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Abstract We consider the Multilinear set S defined as the set of binary points (x, y)
satisfying a collection of multilinear equations of the form yI = ∏

i∈I xi , I ∈ I,
where I denotes a family of subsets of {1, . . . , n} of cardinality at least two. Such sets
appear in factorable reformulations of many types of nonconvex optimization prob-
lems, including binary polynomial optimization. A great simplification in studying the
facial structure of the convex hull of the Multilinear set is possible when S is decom-
posable into simpler Multilinear sets S j , j ∈ J ; namely, the convex hull of S can be
obtained by convexifying each S j , separately. In this paper, we study the decompos-
ability properties ofMultilinear sets. Utilizing an equivalent hypergraph representation
for Multilinear sets, we derive necessary and sufficient conditions under which S is
decomposable into S j , j ∈ J , based on the structure of pair-wise intersection hyper-
graphs. Our characterizations unify and extend the existing decomposability results
for the Boolean quadric polytope. Finally, we propose a polynomial-time algorithm to
optimally decompose a Multilinear set into simpler subsets. Our proposed algorithm
can be easily incorporated in branch-and-cut based global solvers as a preprocessing
step for cut generation.
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1 Introduction

Central to the efficiency of global optimization algorithms is their ability to con-
struct sharp and cheaply computable convex relaxations. Factorable programming
techniques are used widely in global optimization of mixed-integer nonlinear opti-
mization problems (MINLPs) for bounding general nonconvex functions [20]. These
techniques iteratively decompose a factorable function, through the introduction of
variables and constraints for intermediate functional expressions, until each interme-
diate expression can be outer-approximated by a convex feasible set [31]. Current
general-purpose MINLP solvers [21,26,32] rely on factorable relaxations and as a
result, enhancing the quality of such relaxations has a significant impact on our ability
to solve a wide range of nonconvex problems.

Factorable reformulations of many types of MINLPs contain a collection of multi-
linear equations of the form yI = ∏

i∈I xi , I ∈ I, where I denotes a family of subsets
of N = {1, . . . , n} of cardinality at least two. Examples include quadratic programs,
polynomial programs, andmultiplicative programs. Building sharp convex relaxations
for multilinears has been the subject of extensive research by the mathematical pro-
gramming community for over four decades now (cf. [12–15,18,24,25,27]) and it is
well-understood that the quality of these relaxations has a significant impact on the per-
formance of MINLP solvers [1,2,21–23]. Let us define the nonconvex set associated
with all multilinear expressions present in a factorable reformulation of a MINLP as

S̃ = {(x, y) : yI =
∏

i∈I
xi , I ∈ I, xi ∈ [0, 1], ∀i ∈ J1, xi ∈ {0, 1}, ∀i ∈ J2},

where J1 and J2 form a partition of N and are the index sets corresponding to con-
tinuous and binary variables, respectively. It is well-known that the convex hull of the
mixed-integer set S̃ is a polytope and the projection of its vertices onto the space of
x variables is given by {0, 1}n (cf. [30]). It then follows that the facial structure of
the convex hull of S̃ can be equivalently studied by considering the following binary
set:

S =
{
(x, y) : yI =

∏

i∈I
xi , I ∈ I, x ∈ {0, 1}n

}
. (1)

In particular, the set S represents the feasible region of a linearized unconstrained
0−1 polynomial optimization problem. Throughout this paper, we refer to the set S as
theMultilinear set and refer to its polyhedral convex hull as theMultilinear polytope
(MP). Moreover, we refer to r = max{|I | : I ∈ I} as the degree of theMultilinear set.
If all multilinear terms in S are bilinears, i.e., r = 2, the corresponding Multilinear
polytope coincides with the Boolean quadric polytope first defined and studied by Pad-
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berg [24] in the context of unconstrained0−1quadratic programming. In contrast to the
rich literature on structural properties of theBoolean quadric polytope [4,7,24], similar
polyhedral studies for higher degree Multilinear polytopes are quite scarce [8,14,15].
In the special case where r = n and the set I contains all subsets of N , a com-
plete linear description for the convex hull of the Multilinear set is available [28].
In practice, however, we often have n � r and the set I consists of a small frac-
tion of subsets of N . In this paper, we are particularly interested in such Multilinear
sets.

