planes • lifting

1. Introduction
We consider a box-constrained mixed-integer multilinear optimization problem of the form

max
{∑

I∈I
cI

∏
i∈I

xi : xi ∈ [0, 1] ∀ i ∈ J1 , xi ∈ {0, 1} ∀ i ∈ J2

}
, (ML)

where I is a family of subsets of {1, . . . , n}, and cI , I ∈ I are nonzero real-valued coefficients. Moreover, the
index sets J1 and J2 form a partition of {1, . . . , n}. We refer to r �max{|I |: I ∈I} as the degree of Problem (ML).
Problem (ML) subsumes several well-known NP-hard optimization problems. For instance, by letting J1 ��,

(ML) reduces to pseudo-Boolean optimization (c.f. Boros and Hammer [13] for an extensive literature review).
In addition, since xp

i � xi , for p ∈ �+ and xi ∈ {0, 1}, in this case, Problem (ML) is equivalent to unconstrained
binary polynomial optimization. In particular, if r � 2, then we obtain the well-studied binary quadratic opti-
mization or the max-cut problem (c.f. Barahona [5], Hammer et al. [22], Barahona [6], Barahona et al. [8], Boros
and Hammer [11]). More generally, it is well known that any real-valued function in binary variables can be
rewritten as a multilinear function in the same variables. Thus, Problem (ML) subsumes any unconstrained
binary nonlinear optimization problem (Hammer and Rudeanu [21]). At the other end of the spectrum, by
letting J2 � � and noting that multilinear functions are closed under scaling and shifting of variables, Prob-
lem (ML) is equivalent to maximizing a multilinear function over a box. The latter problem has been studied
extensively by the global optimization community (c.f. Al-Khayyal and Falk [1], Rikun [32], Sherali [34], Ryoo
and Sahinidis [33], Meyer and Floudas [28], Tawarmalani et al. [38], Luedtke et al. [27], Bao et al. [4], Cafieri
et al. [15]).
A standard technique to tackle Problem (ML) is to first introduce a new variable yI for every product term∏
i∈I xi with |I | ≥ 2 and obtain an equivalent optimization problem in the lifted space (x , y):

max
∑

I∈I , |I |�1
cI xI +

∑
I∈I , |I |>1

cI yI (EML)

s.t. yI �
∏
i∈I

xi ∀ I ∈ I , |I | ≥ 2

xi ∈ [0, 1] ∀ i ∈ J1

xi ∈ {0, 1} ∀ i ∈ J2.
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Subsequently, the feasible region of Problem (EML) is replaced by a convex relaxation, and the resulting problem
is solved to obtain an upper bound on the optimal value of Problem (ML). A widely used method to convexify
the above problem is to relax the nonconvex region defined by each term yI �

∏
i∈I xi over the unit hypercube by

its convex hull (Glover and Woolsey [20]). Crama [16] derives conditions under which the upper bound given
by this so-called standard linearization is equal to the optimal value of the original problem (EML). However,
in general, the standard linearization can lead to very weak bounds (Luedtke et al. [27], Bao et al. [4]).
A key observation toward constructing a sharper relaxation for Problem (EML) is that for any vector c ∈ �I ,

there exists an optimal solution that is attained at a vertex of the unit hypercube (see, e.g., Tawarmalani and
Sahinidis [37]). It then follows that the convex hull of the feasible region of (EML) is a polytope and the
projection of its vertices onto the space of x variables is given by {0, 1}n (c.f. Tawarmalani [36]). Consequently,
the objective function of Problem (EML) can be equivalently optimized over the following binary set

S �

{
(x , y): yI �

∏
i∈I

xi , I ∈ I , |I | ≥ 2, x ∈ {0, 1}n

}
. (1)

Throughout this paper, we refer to the set S as the Multilinear set.
The general convexification techniques developed over the past few decades by Sherali and Adams [35],

Lovász and Schrĳver [26], Balas et al. [3], Parrilo [31], and Lasserre [24] provide automated mechanisms for the
generation of sharp relaxations for mixed-integer polynomial optimization problems in an extended space. The
general idea is to construct hierarchies of successive polyhedral or semidefinite relaxations, whose projection
onto the space of original variables converges to the convex hull of the feasible set. For a nonconvex set with a
polyhedral convex hull such as the Multilinear set, these techniques result in an exact description of the convex
hull after a finite number of steps.

For quadratic sets, i.e., r � 2, the convex hull of S is the Boolean quadric polytope, defined by Padberg.
In Padberg [29], Padberg studies various structural properties of the Boolean quadric polytope and derives
several families of facet-defining inequalities as well as lifting operations for this polytope. Moreover, a signif-
icant amount of research has been devoted to studying the facial structure of the cut polytope (Barahona and
Mahjoub [7], Deza and Laurent [19], Boros and Hammer [12]). It is well known that every Boolean quadric
polytope is the image of a cut polytope under a bĳective linear transformation (De Simone [17]). These theo-
retical developments have had a significant impact on the performance of branch-and-cut based algorithms for
mixed-integer quadratic optimization problems (De Simone and Rinaldi [18], Yajima and Fujie [40], Helmberg
and Rendl [23], Letchford and Srensen [25]).
However, for a Multilinear set S with r > 2, similar polyhedral studies are rather scarce. In the special case

where r � n and the set I contains all subsets of {1, . . . , n}, a complete linear description of the convex hull of
the Multilinear set has been derived by several authors independently (cf. Ursic [39], Sherali and Adams [35],
Padberg and Wilczak [30]). In Ursic [39], Ursic considers the Multilinear set with I containing all subsets of
{1, . . . , n} of cardinality between 2 and r for some r ≥ 2. The author refers to the corresponding polyhedral
convex hull as the binomial polytope, studies some of its fundamental properties, and identifies several families
of facets of this polytope. In Buchheim and Rinaldi [14], the authors propose a reduction scheme to reformulate
a binary polynomial optimization problem to a quadratic one in a higher dimensional space to make use of the
existing separation algorithms for the Boolean quadric polytope and the cut polytope. The proposed approach
is most effective when the original instance is reducible; that is, every set in I containing more than one element
is a union of two other sets in I . Otherwise, all such variables are added to the model to make the Multilinear
set reducible. In Boros and Gruber [10], the authors review some quadratization techniques for higher degree
multilinear optimization problems and demonstrate their usefulness in some computer vision applications.
Our work is mainly inspired by Padberg’s results on the Boolean quadric polytope. We consider the Multi-

linear set S defined by (1) with the degree r greater than two, and refer to its polyhedral convex hull as the
Multilinear polytope (MP). We study the facial structure of the Multilinear polytope in the space of the original
variables (x , y). In contrast to all earlier studies detailed above (Ursic [39], Padberg and Wilczak [30]), we fully
recognize the sparsity in the problem structure; that is, we do not make any assumptions on the structure
of the set I . To this end, we define an equivalent hypergraph representation for Multilinear set. Recall that
a hypergraph G is a pair (V,E) where V � V(G) is the set of nodes of G, and E � E(G) is a set of subsets of V of
cardinality at least two, called the edges of G (see Berge [9] for an introduction to hypergraphs). Throughout this
paper, we consider hypergraphs without loops (edges containing a single node) and parallel edges (multiple
edges containing the same set of nodes). With any hypergraph G, we associate a the Multilinear set SG defined
as follows:

S G �

{
z ∈ {0, 1}d : ze �

∏
v∈e

z{v} , e ∈ E(G)
}
, (2)
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where d � |V(G)| + |E(G)|. We denote by MPG the polyhedral convex hull of S G. Note that the variables z{v},
v ∈V(G) in (2) correspond to the variables xi , i � 1, . . . , n in (1) and the variables ze , e ∈ E(G) in (2) correspond
to the variables yI , I ∈ I in (1).

Lifting is a widely used methodology to construct valid inequalities for high-dimensional sets starting from
inequalities valid for simpler subsets of the original set. More formally, in our context, consider two Multi-
linear sets S G and S G′ as defined by (2), and suppose that S G′ is obtained from S G by letting z{v} � 0 or
z{v} � 1 for some v ∈ V(G) and/or by projecting out some variables ze , e ∈ E(G). Denote by az ≤ α a valid
inequality for MPG′ . Lifting az ≤ α means finding a pair (ā , ᾱ) such that āz ≤ ᾱ is a valid inequality for the
Multilinear polytope MPG, where ā is obtained by adding new coordinates to a, after possibly changing some
of its coefficients. Given a facet-defining inequality for MPG′ , it is often desirable to generate a facet of MPG via
lifting.
In this paper we develop the theory of various lifting operations for the Multilinear polytope. First, we

consider the so called zero-lifting operation, whereby we let ā � (a , 0) and ᾱ�α. As we will show later, in this case,
without loss of generality, we can assume that the set S G′ is obtained by letting z{v} � 0 for all v ∈V(G)\V(G′).
Subsequently, we characterize cases for which the zero-lifting of a facet-defining inequality for MPG′ defines
a facet of MPG. Our results generalize Padberg’s zero-lifting theorems for the Boolean quadric polytope to
sets containing high-degree multilinears. In principle, one could start from multiple inequalities that are facet-
defining for distinct low-dimensional sets and lift them simultaneously to obtain a facet of the Multilinear
polytope. For instance, given a hypergraph G, consider a partition of its nodes defined as V(G) � V1 ∪V2. For
i � 1, 2, let Gi denote a hypergraph containing edges of the form e ∩ Vi for all e ∈ E(G) such that e\Vi , �.
Starting from two inequalities that induce facets of MPGi

, for i � 1, 2, under certain assumptions, we obtain a
valid inequality for MPG by multiplying these facet-defining inequalities and linearizing the resulting relation.
Subsequently, we derive conditions under which the new inequality defines a facet of MPG. In Ursic [39],
the author defines a similar lifting operation for hypergraphs containing all edges up to a certain cardinality.
We then study a different lifting operation, for which the Multilinear set S G′ is generated by fixing certain
variables in S G to one. As we detail later, the hypergraph G′ is obtained by “removing” some nodes from
the hypergraph G. Together with the known families of facet-defining inequalities for the Boolean quadric
polytope, the proposed lifting operations enable us to construct many types of facet-defining inequalities for sets
containing higher degree multilinears. These cutting planes can be embedded in general-purpose global solvers
to enhance the quality of existing relaxations for nonconvex problems containing multilinear sub-expressions.
The structure of the paper is as follows. In Section 2 we establish a number of fundamental properties of

the Multilinear polytope, which will be used in the rest of the paper. We develop the theory of zero-lifting
for the Multilinear polytope in Section 3 and investigate a number of special cases for which the general
assumptions are either satisfied or can be significantly simplified. In Section 4, we introduce a facet generation
framework, in which certain facets of the Multilinear polytope can be obtained by multiplying and linearizing
facet-defining inequalities of simpler Multilinear polytopes. Lifting via node addition is the subject of Section 5.
Finally, conclusions are offered in Section 6.

2. Basic Properties of the Multilinear Polytope
In this section we establish a number of fundamental properties of the Multilinear polytope that are essential
for the subsequent developments. We start by introducing some graph-theoretic terminology, which will be
used throughout the paper. Let G � (V,E) be a hypergraph. The rank of G is the maximum cardinality of an
edge in E. An important special case is when E consists of all subsets of V of cardinality between 2 and r,
for some r ≥ 2. We refer to such a hypergraph as a rank-r full hypergraph, and we denote it by Kn , r , where
n � |V(Kn , r)|. Moreover, in this case, we denote the associated Multilinear set (2) and its convex hull by S n , r

and MPn , r , respectively. In particular, the set MPn ,2 represents the well-studied Boolean quadric polytope on
complete graphs (Padberg [29]). A rank-n full hypergraph with n nodes is said to be complete.

A hypergraph G′ � (V′,E′) is a partial hypergraph of G, if V′ ⊆V and E′ ⊆ E. Given a subset V′ of V , the section
hypergraph of G induced by V′ is the partial hypergraph G′� (V′,E′), where E′� {e ∈ E: e ⊆V′}. A subset V′ ⊆V is
called inducing, if for every e ∈ E with |e∩V′ | ≥ 2, we have e∩V′ ∈ E. The support hypergraph of a valid inequality
az ≤ α for MPG, is the hypergraph G(a), where V(G(a)) � {v ∈ V : a{v} , 0} ∪ {v ∈ V : ∃ e ∈ E s.t. v ∈ e , ae , 0},
and E(G(a)) � {e ∈ E: ae , 0}. For notational simplicity, we define L(G) � {{v}: v ∈ V(G)}; furthermore, for any
vector z having a component z{v} corresponding to a node v, we write zv instead of z{v}. Finally, given U ⊆ V ,
throughout the paper, wU denotes the (|V | + |E |)-vector having entries one corresponding to nodes in U and
edges e ∈ E such that e ⊆U, and the remaining entries equal to zero.

