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Abstract We consider the Multilinear set S defined as the set of binary points (x, y)
satisfying a collection of multilinear equations of the form y; = [[;c; xi, [ € Z,
where 7 denotes a family of subsets of {1, . .., n} of cardinality at least two. Such sets
appear in factorable reformulations of many types of nonconvex optimization prob-
lems, including binary polynomial optimization. A great simplification in studying the
facial structure of the convex hull of the Multilinear set is possible when S is decom-
posable into simpler Multilinear sets S;, j € J; namely, the convex hull of S can be
obtained by convexifying each S;, separately. In this paper, we study the decompos-
ability properties of Multilinear sets. Utilizing an equivalent hypergraph representation
for Multilinear sets, we derive necessary and sufficient conditions under which S is
decomposable into S;, j € J, based on the structure of pair-wise intersection hyper-
graphs. Our characterizations unify and extend the existing decomposability results
for the Boolean quadric polytope. Finally, we propose a polynomial-time algorithm to
optimally decompose a Multilinear set into simpler subsets. Our proposed algorithm
can be easily incorporated in branch-and-cut based global solvers as a preprocessing
step for cut generation.
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1 Introduction

Central to the efficiency of global optimization algorithms is their ability to con-
struct sharp and cheaply computable convex relaxations. Factorable programming
techniques are used widely in global optimization of mixed-integer nonlinear opti-
mization problems (MINLPs) for bounding general nonconvex functions [20]. These
techniques iteratively decompose a factorable function, through the introduction of
variables and constraints for intermediate functional expressions, until each interme-
diate expression can be outer-approximated by a convex feasible set [31]. Current
general-purpose MINLP solvers [21,26,32] rely on factorable relaxations and as a
result, enhancing the quality of such relaxations has a significant impact on our ability
to solve a wide range of nonconvex problems.

Factorable reformulations of many types of MINLPs contain a collection of multi-
linear equations of the form y; = I—[ie ; Xi, I € I, where 1 denotes a family of subsets
of N = {1, ..., n} of cardinality at least two. Examples include quadratic programs,
polynomial programs, and multiplicative programs. Building sharp convex relaxations
for multilinears has been the subject of extensive research by the mathematical pro-
gramming community for over four decades now (cf. [12-15,18,24,25,27]) and it is
well-understood that the quality of these relaxations has a significant impact on the per-
formance of MINLP solvers [1,2,21-23]. Let us define the nonconvex set associated
with all multilinear expressions present in a factorable reformulation of a MINLP as

S={0,y):yr=]]x, 1 €T, x €l0,1], Vi e /i, x; €{0,1}, Vi € )},

iel

where J; and J, form a partition of A and are the index sets corresponding to con-
tinuous and binary variables, respectively. It is well-known that the convex hull of the
mixed-integer set Sisa polytope and the projection of its vertices onto the space of
x variables is given by {0, 1}"* (cf. [30]). It then follows that the facial structure of
the convex hull of S can be equivalently studied by considering the following binary
set:

S:{(x,y):y1=l_[xi,lel', xe{O,l}”}. (1

iel

In particular, the set S represents the feasible region of a linearized unconstrained
0—1 polynomial optimization problem. Throughout this paper, we refer to the set S as
the Multilinear set and refer to its polyhedral convex hull as the Multilinear polytope
(MP). Moreover, we refer tor = max{|/| : I € Z} as the degree of the Multilinear set.
If all multilinear terms in S are bilinears, i.e., r = 2, the corresponding Multilinear
polytope coincides with the Boolean quadric polytope first defined and studied by Pad-
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berg [24] in the context of unconstrained 0— 1 quadratic programming. In contrast to the
rich literature on structural properties of the Boolean quadric polytope [4,7,24], similar
polyhedral studies for higher degree Multilinear polytopes are quite scarce [8,14,15].
In the special case where r = n and the set Z contains all subsets of A/, a com-
plete linear description for the convex hull of the Multilinear set is available [28].
In practice, however, we often have n > r and the set Z consists of a small frac-
tion of subsets of V. In this paper, we are particularly interested in such Multilinear
sets.

A great simplification in studying the facial structure of the Multilinear polytope is
possible when the corresponding Multilinear set is decomposable into simpler Mul-
tilinear sets. More precisely, let S be a Multilinear set that can be represented as an
intersection of a collection of Multilinear sets S;, j € J. Clearly, the convex set
obtained by intersecting the convex hulls of sets S; is a superset of the convex hull of
S as the convexification operation does not, in general, distribute over intersection. It
is highly desirable to identify conditions under which we have

conv ﬂ Si| = ﬂ (conij),

jeJ jeJ

as in such cases characterizing the convex hull of S simplifies to characterizing the
convex hull of each S; separately. In this paper, we study decomposability properties
of Multilinear sets. To this end, as in [15], we define an equivalent hypergraph rep-
resentation for S. Recall that a hypergraph G is a pair (V, E) where V = V(G) is
the set of nodes of G, and E = E(G) is a set of subsets of V of cardinality at least
two, called the edges of G (see Berge [6] for an introduction to hypergraphs). The
rank of G is the maximum cardinality of an edge in E. In the special case where G
has no edges, we say that the rank of G is one. Throughout this paper, we consider
hypergraphs without loops and parallel edges. With any hypergraph G = (V, E), we
associate a Multilinear set S defined as follows:

So={ze 0.1z =]z, ecE], )

vee

where d = |V |+ |E|. We denote by MPg the polyhedral convex hull of Si. Note that
the variables z,, v € V, in (2) correspond to the variables x;, i € N, in (1) and the
variables z., e € E, in (2) correspond to the variables y;, I € Z, in (1). For quadratic
sets, our hypergraph representation simplifies to the graph representation defined
by Padberg [24] to study the Boolean quadric polytope QPs. Given a hypergraph
G = (V, E), and a subset V' of V, the section hypergraph of G induced by V' is the
hypergraph G’ = (V’/, E’), where E' = {e € E : ¢ C V'}. Given hypergraphs G| =
(V1, E1) and G2 = (Va, Ey), wedenote by G1 NG, the hypergraph (ViNVa, E1NE>),
and we denote by G| U G», the hypergraph (V] U V,, E1 U E3). Now, consider a
hypergraph G, and let G;, j € J, be distinct section hypergraphs of G such that
UjesGj = G. We say that the set S¢ is decomposable into sets Sg;, for j € J, if the
following relation holds
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convSg = m convSGj, 3)
jeJ

where, SG]., J € J is the set of all points in the space of Sg whose projection in the
space defined by G; is Sg; . If the hypergraph G is not connected, then it is simple to
show that S is decomposable into SG]., j € J, where G;, j € J, are the connected
components of G. Henceforth, we assume that G is a connected hypergraph.

There has been an interesting stream of research on developing decomposition
techniques for NP-hard combinatorial optimization problems. In the following, we
briefly review some of the major findings in this area. Chvétal [9] proves that the stable
set polytope decomposes into simpler polytopes if the underlying graph contains clique
separators. Barahona [3] gives an explicit description for the cut polytope when the
underlying graph is not contractible to K5 by showing that the cut polytope decomposes
into simpler polytopes when the intersection graph is a clique of cardinality less than
or equal to three. In [5], the authors develop decomposition schemes for the balanced
induced subgraph polytope, stable set polytope and the acyclic subgraph polytope,
when the corresponding graphs contain one- or two-node cut sets. In his doctoral
dissertation, Margot [19] studies general decomposition techniques for combinatorial
optimization polytopes and shows that the so called “projected faces property” is
sufficient for decomposability of a polytope. Subsequently, in [10], the authors provide
a characterization of the projected faces property.

In Sect. 2, we establish necessary and sufficient conditions for decomposability
of Sg into Sg;, j € J, based on the structure of pair-wise intersection hypergraphs
G; NGy, for j, j’ € J with j # j'. Subsequently, in Sect. 3, we study a more
general decomposition technique which allows decomposition of many more types
of Multilinear sets associated with sparser hypergraphs. In particular, as we detail in
Sects. 2 and 3, our characterizations unify and extend the existing decomposability
results for the Boolean quadric polytope [24].

Itis well-understood that branch-and-cut based MINLP solvers would highly benefit
from our decomposition results as such techniques lead to significant reductions in
CPU time during cut generation [1,2,22,23]. Our results in Sects. 2 and 3 provide
easily verifiable conditions under which a Multilinear set can be decomposed into
lower dimensional Multilinear sets without compromising the quality of the resulting
relaxation. In Sect. 4, we consider the problem of decomposing a Multilinear set Sg
into a collection of non-decomposable Multilinear sets Sg,, k € K. This problem
is related to the problem of decomposing a graph by clique separators, a common
tool used for various graph problems such as graph coloring and finding maximum
independent sets [17,29]. We present a polynomial-time algorithm to decompose a
Multilinear set in terms of its hypergraph representation. Given a connected rank-
r hypergraph G = (V, E), we prove that our proposed algorithm gives an optimal
decomposition of Sg in O(r|E|(]V| 4+ | E])) time. We demonstrate that the proposed
algorithm performs significantly better than alternative decompositions obtained by a
naive application of our decomposition results.
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2 Decomposability of Multilinear sets

In this section, we study decomposability properties of the Multilinear set Sg. Suppose
that G| and G, are distinct section hypergraphs of G such that G| U G, = G. We
present a necessary and sufficient condition for decomposability of S¢ into Multilinear
sets S, and Sg,, based on the structure of the intersection hypergraph G1 N G2. In
the remainder of this paper, we say that a hypergraph G = (V, E) is complete if all
subsets of V of cardinality at least two are present in E.