A great simplification in studying the facial structure of the Multilinear polytope is
possible when the corresponding Multilinear set is decomposable into simpler Mul-
tilinear sets. More precisely, let S be a Multilinear set that can be represented as an
intersection of a collection of Multilinear sets S j , j ∈ J . Clearly, the convex set
obtained by intersecting the convex hulls of sets S j is a superset of the convex hull of
S as the convexification operation does not, in general, distribute over intersection. It
is highly desirable to identify conditions under which we have

conv

⎛

⎝
⋂

j∈J

S j

⎞

⎠ =
⋂

j∈J

(
convS j

)
,

as in such cases characterizing the convex hull of S simplifies to characterizing the
convex hull of each S j separately. In this paper, we study decomposability properties
of Multilinear sets. To this end, as in [15], we define an equivalent hypergraph rep-
resentation for S. Recall that a hypergraph G is a pair (V, E) where V = V (G) is
the set of nodes of G, and E = E(G) is a set of subsets of V of cardinality at least
two, called the edges of G (see Berge [6] for an introduction to hypergraphs). The
rank of G is the maximum cardinality of an edge in E . In the special case where G
has no edges, we say that the rank of G is one. Throughout this paper, we consider
hypergraphs without loops and parallel edges. With any hypergraph G = (V, E), we
associate a Multilinear set SG defined as follows:

SG =
{
z ∈ {0, 1}d : ze =

∏

v∈e
zv, e ∈ E

}
, (2)

where d = |V |+ |E |. We denote by MPG the polyhedral convex hull of SG . Note that
the variables zv , v ∈ V , in (2) correspond to the variables xi , i ∈ N , in (1) and the
variables ze, e ∈ E , in (2) correspond to the variables yI , I ∈ I, in (1). For quadratic
sets, our hypergraph representation simplifies to the graph representation defined
by Padberg [24] to study the Boolean quadric polytope QPG . Given a hypergraph
G = (V, E), and a subset V ′ of V , the section hypergraph of G induced by V ′ is the
hypergraph G ′ = (V ′, E ′), where E ′ = {e ∈ E : e ⊆ V ′}. Given hypergraphs G1 =
(V1, E1) andG2 = (V2, E2), we denote byG1∩G2 the hypergraph (V1∩V2, E1∩E2),
and we denote by G1 ∪ G2, the hypergraph (V1 ∪ V2, E1 ∪ E2). Now, consider a
hypergraph G, and let Gj , j ∈ J , be distinct section hypergraphs of G such that
∪ j∈J Gj = G. We say that the set SG is decomposable into sets SGj , for j ∈ J , if the
following relation holds
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convSG =
⋂

j∈J

convS̄Gj , (3)

where, S̄Gj , j ∈ J is the set of all points in the space of SG whose projection in the
space defined by Gj is SGj . If the hypergraph G is not connected, then it is simple to
show that SG is decomposable into SGj , j ∈ J , where Gj , j ∈ J , are the connected
components of G. Henceforth, we assume that G is a connected hypergraph.

There has been an interesting stream of research on developing decomposition
techniques for NP-hard combinatorial optimization problems. In the following, we
briefly review some of the major findings in this area. Chvátal [9] proves that the stable
set polytope decomposes into simpler polytopes if the underlying graph contains clique
separators. Barahona [3] gives an explicit description for the cut polytope when the
underlying graph is not contractible to K5 by showing that the cut polytope decomposes
into simpler polytopes when the intersection graph is a clique of cardinality less than
or equal to three. In [5], the authors develop decomposition schemes for the balanced
induced subgraph polytope, stable set polytope and the acyclic subgraph polytope,
when the corresponding graphs contain one- or two-node cut sets. In his doctoral
dissertation, Margot [19] studies general decomposition techniques for combinatorial
optimization polytopes and shows that the so called “projected faces property” is
sufficient for decomposability of a polytope. Subsequently, in [10], the authors provide
a characterization of the projected faces property.

In Sect. 2, we establish necessary and sufficient conditions for decomposability
of SG into SGj , j ∈ J , based on the structure of pair-wise intersection hypergraphs
Gj ∩ Gj ′ , for j, j ′ ∈ J with j 	= j ′. Subsequently, in Sect. 3, we study a more
general decomposition technique which allows decomposition of many more types
of Multilinear sets associated with sparser hypergraphs. In particular, as we detail in
Sects. 2 and 3, our characterizations unify and extend the existing decomposability
results for the Boolean quadric polytope [24].

It iswell-understood that branch-and-cut basedMINLPsolverswouldhighly benefit
from our decomposition results as such techniques lead to significant reductions in
CPU time during cut generation [1,2,22,23]. Our results in Sects. 2 and 3 provide
easily verifiable conditions under which a Multilinear set can be decomposed into
lower dimensional Multilinear sets without compromising the quality of the resulting
relaxation. In Sect. 4, we consider the problem of decomposing a Multilinear set SG

into a collection of non-decomposable Multilinear sets SGk , k ∈ K. This problem
is related to the problem of decomposing a graph by clique separators, a common
tool used for various graph problems such as graph coloring and finding maximum
independent sets [17,29]. We present a polynomial-time algorithm to decompose a
Multilinear set in terms of its hypergraph representation. Given a connected rank-
r hypergraph G = (V, E), we prove that our proposed algorithm gives an optimal
decomposition of SG in O(r |E |(|V | + |E |)) time. We demonstrate that the proposed
algorithm performs significantly better than alternative decompositions obtained by a
naive application of our decomposition results.
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2 Decomposability of Multilinear sets