We begin by determining the dimension of the Multilinear polytope.
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Proposition 1. The Multilinear polytope MPG is full-dimensional for every hypergraph G, i.e., dim(MPG) � |V(G)| +
|E(G)|.

Proof. The set of |V(G)|+ |E(G)|+1 vectors wU , for every U ∈ {�}∪L(G)∪E(G) are affinely independent vectors
in MPG. �

In particular, Proposition 1 implies that dim(MPn , r)�∑r
i�1

(n
i

)
. Clearly, any inequality of the form zp ≥ 0, with

p ∈ L(G) ∪ E(G), is valid for MPG. The next proposition provides the condition under which zp ≥ 0 defines a
facet of MPG.

Proposition 2. Let G be a hypergraph and let p ∈ L(G) ∪ E(G). Then the inequality zp ≥ 0 is facet-defining for MPG if
and only if there exists no e ∈ E(G) such that e ⊃ p.

Proof. Suppose that there exists no edge e ∈ E(G) such that e ⊃ p. Then the vectors wU , for U ∈ {�} ∪ L(G) ∪
E(G)\{p}, are |V(G)|+ |E(G)| affinely independent vectors in S G that satisfy zp � 0. Thus, zp ≥ 0 defines a facet of
MPG. Conversely, suppose that there exists an edge e ∈E(G) such that e ⊃ p. Then the two inequalities ze ≤ zp and
ze ≥ 0 are valid for MPG and together imply zp ≥ 0, contradicting the assumption that zp ≥ 0 is facet-defining. �

The above result implies that zv ≥ 0, for some v ∈ V(G), defines a facet of MPG if and only if v is an isolated
node. If the hypergraph G of Proposition 2 is a rank-r full hypergraph, we have the following characterization:

Proposition 3. The inequality ze ≥ 0, with e ∈ E(Kn , r), defines a facet of MPn , r if and only if |e | � r.

Let G′ be a partial hypergraph of a hypergraph G. It is simple to verify that the projection of every vertex
of MPG onto the space of MPG′ is a vertex of MPG′ , and each vertex of MPG′ can be obtained in this way.
The following propositions explain the relationship between the Multilinear polytopes MPG and MPG′ and are
consequences of this basic fact.

Proposition 4. Let G′ be a partial hypergraph of a hypergraph G. Then MPG′ is obtained from MPG by projecting out
the variables zv with v <V(G′), and ze with e < E(G′).

Given a valid inequality az ≤ α for MPG, its restriction ãz ≤ α to MPG′ is obtained by discarding from a
all components av , with v ∈ V(G)\V(G′) and ae , with e ∈ E(G)\E(G′). If G′ is a section hypergraph of G, the
projection in Proposition 4 can be done in a trivial manner.

Proposition 5. Let G′ be a section hypergraph of a hypergraph G, and let MPG � {z: a j z ≤ α j , j ∈ J}. Then MPG′ �

{z: ã j z ≤ α j , j ∈ J}.

Proof. The polytope MPG′ can be obtained from the face of MPG defined by zv �0, for v ∈V(G)\V(G′), and ze �0,
for e ∈ E(G)\E(G′), by projecting out variables zv , for v ∈V(G)\V(G′) and variables ze , for e ∈ E(G)\E(G′). �

By Proposition 5, if G′ is a section hypergraph of G, then the restriction to MPG′ of a valid inequality for
MPG is valid for MPG′ . Note that if G′ contains the support hypergraph of az ≤ α as a partial hypergraph,
then the restriction ãz ≤ α of az ≤ α is obtained by discarding only zero components from a; therefore, the two
inequalities are identical.

Proposition 6. Let az ≤ α be a valid inequality for MPG, and let G′ be a partial hypergraph of G containing G(a) as a
partial hypergraph. Then the restriction ãz ≤ α of az ≤ α to MPG′ is valid for MPG′ . Moreover, if az ≤ α is facet-defining
for MPG, then ãz ≤ α is facet-defining for MPG′ .

Proof. Let z̃ be a vertex of MPG′ , and let z̄ be a vertex of MPG whose projection onto the space of MPG′ is z̃.
Then the validity of ã z̃ ≤ α follows from the validity of az̄ ≤ α.

Assume now that az ≤ α is facet-defining for MPG. Then there exists a set Z of |V(G)| + |E(G)| affinely
independent vertices of MPG that satisfy az � α. Let Z̃ be the projection of Z onto the space of MPG′ . The
points in Z̃ are vertices of MPG′ , and they all satisfy ãz � α. Moreover, they contain |V(G′)| + |E(G′)| affinely
independent vectors. �

Next, we present a switching operation for the Multilinear polytope MPn , r that enables us to convert valid linear
inequalities into other valid linear inequalities that induce faces of the same dimension. A similar operator has
been introduced by several authors independently for Boolean quadric and cut polytopes (c.f. Padberg [29],
Barahona and Mahjoub [7]) and for MPn , r (Ursic [39]).
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Consider the hypergraph Kn , r , and let d �
∑r

i�1
(n

i

)
. For any U ⊆ V(Kn , r), consider the mapping ψU : �d→�d

given by

ψU(zv) �
{

1− zv if v ∈U
zv if v ∈V(Kn , r)\U (3)

ψU(ze) �
∑

W⊆e∩U
|W | even

z(e\U)∪W −
∑

W⊆e∩U
|W | odd

z(e\U)∪W e ∈ E(Kn , r), (4)

where we define z� � 1.
By definition, ze �

∏
v∈e zv for every z ∈ {0, 1}d and e ∈ E(Kn , r). It follows that

ψU(ze)�
∏

v∈e∩U
(1− zv)

∏
v∈e\U

zv ∀ z ∈ {0, 1}d , e ∈ E(Kn , r). (5)

It is simple to verify that ψU is a nonsingular affine transformation because it can be written as ψU(z)� Az + b,
where A ∈ �d×d is a lower triangular matrix whose diagonal entries are either 1 or −1. Moreover, for any
W ⊆ V(Kn , r), we have ψU(wW ) � wW∆U , where W∆U � (W\U) ∪ (U\W) denotes the symmetric difference of W
and U. In particular, ψU maps MPn , r onto itself. It follows that the image of a facet-defining inequality for MPn , r

under ψU is also facet-defining for MPn , r .
Consequently, by Proposition 3, the following inequalities define facets of MPn , r :

ψU(ze) ≥ 0 ∀ e ∈ E(Kn , r) with |e | � r, ∀U ⊆ V(Kn , r). (6)

The mapping ψU can also be defined for more general hypergraphs. For any graph G, and U ⊆ V(G), ψU
is always a nonsingular affine transformation. However, for general hypergraphs this is not always the case
because (e\U) ∪W might not be an edge of G for some U ⊆ V(G) and W ⊆U. Thus, we cannot directly utilize
the switching operator to obtain new facets of MPG from the existing ones. In Buchheim and Rinaldi [14], the
authors characterize the hypergraphs G for which ψU is a nonsingular affine transformation for every U ⊆V(G)
(see Theorem 4.3 in Buchheim and Rinaldi [14]).
The next theorem follows by a result proven by Sherali and Adams [35] (see also Ursic [39], Padberg and

Wilczak [30]).

Theorem 1 (Theorem 2 in Sherali and Adams [35]). The Multilinear polytope MPn , r with n � r is given by facet-defining
inequalities (6).

In practice, however, we often have n� r for which MPn , r has a far more complex structure. The following
result follows directly from Theorem 1 and Proposition 6.

Corollary 1. Let az ≤ α define a facet of MPn , r and assume that its support hypergraph has r nodes. Then, az ≤ α is of
the form (6).

Note that by Theorem 1, the support hypergraph of any facet-defining inequality for MPn , r has at least
r nodes.
We conclude this section by presenting a technical lemma that will be used to prove our main lifting theorems

in Sections 3 and 4. Let G be a hypergraph, and let G′ be a partial hypergraph of G. Denote by az ≤ α a facet-
defining inequality for MPG′ and let bz ≤ β denote a valid inequality for MPG. Suppose that for any point in
S G whose restriction to S G′ satisfies az � α, we have bz � β. The following lemma establishes the relationship
between the coefficients of the two inequalities.

Lemma 1 (Proportionality Lemma). Let G � (V,E) be a hypergraph and let G′ � (V′,E′) be a partial hypergraph of G
with the following properties:

• V′ is an inducing subset of V ,
• any edge of the form e ∩V′ for some e ∈ E with |e ∩V′ | ≥ 2 and e\V′ ,� is present in E′.
Let az ≤ α denote a facet-defining inequality for MPG′ and let Qa � {q ∈ {�} ∪ L′ ∪ E′: aq , 0}, where we define

L′ � L(G′) and a� �−α. Let bz ≤ β be a valid inequality for MPG that is satisfied tightly by any point whose restriction
to S G′ satisfies az � α. Then we have the following:
1. Let U be a nonempty subset of V\V′, and PU � {p ∈ L(G) ∪E(G): p\V′ � U}. Then, the following cases arise:

(i) if {p\U: p ∈ PU} ⊇ Qa , then there exists λU ∈ � such that bp � λU ap\U for all p ∈ PU with p\U ∈ Qa and
bp � 0 for all p ∈ PU with p\U <Qa .

(ii) otherwise, bp � 0 for all p ∈ PU .
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2. If in addition, we have be � 0 for all e ∈ E\E′ with e ⊆ V′, then bp � λap for all p ∈ {�} ∪ L′ ∪ E′ for some λ ≥ 0,
where we define b� �−β.
Proof. We start by proving part 1. Define V′′ � V\V′. Let z̃ i , i � 1, . . . , k, denote all points in S G′ satisfying
az � α. We lift these points to a set of points in S G by letting zv � 0 for all v ∈ V′′ and computing ze , e ∈ E\E′
accordingly. Substituting the lifted points in bz � β, yields∑

p∈L′∪E′
bp z̃ i

p +
∑
e∈Ē′

be

∏
v∈e

z̃ i
v � β ∀ i � 1, . . . , k , (7)

where Ē′ � {e ∈ E\E′: e ⊆V′}. Next, for every nonempty U ⊆V′′, we lift z̃ i , i � 1, . . . , k, to a set of points in S G by
setting zv � 1 for all v ∈U, zv � 0 for all v ∈ V′′\U and computing the variables ze , e ∈ E\E′ accordingly. Define
P̃U as the (disjoint) union of sets PW , for W ⊆ U, W , �; i.e., P̃U � {p ∈ L(G) ∪ E(G): p ∩V′′ ⊆ U, p ∩V′′ , �},
where the set PW is defined in the statement of the theorem. Substituting these points in bz � β, yields∑

p∈L′∪E′
bp z̃ i

p +
∑
e∈Ē′

be

∏
v∈e

z̃ i
v +

∑
p∈P̃U

bp z̃ i
p\U � β ∀ i � 1, . . . , k , (8)

where we define z̃ i
� � 1. Note that by the two properties of the hypergraph G′ given in the statement, for each

p ∈ P̃U , we have p\U ∈ {�} ∪ L′∪E′. From (7) and (8), it follows that∑
p∈P̃U

bp z̃ i
p\U � 0 ∀ i � 1, . . . , k. (9)

We now prove that the following is valid for all nonempty U ⊆ V′′.∑
p∈PU

bp z̃ i
p\U � 0 ∀ i � 1, . . . , k. (10)

We show it by induction on |U |, the base case being |U | � 1; i.e., U � {u} for some u ∈ V′′. In this case, (9)
simplifies to (10) since we have P̃U � PU . Next, we proceed to the inductive step. Namely, we show that if (10)
holds for all U ⊆V′′ with cardinality between 1 and δ, then the same condition is valid for all U with cardinality
δ+ 1. Consider (9) for a subset U of cardinality δ+ 1. We have∑

p∈P̃U

bp z̃ i
p\U �

∑
p∈PU

bp z̃ i
p\U +

∑
U′⊂U

∑
p∈PU′

bp z̃ i
p\U′ ∀ i � 1, . . . , k.

By induction we have ∑
p∈PU′

bp z̃ i
p\U′ � 0 for all U′ ⊂ U. Thus, the above system simplifies to (10). Therefore,

relation (10) is valid for all nonempty U ⊆ V′′.
Recall that z̃ i , i �1, . . . , k, denote all the points in S G′ satisfying the facet-defining inequality az ≤ α tightly, and

in addition these points satisfy ∑
p∈PU

bp zp\U � 0. It follows that for a given U ⊆V′′, the equation ∑
p∈PU

bp zp\U � 0
is a scaling of az − α � 0. From the definition of PU , it follows that for every q ∈ Qa , there exists at most one
p ∈ PU such that q � p\U. Note that such a property does not hold for P̃U , in general. Therefore, the following
cases arise:
(i) if {p\U: p ∈ PU} ⊇ Qa , then there exists λU ∈ � such that bp � λU ap\U for all p ∈ PU with p\U ∈ Qa and

bp � 0 for all p ∈ PU with p\U <Qa ;
(ii) otherwise, bp � 0 for all p ∈ PU .
We now proceed to part 2 of the lemma. Suppose that be � 0 for all e ∈ Ē′. In this case (7) simplifies to∑

p∈L′∪E′
bp z̃ i

p � β, ∀ i � 1, . . . , k.