2.1 A sufficient condition for decomposability of Multilinear sets

The following theorem provides a sufficient condition for decomposability of S¢ into
SGl and SGZ .

Theorem 1 Let G be a hypergraph, and let G1, Gy be section hypergraphs of G
such that G1 U Gy = G and G| N Gy is a complete hypergraph. Then the set Sg is
decomposable into S, and Sg, .

Proof Clearly the inclusion “C” in (3) holds since Sg € SGI N SGZ. Thus, it suffices
to show the reverse inclusion. As G| and G, are different from G, both G\G and
G\ G, arenonempty. Letz € convSGl ﬂconvg(;2 and let zX contain those components
of Z corresponding to nodes and edges of the complete hypergraph K = G| N G».
Fori = 1,2, let 7' be the vector containing those components of Z corresponding to
nodes and edges in G;\ K. Using these definitions, we can now write, up to reordering
variables, 7 = (z', zX, z%). Let k := |V(K)|. Since K is a complete hypergraph, the
set Sk has dimension Y_5_; (¥) and consists of 3-F_ (%) affinely independent points,
implying that convSk is a simplex. It then follows that the vector zX € convSg
can be written in a unique way as a convex combination of points in Sk i.e., there

exists a unique vector of multipliers A with A > 0 and ) As = 1 such that

K
= ZSGSK AsS.

The vector (z!, zX) € convSg, can be written as a convex combination of points
in Sg,:

SESK

(zl,zK)z S s for W z0with > L =1
(r,$)€Sg, (r,)€Sg,

YD )

seSk r:(r,s)eS(;]

Z( > ML,S> Do (),

seSk r:(r,s)eSGl r:(r,s)eSG1

where in the last equation we introduced new multipliers jtrs == [y (/> 1. )e Se,
;L/r,s. Clearly © > 0 and Zr:(r,s)escl irs = 1 for every s € Sk. Since zK can

be written in a unique way as a convex combination of points in Sk, we obtain
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Fig. 1 Some examples of hypergraphs G for which by Theorem 1, the set S¢ is decomposable into S,
and S,

G

24X

1
Yorirs)eSa, Mrs = hs- Hence, (21 25) = 3 s Ao 3rsesy, s (r:5). Sym-
metrically, we obtain (zX,2%) = Y s A Zt:(s,t)escz V.1 (s, 1), for v > 0 with
Zt:(s,t)eScz vs.+ = 1. Hence, the following holds:

(Zl, ZK, ZZ) = Z )\vﬂr,s Vs,t(ra s, 1). “4)

se€Sk, r:(r,$)€Sc, , 1:(s,1)€SG,

Since G and G, are section hypergraphs of G, each 0—1 vector (r, s, t) in (4) is
in Sg. Moreover, the multipliers As . Vs, are nonnegative and satisfy

Z )\s/l«r,svs,t =1,

seSk, r:(r,s)eS(;l R t:(s,t)eS(;2

This implies Z € convSg. O

Figure 1 illustrates some simple hypergraphs G for which the Multilinear set Sg
is decomposable into two Multilinear sets Sg, and Sg,. To draw a hypergraph G,
throughout this paper, we represent the nodes in V(G) by points, and the edges in
E(G) by closed curves enclosing the corresponding set of points.

We should remark that Theorem 1 can be alternatively proved using the “projected
faces property” introduced by Margot [19], as the Multilinear polytope MPg ng, is a
simplex. However, for simplicity of presentation and keeping the text self-contained
we chose to provide a proof that solely relies on elementary arguments.

Theorem 1 unifies the existing decomposability results for the Boolean quadric
polytope QP (cf. [3,24]):

Corollary 1 Consider a graph G = G U Gj, where G| and G, are induced sub-
graphs of G with V(G1) NV (G2) = {u}, for some u € V(G), or V(G1) NV (Gr) =
{u, v}, for some {u, v} € E(G). Then QP is decomposable into QPg, and QPg,.

By arecursive application of Theorem 1, we obtain a sufficient condition for decom-
posability of Sg into sets Sg;, for j € J.
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Theorem 2 Let G be a hypergraph, and let G, j € J, be section hypergraphs of G
such that Ujc ;Gj = G. Suppose that for all j, j' € J with j # j', the intersection
Gj NG is the same complete hypergraph G. Then Sg is decomposable into Sg;, for
jelJ.

2.2 A necessary condition for decomposability of Multilinear sets

In this section, we demonstrate the tightness of Theorem 1; namely, we show that if a
rank-r hypergraph G is not complete, then for any integer ' > max{r, 2}, there always
exists a rank-r’ hypergraph G = G| U G, with G = G| N G, such that Sg is not
decomposable into Sg, and Sg,. We will make use of the following two lemmata to
prove this claim. In the remainder of the paper, for notational simplicity, given a node
v., we sometimes write z. instead of z, . Similarly, given an edge e., we sometimes
write z. instead of z, .

Lemma 1 Consider the hypergraph G = (V,E)withV ={v; :i =1,...,r + 3}
for somer > 2. Let J = {3,...,r + 3} and let E contain the following set of edges:
e1i = {vi,vitforalli € J, exj = {va,v;} foralli € J, and ey = {v; : i € I} for
every I C J of cardinality between 2 and r. Then the inequality given by

rr=Du 4+ —Da+ry zi—F—0D> zi— Y 2

ieJ ieJ ieJ
— Z z; < r2 —1 (5)
1c{3,....,r+3}
[I=r

is facet-defining for MPg.

Proof The validity of inequality (5) for MPg can be verified by considering the four
cases corresponding to different combinations of (z1, z2) € {0, 1}2. ‘We now show that
inequality (5) defines a facet of MP¢. To do so, we provide three families of points
in MPg that satisfy the inequality (5) tightly, and show that the hyperplane az = «
(unique up to a scaling) passing through all such points is the supporting hyperplane
corresponding to the half-space implied by (5).

(i) Let J denote the set of all subsets of J with cardinality between O and r — 1. For
each I € J, construct a point withz; =z = 1,z; = lforalli € I,and z; =0
otherwise. The variables z,, for e € E, are computed accordingly. It is simple to
verify that all such points satisfy inequality (5) tightly. Substituting such a tight
point with I = ¢ in az = «, we obtain

ay+a = a. (6)

Similarly, setting / = {i} for all i € J, yields a1 + a2 + a; + a1; + a2i = «.
From (6), it follows that

ai +aj;+ay =0 7
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for all i € J. Moreover, letting I = {i, j} for3 < i < j < r + 3, yields
ai +ay +a; +a; + axi +a; +arj + axj +a;j = a. Since a1 + a; = «,
a; +ay; +az =0,and a; +a;; + az; = 0, we conclude that a;; = 0. Utilizing
a similar argument in a recursive manner for subsets / with larger cardinalities,
we obtain:

aj=0, YICJ, |Il>2. (8)

(i1) Let K denote the set of all subsets of J of cardinality r — 1 or r. Foreach I € I,
construct a point with z; = 1,z =0, z; = 1 foralli € I, and z; = 0 otherwise.
The variables z,, for e € E, are computed accordingly. All these points satisfy
inequality (5) tightly. First, consider the points with |I| = r. By (8), we have
ap = 0forall I’ C I with |I’| > 2. Thus, substituting for such points in az = «,
we obtain

al—i—Zai—l—Zali—i—a[:a. ©)]

iel iel

Now, consider the set of tight points corresponding to subsets of J of cardinality
r — 1. Suppose that for each j € I, where [ is defined in (9), the new tight point is
obtained by letting z; = 1 for all i € I\{j} and z; = 0. Substituting this point in
az =ayieldsai+3 ¢y jy @i+ 2iep(j) @10 = @ We now add these r equations
for every j € J and subtract the result from Eq. (9) multiplied by r — 1 to obtain
a; — (r — 1)aj = «. Since, this relation holds for all I € K with |I| = r, we
conclude that

aj=hri=(ai—a)/r—1), YICJ, |I|=r (10)

(iii) Let £ denote the set of all subsets of J of cardinality r or r + 1. Foreach I € L,
construct a tight point with z; = zp = 0,z; = lforalli € I,andz; = 0
otherwise. The variables z., for e € E, are computed accordingly. Substituting
the point with I = J in az = « yields

Za[+(r+l)kza. a1

iel

In addition, for each j € J, substituting the tight point with I = J\{j}, we obtain

a + A =a. (12)
>

ieJ\{j}

Subtracting the two equations gives a; + rA = 0 for all i € J. Hence,

a; = u:=—ri, Viel. (13)
Combining Eqgs. (10), (13) and (9), we obtain a; + ru + Zie[ ayj + A = « for
all I C J with |I| = r. Now consider two equations from this system, one with
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I = J\{j}, and another with I = J\{k} for some j,k € J such that j # k.
Subtracting these two equations we obtain a;; = ajx. By applying this argument
recursively, it follows that

ajj=vi:=(@—ay—ru—=A)/r, Viel. (14)
In addition, Eq. (7) simplifies to u + vi + az; = 0, implying

azi =V .= — — Vi, Vi e J. (15)