In this section, we study decomposability properties of theMultilinear setSG . Suppose
that G1 and G2 are distinct section hypergraphs of G such that G1 ∪ G2 = G. We
present a necessary and sufficient condition for decomposability ofSG intoMultilinear
sets SG1 and SG2 , based on the structure of the intersection hypergraph G1 ∩ G2. In
the remainder of this paper, we say that a hypergraph G = (V, E) is complete if all
subsets of V of cardinality at least two are present in E .

2.1 A sufficient condition for decomposability of Multilinear sets

The following theorem provides a sufficient condition for decomposability of SG into
SG1 and SG2 .

Theorem 1 Let G be a hypergraph, and let G1, G2 be section hypergraphs of G
such that G1 ∪ G2 = G and G1 ∩ G2 is a complete hypergraph. Then the set SG is
decomposable into SG1 and SG2 .

Proof Clearly the inclusion “⊆” in (3) holds since SG ⊆ S̄G1 ∩ S̄G2 . Thus, it suffices
to show the reverse inclusion. As G1 and G2 are different from G, both G\G1 and
G\G2 are nonempty. Let z̃ ∈ convS̄G1∩convS̄G2 and let z

K contain those components
of z̃ corresponding to nodes and edges of the complete hypergraph K = G1 ∩ G2.
For i = 1, 2, let zi be the vector containing those components of z̃ corresponding to
nodes and edges in Gi\K . Using these definitions, we can now write, up to reordering
variables, z̃ = (z1, zK , z2). Let k := |V (K )|. Since K is a complete hypergraph, the
set SK has dimension

∑k
i=1

(k
i

)
and consists of

∑k
i=0

(k
i

)
affinely independent points,

implying that convSK is a simplex. It then follows that the vector zK ∈ convSK

can be written in a unique way as a convex combination of points in SK ; i.e., there
exists a unique vector of multipliers λ with λ ≥ 0 and

∑
s∈SK

λs = 1 such that
zK = ∑

s∈SK
λss.

The vector (z1, zK ) ∈ convSG1 can be written as a convex combination of points
in SG1 :

(
z1, zK

)
=

∑

(r,s)∈SG1

μ′
r,s(r, s) for μ′ ≥ 0 with

∑

(r,s)∈SG1

μ′
r,s = 1

=
∑

s∈SK

∑

r :(r,s)∈SG1

μ′
r,s(r, s)

=
∑

s∈SK

( ∑

r :(r,s)∈SG1

μ′
r,s

) ∑

r :(r,s)∈SG1

μr,s(r, s),

where in the last equation we introduced new multipliers μr,s := μ′
r,s/

∑
r ′:(r ′,s)∈SG1

μ′
r ′,s . Clearly μ ≥ 0 and

∑
r :(r,s)∈SG1

μr,s = 1 for every s ∈ SK . Since zK can
be written in a unique way as a convex combination of points in SK , we obtain
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G

G

G

G1 G2

G2G1

G1 G2

Fig. 1 Some examples of hypergraphs G for which by Theorem 1, the set SG is decomposable into SG1
and SG2

∑
r :(r,s)∈SG1

μ′
r,s = λs . Hence, (z1, zK ) = ∑

s∈SK
λs

∑
r :(r,s)∈SG1

μr,s(r, s). Sym-

metrically, we obtain (zK , z2) = ∑
s∈SK

λs
∑

t :(s,t)∈SG2
νs,t (s, t), for ν ≥ 0 with

∑
t :(s,t)∈SG2

νs,t = 1. Hence, the following holds:

(
z1, zK , z2

)
=

∑

s∈SK , r :(r,s)∈SG1 , t :(s,t)∈SG2

λsμr,sνs,t (r, s, t). (4)

Since G1 and G2 are section hypergraphs of G, each 0−1 vector (r, s, t) in (4) is
in SG . Moreover, the multipliers λsμr,sνs,t are nonnegative and satisfy

∑

s∈SK , r :(r,s)∈SG1 , t :(s,t)∈SG2

λsμr,sνs,t = 1,

This implies z̃ ∈ convSG . ��
Figure 1 illustrates some simple hypergraphs G for which the Multilinear set SG

is decomposable into two Multilinear sets SG1 and SG2 . To draw a hypergraph G,
throughout this paper, we represent the nodes in V (G) by points, and the edges in
E(G) by closed curves enclosing the corresponding set of points.