Since az ≤ α defines a facet of MPG′ and z̃ i , i � 1, . . . , k denote all points in S G′ satisfying this facet tightly, we
conclude that bp � λap , for all p ∈ L′ ∪ E′ and β � λα for some λ ∈ �. Let G̃ denote the section hypergraph of
G induced by V′. By Proposition 5, the restriction of bz ≤ β to MPG̃ is a valid inequality for MPG̃. Moreover,
bz ≤ β has zero coefficients corresponding to edges not in E′. Thus, by Proposition 6, the restriction of bz ≤ β to
MPG′ is a valid inequality for MPG′ . Hence λ ≥ 0. �

We are often interested in cases for which the valid inequality bz ≤ β defines a facet of MPG. To this end, we
need to make additional assumptions on the structure of the hypergraphs G and G′. In Sections 3 and 4, we
study two important instances for which the inequality bz ≤ β defines a facet of MPG.
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3. Zero-Lifting
In this section we develop the zero-lifting theorem for the Multilinear polytope. As we will detail later, our
result serves as the generalization of Padberg’s zero-lifting theorem for the Boolean quadric polytope. Let G′

be a partial hypergraph of a hypergraph G. If az ≤ α is a valid inequality for MPG′ , by Proposition 4, we can
obtain a valid inequality āz ≤ α for MPG, by introducing zero coefficients for the additional variables as follows:
āp � ap for all p ∈ L(G′) ∪E(G′) and āp � 0, otherwise. We refer to āz ≤ α as the zero-lifting of az ≤ α to MPG. In
the sequel, we say that an inequality az ≤ α is nontrivial, if the vector a has at least one nonzero component.

Now suppose that az ≤ α defines a facet of MPG′ . We are interested in characterizing cases for which the zero-
lifting of az ≤ α defines a facet of MPG. Let Ḡ be the section hypergraph of G induced by V(G′). If the zero-lifting
of az ≤ α to MPḠ does not define a facet of MPḠ, then, by Proposition 6, its zero-lifting to MPG is not facet-
defining for MPG. Thus, in the following, without loss of generality, we assume that the partial hypergraph G′

is a section hypergraph of G.
Given a hypergraph G and a monomial ap1 ,...,pt

∏t
i�1 zni

pi
, for p1 , . . . , pt ⊆ V(G), we define its linearization as

ap1 ,...,pt
zp1∪···∪pt

. More generally, given a polynomial inequality, we define its linearization as the linear inequality
obtained by replacing each monomial term with its linearization as defined above. The above linearization can
be performed only if for every nonzero term ap1 ,...,pt

zp1∪···∪pt
, we have p1 ∪ · · · ∪ pt ∈ L(G) ∪ E(G). Note that each

binary vector satisfies a polynomial inequality if and only if it satisfies its linearization. We will make use of
the following proposition to prove our main lifting result:

Proposition 7. Let G′ be a partial hypergraph of G, and let az ≤ α be a valid inequality for MPG′ . Assume there exists a
nonempty subset U of V(G) that satisfies the following conditions:
(i) for every nonzero coefficient ap , p ∈ L(G′) ∪E(G′), we have p ∪U ∈ E(G);
(ii) if α is nonzero, then U ∈ L(G) ∪E(G);
(iii) the linearization of the inequality obtained via multiplying az ≤ α by ∏

v∈U zv is nontrivial and is different from
az ≤ α.
Then, the zero-lifting of az ≤ α is not facet-defining for MPG.

Proof. By multiplying az ≤ α by ∏
v∈U zv and by 1−∏

v∈U zv , and using (i), (ii) to linearize the resulting relations,
we obtain two distinct valid linear inequalities for MPG, whose sum is az ≤ α. This implies that az ≤ α is not
facet-defining for MPG. �

In the sequel we say that a valid inequality az ≤ α for MPG′ is maximal for MPG, if there exists no U ⊆ V(G)
for which conditions (i)–(iii) of Proposition 7 are satisfied. Now suppose that G′ is a section hypergraph of G
and V(G′) is an inducing subset of V(G). In the following lemma we use these additional assumptions to derive
a simpler criterion to check the maximality of a facet of MPG′ for MPG.

Lemma 2. Let G be a hypergraph, and let G′ be a section hypergraph of G such that V(G′) is an inducing subset of
V(G). Let the inequality az ≤ α define a facet of MPG′ . Then az ≤ α is not maximal for MPG if and only if conditions (i),
(ii) of Proposition 7 are satisfied for some nonempty U ⊆ V(G)\V(G′).
Proof. First assume that conditions (i), (ii) of Proposition 7 are satisfied for some nonempty U ⊆ V(G)\V(G′).
Then the linearized inequalities obtained via multiplying az ≤ α by ∏

v∈U zv and 1−∏
v∈U zv are nontrivial and

are different from the original inequality; i.e., condition (iii) of Proposition 7 is automatically satisfied. Hence,
az ≤ α is not maximal for MPG.
Now assume that az ≤ α is not maximal for MPG, and let U be a nonempty subset of V(G) satisfying con-

ditions (i)–(iii). We will show that the set W � U\V(G′) satisfies (i), (ii). First we show that the inequality
obtained via multiplying az ≤ α by ∏

v∈U∩V(G′) zv is identical to az ≤ α. By assumption G′ is a section hyper-
graph of G and the subset V(G′) is inducing; it follows that for every nonzero ap , p ∈ L(G′) ∪ E(G′), we have
(p ∪U) ∩V(G′) ∈ L(G′) ∪ E(G′). Moreover, if α , 0, then U ∩V(G′) ∈ L(G′) ∪ E(G′). Therefore, the inequality `G′

obtained by multiplying az ≤ α by ∏
v∈U∩V(G′) zv , can be linearized and is valid for MPG′ . Since az ≤ α defines a

facet of MPG′ and `G′ is satisfied tightly by every point z ∈ S G′ that satisfies az � α, it follows that `G′ can be
obtained by multiplying az ≤ α by a scalar λ ≥ 0. By the nontriviality assumption in condition (iii), we get λ > 0.

Therefore, the inequality obtained by multiplying az ≤ α by ∏
v∈W zv , coincides with the one obtained by

multiplying az ≤ α by ∏
v∈U zv . In particular, W , �. Now, since W ∩V(G′) � �, for every nonzero coefficient

ap , p ∈ L(G′) ∪E(G′), the linearization of the inequality obtained by multiplying az ≤ α by ∏
v∈W zv contains the

term ap zp∪W ; thus, we have p ∪W ∈ E(G). Similarly, if α is nonzero, we get W ∈ L(G) ∪E(G). �
We are now in a position to present conditions under which the zero-lifting of a facet-defining inequality for

MPG′ is facet-defining for MPG.
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Theorem 2 (Zero-Lifting Theorem). Let G be a hypergraph, let G′ be a section hypergraph of G such that V(G′) is
inducing, and suppose that az ≤ α is a facet-defining inequality for MPG′ . Then the zero-lifting of az ≤ α defines a facet
of MPG if and only if it is maximal for MPG.

Proof. The necessity of the maximality assumption follows from Proposition 7. Thus, we now show sufficiency.
Assume that the zero-lifting āz ≤ α of az ≤ α is maximal for MPG. Denote by bz ≤ β a nontrivial valid inequality
for S G that is satisfied tightly by all points in S G satisfying āz � α. We show that the two inequalities āz ≤ α
and bz ≤ β coincide up to a positive scaling, implying that āz ≤ α defines a facet of MPG.

It is simple to verify that all assumptions of Lemma 1 are satisfied, including the one in Part 2, since G′

is a section hypergraph of G, which implies {e ∈ E(G)\E(G′): e ⊆ V(G′)} � �. Hence, we have bp � λap for all
p ∈ L(G′) ∪E(G′) and β � λα for some λ ≥ 0.
Let U denote a nonempty subset of V(G)\V(G′). Define PU � {p ∈ L(G) ∪ E(G): p\V(G′) � U} and Qa � {p ∈
{�}∪L(G′)∪E(G′): ap , 0}, where a� �−α. Since the inequality az ≤ α is maximal for MPG, Lemma 2 implies that
{p\U: p ∈ PU} + Qa . Consequently, by Part 1 of Lemma 1, we have bp � 0 for all p ∈ PU . As the above argument
applies to every nonempty subset U of V(G)\V(G′), and ⋃

U⊆V(G)\V(G′),U,� PU � (L(G)\L(G′)) ∪ (E(G)\E(G′)), we
obtain bv � 0 for all v ∈ V(G)\V(G′), and be � 0 for all e ∈ E(G)\E(G′). Hence (b , β) � λ(ā , α) for some λ ≥ 0. By
assumption, bz ≤ β is nontrivial. Thus λ > 0, and the theorem follows. �

3.1. Consequences of the Zero-Lifting Theorem for Multilinear Sets with a Special Structure
In the remainder of this section, we consider the sets S G with certain structures for which the assumptions of
the zero-lifting theorem are either trivially satisfied or can be simplified significantly.
Suppose that the hypergraph G in the statement of Theorem 2 is a rank-r hypergraph. It follows that, if

the facet-defining inequality az ≤ α for MPG′ has a nonzero coefficient corresponding to an edge e of G′ of
cardinality r, then it is maximal for MPG. To see this, first note that by Lemma 2 to check maximality, it suffices
to consider nonempty subsets U ⊆ V(G)\V(G′). It then follows that |e ∪U | > r. Thus, e ∪U is not an edge of G,
and by definition az ≤ α is maximal for MPG.

The following lemma implies that, if the section hypergraph G′ is rank-r full, then each facet of MPG′ contains
at least one nonzero coefficient corresponding to an edge of cardinality r.

Lemma 3. If az ≤ α defines a facet of MPn , r , then ae , 0 for at least one e ∈ E(Kn , r) with |e | � r.

Proof. By contradiction assume that ae � 0 for all e ∈ E(Kn , r) with |e | � r, and let G′ � G(a). By Proposition 6,
the restriction ãz ≤ α of az ≤ α to MPG′ is valid for MPG′ . Let f be an edge of maximum cardinality in E(G′),
and let v ∈V(Kn , r)\ f . Conditions (i), (ii) of Proposition 7 are satisfied for U � {v}; thus, by Lemma 2, az ≤ α is
not facet-defining for MPn , r , which is a contradiction. �

By Lemma 3 and Theorem 2, the following result is immediate.

Corollary 2. Let G be a rank-r hypergraph that contains Kn , r as a section hypergraph. Then the zero-lifting of every
facet-defining inequality for MPn , r is facet-defining for MPG.

Proof. Since G is a rank-r hypergraph, V(Kn , r) is an inducing subset of V(G). In addition by Lemma 3, every
facet of MPn , r has a nonzero coefficient corresponding to an edge of Kn , r of rank r, implying its maximality for
MPG. Thus, by Theorem 2 the result follows. �

In particular, for rank-r full hypergraphs, we have the following:

Corollary 3. The zero-lifting of every facet of MPn , r defines a facet of MPn′ , r for all n′ > n.

Interestingly, for quadratic sets, i.e., MPG where G is a graph, the results of Theorem 2 and Corollary 3 simplify
to the lifting theorems of Padberg (see Corollary 2 and Theorem 3 in Padberg [29]). Clearly, the inducing and
maximality assumptions of Theorem 2 are trivially satisfied for quadratic sets but add further restrictions on
the lifting operation when the Multilinear set contains higher degree multilinear terms.
More generally, for a hypergraph containing a complete partial hypergraph, we can state the following lifting

result:

Corollary 4. Let the hypergraph G contain a complete partial hypergraph G′. The zero-liftings of all facet-defining inequal-
ities for MPG′ are facet-defining for MPG if and only if there exists no edge e ∈ E(G) such that e ⊃ V(G′).
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Proof. Since the partial hypergraph G′ is a complete hypergraph, V(G′) is an inducing subset of V(G). By
Lemma 3, for every facet az ≤ α of MPG′ , the coefficient a f , where f � V(G′), is nonzero. Hence, if G does not
have an edge e of the form e ⊃V(G′), we conclude that all facets of MPG′ are maximal for MPG and consequently
are facet-defining for it by Theorem 2.