To summarize, using Egs. (6), (7), (8), (10), (11), (12), (13), (14) and (15), we obtain
the following system of equations

alt+a =« (16)
w4+vi+1=0 (I7)
ag+r—DHu+r—-—NHv =« (18)
ar+ru+rvi+A=« (19)
r+Du++Dr =« (20)
ruw+A=ca. 21

If « = 0, then it can be checked that the only solution of the above system is the
zero vector. Thus, without loss of generality, we assume o = > — 1. Equations (20)
and (21) imply u = r and A = —1. It follows that equations (18) and (19) can be
written as a; + (r — 1)vy = r — 1 and a; 4+ rv; = 0, implying a; = r(r — 1) and
v; = —(r — 1). Finally, from (16) we obtain a; = r — 1, and (17) yields v, = —1.
Therefore, inequality (5) defines a facet of MPg. O

Lemma 2 Let G be a hypergraph, and let G, G be section hypergraphs of G such
that G1UG2 = G and the set Sg is decomposable into Sg, and Sg,. Let H be a section
hypergraph of G such that V(H)\V(G1) and V(H)\V (G2) are both nonempty. For
J = 1,2, let Hj be the section hypergraph of G induced by V(G;) NV (H). Then the
set Sg is decomposable into Sy, and S, .

Proof As in the proof of Theorem 1, we define a vector (zl , 2, zz) such that (zl ,2) €
convSpy, and (Z, 2 e convSy,. We show that (z1,z,7%) € convSy.

Let 5 be obtained from z by adding zero coefficients to the components corre-
sponding to nodes and edges that are in G := G NGybutnotin H := H, N H,. For
j = 1,2, let s/ be obtained from z/ by adding zero coefficients to the components
corresponding to nodes and edges that are in G; but notin H; or in G.

Let p € Sy, and let p be obtained from p by adding zero coefficients to the
components that are in G; but not in H;. Since H; is a section hypergraph of G;,
it follows that the vector p is in SGj. Consequently, we have (z',2) € convSy, and
(z,72%) € convSy,, which in turn imply sL,5) € convSg, and (5, ) e convSg,.
By decomposability of Sg into Sg, and Sg,, it follows that (s',5,5%) € convSg.
Therefore (s', 5, s2) can be written as a convex combination of points in Sg. By
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dropping from each point in such a convex combination the components corresponding
to nodes and edges present in G but not in H, we obtain (zl, Z, zz) € convSy. O

We are now in position to prove the converse of Theorem 1.

Theorem 3 Let G be a rank-r hypergraph that is not complete. Then for any integer
r’ > max{r, 2}, there exists a rank-r’ hypergraph G = G| U G», where G| and G, are
section hypergraphs of G with G = G 1N G, such that the set Sg is not decomposable
into Sg, and Sg,.

Proof We start by proving that if the rank-r hypergraph G is not complete, then there
exists a hypergraph G of rank max{r, 2} such that G = G| U G3, where G| and G,
are section hypergraphs of G with G = G| N G, and the set Sg is not decomposable
into Sg, and Sg,. Subsequently we show that the same statement holds for a rank-r’
hypergraph G with " > max{r, 2}.

We search for a section hypergraph of G, denoted by H, that has ¢ nodes, for
some g € {2, ...,|V(G)|}, such that H contains all edges of cardinality between two
and ¢ — 1 but does not contain the edge of cardinality ¢. Observe that since G is
not complete, it always contains such a section hypergraph. We first show that there
exists a hypergraph H = H; U H,, where H; and H, are section hypergraphs of H
with H = Hj N H», such that the set Sy is not decomposable into Su, and Sp,.
Subsequently, we employ the result of Lemma 2 to complete the proof. Let v; and
v> be new nodes (not in V(G)), let V(H;) = V(H) U {v1}, V(H>) = V(H) U {v2},
E(Hy) = E(H)U{{v, v} : v € V(H)},and E(H,) = E(H)U{{v2, v} : v € V(H)).
By construction H = H; N Hy. We now identify a facet defining inequality for
MPy with nonzero coefficients corresponding to edges in both E(H;)\E(H) and
E(H>)\E(H). Two cases arise:

(i) g = 2. In this case, there exist nodes u, w € V(G) such that {u, w} ¢ E(G).
Therefore, the graph H is a cordless cycle with the node set given by {vy, v2, u, w}
and the edge set given by {{vy, u}, {vi, w}, {va, u}, {v2, w}}. Itis well-known that
the inequality

~Zuy = Zw ~ Zuru) T Zrw) + 2w + 2wy =0,
deﬁnesafacgtofconvSH (cf.[24]). Since {v, u} € E(H])\E(H),While{vz, u} €
E(Hy)\E(H), it follows that the set Sy is not decomposable to Sy, and S, .

(ii) g > 2. In this case, the hypergraph H is of the form considered in the statement
of Lemma 1 (with r = ¢ — 1) and hence, the inequality given by

@=D@ =Dz + (@ =Dz + @ =1 Y z+

veV(H)
—@=2) Y = D = Y, Z=<(@-1D—1
veV(H) veV(H) ecE(H)
le]=g—1

is facet defining for convSy. Thus, Sy is not decomposable into Sy, and Sg,.
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G <> Gy < > Ga
¢ M 1 M % “

Fig. 2 Some examples of hypergraphs G for which the set S¢ is not decomposable into Sg, and S,

Let G := H; U H> U G. Clearly, the rank of G equals max{r, 2}. Define G| and
G to be section hypergraphs of G induced by V(H) U V(G) and V(H) U V(G),
respectively. It is simple to check that G = G| U G, and G = G| N Gs. Since H
is a section hypergraph of G, V(H)\V(G1) = {vz}, and V(H)\V(G2) = {v1}, by
Lemma 2, the set Sg is not decomposable into Sg, and Sg,.

Now let ' be an integer greater than max({r, 2}, and let the hypergraph G, be
obtained from G, by addmg r’—1 new nodes, denoted by W, and anew edge {vo}UW.
Now define the rank-r" hypergraph G := G U G». Then it is simple to check that by
Lemma 2 the set S is not decomposable into Sg, and SGz’ and this completes the
proof. O

Figure 2 illustrates some simple hypergraphs G for which the set S¢ is not decom-
posable into Sg, and Sg,.

In [24], Padberg poses a question regarding the decomposability of the Boolean
quadric polytope when the intersection graph is a clique of cardinality greater than
two. In our context, his question can be equivalently stated as follows: let G be a graph
with |V(G)| > 3 and with E(G) containing all subsets of V(G) of cardinality two.
Given any two distinct graphs G| and G, with G =G NGy, V(Gl)\V(G) # 0,
and V(G2)\V(G) # 0, is QPg,ucG, always decomposable into QP and QPg,? The
proof of Theorem 3 implies that the answer to this question is negative for every G
with three or more nodes.

3 Decomposability of Multilinear sets with sparse intersection
hypergraphs

The decomposability results given in Sect. 2 are based upon the assumption that the
pair-wise intersection hypergraphs are complete. In this section, we explore the relation
between the sparsity of the intersection hypergraph G and the extent to which G is
decomposable. To this end, given a hypergraph G, we define its incompleteness number
« (G) to be the difference between the number of edges of a complete hypergraph on
V(G) and the number of edges of G thatis, k (G) = 2V DI _|V(G)| — |E(G)| — 1.
The following theorem provides a decomposition scheme for Multilinear sets whose
corresponding intersection hypergraph G is not complete; i.e., k (G) > 0.

Theorem 4 Let G be a hypergraph, and let G, j € J, be section hypergraphs of G
such that Uje jG; = G. Suppose that, for all j, j' € J with j # j', the intersection
G; N Gy is the same hypergraph G. Denote by K the set of all subsets of J of

@ Springer



A. Del Pia, A. Khajavirad
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Fig. 3 The Multilinear set S¢ is not decomposable into the sets Sg,, Si,, and Sg,. However, by
Corollary 2, it is decomposable into Sg, U G, SG, U G3»> and SG UG,

cardinality 2€(9)_ Let Gy = UjekcGj foreach K € K. Then Sg is decomposable into
Sger KeK.

Proof Let k = K(G). If « = 0, the result follows from Theorem 2. Henceforth,
we assume that « > 1. Let G’ be the hypergraph obtained from G by adding the «
edges corresponding to all subsets of V (G) that are not present in E(G). Moreover,
we denote by G’; the section hypergraph of G’ induced by V(G;). By Theorem 2,
the Multilinear set S is decomposable into SG}, for j € J. Therefore, the support
hypergraph of each facet-defining inequality of MP¢ is contained in some hypergraph
G/j, forj € J.