We should remark that Theorem 1 can be alternatively proved using the “projected
faces property” introduced by Margot [19], as the Multilinear polytope MPG1∩G2 is a
simplex. However, for simplicity of presentation and keeping the text self-contained
we chose to provide a proof that solely relies on elementary arguments.

Theorem 1 unifies the existing decomposability results for the Boolean quadric
polytope QPG (cf. [3,24]):

Corollary 1 Consider a graph G = G1 ∪ G2, where G1 and G2 are induced sub-
graphs of G with V (G1) ∩ V (G2) = {u}, for some u ∈ V (G), or V (G1) ∩ V (G2) =
{u, v}, for some {u, v} ∈ E(G). Then QPG is decomposable into QPG1

and QPG2
.

By a recursive application of Theorem1,we obtain a sufficient condition for decom-
posability of SG into sets SGj , for j ∈ J .
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Theorem 2 Let G be a hypergraph, and let Gj , j ∈ J , be section hypergraphs of G
such that ∪ j∈J Gj = G. Suppose that for all j, j ′ ∈ J with j 	= j ′, the intersection
Gj ∩Gj ′ is the same complete hypergraph Ḡ. Then SG is decomposable into SGj , for
j ∈ J .

2.2 A necessary condition for decomposability of Multilinear sets

In this section, we demonstrate the tightness of Theorem 1; namely, we show that if a
rank-r hypergraph Ḡ is not complete, then for any integer r ′ ≥ max{r, 2}, there always
exists a rank-r ′ hypergraph G = G1 ∪ G2 with Ḡ = G1 ∩ G2 such that SG is not
decomposable into SG1 and SG2 . We will make use of the following two lemmata to
prove this claim. In the remainder of the paper, for notational simplicity, given a node
v·, we sometimes write z· instead of zv· . Similarly, given an edge e·, we sometimes
write z· instead of ze· .

Lemma 1 Consider the hypergraph G = (V, E) with V = {vi : i = 1, . . . , r + 3}
for some r ≥ 2. Let J = {3, . . . , r + 3} and let E contain the following set of edges:
e1i = {v1, vi } for all i ∈ J , e2i = {v2, vi } for all i ∈ J , and eI = {vi : i ∈ I } for
every I ⊂ J of cardinality between 2 and r. Then the inequality given by

r(r − 1)z1 + (r − 1)z2 + r
∑

i∈J

zi − (r − 1)
∑

i∈J

z1i −
∑

i∈J

z2i

−
∑

I⊂{3,...,r+3}
|I |=r

z I ≤ r2 − 1 (5)

is facet-defining for MPG.

Proof The validity of inequality (5) for MPG can be verified by considering the four
cases corresponding to different combinations of (z1, z2) ∈ {0, 1}2. We now show that
inequality (5) defines a facet of MPG . To do so, we provide three families of points
in MPG that satisfy the inequality (5) tightly, and show that the hyperplane az = α

(unique up to a scaling) passing through all such points is the supporting hyperplane
corresponding to the half-space implied by (5).

(i) Let J denote the set of all subsets of J with cardinality between 0 and r − 1. For
each I ∈ J , construct a point with z1 = z2 = 1, zi = 1 for all i ∈ I , and zi = 0
otherwise. The variables ze, for e ∈ E , are computed accordingly. It is simple to
verify that all such points satisfy inequality (5) tightly. Substituting such a tight
point with I = ∅ in az = α, we obtain

a1 + a2 = α. (6)

Similarly, setting I = {i} for all i ∈ J , yields a1 + a2 + ai + a1i + a2i = α.
From (6), it follows that

ai + a1i + a2i = 0 (7)
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for all i ∈ J . Moreover, letting I = {i, j} for 3 ≤ i < j ≤ r + 3, yields
a1 + a2 + ai + a1i + a2i + a j + a1 j + a2 j + ai j = α. Since a1 + a2 = α,
ai + a1i + a2i = 0, and a j + a1 j + a2 j = 0, we conclude that ai j = 0. Utilizing
a similar argument in a recursive manner for subsets I with larger cardinalities,
we obtain:

aI = 0, ∀I ⊂ J, |I | ≥ 2. (8)

(ii) Let K denote the set of all subsets of J of cardinality r − 1 or r . For each I ∈ K,
construct a point with z1 = 1, z2 = 0, zi = 1 for all i ∈ I , and zi = 0 otherwise.
The variables ze, for e ∈ E , are computed accordingly. All these points satisfy
inequality (5) tightly. First, consider the points with |I | = r . By (8), we have
aI ′ = 0 for all I ′ ⊂ I with |I ′| ≥ 2. Thus, substituting for such points in az = α,
we obtain

a1 +
∑

i∈I
ai +

∑

i∈I
a1i + aI = α. (9)