Now suppose that G contains an edge e such that e ⊃V(G′). Let Ṽ � e\V(G′). By Proposition 2, the inequality
z f ≥ 0 with f �V(G′) defines a facet of MPG′ . After multiplying both sides of this inequality by the nonnegative
factor ∏

v∈Ṽ zv and 1 −∏
v∈Ṽ zv and linearizing the resulting relations we obtain ze ≥ 0 and z f − ze ≥ 0 both of

which are valid inequalities for MPG, and their sum is given by z f ≥ 0. Thus, z f ≥ 0 does not define a facet
of MPG. This completes the proof. �

Suppose that the induced section hypergraph G′ defined in the statement of Theorem 2 consists of a non-
isolated node v̄. Clearly, in this case, V(G′) is an inducing subset of V(G). The convex hull of S G′ is the line
segment defined by the two facets z v̄ ≥ 0 and z v̄ ≤ 1. To characterize the cases for which the zero-lifting of
these two inequalities are facet-defining for MPG, by Theorem 2, it suffices to examine their maximality for
MPG. Since v̄ is not an isolated node, by Proposition 2, z v̄ ≥ 0 does not define a facet of MPG. In the following
corollary we characterize the conditions under which z v̄ ≤ 1 defines a facet of MPG.

Corollary 5. Let G be a hypergraph, and let v̄ ∈ V(G). Then z v̄ ≤ 1 defines a facet of MPG if and only if the following
conditions are satisfied:
(i) every edge containing v̄ has cardinality at least three,
(ii) for every two edges f , g ∈ E(G) with f ⊃ g, we have f \g , {v̄}.

Proof. By Theorem 2, z v̄ ≤ 1 does not define a facet of MPG if and only if there exists a nonempty U ⊆ V(G)
satisfying conditions (i) and (ii) of Proposition 7. The existence of such a set is equivalent to the existence of an
edge of cardinality two containing v̄, if |U | � 1, and it is equivalent to the existence of f , g ∈ E(G) with f ⊃ g,
and f \g � {v̄}, if |U | ≥ 2. �

The result of Corollary 5 implies that zv ≤ 1 is not facet-defining for the Boolean quadric polytope, whereas it
defines a facet of a set MPG, where G is a k-uniform hypergraph with k ≥ 3. Recall that a k-uniform hypergraph
is a hypergraph such that all its edges have cardinality k.
Before proceeding further, we demonstrate that the inducing assumption on the partial hypergraph G′ of G is

required for the validity of Theorem 2 via a simple example. More precisely, if V(G′) is not an inducing subset
of V(G), it is possible that a facet-defining inequality for MPG′ is maximal for MPG, and its zero-lifting does not
define a facet of MPG. For notational simplicity, in the following examples, given a node vi , we write zi instead
of zvi

. Similarly, given an edge {vi , v j , vk}, we write zi jk instead of z{vi ,v j ,vk }.

Example 1. Consider the Multilinear set S G with G � (V,E), V � {v1 , v2 , v3 , v4}, and E � {{v1 , v2 , v3}, {v1 , v2 , v4},
{v1 , v3 , v4}} (see Figure 1). Let V′� {v1 , v2 , v3} and denote by G′ the section hypergraph of G induced by V′. The
subset V′ is not inducing since the edges {v1 , v2} and {v1 , v3} are not present in E. The inequality z123 ≤ z1 is a
facet of MPG′ and it contains a nonzero coefficient corresponding to an edge of maximum degree and is therefore
maximal for MPG. We now show that z123 ≤ z1 is not a facet of MPG by providing two valid inequalities for MPG
that together imply z123 ≤ z1. Consider the expression ` � zi z j − zi zk + z j zk for distinct i , j, k ∈ {1, . . . , 4}, where z
is a binary vector. It is simple to check that ` ≤ 1. Now consider `1 � z2z3 − z2z4 + z3z4 and `2 � z2z3 − z3z4 + z2z4.
Multiplying `1 ≤ 1 and `2 ≤ 1 by z1 and linearizing the resulting inequalities we obtain z123 − z124 + z134 ≤ z1
and z123 − z134 + z124 ≤ z1. The sum of these two inequalities is z123 ≤ z1, showing that such inequality is not
facet-defining for MPG. �
Thus, in general, the inducing assumption on the partial hypergraph G′ is required for the validity of Theo-

rem 2. However, for various structured hypergraphs or specific classes of facets, the result of Theorem 2 remains

Figure 1. (Color online) The hypergraphs G and G′ defined in Example 1 to demonstrate the necessity of the inducing
assumption for Theorem 2.
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Figure 2. (Color online) The hypergraphs G and G̃ of Example 2 demonstrating that in certain cases, the inducing
assumption of Theorem 2 can be relaxed.
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v1 v4

v3

v2
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�

valid even when the inducing assumption is not satisfied. The next example demonstrates that in certain cases,
we can combine the result of Proposition 4 and Theorem 2 to utilize the lifting operation for the hypergraphs
that do not satisfy the inducing assumption.

Example 2. Consider the hypergraph G, where V(G) � {v1 , v2 , v3 , v4} and E(G) � {{v1 , v2 , v3}, {v2 , v3 , v4}}
(see Figure 2). The set V′ � {v1 , v2 , v3} is not inducing since {v2 , v3} does not belong to E(G). Now, let G̃ be the
hypergraph obtained from G by adding the edge {v2 , v3}. In this case, V′ is an inducing subset of V(G̃). Let
G′′ denote the section hypergraph of G̃ induced by V′. The inequality z123 ≤ z1 defines a facet of MPG′′ and by
Theorem 2 is facet-defining for MPG̃. By Proposition 6, it follows that z123 ≤ z1 defines a facet of MPG as well,
since its coefficient corresponding to the edge {v2 , v3} is zero. �

More generally, we have the following result:

Corollary 6. Let G be a hypergraph and let G′ be a section hypergraph of G. Denote by az ≤ α a facet of MPG′ that
is maximal for MPG. Denote by G′′ the hypergraph obtained from G′ by adding all edges of the form e ∩V(G′), where
e ∈ E(G). If the zero-lifting of az ≤ α to MPG′′ is facet-defining for MPG′′ , then its zero-lifting to MPG defines a facet
of MPG.

Proof. Follows directly from Proposition 6 and Theorem 2. �

Finally, the following example demonstrates that the converse of Corollary 6 does not hold in general; that
is, if az ≤ α does not define a facet of MPG′′ , its zero-lifting may still be facet-defining for MPG.

Example 3. Consider the hypergraph G, where V(G) � {v1 , v2 , v3 , v4 , v5} and E(G) � {{v1 , v2 , v3}, {v1 , v2 , v4},
{v1 , v2 , v5}} (see Figure 3). Denote by G′ the section hypergraph of G induced by the subset V′ � {v1 , v2 , v3 , v4}.
It can be verified that the inequality

z3 − z123 + z124 ≤ 1 (11)

and its zero-lifting define facets of MPG′ and MPG, respectively. Clearly, V′ is not an inducing subset of V(G)
since {v1 , v2} does not belong to E(G). Let G̃ be the hypergraph obtained from G by adding the edge {v1 , v2}
and let G′′ denote the section hypergraph of G̃ induced by V′. We now show that inequality (11) is not facet-
defining for MPG′′ by providing two valid inequalities for MPG′′ that together imply (11). Denote by H1 and
H2 the section hypergraphs of G′′ induced by the subsets V′1 � {v1 , v2 , v3} and V′2 � {v1 , v2 , v4}, respectively. It
is simple to verify that the inequalities z3 + z12 − z123 ≤ 1 and −z12 + z124 ≤ 0 define facets of MPH1

and MPH2
,

respectively. Hence, their zero liftings are valid inequalities for MPG′′ . In addition, adding the two inequalities
yields (11). Therefore, the assumption of Corollary 6 is not always required for the validity of the zero-lifting
operation. �

Figure 3. (Color online) The hypergraphs G and G′ defined in Example 3 demonstrating that the converse of Corollary 6
does not hold in general.
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4. Lifting via Facet Multiplication
Let G1 and G2 denote two partial hypergraphs of a hypergraph G with V(G1)∩V(G2)�� and let the inequalities
az + α ≥ 0 and bz + β ≥ 0 define facets of the Multilinear polytopes MPG1

and MPG2
, respectively. Suppose that

the two inequalities are not maximal for MPG implying that their zero-liftings are not facet-defining for MPG.
In particular, assume that for every nonzero ap , p ∈ L(G1)∪E(G1) and bq , q ∈ L(G2)∪E(G2), we have p∪ q ∈ E(G).
Clearly, the linearization of the relation (az + α)(bz + β) ≥ 0 is a valid inequality for MPG. We are interested
in characterizing the cases for which this inequality defines a facet of MPG. In the special case where G, G1,
G2 are all complete hypergraphs and V(G) � V(G1) ∪ V(G2), by Theorem 1 and relation (5), the linearization
of any inequality obtained by multiplying two facet-defining inequalities of MPG1

and MPG2
defines a facet of

MPG. Moreover, the collection of all such inequalities characterizes MPG. In this section we consider this lifting
operation for general sparse hypergraphs. In fact, as we will demonstrate in the following theorem, such lifting
operation is valid in a more general setting, namely G1 and G2 are auxiliary hypergraphs that are not necessarily
partial hypergraphs of G.

Theorem 3. Let G be a hypergraph, and consider a partition of the nodes of G defined as V(G)� V1 ∪V2. Let

Ei � {e ∩Vi : e ∈ E(G), |e ∩Vi | ≥ 2, e\Vi ,�} i � 1, 2. (12)

Define the hypergraphs G1 � (V1 ,E1) and G2 � (V2 ,E2). Let the inequalities az + α ≥ 0 and bz + β ≥ 0 define facets of
MPG1

and MPG2
, respectively. Finally, suppose that for every nonzero ap , p ∈ {�} ∪ L(G1) ∪ E1 and every nonzero bq ,

q ∈ {�} ∪ L(G2) ∪E2, we have p ∪ q ∈ �∪ L(G) ∪E(G), where a� � α and b� � β. Then the linearization of the relation

(az + α)(bz + β) ≥ 0,

given by ∑
p∈�∪L(G1)∪E1

∑
q∈�∪L(G2)∪E2

ap bq zp∪q ≥ 0, (13)

defines a facet of MPG.

Proof. Let L1 � L(G1) and L2 � L(G2). We start by defining a hypergraph G̃ obtained by adding to the hypergraph
G all edges e ∈ Ei , i � 1, 2 as defined by (12) that are not present in E(G); i.e., V(G̃) � V(G) and E(G̃) � E(G) ∪
E1 ∪ E2. The key to this construction is that V1 and V2 are inducing subsets of V(G̃), whereas they are not
inducing subsets of V(G), in general. Subsequently, we prove that the zero-lifting of inequality (13) defines a
facet of MPG̃. It then follows from Proposition 6 that inequality (13) is facet-defining for MPG as well, since by
assumption its support hypergraph is a partial hypergraph of G.
Clearly, inequality (13) is valid for MPG̃ as G1 and G2 are partial hypergraphs of G̃. Denote by cz+γ ≥ 0 a non-

trivial valid inequality for MPG̃ that is satisfied tightly by the set of all points in S G̃ that satisfy inequality (13)
tightly. We show that the two inequalities coincide up to a positive scaling, which in turn implies inequal-
ity (13) defines a facet of MPG̃. By construction, any point in S G̃ whose restriction to S G1

(resp. S G2
) satisfies

az + α � 0 (resp. bz + β � 0), satisfies inequality (13) tightly. To characterize the relationship between the coeffi-
cients of az+α ≥ 0 and cz+γ ≥ 0, we first employ the result of Lemma 1 with G′�G1 and where U is a nonempty
subset of V2. As defined in the statement of Lemma 1, we have Qa � {p ∈ {�} ∪ L1 ∪ E1: ap , 0} and PU �

{w ∈ L(G̃) ∪ E(G̃): w ∩V2 � U}. Since V1 is an inducing subset of V(G̃), by Part 1 of Lemma 1, for each U ⊆ V2,
we have the following:
(1.1) if p∪U ∈ PU for all p ∈Qa , then there exists λU ∈� such that cp∪U � apλU for all p ∈Qa , and cp∪U � 0 for

all p ∪U ∈ PU with p <Qa ,
(1.2) otherwise, cp∪U � 0 for all p ⊆ V1 such that p ∪U ∈ PU .