To obtain a facet-description of MP¢ from that of MP, we project out, via Fourier
elimination, the x variables corresponding to edges that we have artificially added to
G in order to obtain G’. By projecting out one variable, the support hypergraph of
each new inequality is contained in the union of at most two hypergraphs G’j, jeld.
Similarly, by projecting out the next variable, the support hypergraph of each new
inequality can be contained in the union of at most four hypergraphs G’j, jedJ. In
this way, once we project out all ¥ variables, the support hypergraph of each inequality
is contained in the union of at most 2“ hypergraphs G’j, J € J. Hence, the theorem
follows. O

In Theorem 4, lett_ing k(G) =0, yields Theorem 2 (and Theorem 1, if |J| = 2).
Moreover, letting « (G) = 1, we obtain the following:

Corollary 2 Let G be a hypergraph, and let G;, j € J, be section hypergraphs of G
such that UjeyG; = G. Suppose that for all j, j’ € J with j # j', the intersection
Gj N G is the same hypergraph G, and that G can be obtained by removing one
edge from the complete hypergraph on V (G). Then Sg is decomposable into the sets
Sc;ue,. for j, Jj e Jwithj #j.
We demonstrate the applicability of Corollary 2 with an example.

Example 1 Consider the hypergraph G with V(G) = {vy, v2, v3, v4, v5, v} and
E(G) = {e12, €13, €23, €1234, €1235, €1236}, Where edge e; contains the nodes with
indices in I. Let G, G», and G3 be section hypergraphs of G induced by the sub-
sets of nodes {vy, v, v3, va}, {v1, v2, v3, v5}, and {vy, va, v3, ve}, respectively (see

Fig. 3). In this case, Sg is not decomposable into Sg,, Sg,, and Sg,, as for example
the inequality

24— 21234 + 21235 < 1

@ Springer



On decomposability of Multilinear sets

defines a facet of Sg. However, the pair-wise intersection hypergraph; i.e., G :=
G1 NGy = G NGz = Gz N Gy can be obtained by removing one edge (in this
case eq23) from the complete hypergraph on vy, vo, v3. Therefore, by Corollary 2, the
Multilinear set Sg is decomposable into subsets S, UG,, SG,UG;» and Sgyu G, -

As a direct consequence of Corollary 2, we now present new sufficient conditions
under which the Boolean quadric polytope is decomposable into simpler sets.

Corollary 3 Let G be a graph, and let G;, j € J, be induced subgraphs of G such
thatUjcjGj = G. Suppose that forall j, j' € J with j # j', the intersection G; NG
is the same graph G, and that G has one of the following forms:

@) (:7 consists of two isolated nodes, i.e., V(G) = {v, w}, and_E(G) =0.
(i) G consists of a triangle, i.e., V(G) = {u,v, w}, and E(G) = {{u, v}, {v, w},
{w, u}}.

Then QP is decomposable into QPG,,UGJ_, forall j, j" € Jwith j # j'.

Proof Follows directly from Corollary 2 by using the fact that the intersection graph
G can be obtained by (i) removing the edge {v, w} from the complete graph on v, w
and (ii) removing the edge {u, v, w} from the complete hypergraph on u, v, w. O

Example 2 Consider the graph G with V(G) = {v; : i = 1,...,r + 2} for some
r > 3. Suppose that E(G) consist of the following set of edges: {v1, v} and {v2, v;}
forall j € J ={3,...,r +2}. Denote by G;, j € J, the subgraph of G induced by
the nodes vy, v2, v;. It is then simple to check that the pair-wise intersection graph G
consists of two nodes vy, va2. Therefore, by Part (i) of Corollary 3, S¢ is decomposable
into Sg; UG, forall j, j’ € J with j # j’. Now, consider one set SGjqu,- The graph
G; U Gj: consists of a cordless cycle of length four. It then follows that Mch UGy is
obtained by adding the odd-cycle inequalities to the standard linearization of SGj UG
(cf. [24]). Thus, the Boolean quadric polytope associated with the graph G is obtained
by adding all odd-cycle inequalities corresponding to r(r — 1)/2 chordless cycles of
length four to the standard linearization of S¢.

4 A polynomial-time algorithm for decomposition of Multilinear sets

In this section, we present a simple and efficient algorithm for optimally decomposing
Multilinear sets into simpler and non-decomposable Multilinear sets based on our
results in Sect. 2. Our proposed algorithm can be easily incorporated in branch-and-
cut based MINLP solvers as a preprocessing step for cut generation. Throughout this
section, whenever a Multilinear set Sg is decomposable into subsets SG. n jeJ,we
refer to the family G;, j € J, as a decomposition of G. Without loss of generality,
we assume that G is a connected hypergraph; that is, if the hypergraph G is not
connected, then it is simple to see that Sg is decomposable into Sg,, k € K, where
Gy, k € K, denote the connected components of G. Thus, in this case, our algorithm
can be employed to further decompose each connected component G. Now, consider
ahypergraph G and let p C V(G). Denote by G the section hypergraph of G induced
by p. We say that p decomposes G if the following two conditions are satisfied:
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(a) The hypergraph G is complete.
(b) There exist section hypergraphs G;, j € J, of G, with V(G;)\V (G;/) # ¢ for all
J,j' € J with j # j', that together with G, satisfy the hypothesis of Theorem 2.

In condition (b) defined above, by letting V(G;)\V(Gj) = @ for some j, j' €
J, we obtain Uje\(j}G; = G. Thus, we can apply Theorem 2 to the family G;,
i € J\{j} instead, and obtain a more compact decomposition. Furthermore, for a
connected hypergraph G, it can be shown that each hypergraph G;, j € J,is a
connected hypergraph as well. For a fixed p that decomposes G, the decomposition
obtained by utilizing Theorem 2 is not unique, in general. That is, there might exist
several families of section hypergraphs G;, j € J, with | J jes Gj = G, whose pair-
wise intersection hypergraph is G. Clearly, among all such decompositions, we are
interested in the ones for which p does not decompose any of the G;. It can be shown
that such a decomposition of G is indeed unique. Henceforth, we refer to this unique
decomposition as the p-decomposition of G.

In general, a Multilinear set S¢ is decomposable into simpler sets via a series of
p-decompositions of G until none of the newly generated Multilinear sets are decom-
posable. Given a hypergraph G, we define its full-decomposition as a decomposition
of G given by a family G, k € K, with the following two properties:

(i) There exists no Gy, for some k € K, and p C V(Gy) such that p decomposes
Gg.

(i) Nohypergraph Gg,s € K, inthe decomposition is a section hypergraph of another
hypergraph G;, t € K, with t # 5.

We should remark that if G, is a section hypergraph of G, forsome s, t € K withs # ¢,
then MPg, corresponds to a face of MPg,. Thus, removing G from a decomposition
of G, translates into removing redundant inequalities from the facet description of
MPg, which is highly beneficial from a computational point of view.

Finding a full-decomposition of a hypergraph has certain similarities to the prob-
lem of decomposing a graph by means of clique separators, where a clique separator
is defined as a clique whose removal disconnects the graph. Given a graph G with
n nodes and m edges, Tarjan [29] presents an O (nm)-time algorithm to decompose
the graph. The decomposition obtained using this algorithm depends on the ordering
of the clique separators and is far from unique, in general. Leimer [17] introduces
a modification of Tarjan’s algorithm in which minimal clique separators are utilized
in the recursive decomposition of the graph. The author shows that the output of this
algorithm is unique and that the number of subgraphs in the decomposition is minimal.
In the remainder of this section, we present results on uniqueness and optimality of
our proposed decomposition algorithm (see Propositions 3 and 5), which are of similar
flavor to the results presented in [17,29] regarding the decomposition of graphs by
clique separators. While it is possible to obtain alternative proofs for our aforemen-
tioned results using the machinery developed in [17], to keep the presentation simple,
we utilize our techniques to prove these propositions.

In the following, we first show how to obtain the p-decomposition of G algorith-
mically. Subsequently, we define a general algorithm to obtain a full-decomposition
of a hypergraph and detail on possible enhancements.
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4.1 An algorithm to obtain the p-decomposition of G

We start by introducing some graph terminology. Throughout this section, we assume
that a hypergraph is represented by an incidence-list in which edges are stored as
objects, and every edge stores its incident nodes. In order to use efficient searching
algorithms, we assume that the vertex list for each edge is sorted. Otherwise, such a
sorted data structure for a rank-r hypergraph can be obtained in O (| E|) time by using
some integer sorting algorithm such as counting sort [11]. In addition, we assume that
the edges of E are sorted in increasing cardinality, and edges of the same cardinality are
sorted lexicographically. For a rank-r hypergraph, such a sorting order can be obtained
using the least significant digit (LSD) radix sort in O (r|E|) operations (cf. [11]). For
graphs however, we consider a slightly different data structure as it is widely-used for
some of the graph algorithms that we utilize in this paper. We represent a graph by an
adjacency-list in which nodes are stored as objects, and every nodes stores its adjacent
nodes.