Now, consider the set of tight points corresponding to subsets of J of cardinality
r −1. Suppose that for each j ∈ I , where I is defined in (9), the new tight point is
obtained by letting zi = 1 for all i ∈ I\{ j} and z j = 0. Substituting this point in
az = α yields a1+∑

i∈I\{ j} ai +
∑

i∈I\{ j} a1i = α. We now add these r equations
for every j ∈ J and subtract the result from Eq. (9) multiplied by r − 1 to obtain
a1 − (r − 1)aI = α. Since, this relation holds for all I ∈ K with |I | = r , we
conclude that

aI = λ := (a1 − α)/(r − 1), ∀I ⊂ J, |I | = r. (10)

(iii) Let L denote the set of all subsets of J of cardinality r or r + 1. For each I ∈ L,
construct a tight point with z1 = z2 = 0, zi = 1 for all i ∈ I , and zi = 0
otherwise. The variables ze, for e ∈ E , are computed accordingly. Substituting
the point with I = J in az = α yields

∑

i∈J

ai + (r + 1)λ = α. (11)

In addition, for each j ∈ J , substituting the tight point with I = J\{ j}, we obtain
∑

i∈J\{ j}
ai + λ = α. (12)

Subtracting the two equations gives ai + rλ = 0 for all i ∈ J . Hence,

ai = μ := −rλ, ∀i ∈ J. (13)

Combining Eqs. (10), (13) and (9), we obtain a1 + rμ + ∑
i∈I a1i + λ = α for

all I ⊂ J with |I | = r . Now consider two equations from this system, one with

123



On decomposability of Multilinear sets

I = J\{ j}, and another with I = J\{k} for some j, k ∈ J such that j 	= k.
Subtracting these two equations we obtain a1 j = a1k . By applying this argument
recursively, it follows that

a1i = ν1 := (α − a1 − rμ − λ)/r, ∀i ∈ J. (14)

In addition, Eq. (7) simplifies to μ + ν1 + a2i = 0, implying

a2i = ν2 := −μ − ν1, ∀i ∈ J. (15)

To summarize, using Eqs. (6), (7), (8), (10), (11), (12), (13), (14) and (15), we obtain
the following system of equations

a1 + a2 = α (16)

μ + ν1 + ν2 = 0 (17)

a1 + (r − 1)μ + (r − 1)ν1 = α (18)

a1 + rμ + rν1 + λ = α (19)

(r + 1)μ + (r + 1)λ = α (20)

rμ + λ = α. (21)

If α = 0, then it can be checked that the only solution of the above system is the
zero vector. Thus, without loss of generality, we assume α = r2 − 1. Equations (20)
and (21) imply μ = r and λ = −1. It follows that equations (18) and (19) can be
written as a1 + (r − 1)ν1 = r − 1 and a1 + rν1 = 0, implying a1 = r(r − 1) and
ν1 = −(r − 1). Finally, from (16) we obtain a2 = r − 1, and (17) yields ν2 = −1.
Therefore, inequality (5) defines a facet of MPG . ��
Lemma 2 Let G be a hypergraph, and let G1,G2 be section hypergraphs of G such
that G1∪G2 = G and the setSG is decomposable intoSG1 andSG2 . Let H be a section
hypergraph of G such that V (H)\V (G1) and V (H)\V (G2) are both nonempty. For
j = 1, 2, let Hj be the section hypergraph of G induced by V (Gj ) ∩ V (H). Then the
set SH is decomposable into SH1 and SH2 .

Proof As in the proof of Theorem 1, we define a vector (z1, z̄, z2) such that (z1, z̄) ∈
convSH1 and (z̄, z2) ∈ convSH2 . We show that (z1, z̄, z2) ∈ convSH .

Let s̄ be obtained from z̄ by adding zero coefficients to the components corre-
sponding to nodes and edges that are in Ḡ := G1 ∩G2 but not in H̄ := H1 ∩ H2. For
j = 1, 2, let s j be obtained from z j by adding zero coefficients to the components
corresponding to nodes and edges that are in Gj but not in Hj or in Ḡ.

Let p ∈ SHj , and let p̃ be obtained from p by adding zero coefficients to the
components that are in Gj but not in Hj . Since Hj is a section hypergraph of Gj ,
it follows that the vector p̃ is in SGj . Consequently, we have (z1, z̄) ∈ convSH1 and
(z̄, z2) ∈ convSH2 , which in turn imply (s1, s̄) ∈ convSG1 and (s̄, s2) ∈ convSG2 .
By decomposability of SG into SG1 and SG2 , it follows that (s1, s̄, s2) ∈ convSG .
Therefore (s1, s̄, s2) can be written as a convex combination of points in SG . By
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dropping from each point in such a convex combination the components corresponding
to nodes and edges present in G but not in H , we obtain (z1, z̄, z2) ∈ convSH . ��

We are now in position to prove the converse of Theorem 1.