Symmetrically, we use Lemma 1 with G′ � G2 and where U is a nonempty subset of V1. With these new
choices of G′ and U in the statement of Lemma 1, we have Qb � {q ∈ {�} ∪ L2 ∪ E2: bq , 0} and PU �

{w ∈ L(G̃) ∪E(G̃): w ∩V1 � U}. By Part 1 of Lemma 1, for each U ⊆ V1, we obtain the following:
(2.1) if U ∪ q ∈ PU for all q ∈Qb , then there exists µU ∈� such that cU∪q � µU bq for all q ∈Qb , and cU∪q � 0 for

all U ∪ q ∈ PU with q <Qb ;
(2.2) otherwise, cU∪q � 0 for all q ⊆ V2 such that U ∪ q ∈ PU .
To characterize the coefficients of cz + γ ≥ 0, we partition L(G̃) ∪E(G̃) into the following subsets and analyze

each separately: (i) E1, 2 containing any edge e ∈ E(G̃) whose intersection with both sets V1 and V2 is nonempty,
(ii) Ē1 � {e ∈ E(G̃): V1 ⊇ e , e < E1} and Ē2 � {e ∈ E(G̃): V2 ⊇ e , e < E2}, (iii) L1 ∪E1 and L2 ∪E2.
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Consider an edge e ∈ E1, 2; define p � e ∩V1 and q � e ∩V2. By our assumption on the structure of G̃, it follows
that p ∈ L1 ∪E1 and q ∈ L2 ∪E2. We show that for some µp ∈ � and λq ∈ �

ce �

{
apλq � µp bq if p ∈Qa\{�}, q ∈Qb\{�},
0 otherwise.

(14)

First, let p ∈ Qa\{�} and q ∈ Qb\{�}. By assumption, for every nonzero a p̃ , p̃ ∈ L1 ∪ E1 and every nonzero b q̃ ,
q̃ ∈ L2 ∪ E2, we have p̃ ∪ q̃ ∈ E(G̃). Consequently, for any q ∈ Qb\{�}, we have p ∪ q ∈ E(G̃) for all p ∈ Qa and by
(1.1), we obtain ce � apλq . Similarly, for any p ∈ Qa\{�}, we have p ∪ q ∈ E(G̃) for all q ∈ Qb and by (2.1), we
obtain ce � µp bq . Finally, if p < Qa (resp. q < Qb), then by (1.1–1.2) (resp. (2.1–2.2)), we have ce � 0. Combining
these arguments, we obtain (14).
Next we characterize the coefficients ce of cz + γ ≥ 0 for all e ∈ Ē1 ∪ Ē2, where the subsets Ē1 and Ē2 are as

defined above. Since Pe � {e} for all e ∈ Ē1 ∪ Ē2, by (1.2) and (2.2) above we have

ce � 0 ∀ e ∈ Ē1 ∪ Ē2. (15)

Finally, we characterize the remaining coefficients of cz +γ ≥ 0; i.e., cw for all w ∈ L1∪E1∪L2∪E2. To this end,
we utilize the result of Part 2 of Lemma 1 by first letting G′ � G1 and using the fact that ce � 0 for all e ∈ Ē1. It
then follows that

cp � ηap ∀ p ∈ {�} ∪ L1 ∪E1 , (16)

for some η ≥ 0, where for notational simplicity we define c� � γ. Symmetrically,

cq � ζbq ∀ q ∈ {�} ∪ L2 ∪E2 , (17)

for some ζ ≥ 0.
To summarize, let us define Qa , b � {p ∪ q: p ∈Qa , q ∈Qb}; i.e., Qa , b consists of those elements of {�} ∪ L(G̃) ∪

E(G̃) whose corresponding coefficients in inequality (13) are nonzero. Then, for any w ∈ {�} ∪ L(G̃) ∪ E(G̃), by
relations (14)–(17), we have

cw �

{
apλq � µp bq if w � p ∪ q , such that p ∪ q ∈Qa , b ,

0 otherwise,
(18)

where we define µp � ζ, if p �� and λq � η, if q ��.
Denote by Qc the set containing those elements of {�} ∪ L(G̃) ∪ E(G̃) whose corresponding coefficients in

cz + γ ≥ 0 are nonzero. By (18), Qc ⊆ Qa , b . We now show that Qc � Qa , b . To do so, it suffices to prove that for
any nonzero ap and nonzero bq as defined in (18), the coefficient cp∪q is nonzero as well. Assume the contrary
by letting c p̃∪q̃ � 0 for some p̃ ∪ q̃ ∈ Qa , b . Since a p̃ , 0 and b q̃ , 0, by (18), we have µp̃ � λ q̃ � 0. It follows that
c p̃∪q � µp̃ bq � 0 for all q ∈ Qb . By (18), c p̃∪q can be equivalently written as c p̃∪q � a p̃λq and since by assumption
a p̃ , 0, it follows that λq � 0 for all q ∈Qb . Consequently, cp∪q � apλq � 0 for all p∪ q ∈Qa , b ; i.e., cz+γ ≥ 0 simplifies
to the trivial inequality 0 ≥ 0, which gives us a contradiction. Thus, we conclude that cp∪q is nonzero, whenever
both ap and bq are nonzero, implying Qc � Qa , b .
Therefore, without loss of generality, we can assume that µp and λq are nonzero for all nonzero cp∪q as defined

in (18). As a result, we can factorize µp as µp � νp , q ap for some nonzero νp , q . By (18), it follows that

cp∪q � νp , q ap bq ∀ p ∪ q ∈Qc . (19)

Finally, consider two elements in Qc of the form p ∪ q̃ and p ∪ q̂. Using relations (18) and (19) for cp∪q̃ and cp∪q̂
yields µp � νp , q̃ ap � νp , q̂ ap . Therefore, νp , q � ν for all p ∪ q ∈ Qc ; i.e., cz + γ ≥ 0 coincides with inequality (13) up
to a scaling. In addition, since both inequalities are valid for MPG̃, it follows that ν is positive. This, in turn,
implies (13) defines a facet of MPG̃. Hence, by Proposition 6, inequality (13) is facet-defining for MPG. �

In Ursic [39], the author considers the Multilinear polytope MPn , r and derives some conditions under which
certain facets of this polytope can be obtained from multiplying and linearizing facet-defining inequalities of
MPn1 , r1 and MPn2 , r2 with n � n1 + n2 and r � r1 + r2. By a recursive application of Theorem 3, we can construct
certain facets of MPG from the facets of k simpler polytopes MPGi

, i � {1, . . . , k}. Next, we demonstrate the
applicability of the above lifting operation via a simple example.
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Figure 4. (Color online) Hypergraphs G, G1, G2 of Example 4 to demonstrate the lifting scheme introduced in Theorem 3.
Namely, a facet of MPG can be obtained by multiplying and linearizing certain facet-defining inequalities of MPG1

and
MPG2

.

v4

v3

v2v1

v5

v1

v3

v2

v4 v5

G G1 G2

Example 4. Consider the hypergraph G � (V,E) with V � {v1 , v2 , v3 , v4 , v5} and

E � {{v1 , v3}, {v1 , v4}, {v2 , v5}, {v1 , v4 , v5}, {v1 , v2 , v4 , v5}, {v1 , v3 , v4 , v5}, {v2 , v3 , v4 , v5}}.

See Figure 4. Define a partition of the nodes of G as V �V1∪V2, where V1 � {v1 , v2 , v3} and V2 � {v4 , v5}. Define
the two hypergraphs G1 � (V1 ,E1) and G2 � (V2 ,E2) as in Theorem 3; i.e., E1 � {{v1 , v2}, {v1 , v3}, {v2 , v3}} and
E2 � {{v4 , v5}}. Now consider the facets of MPG1

and MPG2
given by z12 + z13 ≤ z1 + z23 and z45 ≥ 0, respectively.

Then, by Theorem 3, the inequality
z1245 + z1345 ≤ z145 + z2345

is facet-defining for MPG. �
We should remark that the converse of Theorem 3 does not hold in the following sense: let V(G)�V1∪V2 be

any partition of the nodes of the hypergraph G and let G1 and G2 be the corresponding hypergraphs as defined
in Theorem 3. Suppose that the inequality dz + δ ≥ 0 defines a facet of MPG and can be obtained by linearizing
(az+α)(bz+ β) ≥ 0, where az+α ≥ 0 and bz+ β ≥ 0 are valid inequalities for MPG1

and MPG2
, respectively. Then,

these inequalities are not necessarily facet-defining for the corresponding polytopes. In addition, it might not
be possible to obtain dz + δ ≥ 0 by multiplying and linearizing two (other) facet-defining inequalities of MPG1
and MPG2

. We demonstrate this fact via a simple example:
Example 5. Consider the hypergraph G � (V,E) with V � {v1 , v2 , v3} and E � {{v1 , v2 , v3}} and consider a facet
of MPG given by z1− z123 ≥ 0. Define a partition of the nodes of G as V �V1∪V2 with V1 � {v1} and V2 � {v2 , v3}.
Construct the two hypergraphs G1 � (V1 ,E1) and G2 � (V2 ,E2) as defined in Theorem 3; i.e., E1 � � and E2 �

{{v2 , v3}}. The inequality z1 − z123 ≥ 0 can be obtained by linearizing the relation z1(1 − z23) ≥ 0. While z1 ≥ 0
defines a facet of MPG1

, the inequality 1− z23 ≥ 0 is not facet-defining for MPG2
as it is implied by z2 − z23 ≥ 0

and 1 − z2 ≥ 0, both of which are valid inequalities for MPG2
. It is simple to check that z1 − z123 ≥ 0 cannot be

obtained by multiplying and linearizing any two facet-defining inequalities of MPG1
and MPG2

. In addition, it
can be verified that there exists no partition of the nodes of G that can be utilized along with Theorem 3 to
generate the facet-defining inequality z1 − z123 ≥ 0. �
Now suppose that the hypergraph G � (V,E) defined in Theorem 3 is a rank-(r + 1) full hypergraph Kn , r+1.

Let V1 � {ṽ} for some ṽ ∈V and let V2 � V\{ṽ}. Define G1 to be the graph corresponding to the node ṽ and G2
to be the rank-r full hypergraph with the node set V2. Then clearly all assumptions of Theorem 3 are satisfied
and hence linearizations of

z ṽ(bz + β) ≥ 0
and

(1− z ṽ)(bz + β) ≥ 0
define facets of MPn , r+1 for any facet-defining inequality bz + β ≥ 0 of MPG2

.
More generally, by defining G to be a rank-(r + δ) full hypergraph for some δ ≥ 1, G1 to be a complete

hypergraph with δ nodes, G2 to be a rank-r full hypergraph and utilizing Theorem 1 and Corollary 3, we obtain
the following:
Corollary 7. Let bz + β ≥ 0 denote a facet-defining inequality for MPn , r . Let W denote a subset of nodes of Kn , r of
cardinality δ ≥ 1 such that W ∩ V(G(b)) � �. For any U ⊆ W , denote by ψU the switching operator as defined by
relations (3) and (4). Then the linearization of any relation of the form

ψU(zW )(bz + β) ≥ 0,

defines a facet of MPn , r′ , where r′ � r + δ.
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The above result provides a systematic procedure to construct facets for the convex hull of nonconvex sets
containing higher degree multilinears from the facets of those containing lower degree multilinear terms. For
instance, various classes of facet-defining inequalities for the Boolean quadric polytope have been identified in
the literature (c.f. Padberg [29], Boros and Hammer [12]). The result of Corollary 7 enables us to convert these
facets into facets of higher degree multilinear polytopes, as demonstrated by the following example.

Example 6. Consider the Boolean quadric polytope QPG defined over a complete graph G with n :� |V(G)|. It
is well known that the triangle inequalities defined as

zi j + zik ≤ zi + z jk

zi + z j + zk − zi j − zik − z jk ≤ 1,

for all distinct i , j, k ∈ {1, . . . , n}, are facet-defining for QPG (c.f. Padberg [29]). Then, by Corollary 7, the fol-
lowing inequalities obtained by multiplying the triangle inequalities by zl and 1− zl , l ∈ {1, . . . , n}\{i , j, k} and
linearizing the resulting relations, define facets of MPn , 3:

zi jl + zikl ≤ zil + z jkl

zi j + zik + zil + z jkl ≤ zi + z jk + zi jl + zikl

zil + z jl + zkl − zi jl − zikl − z jkl ≤ zl

zi + z j + zk + zl − zi j − zik − z jk − zil − z jl − zkl + zi jl + zikl + z jkl ≤ 1,

for all distinct i , j, k , l ∈ {1, . . . , n}. �

4.1. Characterization of Structured Multilinear Polytopes via Facet Multiplication
Denote by G1 and G2 two hypergraphs with V(G1)∩V(G2)��, and suppose that MPG1

� {z: a i z +αi ≥ 0, ∀ i ∈ I}
and MPG2

� {z: b j z+β j ≥ 0, ∀ j ∈ J}. We define the multiplication hypergraph G1×G2 of G1 and G2 as the hypergraph
with node set V(G1) ∪V(G2) and edge set E(G1) ∪ E(G2) ∪ {p ∪ q: p ∈ L(G1) ∪ E(G1), q ∈ L(G2) ∪ E(G2)}. Let the
polytope PG1×G2

be defined by the linearization of every relation of the form (a i z + αi)(b j z + β j) ≥ 0, for all i ∈ I
and j ∈ J. It is simple to verify that the polytope PG1×G2

is well defined. Namely, PG1×G2
remains unchanged if any

number of redundant inequalities are added to the descriptions of MPG1
and MPG2

. Clearly, PG1×G2
⊇MPG1×G2

.
We are interested in identifying the cases for which MPG1×G2

� PG1×G2
. In the following, we investigate the

relationship between the two polytopes PG1×G2
and MPG1×G2

.
The next theorem shows that if one of the two hypergraphs, say G2, is a single node, then PG1×G2

�MPG1×G2
.