Given a rank-r hypergraph G = (V, E), we define a graph reduction of G as
a graph G’ = (V, E’) obtained from G by replacing each edge of cardinality at
least three with one cycle containing all of its nodes, where no node is repeated.
Furthermore, to obtain a simple graph, all parallel edges are removed. A hypergraph
can have many different graph reductions, in general. It can be shown that any graph
reduction of G has at most r|E| edges and can be obtained in O(r|E]) time: we
construct a graph reduction of a hypergraph G in two steps: (i) starting from the
incidence-list of the hypergraph G, we first generate the adjacency-list for the (multi)-
graph G = (V, E) obtained by replacing each edge of cardinality at least three in
G by a cycle containing all of its nodes, where no node is repeated, (ii) given the
adjacency-list representation of the (multi)-graph G, we compute the adjacency-list
representation of the equivalent simple graph G’ = (V, E’), where E’ consists of
the edges in E with all multiple edges between two nodes replaced by a single edge;
note that the adjacency-list of a multi-graph is similar to that of a simple graph except
that in a multi-graph the list of adjacent nodes for each node may contain repeated
elements. It is simple to check that both of these steps can be performed in O (r|E|)
time.

Given a hypergraph G = (V, E) and an edge ¢ € E, the hypergraph G’ = (V', E')
obtained from G by contracting ¢ is defined as V' = V\e U {0}, where ¥ is a new
node,and E' = {e:e € E, eNé =@} U{e\éeU{D} : e € E, ené # (). For
a rank-r hypergraph G, the hypergraph G’ can be constructed in O(r|E|) time. To
see this, note that since by assumption the vertex lists corresponding to all edges of
G are sorted, for each ¢ € E we can obtain e\e in O(max(Je|, |e|)) time. It then
follows that G can be obtained in O (r|E|) time. Finally, given a graph G = (V, E),
and a node v € V, we denote by G\v, the graph obtained from G by remov-
ing node v and all edges containing v. In the sequel, for notational simplicity, we
sometimes identify a node, say v, with the set containing it, say {v}. The following
proposition provides a simple algorithm for constructing the p-decomposition of a
hypergraph G.
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Proposition 1 Given a connected rank-r hypergraph G = (V, E) and p C V, we
can test if p decomposes G, and, if so, obtain the p-decomposition of G in O (r|E|)
time.

Proof Clearly if p decomposes G, then p € V U E. We first check if condition (a)
in the definition of p-decomposition is satisfied; that is, if the section hypergraph
induced by p is complete. This condition is trivially satisfied if p € V. Thus, assume
that p € E. It then suffices to check if each subset of p of cardinality at least two
is an edge of G. Clearly, if 2!?! — |p| — 1 > |E|, then such subsets of p are not all
present in E. Therefore, suppose that 2!?! — |p| — 1 < |E|. By assumption, edges
of G are sorted in increasing cardinality and edges of the same cardinality are sorted
lexicographically. By using a similar ordering for the subsets of p, we can check in
O(|E|) time, if the section hypergraph induced by p is complete.

We now assume that the section hypergraph induced by p is complete, and we show
how to check if condition (b) holds. Let G’ be the hypergraph obtained from G by
contracting p, which can be constructed in O(r|E|) time. Let § € V(G’) be the new
node added to V after contraction of p in G, and let G” be a graph reduction of G,
which has at most r|E| edges and can be obtained in O (r|E|) time. It is then easy to
see that p decomposes G if and only if G”\ is a disconnected graph, which can be
tested using the classical depth-first search algorithm of Hopcroft and Tarjan [16] that
runs in O (r|E|) time.

Now assume that p decomposes G. We show how to obtain the p-decomposition
of G. Let V;, j € J, be the subset of nodes of G corresponding to the con-
nected components of G”\v. Denote by G the subgraph induced by V; U {1},
for each j € J. Then the depth-first search algorithm of [16] can further be aug-
mented to label edges of G” corresponding to different subgraphs G, j € J, in
O(r|E|) time. Define the hypergraph G;, for each j € J, as the section hyper-
graph of G induced by V; U p. It is simple to check that G;, j € J, is the
p-decomposition of G. To characterize the edge set for each G;, we first note
that by definition, each ¢ € E with e < p is present in all Gj, j € J. To
characterize the remaining distinct edges, it suffices to label edges of G accord-
ing to the labeling available for the edges of G” as described above; suppose
that for each edge e in G we associate a pointer to an edge ¢” in G” with
e D ¢’ Tt then follows that any two edges e; and e, in G belong to the
same G; if and only if the corresponding edges e| and eJ in G” are present in
the same G’j’. Therefore, hypergraphs G;, j € J, can now be characterized in
O(|E]) time. O

We should remark that for a given p that decomposes a hypergraph G into G,
J € J, the output of the p-decomposition test described in the proof of Proposition 1
provides a labeling of the edges of G that belong to exactly one new hypergraph G;,
with the understanding that the edges contained in p are present in all G;, j € J.
Consequently, generating a complete list of edges belonging to each G; forall j € J
canbe done in |E|+ (|J| — 1)| E| steps, where E denotes the set of edges contained in
p. Since, |J| < |E| and |E| < |E|, we conclude that the cost of storing hypergraphs
G;j, j € J,in the incidence-list format, in the worst case is O(|E 12).
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4.2 Full-decompositions

In the following, we define a general algorithm to obtain a full-decomposition of a
hypergraph G.

Gen_dec : General full-decomposition algorithm

Input: A hypergraph G
Output: A full-decomposition of G
Initialize the family £ = {G};
while £ does not satisfy property (i) of full-decomposition do
select a hypergraph G € £ and p C V(G);
if p decomposes G then
let G, j € J, be the p-decomposition of G;
let J be the subset of J such that each Gj,j € J , 1s not a section
hypergraph of any hypergraph in £ different from G;
in L, replace G with Gj.je€ f;

return £;

Proposition 2 The family L returned by Gen_dec is a full-decomposition of G.

Proof To check that L is indeed a full-decomposition of G, it suffices to show that
property (ii) of full-decomposition is satisfied; that is, in £, there exist no two distinct
hypergraphs G and G, such that Gy is a section hypergraph of G,. We prove this
statement by induction on the iterations of the algorithm. That is, we now assume that
it is true at the point G and p are selected.

By condition (b) in the definition of p-decomposition, no hypergraph G;, j € J,
can be a section hypergraph of a different hypergraph G;, j € J. Letu € J, and
consider the hypergraph G,. By definition of J, the hypergraph G, is not a section
hypergraph of any hypergraph in £ different from G. Therefore, we only need to show
that no hypergraph in £ different from G is a section hypergraph of G,,. By induction,
no hypergraph in £ different from G is a section hypergraph of G. As G, is a section
hypergraph of G, it follows that no hypergraph in £ different from G is a section
hypergraph of G,,. O

In Algorithm Gen_dec, we have not specified which G € £ and p C V(G) to
choose at every iteration. We refer to different choices of G and p throughout the
execution of Gen_dec, as decomposition orders. In the sequel, we denote a specific
decomposition order by the sequence of choices that defines it, where each choice
consists of a pair (G, p), for some hypergraph G € £ and asetofnodes p C V(G) that
is tested for p-decomposition of G, as described in Proposition 1. The next proposition
demonstrates that a full-decomposition of a hypergraph obtained by Gen_dec does
not depend on the specific decomposition order used.

Proposition 3 The full-decomposition of a hypergraph obtained by Algorithm
Gen_dec is independent of the decomposition order.
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Proof Assume by contradiction that G has two different full-decompositions £ and
L. LetGbea hypergraph with the maximum number of nodes among the hypergraphs
in the symmetric difference of £ and £,. Without loss of generality, assume Gel.
We show that G is not a section hypergraph of any hypergraph in £,. Otherwise, there
exists G’ € £ such that G is a section hypergraph of G Clearly V(G| > |V(G)I.
Thus, by maximality of G, it follows that G’ is also in £, contradicting property (ii)
in the definition of a full-decomposition.

Therefore, the hypergraph G is a section hypergraph of G that is not a section
hypergraph of any hypergraph in £5. Let (G, p) be the last pair in the decomposition
order that yields £, for which G isasection hypergraph of G. This implies that G is not
a section hypergraph of any hypergraph in the p-decomposition of G. We will show
that p N V(G) decomposes G, contradicting the fact that £ is a full-decomposition
of G.Let Gj, j € J, denote the p-decomposition of G. Let J' be the subset of indices
J € J such that G; contains at least a node of G that is not in p. Since G is not a
section hypergraph of any G;, j € J, it follows that |J’| > 2. For every j € J', let
G]/. be the section hypergraph of G; induced by V(G;) N V(G). Clearly G]’., jelJ,
are section hypergraphs of G, and U je j/G/ = G. Moreover, the hypergraph G/ N G/

for all j, j’ € J', is the complete hypergraph on the nodes p N V(G). This 1mpl1es
that p N V(G) decomposes G. However, this contradicts with the fact that £ 1is a
full-decomposition of G. O

By Proposition 3, all decomposition orders yield the same full-decomposition of a
hypergraph G. Henceforth, we will speak of the full-decomposition of G. However, as
we argue next, different decomposition orders result in different computational costs
for Algorithm Gen_dec. Let us revisit Gen_dec; to ensure that property (ii) in the
definition of the full-decomposition is satisfied, every time the p-decomposition of
G is generated, each new hypergraph G; is compared with the existing ones and is
added to £ only if it is not a section hypergraph of another hypergraph in L. Let us
refer to the section hypergraphs not added to £; i.e., G; with j € J \J, as redundant
hypergraphs. The following example shows that different decomposition orders in
Algorithm Gen_dec may result in distinct redundant hypergraphs.