Theorem 3 Let Ḡ be a rank-r hypergraph that is not complete. Then for any integer
r ′ ≥ max{r, 2}, there exists a rank-r ′ hypergraph G = G1∪G2, where G1 and G2 are
section hypergraphs of G with Ḡ = G1∩G2, such that the setSG is not decomposable
into SG1 and SG2 .

Proof We start by proving that if the rank-r hypergraph Ḡ is not complete, then there
exists a hypergraph G of rank max{r, 2} such that G = G1 ∪ G2, where G1 and G2
are section hypergraphs of G with Ḡ = G1 ∩G2, and the set SG is not decomposable
into SG1 and SG2 . Subsequently we show that the same statement holds for a rank-r ′
hypergraph G with r ′ > max{r, 2}.

We search for a section hypergraph of Ḡ, denoted by H̄ , that has q nodes, for
some q ∈ {2, . . . , |V (Ḡ)|}, such that H̄ contains all edges of cardinality between two
and q − 1 but does not contain the edge of cardinality q. Observe that since Ḡ is
not complete, it always contains such a section hypergraph. We first show that there
exists a hypergraph H = H1 ∪ H2, where H1 and H2 are section hypergraphs of H
with H̄ = H1 ∩ H2, such that the set SH is not decomposable into SH1 and SH2 .
Subsequently, we employ the result of Lemma 2 to complete the proof. Let v1 and
v2 be new nodes (not in V (Ḡ)), let V (H1) = V (H̄) ∪ {v1}, V (H2) = V (H̄) ∪ {v2},
E(H1) = E(H̄)∪{{v1, v} : v ∈ V (H̄)}, and E(H2) = E(H̄)∪{{v2, v} : v ∈ V (H̄)}.
By construction H̄ = H1 ∩ H2. We now identify a facet defining inequality for
MPH with nonzero coefficients corresponding to edges in both E(H1)\E(H̄) and
E(H2)\E(H̄). Two cases arise:

(i) q = 2. In this case, there exist nodes u, w ∈ V (Ḡ) such that {u, w} /∈ E(Ḡ).
Therefore, the graph H is a cordless cycle with the node set given by {v1, v2, u, w}
and the edge set given by {{v1, u}, {v1, w}, {v2, u}, {v2, w}}. It is well-known that
the inequality

−zv2 − zw − z{v1,u} + z{v1,w} + z{v2,u} + z{v2,w} ≤ 0,

defines a facet of convSH (cf. [24]). Since {v1, u} ∈ E(H1)\E(H̄),while {v2, u} ∈
E(H2)\E(H̄), it follows that the set SH is not decomposable to SH1 and SH2 .

(ii) q > 2. In this case, the hypergraph H is of the form considered in the statement
of Lemma 1 (with r = q − 1) and hence, the inequality given by

(q − 1)(q − 2)zv1 + (q − 2)zv2 + (q − 1)
∑

v∈V (H̄)

zv+

− (q − 2)
∑

v∈V (H̄)

z{v1,v} −
∑

v∈V (H̄)

z{v2,v} −
∑

e∈E(H̄)
|e|=q−1

ze ≤ (q − 1)2 − 1

is facet defining for convSH . Thus, SH is not decomposable into SH1 and SH2 .
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G

G G2G1

G1 G2

Fig. 2 Some examples of hypergraphs G for which the set SG is not decomposable into SG1 and SG2

Let G := H1 ∪ H2 ∪ Ḡ. Clearly, the rank of G equals max{r, 2}. Define G1 and
G2 to be section hypergraphs of G induced by V (H1) ∪ V (Ḡ) and V (H2) ∪ V (Ḡ),
respectively. It is simple to check that G = G1 ∪ G2 and Ḡ = G1 ∩ G2. Since H
is a section hypergraph of G, V (H)\V (G1) = {v2}, and V (H)\V (G2) = {v1}, by
Lemma 2, the set SG is not decomposable into SG1 and SG2 .

Now let r ′ be an integer greater than max{r, 2}, and let the hypergraph G̃2 be
obtained fromG2 by adding r ′−1 new nodes, denoted byW , and a new edge {v2}∪W .
Now define the rank-r ′ hypergraph G̃ := G1 ∪ G̃2. Then it is simple to check that by
Lemma 2 the set SG̃ is not decomposable into SG1 and SG̃2

, and this completes the
proof. ��

Figure 2 illustrates some simple hypergraphs G for which the set SG is not decom-
posable into SG1 and SG2 .