The proof technique used in Theorem 4 is similar to the disjunctive programming approach of Balas [2] who
gives an extended formulation for the convex hull of the union of finitely many polytopes. In our case we are
able to explicitly project such formulation and characterize the convex hull in the space of the original variables.

Theorem 4. Let G1 be a hypergraph with MPG1
� {z: a i z + αi ≥ 0, ∀ i ∈ I}, and let G2 be the graph corresponding to a

single node ṽ <V(G1). Then the polytope MPG1×G2
is defined by the linearization of the following relations:

(a i z + αi)z ṽ ≥ 0 (a i z + αi)(1− z ṽ) ≥ 0,

for all i ∈ I.

Proof. Denote by Ḡ the multiplication hypergraph G1 × G2. Consider the faces of MPḠ given by F0 �

{z ∈MPḠ: z ṽ � 0} and F1 � {z ∈MPḠ: z ṽ � 1}. From the definition of MPḠ it follows that

F0
� {z: z ṽ � 0, and zp∪{ṽ} � 0, zp ∈MPG1

, ∀ p ∈ L(G1) ∪E(G1)},

and
F1

� {z: z ṽ � 1, and zp∪{ṽ} � zp , zp ∈MPG1
, ∀ p ∈ L(G1) ∪E(G1)}.

Since MPḠ is an integral polytope, any point z ∈MPḠ can be written as z � (1− λ)z̃0 + λz̃1 for some 0 ≤ λ ≤ 1,
where z̃0 ∈ F0 and z̃1 ∈ F1. Thus, MPḠ can be equivalently written as

MPḠ � {z: z ṽ � λ, zp � (1− λ)z0
p + λz1

p , zp∪{ṽ} � λz1
p , ∀ p ∈ L(G1) ∪E(G1), z0 , z1 ∈MPG1

, 0 ≤ λ ≤ 1}. (20)

Our objective is to derive an explicit description for MPḠ in the space of z variables. We start by eliminating λ
from the description of MPḠ using z ṽ � λ.
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Note that if z ṽ � 0 (i.e., λ � 0), then z1 ∈MPG1
is redundant, and if z ṽ > 0, then z1 ∈MPG1

is equivalent to

(a i z1
+ αi)z ṽ ≥ 0 ∀ i ∈ I . (21)

Therefore, the constraint z1 ∈MPG1
in (20) can be replaced with (21). Similarly, the constraint z0 ∈MPG1

in (20)
can be written as

(a i z0
+ αi)(1− z ṽ) ≥ 0 ∀ i ∈ I . (22)

By zp∪{ṽ} � z ṽ z1
p , inequalities (21) can be equivalently written as ∑

p a i
p zp∪{ṽ} + αi z ṽ ≥ 0 for all i ∈ I, where p ∈

L(G1)∪E(G1), which is identical to the linearization of (a i z +αi)z ṽ ≥ 0 for all i ∈ I. In addition, from zp∪{ṽ} � z ṽ z1
p

and zp � (1− z ṽ)z0
p + z ṽ z1

p for all p ∈ L(G1) ∪E(G1), it follows that (1− z ṽ)z0
p � zp − zp∪{ṽ}. Hence, inequalities (22)

are equivalently given by ∑
p a i

p(zp − zp∪{ṽ}) + (1 − z ṽ)αi ≥ 0 for all i ∈ I, and the latter system of inequalities is
identical to the linearization of the system (a i z + αi)(1− z ṽ) ≥ 0 for all i ∈ I. �

More generally, let G2 be a complete hypergraph. Then, by a repeated application of Theorem 4, we conclude
that also in this case PG1×G2

�MPG1×G2
:

Corollary 8. Let G1 be a hypergraph with MPG1
� {z: a i z + αi ≥ 0, ∀ i ∈ I}, and let G2 be a complete hypergraph with

V(G1) ∩V(G2)��. Then the polytope MPG1×G2
is defined by the linearization of the following relations:

(a i z + αi)ψU(zV(G2)) ≥ 0 ∀ i ∈ I , ∀U ⊆ V(G2).

However, as we demonstrate in the following examples, if the hypergraphs G1 and G2 are both not complete,
then MPG1×G2

is strictly contained in PG1×G2
, in general.

Example 7. Consider the two graphs G1 and G2 with V(G1) � {v1 , v2}, E(G1) � {�}, V(G2) � {v3 , v4} and
E(G2)� {�}. It follows that MPG1

� {z: 0 ≤ zi ≤ 1, i � 1, 2}, MPG2
� {z: 0 ≤ zi ≤ 1, i � 3, 4} and PG1×G2

� {z: zi j ≥ 0,
zi− zi j ≥ 0, z j− zi j ≥ 0, zi j− zi− z j +1≥ 0, (i , j) ∈ {(1, 3), (1, 4), (2, 3), (2, 4)}}. However, in this case, the multiplication
hypergraph G1×G2 consists of a chordless cycle of length four; i.e., V(G1×G2)� {v1 , v2 , v3 , v4} and E(G1×G2)�
{{v1 , v3}, {v1 , v4}, {v2 , v3}, {v2 , v4}}. It is well known that an inequality of the form z13 + z14 + z23 ≤ z24 + z1 + z3
defines a facet of MPG1×G2

(c.f. Padberg [29]), which is clearly not included in the description of PG1×G2
. Thus,

in this example PG1×G2
⊂MPG1×G2

. �
In Example 7, both G1 and G2 are disconnected graphs. One might wonder if MPG1×G2

�PG1×G2
holds for any

two connected hypergraphs G1 and G2. The following example shows that such a claim is not valid.

Example 8. Consider the two hypergraphs G1 and G2 with V(G1) � {v1 , v2 , v3}, E(G1) � {{v1 , v2 , v3}}, V(G2) �
{v4 , v5 , v6} and, E(G2) � {{v4 , v5 , v6}}. Consider the multiplication hypergraph G1 ×G2 as defined above. It can
be shown that an inequality of the form −z1− z4 + z14 + z16 + z34− z36 + z123 + z456− z1234− z1456 ≤ 0 defines a facet of
MPG1×G2

. However, it is simple to check that this inequality cannot be obtained by multiplying and linearizing
any two facet-defining inequalities of MPG1

and MPG2
. �

Next, we utilize Theorem 4 to investigate the converse of the result considered in Corollary 7. More precisely,
consider the Multilinear polytope MPn , r , r ≥ 2. For each facet-defining inequality az + α ≥ 0, denote by U ⊂
V(Kn , r) the set of nodes that are not present in G(a). Then, by Corollary 7, multiplying az + α ≥ 0 by zv (or
1 − zv) for each v ∈ U, and linearizing the resulting inequality gives a facet of MPn , r+1. Denote by Pn , r+1 the
polytope defined by all such inequalities. We would like to characterize the relationship between MPn , r+1 and
Pn , r+1. Such a result is of particular interest, as for instance it enables us to identify the structure of those
facets of MPn , r+1, r ≥ 2 that cannot be obtained by lifting facets of the Boolean quadratic polytope via the above
procedure, and as a result require different derivation techniques.
Before addressing the above question, we should remark that to construct the polytope Pn , r+1, we multiply

each facet-defining inequality of MPn , r by those variables that are not present in the support hypergraph of
the corresponding facet. Consider a facet of MP3, 2 defined by z12 + z13 ≤ z1 + z23. Multiplying this facet-defining
inequality by z3 and linearizing the resulting inequality yields z123 ≤ z23, which indeed defines a facet of MP3, 3.
However, the same facet can also be obtained by considering another facet of MP3, 2 defined by z12 ≤ z2, multi-
plying this facet-defining inequality by z3, and linearizing the resulting relation. In fact, the result of Theorem 4
implies that in general, it suffices to consider the nodes that are not present in the support hypergraphs of the
facets of MPn , r . To see this, consider a facet of MPn , r given by az + α ≥ 0, and let v̄ denote a node that belongs
to the hypergraph G(a), such that the linearization of z v̄(az + α) ≥ 0 (or (1 − z v̄)(az + α) ≥ 0) defines a facet
of MPn , r+1. Clearly, the support hypergraph of the new facet is a partial hypergraph of the hypergraph G1 ×G2,
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where G1 is the rank-r full hypergraph on the nodes different from v̄, and G2 is the graph corresponding to
the single node v̄. Therefore, by Theorem 4, the same facet can be obtained by multiplying a facet-defining
inequality of MPn−1, r by z v̄ (or (1− z v̄)), and subsequently linearizing it.
Now let us return to the question of the relationship between the two polytopes MPn , r+1 and Pn , r+1, for r ≥ 2.

Let G1 � Kn−1, r , and let G2 be a graph corresponding to a single node not in V(G1). In this case, G1 × G2 is
a partial hypergraph of Kn , r+1, and in fact, the missing edges are precisely those rank-(r + 1) edges of Kn , r+1

contained in V(G1). It then follows by Theorem 4 that the polytope Pn , r+1 contains any facet of MPn , r+1 whose
support hypergraph is a partial hypergraph of G1×G2. In particular, if n � r +1, then we have MPn , n

�Pn , n . For
the general case with n > r + 1, by Theorem 4, we can state the following result:

Corollary 9. Let az + α ≥ 0 denote a facet of MPn , r+1 and denote by Ẽ the set of all rank-(r + 1) edges in G(a). Then
az + α ≥ 0 can be obtained by linearizing a relation of the form z ṽ(bz + β) ≥ 0 or of the form (1− z ṽ)(bz + β) ≥ 0, where
bz + β ≥ 0 defines a facet of MPn−1, r and ṽ <V(G(b)), if and only if ṽ ∈⋂

e∈Ẽ e.

Proof. We first prove sufficiency of the condition. Let az + α ≥ 0 be obtained by linearizing a relation of the
form z ṽ(bz+ β) ≥ 0 or of the form (1− z ṽ)(bz+ β) ≥ 0, where bz+ β ≥ 0 defines a facet of MPn−1, r and ṽ <V(G(b)).
Then clearly all the edges of G(a) of rank (r + 1) contain the node ṽ.

Let ṽ ∈⋂
e∈Ẽ e. Then necessity of the condition follows by applying Theorem 4 to the rank-r full hypergraph

G constructed on the n − 1 nodes different from ṽ. �

5. Lifting via Node Addition
In this section we introduce a different lifting operation in which the Multilinear set S G′ is obtained by fixing cer-
tain independent variables in S G to one; that is, we set zv � 1 for some v ∈V(G). Equivalently, the hypergraph G′

can be obtained from the hypergraph G by removing certain nodes of G. More precisely, given a node v̄ ∈V(G),
we say that G′ is obtained from G by removing v̄, if V(G′)�V(G)\{v̄} and E(G′)� {e\{v̄}: e ∈ E(G), |e\{v̄}| ≥ 2}.
This type of lifting can be used to obtain facets of sets containing higher degree multilinears from those with
lower order ones.
As we detail in the following, our results are based on the key assumption that dim(MPG) � dim(MPG′)+ 1,

and this relation holds if and only if the hypergraph G′ does not contain any loops or parallel edges; i.e.,
ē\{v̄} < L(G) ∪ E(G) for all edges ē of G containing v̄. This assumption is needed, as otherwise the Multilinear
polytope MPG′ is not full-dimensional. It then follows that there exist linearly independent inequalities defining
the same facet of MPG′ , in which case the lifting operations of this section are not well defined.

Theorem 5. Let G be a hypergraph, let v̄ ∈V(G), and let {ē j : j ∈ J} be the set of all edges containing v̄. Let e j � ē j\{v̄}
for each j ∈ J and suppose that e j < L(G) ∪ E(G) for all j ∈ J. Let G′ be the hypergraph obtained from G by removing
the node v̄. Denote by az ≤ α a valid inequality for MPG′ . Define J̄ � { j ∈ J: ae j

, 0}. Let ṽ ∈ V(G′) with a ṽ ≥ 0. Let
{e j : j ∈ J̃} be the set of edges in G(a) that contain ṽ, and suppose that J̄ � J̃. Then the inequality∑

p∈L(G′)∪E(G′)\{e j : j∈ J̄}
ap zp +

∑
j∈ J̄

ae j
z ē j

+ a ṽ z v̄ ≤ α+ a ṽ (23)

is valid for MPG. Moreover, if az ≤ α is facet-defining for MPG′ and is different from z ṽ ≤ 1, then (23) is facet-defining
for MPG.