Example 3 Consider the hypergraph G = (V, E) depicted in Fig. 4. It is simple to
verify that p; = {v2, v3, v4} decomposes G and the p;-decomposition of G is given
by G1, G2, where G| and G are section hypergraphs of G induced by {vy, v2, v3, v4}
and {vy, v3, v4, vs}, respectively. Now consider the hypergraph G; it can be seen
that p» = {v, v3} decomposes G, and the pp-decomposition of G is given by
G3, G4, where Gz and G4 are section hypergraphs of G| induced by {v1, v2, v3} and
{va, v3, va}, respectively. The hypergraph G4 is redundant as it is a section hypergraph
of G». Moreover, after additional p-decomposition tests, it can be verified that G, and
G cannot be further decomposed. Thus, we obtain the full decomposition of G given
by G2, G3 (see Fig. 4a). Let us denote the decomposition order used in this case by
0.

Now we consider a different decomposition order O, to obtain the full-
decomposition of G. It is simple to check that p» = {v2, v3} decomposes G and
that the pp-decomposition of G is given by G2, G3, where G and G3 are as defined
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Fig. 4 Using two different decomposition orders to obtain the full-decomposition of the hypergraph G in

Example 3: while the full-decomposition of G is independent of decomposition orders, different decompo-
sition orders may generate distinct redundant hypergraphs
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above and we find that they cannot be decomposed any further after a number of
p-decomposition tests, as defined by O, (see Fig. 4b).

For brevity, we have not included the full description of decomposition orders O
and O, utilized above. However, it is important to note in the sequence defined by O,
the pair (G, p1) appears prior to the pair (G, p2), whereas, in O», the pair (G, p2)
appears as the first element. We will detail on the significance of this difference in the
next section.

In this example, the decomposition order O; seems to “outperform” O : by utilizing
O3 no redundant hypergraph was generated and the full-decomposition of G was
obtained after one decomposition, while applying O; leads to the generation of one
redundant hypergraph, and two recursive decompositions were needed to obtain the
full-decomposition.

Thus far, via Example 3, we have observed that the generation of redundant hyper-
graphs depends on the decomposition order used in Gen_dec. As the redundancy
check is computationally expensive in general, a natural question is whether it is possi-
ble to characterize a decomposition order that does not generate redundant hypergraphs
for any input hypergraph. We will answer this question rigorously in the next section.

Before proceeding further, let us take a closer look at the computational cost
of Gen_dec; as we detail in the next section, Algorithm Gen_dec can be
implemented as a sequence of p-decomposition tests as defined by the specific decom-
position order used. It then follows that the length of the decomposition order utilized
in Gen_dec is a reasonable measure for the overall computational cost of this algo-
rithm. That is, we would like to identify a decomposition order consisting of the
minimum number of pairs (G, p). Clearly if some p C V(G) decomposes G, then
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pE V(G) UE (G) Henceforth, at each iteration of Algorlthm Gen_dec, we select a
hypergraph G € £ and a subsets of nodes pE V(G) U E(G). Given any decomposi-
tion order O, in order to satisfy condition (i) in the definition of the full-decomposition
of a hypergraph G via Algorithm Gen_dec, each p € V(G) U E(G) has to be tested
for the p-decomposition of some section hypergraph of G at least once during the
execution of the algorithm; that is, each p € V(G) U E(G) should appear in at least
one pair (G, p) in O. It then follows that for a hypergraph G, every decomposition
order contains at least |V (G)| 4 | E(G)| pairs. Clearly, one can use a variety of tricks
to reduce the upper bound |V (G)| + | E(G)|, based on the structure of the given hyper-
graph. For instance, suppose that at given iteration, we select a pair (G, p), where
p € V(G) U E(G). Subsequently, we apply the p-decomposition test as described
by Proposition 1 and it turns out that the section hypergraph of G induced by p
is not complete. It then follows that the section hypergraph of G induced by any
q € V(G) U E(G) with g D p is not complete either and therefore does not need to
be considered for a p-decomposition test in Gen_dec. Clearly, such techniques can
be incorporated in any decomposition order to reduce the running time of Gen_dec.
However, in the remainder of this paper, for simplicity of presentation and without
loss of generality, we consider a basic implementation of Gen_dec in which every
subset of nodes p € V(G) U E(G) is tested for p-decomposition in the course of the
algorithm. Such an assumption enables us to obtain an optimal decomposition order
with the minimum length |V (G)| + | E(G)|, which in addition does not generate any
redundant hypergraphs.

4.3 The optimal full-decomposition algorithm

In this section, we derive the “best” decomposition order for Gen_dec, and
present an efficient algorithm to obtain the full-decomposition of a given hyper-
graph. To this end, we first establish an important property regarding the recursive
decomposition of hypergraphs. This property enables an efficient implementation of
Algorithm Gen_dec, by eliminating many unnecessary decomposition tests in its
“while loop”. In the following, we refer to hypergraphs G; in Gen_dec as the chil-
dren of G, while G is called the parent of each G;. The ancestors of G; are the parent
of G;, and the ancestors of the parent of G;. In addition, the descendants of G are the
children of G and the descendants of the children of G.

Proposition 4 Let G be a hypergraph, and let p € V(G). Suppose that the pair (G, p)
is considered at some iteration of Algorithm Gen_dec. Then p does not decompose
any descendants of G in this algorithm.

Proof We assume that the section hypergraph of G induced by p is complete, as other-
wise p does not decompose any hypergraph. First assume that p does not decompose
G. We show that such a p does not decompose any of the descendants of G generated
during the course of Algorithm Gen_dec. To obtain a contradiction, let H H be the

first descendant of G generated by Gen_ dec that can be decomposed by p. Let H
denote the parent of H i and suppose that ¢ C V (H) decomposes H into H;, j € J,
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where we have j € J. Note that by assumption, p does not decompose H. We now
utilize p to decompose Hj into Hj;, k € K. Clearly, g C V(Hj).

We now show that ¢ ¢ p. Assume by contradiction that ¢ € p. Let H), denote
the complete hypergraph with node set p. Then H), is a section hypergraph of H ;

and of no other H; with j # j. It can be now checked that p decomposes H into
H;jUH) forall j € J, which gives us a contradiction. We now assume ¢ ¢ p.Hence
q C V(HJ-.,;) for only one k € K, since by assumption V(Hvk) N V(Hvk,) = p for
all kA, k' € K with k # k. Now, let I-Aljv,;_z Ujenj) Hj YU Hji. It then follows that
V(H--) NV(H;) =p for all k € K\{k} and it can be checked that p decomposes
H into H: 7 and H: ke k € K\{k}, which is in contradiction with the assumption that p

does not decompose H . Hence, if p does not decompose G, then it does not decompose
any descendants of G generated by Algorithm Gen_dec.

Now assume that p decomposes G into Gj, j € J. Then by definition of p-
decomposition, the set p does not decompose any of the resulting hypergraphs G; and
therefore, by the above proof, it does not decompose any of their descendants either.

O

Next, we define a special sequence of choices O in the the execution of Algo-
rithm Gen_dec with highly desirable algorithmic properties. At a given iteration of
Gen_dec, we say that p € V(G) U E(G) is tested in G, if the pair (G, p) has been
already considered in an earlier iteration of Gen_dec. To characterize O, it suffices
to define the pair (G, p) at at each iteration of Gen_dec: at a given iteration, any
hypergraph in the current family £ can be chosen as G. Let the list {gk, k € K} contain
all nodes and edges of G ordered by increasing cardinality. We define p to be the first
element g in the above list that is not tested in G and in any ancestor of G. The
sequence O ends when no such pair (G, p) can be found.

Proposition 5 The sequence O is a decomposition order. Moreover, it creates no
redundant hypergraphs.

Proof Let O be given by (G, p1), (G2, p2), - .., (G, p:), for some positive integer
t. To show that O is a decomposition order, we prove that it yields the full-
decomposition of G. Let £ be the family of hypergraphs obtained by execution of
Algorithm Gen_dec with the decomposition order O. Let G denote a hypergraph in
L. By definition of O, each p € V(G) U E(G) is tested in G or in an ancestor of G.

We only need to show that no j decomposes G. If j is tested in G, then clearly p
does not decompose G. Thus, suppose that p is not tested in G implying p is tested in
an ancestor of G, denoted by G. By Proposition 4, it follows that p does not decom-
pose any descendant of G. As G is a descendant of G, we conclude that p does not
decompose G. Therefore, the decomposition order O yields the full-decomposition
of G.