In [24], Padberg poses a question regarding the decomposability of the Boolean
quadric polytope when the intersection graph is a clique of cardinality greater than
two. In our context, his question can be equivalently stated as follows: let Ḡ be a graph
with |V (Ḡ)| ≥ 3 and with E(Ḡ) containing all subsets of V (Ḡ) of cardinality two.
Given any two distinct graphs G1 and G2 with Ḡ = G1 ∩ G2, V (G1)\V (Ḡ) 	= ∅,
and V (G2)\V (Ḡ) 	= ∅, is QPG1∪G2 always decomposable into QPG1 and QPG2? The
proof of Theorem 3 implies that the answer to this question is negative for every Ḡ
with three or more nodes.

3 Decomposability of Multilinear sets with sparse intersection
hypergraphs

The decomposability results given in Sect. 2 are based upon the assumption that the
pair-wise intersection hypergraphs are complete. In this section,we explore the relation
between the sparsity of the intersection hypergraph Ḡ and the extent to which G is
decomposable. To this end, given a hypergraph Ḡ, we define its incompleteness number
κ(Ḡ) to be the difference between the number of edges of a complete hypergraph on
V (Ḡ) and the number of edges of Ḡ; that is, κ(Ḡ) = 2|V (Ḡ)| − |V (Ḡ)| − |E(Ḡ)| − 1.
The following theorem provides a decomposition scheme for Multilinear sets whose
corresponding intersection hypergraph Ḡ is not complete; i.e., κ(Ḡ) > 0.

Theorem 4 Let G be a hypergraph, and let Gj , j ∈ J , be section hypergraphs of G
such that ∪ j∈J Gj = G. Suppose that, for all j, j ′ ∈ J with j 	= j ′, the intersection
Gj ∩ Gj ′ is the same hypergraph Ḡ. Denote by K̄ the set of all subsets of J of
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G

G1 ∪ G2

G2 ∪ G3G3 ∪ G1G3

G1 G2

Fig. 3 The Multilinear set SG is not decomposable into the sets SG1 , SG2 , and SG3 . However, by
Corollary 2, it is decomposable into SG1 ∪G2 , SG2 ∪G3 , and SG3 ∪G1

cardinality 2κ(Ḡ). Let G̃K = ∪ j∈KGj for eachK ∈ K̄. Then SG is decomposable into
SG̃K , K ∈ K̄.

Proof Let κ = κ(Ḡ). If κ = 0, the result follows from Theorem 2. Henceforth,
we assume that κ ≥ 1. Let G ′ be the hypergraph obtained from G by adding the κ

edges corresponding to all subsets of V (Ḡ) that are not present in E(G). Moreover,
we denote by G ′

j the section hypergraph of G ′ induced by V (Gj ). By Theorem 2,
the Multilinear set SG ′ is decomposable into SG ′

j
, for j ∈ J . Therefore, the support

hypergraph of each facet-defining inequality ofMPG ′ is contained in some hypergraph
G ′

j , for j ∈ J .
To obtain a facet-description ofMPG from that ofMPG ′ , we project out, via Fourier

elimination, the κ variables corresponding to edges that we have artificially added to
G in order to obtain G ′. By projecting out one variable, the support hypergraph of
each new inequality is contained in the union of at most two hypergraphs G ′

j , j ∈ J .
Similarly, by projecting out the next variable, the support hypergraph of each new
inequality can be contained in the union of at most four hypergraphs G ′

j , j ∈ J . In
this way, once we project out all κ variables, the support hypergraph of each inequality
is contained in the union of at most 2κ hypergraphs G ′

j , j ∈ J . Hence, the theorem
follows. ��

In Theorem 4, letting κ(Ḡ) = 0, yields Theorem 2 (and Theorem 1, if |J | = 2).
Moreover, letting κ(Ḡ) = 1, we obtain the following:

Corollary 2 Let G be a hypergraph, and let Gj , j ∈ J , be section hypergraphs of G
such that ∪ j∈J Gj = G. Suppose that for all j, j ′ ∈ J with j 	= j ′, the intersection
Gj ∩ Gj ′ is the same hypergraph Ḡ, and that Ḡ can be obtained by removing one
edge from the complete hypergraph on V (Ḡ). Then SG is decomposable into the sets
SGj ∪Gj ′ , for j, j ′ ∈ J with j 	= j ′.

We demonstrate the applicability of Corollary 2 with an example.

Example 1 Consider the hypergraph G with V (G) = {v1, v2, v3, v4, v5, v6} and
E(G) = {e12, e13, e23, e1234, e1235, e1236}, where edge eI contains the nodes with
indices in I . Let G1, G2, and G3 be section hypergraphs of G induced by the sub-
sets of nodes {v1, v2, v3, v4}, {v1, v2, v3, v5}, and {v1, v2, v3, v6}, respectively (see
Fig. 3). In this case, SG is not decomposable into SG1 , SG2 , and SG3 , as for example
the inequality

z4 − z1234 + z1235 ≤ 1
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defines a facet of SG . However, the pair-wise intersection hypergraph; i.e., Ḡ :=
G1 ∩ G2 = G2 ∩ G3 = G3 ∩ G1 can be obtained by removing one edge (in this
case e123) from the complete hypergraph on v1, v2, v3. Therefore, by Corollary 2, the
Multilinear set SG is decomposable into subsets SG1 ∪G2 , SG2 ∪G3 , and SG3 ∪G1 .