Proof. We start by establishing the validity of inequality (23) for every point z̄ ∈S G. If z̄ v̄ � 1, then the validity
of (23) follows from z̄ ē j

� z̄e j
for all j ∈ J. Hence, let z̄ v̄ � 0. In this case, if z̄ ṽ � 1, then the validity of (23) follows

from the previous argument, the symmetry of the support hypergraph of inequality (23) with respect to v̄ and
ṽ (i.e., the two nodes are contained in the same set of edges of G(a)), and the fact that the coefficients of z v̄ and
z ṽ in (23) are identical. Thus, it suffices to show the validity of (23) if z̄ v̄ � z̄ ṽ � 0. Let z̃ ∈S G′ be obtained from z̄
by dropping z v̄ and computing ỹe accordingly for every e ∈ E(G′). It then follows that the value of the left-hand
side of inequality (23) at z̄ is equal to the value of the left-hand side of az ≤ α at z̃. By assumption a ṽ ≥ 0, hence
inequality (23) is valid for MPG.
We now show that if az ≤ α is facet-defining for MPG′ , then inequality (23) defines a facet of MPG. By

assumption e j < L(G)∪E(G) for all j ∈ J, implying dim(MPG)�dim(MPG′)+1. Denote by z i , i � 1, . . . , k, all points
in S G′ satisfying az � α. We lift each of these points z i to a point z̄ i in S G by letting z̄ i

v̄ � 1 and by computing
z̄ i

e accordingly for every e ∈ E(G). Clearly, z̄ i
ē j
� z i

e j
, for all j ∈ J, implying inequality (23) is satisfied tightly at

these points. Since az ≤ α defines a facet of MPG′ , there are at least |V(G′)|+ |E(G′)| affinely independent points
among z̄ i , i � 1, . . . , k.
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Figure 5. (Color online) Hypergraphs G and G′ of Example 9 demonstrating that certain facets of MPG can be obtained
from those of MPG′ by employing the lifting operation defined in Theorem 5.

G G�

v1v2

v4v3

v5

v3

v1v2

v4

To complete the proof, we need one additional point in S G denoted by ẑ that (i) cannot be written as an affine
combination of z̄ i , i � 1, . . . , k, and (ii) satisfies (23) tightly. Clearly, any point with ẑ v̄ � 0 satisfies condition (i),
since z̄ i

v̄ � 1 for all i � 1, . . . , k. We choose a point z0 ∈ S G′ with az0 � α, and z0
ṽ � 0. The existence of such a

point follows from the assumption that the facet-defining inequality az ≤ α is different from z ṽ ≤ 1. Next, we
lift z0 to a point ẑ in S G by letting ẑ ṽ � 1, ẑ v̄ � 0, and by computing ẑe accordingly for every e ∈ E(G). Note that
ẑ ē j

� z0
e j
� 0 for every j ∈ J̄ � J̃. Therefore, ẑ satisfies (23) tightly and as a result, inequality (23) is facet-defining

for MPG. �

The key assumption in Theorem 5 is the symmetric structure of the support hypergraph of inequality (23)
with respect to the nodes ṽ and v̄. Clearly, this assumption is satisfied in the special case where the hypergraph
G is symmetric with respect to ṽ and v̄, i.e., the two nodes are contained in the same set of edges of G. In the
following example, we demonstrate the applicability of the above lifting operation.

Example 9. Consider the hypergraph G defined as V(G) � {v1 , v2 , v3 , v4 , v5} and E(G) � {{v1 , v3},
{v1 , v4 , v5}, {v2 , v3 , v5}, {v3 , v4 , v5}} (see Figure 5). We show that the following inequalities are facet-defining
for MPG:

−z1 + z13 + z145 − z345 ≤ 0
−z3 + z13 − z145 + z345 ≤ 0 (24)

z1 + z3 + z4 + z5 − z13 − z145 − z345 ≤ 2.

To see this, consider the graph G′ obtained by removing the node v̄ � v5 from G; i.e., V(G′) � {v1 , v2 , v3 , v4}
and E(G) � {{v1 , v3}, {v1 , v4}, {v2 , v3}, {v3 , v4}}. First, note that the set of edges of G′ corresponding to edges in
G containing v5 is EJ � {{v1 , v4}, {v2 , v3}, {v3 , v4}}. Moreover, it is simple to verify that the following triangle
inequalities are facet-defining for MPG′ :

−z1 + z13 + z14 − z34 ≤ 0
−z3 + z13 − z14 + z34 ≤ 0 (25)

z1 + z3 + z4 − z13 − z14 − z34 ≤ 1.

The set of edges in EJ with nonzero coefficients in each of the above inequalities is E J̄ � {{v1 , v4}, {v3 , v4}}. Now
let ṽ � v4. Clearly, in all three inequalities (25), we have a ṽ ≥ 0. Moreover, for all these inequalities the set of edges
with nonzero coefficients containing v4 is given by E J̃ � {{v1 , v4}, {v3 , v4}}. It follows that E J̄ � E J̃ . Therefore, all
assumptions of Theorem 5 are satisfied, and inequalities (24) are facet-defining for MPG. �

Next, we develop alternative lifting operations for cases that do not satisfy the assumptions of Theorem 5.
We make use of the following proposition to present our next result.

Proposition 8. Let G be a hypergraph, and let az ≤ α be a facet-defining inequality for MPG. Let ṽ ∈ V(G(a)), and let
e j , j ∈ J, be the edges of G(a) that contain ṽ. Suppose that az ≤ α is different from z ṽ ≤ 1. If ∑

j∈ J ae j
ze j
≥ 0 for every

z ∈S G, then a ṽ ≤ 0.

Proof. Since az ≤ α is different from z ṽ ≤ 1, it follows that there exists z̃ ∈S G with az̃ � α and z̃ ṽ � 0 (and z̃e j
� 0

for every j ∈ J). Let P � L(G) ∪E(G)\{{ṽ}, e j : j ∈ J}. We have∑
p∈P

ap z̃p � α. (26)
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Consider now the point z̄ obtained from z̃ by setting z̄ ṽ � 1 and computing the corresponding z̄e for every
e ∈ E(G). As az ≤ α is valid for z̄ ∈S G, we have ∑

p∈P ap z̄p + a ṽ +
∑

j∈ J ae j
z̄e j
≤ α. Since z̄p � z̃p for every p ∈ P, we

obtain ∑
p∈P

ap z̃p + a ṽ +
∑
j∈ J

ae j
z̄e j
≤ α. (27)

From (26) and (27) we get a ṽ ≤ −
∑

j∈ J ae j
z̄e j

. As ∑
j∈J ae j

ze j
≥ 0 for every z ∈S G, we conclude that a ṽ ≤ 0. �

Consider the hypergraphs G and G′ defined in Theorem 5, and let az ≤ α be facet-defining for MPG′ . In
the next theorem, we introduce a lifting operation assuming that ∑

j∈ J ae j
ze j
≥ 0 for every z ∈ S G′ , where J

corresponds to the index set of edges in G(a) containing ṽ. In this case, by Proposition 8 we have a ṽ ≤ 0. Clearly,
if a ṽ < 0, then the lifting technique of Theorem 5 cannot be utilized. The following lifting operation is applicable
in many cases for which Theorem 5 cannot be applied.
Theorem 6. Let G be a hypergraph, let v̄ ∈ V(G), and let G′ be obtained from G by removing v̄. Denote by {ē j : j ∈ J}
the set of all edges containing v̄. Suppose that ē j\{v̄} < L(G) ∪E(G) for all j ∈ J. Let az ≤ α denote a valid inequality for
MPG′ such that ∑

j∈ J
ae j

ze j
≥ 0 ∀ z ∈S G′ , (28)

where e j � ē j\{v̄} for each j ∈ J. Then, the inequality∑
e∈L(G′)∪E(G′)\{e j : j∈ J}

ae ze +
∑
j∈ J

ae j
z ē j
≤ α, (29)

is valid for MPG. Denote by J̄ � { j ∈ J: ae j
, 0} and suppose that⋂

j∈ J̄

e j ,�. (30)

If az ≤ α is facet-defining for MPG′ , then inequality (29) is facet-defining for MPG.
Proof. We start by establishing the validity of inequality (29) for MPG. Let z̄ be a feasible point in S G, and
let z̃ be the corresponding point in S G′ obtained by dropping z̄ v̄ and computing the corresponding feasible
components z̃e , for all e ∈ E(G′). Two cases arise:
(i) z̄ v̄ � 1; it then follows that z̄ ē j

� z̃e j
for all j ∈ J which in turn implies inequality (29) is valid at z̄.

(ii) z̄ v̄ � 0; in this case, substituting z̄ in inequality (29) yields∑
e∈L(G′)∪E(G′)\{e j : j∈ J}

ae z̄e ≤ α. (31)

By assumption, we have ∑
j∈ J ae j

z̃e j
≥ 0. From az̃ ≤ α, it then follows that ∑

e∈L(G′)∪E(G′)\{e j : j∈ J} ae z̃e ≤ α. Moreover,
z̄e � z̃e for all e ∈ L(G′) ∪E(G′)\{e j : j ∈ J}. Hence, inequality (31) is valid.
We now show that if az ≤ α is facet-defining for MPG′ and condition (30) is satisfied, then inequality (29)

defines a facet of MPG. Denote by z i , i � 1, . . . , k the set of all points in S G′ satisfying az � α. We lift each of
these points z i to a point z̄ i in S G by letting z̄ i

v̄ � 1, and by computing z̄ i
e accordingly, for each e ∈ E(G). Clearly,

z̄ i
ē j
� z i

e j
, for all j ∈ J. Hence, inequality (29) is satisfied tightly at these points. Since az ≤ α is facet-defining for

MPG′ , the set {z̄ i : i � 1, . . . , k} contains |V(G′)| + |E(G′)| affinely independent points.
By assumption, e j < L(G) ∪ E(G) for all j ∈ J. It follows that dim(MPG) � dim(MPG′) + 1. Consequently, to

complete the proof, we need one additional point in S G denoted by ẑ that satisfies (29) tightly and cannot be
written as an affine combination of the points z̄ i , i � 1, . . . , k. Clearly, any point ẑ with ẑ v̄ � 0 cannot be written
as an affine combination of z̄ i , i � 1, . . . , k, since z̄ i

v̄ � 1 for all i � 1, . . . , k.
We first show that there exists a point z0 ∈S G′ with az0 � α, and z0

e j
� 0 for every j ∈ J̄. Let ṽ ∈⋂ j∈ J̄ e j . Note that

by (30), a node ṽ always exists. Two cases arise: (i) if az ≤ α is different from z ṽ ≤ 1, then there exists z0 ∈ S G′

with az0 � α and z0
ṽ � 0, implying z0

e j
� 0 for every j ∈ J̄; (ii) if az ≤ α coincides with z ṽ ≤ 1, then let z0 be any

point in S G′ with z0
ṽ � 1 and, for every j ∈ J̄, z0

v j
� 0 for a node v j ∈ e j\{ṽ}, which in turn implies z0

e j
� 0 for every

j ∈ J̄. Next, we lift z0 to a point ẑ in S G by letting ẑ v̄ � 0, and by computing ẑe accordingly, for each e ∈ E. Note
that, since z0

e j
� 0 for all j ∈ J̄, it follows that ẑ ē j

� z0
e j
for every j ∈ J̄, and therefore ẑ satisfies (29) tightly. Thus,

inequality (29) is facet-defining for MPG. �

Let us consider the case for which the assumptions of both Theorems 5 and 6 are satisfied. By Proposition 8,
it then follows that a ṽ � 0, implying the two lifted inequalities defined by (23) and (29) are identical. We should
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Figure 6. (Color online) Hypergraphs G, G̃, and G′ of Example 10 demonstrating that certain facets of MPG can be
obtained from those of MPG′ by employing the lifting operation defined in Theorem 6.
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remark that Theorem 6 relies on the assumption that ∑
j∈ J ae j

ze j
≥ 0 for all z ∈ S G′ . Clearly, this assumption is

satisfied in the special case where ae j
≥ 0 for all j ∈ J; i.e., the lifting operation of Theorem 6 can be utilized

for the case in which the node to be removed is located at the intersection of edges of G whose corresponding
coefficients in az ≤ α are nonnegative. However, the assumption of Theorem 6 enables us to obtain facets in
cases for which the latter nonnegativity assumption is not satisfied.
In Example 10, we show the usefulness of the lifting operation defined in Theorem 6 to generate certain facets

of a rank-3 hypergraph by lifting facets of a graph.
Example 10. Consider the hypergraph G with V(G) � {v1 , v2 , v3 , v4 , v5} and E(G) � {{v1 , v2}, {v1 , v3 , v4},
{v2 , v3 , v4 , v5}} (see Figure 6). We claim that the following inequalities are facet-defining for MPG:

− z3 − z12 + z134 + z2345 ≤ 0, −z4 − z12 + z134 + z2345 ≤ 0. (32)

To see this, consider the hypergraph G̃ obtained by removing node v5 from G, and the hypergraph G′ obtained
by removing node v4 from G̃. It is simple to verify that the following so-called triangle inequality