We now show that decomposition order O creates no redundant hypergraphs. To
obtain a contradiction, let G be the first redundant hypergraph generated and suppose
that G is one of the hypergraphs in the pj-decomposition of G; for some positive
integer j. This implies that at the iteration of Algorithm Gen_dec where the pair
(Gj, pj) is selected, there exists a hypergraph G € L different from G j such that G
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is a section hypergraph of G. In the sequence (G, p1), (G2, p2), ..., (G, pt), let
G be the last hypergraph that is an ancestor of both G and G. Let G’ be the child
of Gy that is an ancestor of G , or G itself. Similarly, let G’ be the child of Gy that is
an ancestor of G, or G itself. Clearly V(G) € V(G'), and V(G) € V(G) C V(G).
Therefore, V(G) € V(G)NV(G') = py. By definition of p-decomposition, we have
that p; C V(G), thus we have p; C pr. However, this is a contradiction, since Gy is
an ancestor of G; and, by definition of @, the ancestors of G; are decomposed using
sets of cardinality at most |p|. Therefore, we conclude that the decomposition order
O generates no redundant hypergraphs. O

As a direct consequence of Proposition 5, in Algorithm Gen_dec with decom-
position order O, at every iteration we have J = J. That is, by employing O
in Algorithm Gen_dec, we can eliminate the redundancy check, which is com-
putationally expensive in general. As we detailed before, for a hypergraph G, any
decomposition order must contain at least |V (G)| + | E(G)| pairs. We now show that
O is optimal in the sense that the p-decomposition test is performed exactly once for
each p € V(G) U E(G).

Proposition 6 Consider a hypergraph G with n nodes and m edges. Let the decom-
position order O for G be given by (G1, p1), (G2, p2), ..., (Gy, py). Thent = n+m,

and p; # pj ifi # j.

Proof Let the decomposition order O for G be given by (Gy, p1), (G2, p2), ...,
(Gt, pr). We show that p; # p; ifi # j, which directly implies t = n + m, since
each p; isin V(G) U E(G).

Assume by contradiction that there exist indices i, j withi # j such that p; = p;.
By Proposition 4, G; is not an ancestor of G;, and G; is not an ancestor of G;. In
the sequence (G1, p1), (G2, p2), ..., (Gy, pt), let Gy be the last hypergraph that is
an ancestor of both G; and G;. Let G; be the child of Gy that is an ancestor of
G, or G; itself. Similarly, let GJ’. be the child of Gy that is an ancestor of G;, or
G;j itself. Clearly p; C V(G;) € V(G)), and p; C V(G)) < V(GJ’,). Therefore,
pi C V(G;) N V(Gj/-) = px. However, this is a contradiction, since Gy, is an ancestor

of G; and, by definition of O, the ancestors of G; are decomposed using sets of
cardinality at most | p;|. Therefore, we conclude that p; # p;ifi # j. O

We should remark that while O contains the minimum number of p-decomposition
tests for Algorithm Gen_ dec, it might be possible to obtain the full-decomposition of
hypergraphs with a smaller number of p-decomposition tests using more sophisticated
algorithmic frameworks. For example, in [17,29], the authors utilize the concept of
perfect elimination orderings for chordal graphs to identify clique separators of general
graphs in 7 iterations, where 7 is the number of nodes of the graph. We leave it as an
open question whether similar elimination orderings can be defined for constructing
the full-decomposition of hypergraphs.

A natural question regarding the applicability of our decomposition scheme in
the context of MINLP solvers is the final number and size of hypergraphs present
in the full-decomposition of a given hypergraph. That is, while decomposition of a
Multilinear set Sg into lower-dimensional Multilinear sets enables us to convexify
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Sc more efficiently, the presence of a large number of overlapping hypergraphs in
the full-decomposition of G leads to a significant increase in the size of the result-
ing relaxations, which in turn deteriorates the performance of branch-and-cut based
MINLP solvers. The following proposition shows that our decomposition algorithm
always leads to relaxations of reasonable size.

Proposition 7 Consider a hypergraph G with n > 2 nodes and m > 1 edges. Then
the full-decomposition of G consists of at most min{n — 1, m} hypergraphs. Moreover,
the total number of hypergraphs generated in the course of Algorithm Gen_dec with
decomposition order O is at most min{2n — 3,2m — 1}.

Proof By Proposition 3, the full-decomposition of a hypergraph G is independent of
the decomposition order. Thus in the following, we consider Algorithm Gen_dec
with the decomposition order O. Both upper bounds on the final and total number of
hypergraphs generated by Gen_dec follow directly by setting G:=Gandk :=1in
the following claim. O

Claim Let G bea hypergraph with ii nodes and m edges considered at some iteration
of Algorithm Gen_dec with decomposition order O applied to G. Assume that for
each pair (G, p) tested in the algomhm where G is G or a descendant of G, we have
|p| = k, for some integer k < n. Then:

(1) The number of hypergraphs in the full-decomposition of G that are G or descen-

dants ofé is at most max{1, n — k}.

(i) The number of hypergraphs that are G or descendants of G is at most
max{1,2(n — k) — 1}.

(iii) The number of hypergraphs in the full-decomposition of G that are G or descen-
dants ofG is at most max{1, m — 2% + k + 1}.

(iv) The number of hypergraphs that are G or descendants of G is at most
max{l, 20 — 2X + k+ 1) — 1}.

Proof of Claim We prove the claim by induction on 7 — k > 0. First, we show the
base case n — k = 0. In this case, for every pair (2 p) tested by the algorithm we
have |p| = k = i. This implies that G will not be further decomposed and hence the
claim is satisfied.

Next, we assume 72 — k > 0 and we show the inductive step. If G is not decompos-
able, we are done. Therefore, we now consider a pair G, p) such that p decomposes
G. Let Gj, j € J,bethe p-decomposition of G, letk := |pl > k,letn be the number

of nodes of G;, and let m ; be the number of edges of G;. Note that k < n j <n,and
ﬁ:Z(nj—I€>+I€, (22)

jeJ
m=z(mj—2i+1€+1)+2’3—/2—1. (23)

jeJ

By definition of the decomposition order O, for each pair ( G, p)testedinthe algorlthm
where G is G; or a descendant of G;, we have |p| > k. Note that nj— k <i—k.
Hence, we can apply induction to each hypergraph G;.
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We now derive the bound given in (i). By induction, the number of hypergraphs in
the full-decomposition of G that are G; or descendants of G; is at most max{1, n; —k}.

Therefore, the number of hypergraphs in the full-decomposition of G that are G or
descendants of G is at most

Zmax{],nj—é}:Z(nj—@=fl—/€§ﬁ—k1

jeJ jelJ

where the first equality follows from —k > 1, the second equality follows from (22),

and the last inequality follows from k> k.
Next, we derive the bound given in (ii). By induction, the number of hypergraphs
that are G; or descendants of G; is at most max{l, 2(n; — k) — 1}. Therefore, the

number of hypergraphs that are G or descendants of G is at most

1+Zmax{1,2(nj—1€)—1}:1+Z(2(nj—1€)—1)
jeJ

jedJ

=1+zz(nj—1€>—u|51+2(ﬁ—12)—252(ﬁ—k)—1,
jeJ

where the first equality follows from 2(n; — 12) —1>1,sincen; — k > 1, the first

inequality follows from (22) and |J| > 2, and the last inequality follows from k > k.
We now derive the bound given in (iii). By induction, the number of hypergraphs in
the full-decomposition of G that are G; or descendants of G; is at most max {1, m; —

2k +]€ + 1}. Therefore, the number of hypergraphs in the full-decomposition of G that
are G or descendants of G is at most

Somax f1my—2f k1) =3 (my -2k 4k +1)
jelJ jeJ

=m—2rk+1<m—2"+k4+1,

where the first equality follows from m ; — 2k +k+1>1since G j is connected, the

second equality follows from (23), and the last inequality follows from k> k.
Finally, we derive the bound given in (iv). By induction, the number of hypergraphs

that are G; or descendants of G| is at most max {1, 2(m ; — pLy 1) — 1}. Therefore,
the number of hypergraphs that are G or descendants of G is at most

Py omax {12 (my =25 k1) =1 =140 (2 (my = 2F k1) - 1)
jeJ jeJ

=1+2Z<mj—2]€+/2+1)—|J|§1+2(ﬁ1—2]2+12+1)—2
jeJ

sz(m—2k+k+1)—1,
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where the first equality follows from 2(m ; — 2k +k+1)—1 > 1sincem i— 2k +k+1>
1, the first inequality follows from (23) and |J| > 2, and the last inequality follows
from k > k. O

It can be shown that for a graph that is a path, all four bounds given in Proposition 7
are tight.

We now present an optimal full-decomposition algorithm, obtained by an efficient
incorporation of the decomposition order O in Algorithm Gen_dec. To simplify
the presentation, at a given iteration of Gen_dec, we say that p € V(G) U E(G)
is checked in G, if p is tested in G or in an ancestor of G. In this algorithm, the
input hypergraph G = (V, E) is represented by its incidence-list, where, as described
before, the edges are sorted in increasing cardinality, and edges of the same cardinality
are sorted lexicographically. Subsequently, each hypergraph G generated in the course
of this algorithm is characterized by two integer arrays: /| (G) containing the indices
of those edges of G that are present in G, and Iz(G) contammg the indices of those
elements of V(G) U E(G) that are not checked in G. Moreover, we assume the
indices in /1 and I are in the same order as their corresponding nodes and edges in
the hypergraph G.

Opt_dec : Optimal full-decomposition algorithm

Input: A hypergraph G
Output: The full-decomposition of G
Initialize the lists £; = {G} and £, = {};
Initialize the integer arrays /1 (G) and I>(G);
while £ is nonempty do
Let G be the first element in £;;
for each i € I,(G) do
if p; decomposes G then
let G, j € J, be the p;-decomposition of é;
remove G from L1;
for each j € J do

if I5(G;) # ¥ then

L insert Gj in Ly;

else

L insert G; in Lo;

exit the for loop;

if G is still present in £ then
L remove G from £; and insert it in £5;

return £»;

In Algorithm Opt_dec, we define two distinct lists £ and £, to store the interme-
diate and final hypergraphs, respectively; namely, the list £ contains all hypergraphs
G with at least one unchecked element p; € V(G) U E(G) for some i € I(G),
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whereas, the list £, contains all hypergraphs that cannot be further decomposed (by
Proposition 4); i.e., L(G) =@ forall G € £,. Each time G € £ is decomposed into
G;, j € J, the hypergraph G is removed from £, hypergraphs G i with I (Gj) # ¢
are inserted in £1 and hypergraphs G; with I>(G;) = ¢ are inserted in £,. In addi-
tion, if a hypergraph G cannot be decomposed after all sets associated with I>(G)
are tested in é, we remove it from £ and insert it in £5. The algorithm terminates
when the list £ is empty. By using linked lists or dynamic arrays to store pointers
to each hypergraph in £; and £, the above insertion and removal operations can be
performed efficiently in time and memory. That is, each single insertion or removal
operation can be done in O (1) time, as for example, in a linked list implementation,
it amounts to a simple rearrangement of pointers to the head of the list.

It is simple to see that Algorithm Opt_dec is an efficient implementation of the
decomposition order O in Algorithm Gen_dec. This can be seen by noting that the
indices in I, for each G, are ordered such that the corresponding edges are sorted in
increasing cardinality. Thus, by Proposition 5, we have:

Proposition 8 Algorithm Opt_dec terminates with the full-decomposition of G and
creates no redundant hypergraphs.

Finally, we analyze the worst-case running time of Algorithm Opt_dec as a func-
tion of the rank, number of nodes, and number of edges of the input hypergraph G.

Proposition 9 Consider a connected rank-r hypergraph G with n nodes and m edges.
Then, the running time of Algorithm Opt_dec is O (rm(n + m)).

Proof The initialization step consists of forming the incidence-list representation of
the input hypergraph G and the integer vectors /1 (G), I2(G). As described before, for
a rank-r hypergraph with m edges, its sorted incidence-list can be obtained in O (rm)
time. In addition, initializing 71 (G) and I5(G) takes m and n + m steps, respectively.

We now proceed to the main body of the algorithm. We claim that the “while loop”
of this algorithm is executed at most n 4+ m times. In fact, each time the while loop
is executed, at least one p-decomposition test is performed, and by Proposition 6
Opt_dec consists of a total number of n 4+ m p-decomposition tests. It then follows
that, the “while loop” in Opt_dec is executed at most n + m times. Now consider
the outer “for loop” in Opt_dec. Again by Proposition 6, this for loop is executed
exactly n 4+ m times; that is, once for each element in V(G) U E(G) as indicated by
the I arrays and it terminates when there exists no unchecked element in any of the
hypergraphs generated by Opt_dec.

Now consider some p; € V(G)UE(G) withi € 1>(G) forsome G € £1. We would
like to find an upper bound on the running time of the p;-decomposition test for G. By
assumption, the initial hypergraph G is a connected rank-r hypergraph. Moreover, it is
simple to check that all children of G obtained by a single application of Proposition 1
are also connected as their corresponding graph reductions are biconnected. By a
recursive application of this argument, it follows that all hypergraphs G in £ at any
iteration of Algorithm Opt_dec are connected rank-r" hypergraphs, where r’ < r.
Therefore, by Proposition 1, the running time of each p-decomposition testis O (rm),
implying that the overall computational cost of performing p-decomposition tests
in Opt_dec is O(rm(n + m)).
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Finally, we analyze the cost of storing the hypergraphs generated in the course
of Opt_dec. Clearly, for any hypergraph G generated by this algorithm, we have
I11(G)| + |I(G)| < n +2m, as |I;(G)| <m and |Ir(G)| < n + m. Now, consider
the hypergraphs G;, j € J, obtained from the p-decomposition of G. By Proposi-
tion 1, the output of a p-decomposition test provides a labeling of the edges of G
that belong to exactly one new hypergraph G;, with the understanding that the edges
contained in p are presentin all G;, j € J. It then follows that for each G;, the integer
arrays I1(Gj) and I>(Gj) can be constructed in O(n + m) steps. Furthermore, by
Proposition 7, the total number of hypergraphs generated by Algorithm Opt_dec is
O (min{n, m}). Hence, the overall cost of storing hypergraphs in the proposed algo-
rithm is O (min{n, m}(n + m)). As we described before, by employing a linked list
implementation of £ and L, each single insertion or removal of a hypergraph can
be done in constant time, implying that the overall cost of insertion and removal
operations is O (n + m).

Thus, the total running time of Algorithm Opt_dec is given by O (rm(n 4+ m)).

O

As we described throughout this section, in comparison to Algorithm Gen_dec
with an arbitrary decomposition order, the advantages of Algorithm Opt_dec are
two folds. First, the number of p-decomposition tests applied by Opt_dec to obtain
the full-decomposition of a hypergraph with n nodes and m edges is exactly n + m,
which is the minimum number of tests needed to obtain the full-decomposition of any
hypergraph. Second, no redundant hypergraph is generated in the course of Opt_dec,
and hence the costly redundancy test (as described in Gen_dec) is not required. The
following example demonstrates that Algorithm Opt_dec significantly outperforms
a naive implementation of Algorithm Gen_dec.

Example 4 Consider a hypergraph G = (V, E) with V :={v; :i =1,...,r}U{w; :
i =1,...,r} for some r > 3. Let E contain the following set of edges: E| :=
{{vi,wi}:i=1,...,r}}and Er :=={{v; :i eI} : 1 C{1,...,r}, |I| > 2}. In this
case, we have n := |V| = 2r and m := |E| = 2" — 1. In the following, we denote by
K; 4 the complete hypergraph on the nodes {v;, ..., vy}, where 1 <[ <gq <r.

We first utilize Algorithm Opt_dec to decompose G: after r p-decomposition
tests where p = v; fori =1, ..., r, we obtain r 4 1 hypergraphs, r of which consist
of a single edge of the form {v;, w;}, fori =1, ..., r, and the last one is the complete
hypergraph K ,. By performing an additional n +m — r = r + m p-decomposition
tests, Algorithm Opt_dec confirms that these r 4+ 1 hypergraphs cannot be further
decomposed and thus form the full-decomposition of G. Clearly, we could improve the
performance of Algorithm Opt_dec, by inserting every new complete hypergraph
G; in Lo without performing any additional p-decomposition test, as a complete
hypergraph is not decomposable.

Next, we demonstrate the significance of our optimal decomposition algorithm
by analyzing the performance of a naive implementation of Algorithm Gen_dec
applied to the hypergraph G defined above. That is, we define a decomposition order
different from @ and we do not make use of Proposition 4 to eliminate unnecessary
p-decomposition tests. Suppose that in the first iteration of Gen_dec, we choose
p = {v1, ..., v.}. It then follows that Gen_dec decomposes G into r hypergraphs
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of the form G; = K, UH,,foralli =1, ..., r, where H; consists of the single edge
{vi, w;}. In the next iteration, Gen_ dec selects one of these hypergraphs; without loss
of generality, suppose that we pick G . Subsequently, Gen_dec perform |V (K2 )|+
|E(K2,,)| = -l p-decomposition tests for all p € V(K2 ,) U E(K2,). Itis
simple to check that none of such tests decomposes G1. In the next iteration, we
let p = {v1, ..., v.—1}. It then follows that Gen_dec decomposes G into the two
hypergraphs K ,-1 U Hy and K ,. At this stage, performing the redundancy test
reveals that K1 , is a redundant hypergraph, as for example it is a section hypergraph
of G,. Next, we select the hypergraph G = Ky ,—1 U Hjy and apply |V (K2 ,—1)| +
|[E(K2,—1)| = =2 _ ] p-decomposition tests for all p € V(K2 ,-1) U E(K2,-1),
none of which decompose G. In the next iteration, we let p = {v, ..., v,_»} to obtain
adecomposition of G givenby K ,—2UH; and K ,_;. Again, itis simple to check that
K -1 is a redundant hypergraph. Applying such a decomposition order recursively,
it can be shown that the total number of p-decomposition tests performed in the course
of the algorithm is given by n + m + r(Z{;ll 2 —D+rr—1)=n+m+nim—
1)/2. That is, while Algorithm Opt_dec requires n + m decomposition tests, this
naive implementation of Gen_dec, requires n(m — 1) /2 additional p-decomposition
tests to obtain a full-decomposition of G. In addition, the total number of redundant
hypergraphs generated in the process is given by r(r — 1) — 1 = n(n —2)/4 — 1.
Thus, we conclude that the algorithmic enhancements presented in this section have
a significant impact on the performance of the proposed decomposition algorithm.

We conclude this paper by noting that an interesting future direction is to develop
an optimal decomposition algorithm that incorporates our theoretical results presented
in Sect. 3; namely, it would be interesting to investigate an optimal decomposition of
hypergraphs with sparse intersections. Such a generalization will enable us to decom-
pose many more types of Multilinear sets into simpler sets.
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