− z3 − z12 + z13 + z23 ≤ 0 (33)

defines a facet of MPG′ (c.f. Padberg [29]). Since the coefficients of z13 and z23 in inequality (33) are nonnegative,
by Theorem 6 and using a symmetry argument, it follows that the following inequalities are facet-defining
for MPG̃:

− z3 − z12 + z134 + z234 ≤ 0, −z4 − z12 + z134 + z234 ≤ 0. (34)
Again, since the coefficient of z234 in both inequalities defined in (34) is nonnegative, we can utilize Theorem 6
to conclude that inequalities (32) are facet-defining for MPG. �

It is important to note that the assumption defined by (30), i.e., requiring the existence of a node ṽ at the
intersection of certain edges of G in Theorem 6, is weaker than the corresponding assumption in Theorem 5.
Namely, while Theorem 6 requires the existence of ṽ at the intersection of those edges containing v̄ whose
corresponding coefficients in az ≤ α are nonzero, Theorem 5 requires that, in addition, the node ṽ should not
be contained in any other edge of G(a). This, in turn, implies that inequality (29) is not necessarily symmetric
with respect to v̄ and ṽ, whereas inequality (23) has such a symmetric structure. In the following example, we
demonstrate that Theorem 6 does not hold in general, if assumption (30) is not satisfied.
Example 11. Consider the hypergraph G defined as V(G) � {v1 , v2 , v3 , v4 , v5 , v6 , v7} and E(G) � {{v1 , v2},
{v2 , v3 , v7}, {v3 , v4}, {v4 , v5 , v7}, {v5 , v6}, {v1 , v6 , v7}} (see Figure 7). Let v̄ � v7. For this example, the hypergraph
G′ obtained by removing node v7 from G is a chordless cycle of length six. It is well known that the following
so-called odd cycle inequality defines a facet of MPG′ (c.f. Padberg [29]):

−z12 + z23 − z34 + z45 − z56 + z16 ≤ 1.

Since the coefficients of z23, z45 and z16 in the above inequality are nonnegative, if we relax the assumption on
the nonemptyness of the intersection of the corresponding edges in G′, by Theorem 6, one concludes that the
following inequality defines a facet of MPG:

− z12 + z237 − z34 + z457 − z56 + z167 ≤ 1. (35)

We now show that the above inequality is not facet-defining for MPG by providing a valid inequality for MPG
that implies inequality (35). Consider the expression on the left-hand side of inequality (35). We first compute
the maximum value of this expression over MPG; that is, we find the maximum of f � −z1z2 − z3z4 − z5z6 +

z1z6z7 + z2z3z7 + z4z5z7, where zv ∈ {0, 1} for all v ∈V(G). Consider the following cases:
(i) z7 � 0: in this case f simplifies to −z1z2 − z3z4 − z5z6 whose maximum over {0, 1}7 is equal to zero.
(ii) z7 � 1: in this case, we have f �−z1z2 + z2z3 − z3z4 + z4z5 − z5z6 + z1z6, and it is simple to verify that f ≤ 1.
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Figure 7. (Color online) Hypergraphs G and G′ of Example 11 demonstrating that the nonemptyness assumption defined
by (30) in Theorem 6 is necessary, in general.

v1 v4

v3v2

v5v6

G�

v1 v4

v3v2

v5v6

v7

G

Thus, the following is a valid inequality for MPG:

−z12 + z237 − z34 + z457 − z56 + z167 ≤ z7.

Clearly, the above inequality, together with z7 ≤ 1, implies (35) and as result inequality (35) is not facet-defining
for MPG. Thus, we conclude that the lifting operation of Theorem 6 is not valid in general, if the nonemptyness
assumption defined by (30) does not hold. �
In Theorem 6, if the node v̄ is contained in a single edge ē, with | ē | ≥ 3 and ē\v̄ <E(G), then the assumptions of

the theorem simplify to a ē\{v̄} ≥ 0; i.e., the node v̄ is restricted to be removed from an edge whose corresponding
coefficient in the facet of MPG′ is nonnegative. In the following theorem, we consider the case where v̄ is
removed from an edge with a negative coefficient.
Theorem 7. Let G be a hypergraph, and let v̄ be a node of G that is contained only in one edge ē ∈ E(G). Suppose that
| ē | ≥ 3, and that ē\v̄ < E(G). Let G′ be obtained from G by removing v̄, and let ẽ � ē\{v̄}. Let az ≤ α denote a valid
inequality for MPG′ with a ẽ < 0. Then, the inequality∑

p∈L(G′)∪E(G′)\{ẽ}
ap zp + a ẽ z ē − a ẽ z v̄ ≤ α− a ẽ (36)

is valid for MPG. Moreover, if az ≤ α is facet-defining for MPG′ and is different from z ẽ ≥ 0, then (36) is facet-defining
for MPG.
Proof. We first establish the validity of inequality (36) for MPG. Let z̄ be a feasible point in S G. We show that
inequality (36) is satisfied by z̄. Let z̃ be the corresponding point in S G′ obtained by dropping z̄ v̄ , and by
computing the corresponding feasible z̃e , for e ∈ E(G′). Note that z̄p � z̃p for every p ∈ L(G′) ∪E(G′)\{ẽ}.
First, let z̄ v̄ � 1. In this case, the validity of inequality (36) follows from the fact that z̄ ē � z̃ ẽ :∑

p∈L(G′)∪E(G′)\{ẽ}
ap z̄p + a ẽ z̄ ē − a ẽ z̄ v̄ �

∑
p∈L(G′)∪E(G′)

ap z̃p − a ẽ ≤ α− a ẽ .

Next, let z̄ v̄ � 0. In this case, we have z̄ ē � 0. Hence,∑
p∈L(G′)∪E(G′)\{ẽ}

ap z̄p + a ẽ z̄ ē − a ẽ z̄ v̄ �
∑

p∈L(G′)∪E(G′)\{ẽ}
ap z̃p ≤ α− a ẽ z̃ ẽ ≤ α− a ẽ .

The last inequality is valid since by assumption a ẽ < 0. This completes the proof of validity.
We now show that if az ≤ α is facet-defining for MPG′ , then inequality (36) defines a facet of MPG. Denote

by z i , i � 1, . . . , k, the set of all points in S G′ satisfying az � α. We now convert each of these points to a point
z̄ i ∈MPG, by letting z̄ i

v̄ � 1 for all i ∈ {1, . . . , k} and computing z̄ i
e accordingly for every e ∈ E(G). Clearly, these

points satisfy inequality (36) tightly. Since az ≤ α defines a facet of MPG′ , the set {z̄ i : i � 1, . . . , k} contains
|V(G′)| + |E(G′)| affinely independent points.
By assumption, ẽ < E(G), implying that dim(MPG)� dim(MPG′)+ 1. Thus, to complete the proof, we need one

point in S G, denoted by ẑ, which satisfies (36) tightly and cannot be written as an affine combination of the
points z̄ i , i � 1, . . . , k. We now choose a point, say z0 ∈S G′ , satisfying az � α with z0

ẽ � 1. We can always assume
that such a point exists, since otherwise the hyperplane az � α is contained in z ẽ � 0, which is in contradiction
with the assumption that az ≤ α defines a facet of MPG′ different from z ẽ ≥ 0. We now lift z0 to a point ẑ ∈S G by
letting ẑ v̄ � 0 and ẑ ē � 0. Clearly, this point satisfies (36) tightly and cannot be written as an affine combination
of points in z̄ i , i � 1, . . . , k, since z i

v̄ � 1 for all i. Thus, inequality (36) is facet-defining for MPG. �
In the following example we demonstrate the applicability of the lifting operation defined in Theorem 7.
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Example 12. Consider the hypergraph G � (V,E) with V(G) � {v1 , v2 , v3 , v4} and E(G) � {{v1 , v2}, {v1 , v3},
{v2 , v3 , v4}}. We argue that the following inequality

− z1 + z4 + z12 + z13 − z234 ≤ 1, (37)

defines a facet of MPG. To see this, consider the graph G′ obtained by removing the node v4 from G. It is
simple to check that −z1 + z12 + z13 − z23 ≤ 0 defines a facet of MPG′ . Since the coefficient of z23 in this inequality
is negative, by Theorem 7, the inequality (37) is facet-defining for MPG. For this example, Theorem 5 is not
applicable since G′ does not have a node of the form ṽ, as defined in this theorem. �

We conclude this section by presenting a family of facet-defining inequalities for hypergraphs with a certain
structure. The proposed facets are obtained via a recursive application of the lifting operations introduced in
this section.

Corollary 10. Let G � (V,E) be a hypergraph with edges e1 , . . . , et , for some t ≥ 3. Suppose that ei , i ∈ {1, . . . , t} has
nonempty intersections with ei−1 and ei+1 only, where we define e0 � et and et+1 � e1. In addition, each node is contained
in at most two edges of G. Let M be a subset of E of odd cardinality. Denote by S1 ⊆ V(G) the set of nodes that are not
contained in any edge in E\M, and let S2 ⊆ V(G) denote a set of nodes that contains exactly one node in ei ∩ ei+1 for
every i ∈ {1, . . . , t} with ei , ei+1 ∈ E\M. Then the following inequality is facet-defining for MPG:∑

v∈S1

zv −
∑
e∈M

ze −
∑
v∈S2

zv +
∑

e∈E\M
ze ≤ k + b|M |/2c , (38)

where k � |S1 | − |{i ∈ {1, . . . , t}: ei , ei+1 ∈M}|.
Proof. We start by defining the following auxiliary hypergraphs:

• the hypergraph G′ is obtained by removing from G all nodes contained in exactly one edge e′ of G with
e′ ∈M; that is, all nodes in the set {v: v ∈ e′ for some e′ ∈M, v < e , ∀ e ∈ E\{e′}} are removed from G.

• the hypergraph G′′ is obtained by removing from G′ the following nodes: (i) all nodes contained in exactly
one edge in E\M, (ii) for each i ∈ {1, . . . , t} with ei , ei+1 ∈ E\M, all the nodes in ei ∩ ei+1\S2,

• the graph G′′′ is obtained by removing from G′′ the following nodes: (i) for each i ∈ {1, . . . , t} with ei ,
ei+1 ∈M, all the nodes but one in ei ∩ ei+1, (ii) for each i ∈ {1, . . . , t} with ei ∈M and ei+1 ∈ E\M or ei ∈ E\M and
ei+1 ∈M, all nodes but one in ei ∩ ei+1.
Since by definition of G there is no node contained in more than two edges, it can be checked that there is a

bĳection among the edges of any pair of hypergraphs G,G′,G′′,G′′′. For notational simplicity, in the following,
we use the same notation for the edges in G,G′,G′′,G′′′ that are in a one-to-one correspondence.

By construction, the graph G′′′ is a chordless cycle of length t. Hence, the following so-called odd-cycle
inequality is facet-defining for MPG′′′ (see Barahona and Mahjoub [7], Padberg [29]):∑

v∈S1∩V(G′′′)
zv −

∑
e∈M

ze −
∑
v∈S2

zv +
∑

e∈E\M
ze ≤ b|M |/2c . (39)

In inequality (39), all coefficients corresponding to the nodes at the intersection of two edges in M, and in
the intersection of one edge in M and one in E\M, are nonnegative. As a result, we can apply Theorem 5
recursively to obtain the following facet-defining inequality for MPG′′ :∑

v∈S1∩V(G′′)
zv −

∑
e∈M

ze −
∑
v∈S2

zv +
∑

e∈E\M
ze ≤ k′+ b|M |/2c , (40)

where k′ � |S1 ∩V(G′′)| − |{i ∈ {1, . . . , t}: ei , ei+1 ∈M}|.
Since in inequality (40), the coefficients corresponding to edges in E\M are nonnegative, we can recursively

apply Theorem 6 and obtain the following facet-defining inequality for MPG′ :∑
v∈S1∩V(G′)

zv −
∑
e∈M

ze −
∑
v∈S2

zv +
∑

e∈E\M
ze ≤ k′+ b|M |/2c . (41)

Finally, observe that in inequality (41), all coefficients corresponding to edges in M are negative. Hence, by a
recursive application of Theorem 7, we conclude that inequality (38) defines a facet of MPG. �

6. Concluding Remarks
We studied the convex hull of the Multilinear set defined by a collection of multilinear equations from a poly-
hedral point of view. We developed the theory of various types of lifting operations for this set, giving rise to
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many types of facet-defining inequalities in the space of the original variables. In particular, together with the
known families of facet-defining inequalities for the Boolean quadric polytope, the proposed lifting techniques
enable us to construct sharper polyhedral relaxations for mixed-integer nonlinear optimization problems con-
taining multilinear sub-expressions. Devising efficient separation algorithms along with extensive computational
experimentations with the proposed cutting planes is a subject of future research.
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