As a direct consequence of Corollary 2, we now present new sufficient conditions
under which the Boolean quadric polytope is decomposable into simpler sets.

Corollary 3 Let G be a graph, and let Gj , j ∈ J , be induced subgraphs of G such
that∪ j∈J Gj = G. Suppose that for all j, j ′ ∈ J with j 	= j ′, the intersection Gj ∩Gj ′
is the same graph Ḡ, and that Ḡ has one of the following forms:

(i) Ḡ consists of two isolated nodes, i.e., V (Ḡ) = {v,w}, and E(Ḡ) = ∅.
(ii) Ḡ consists of a triangle, i.e., V (Ḡ) = {u, v, w}, and E(Ḡ) = {{u, v}, {v,w},

{w, u}}.
Then QPG is decomposable into QPGj∪Gj ′ for all j, j

′ ∈ J with j 	= j ′.

Proof Follows directly from Corollary 2 by using the fact that the intersection graph
Ḡ can be obtained by (i) removing the edge {v,w} from the complete graph on v,w

and (ii) removing the edge {u, v, w} from the complete hypergraph on u, v, w. ��
Example 2 Consider the graph G with V (G) = {vi : i = 1, . . . , r + 2} for some
r ≥ 3. Suppose that E(G) consist of the following set of edges: {v1, v j } and {v2, v j }
for all j ∈ J = {3, . . . , r + 2}. Denote by Gj , j ∈ J , the subgraph of G induced by
the nodes v1, v2, v j . It is then simple to check that the pair-wise intersection graph Ḡ
consists of two nodes v1, v2. Therefore, by Part (i) of Corollary 3, SG is decomposable
into SGj ∪Gj ′ , for all j, j

′ ∈ J with j 	= j ′. Now, consider one set SGj∪Gj ′ . The graph
Gj ∪ Gj ′ consists of a cordless cycle of length four. It then follows that MPGj ∪Gj ′ is
obtained by adding the odd-cycle inequalities to the standard linearization of SGj ∪Gj ′
(cf. [24]). Thus, the Boolean quadric polytope associated with the graph G is obtained
by adding all odd-cycle inequalities corresponding to r(r − 1)/2 chordless cycles of
length four to the standard linearization of SG .

4 A polynomial-time algorithm for decomposition of Multilinear sets

In this section, we present a simple and efficient algorithm for optimally decomposing
Multilinear sets into simpler and non-decomposable Multilinear sets based on our
results in Sect. 2. Our proposed algorithm can be easily incorporated in branch-and-
cut based MINLP solvers as a preprocessing step for cut generation. Throughout this
section, whenever a Multilinear set SG is decomposable into subsets SGj , j ∈ J , we
refer to the family Gj , j ∈ J , as a decomposition of G. Without loss of generality,
we assume that G is a connected hypergraph; that is, if the hypergraph G is not
connected, then it is simple to see that SG is decomposable into SGk , k ∈ K , where
Gk , k ∈ K , denote the connected components of G. Thus, in this case, our algorithm
can be employed to further decompose each connected component Gk . Now, consider
a hypergraph G and let p ⊂ V (G). Denote by Ḡ the section hypergraph of G induced
by p. We say that p decomposes G if the following two conditions are satisfied:
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(a) The hypergraph Ḡ is complete.
(b) There exist section hypergraphs Gj , j ∈ J , of G, with V (Gj )\V (Gj ′) 	= ∅ for all

j, j ′ ∈ J with j 	= j ′, that together with Ḡ, satisfy the hypothesis of Theorem 2.

In condition (b) defined above, by letting V (Gj )\V (Gj ′) = ∅ for some j, j ′ ∈
J , we obtain ∪i∈J\{ j}Gi = G. Thus, we can apply Theorem 2 to the family Gi ,
i ∈ J\{ j} instead, and obtain a more compact decomposition. Furthermore, for a
connected hypergraph G, it can be shown that each hypergraph Gj , j ∈ J , is a
connected hypergraph as well. For a fixed p that decomposes G, the decomposition
obtained by utilizing Theorem 2 is not unique, in general. That is, there might exist
several families of section hypergraphs Gj , j ∈ J , with

⋃
j∈J Gj = G, whose pair-

wise intersection hypergraph is Ḡ. Clearly, among all such decompositions, we are
interested in the ones for which p does not decompose any of the Gj . It can be shown
that such a decomposition of G is indeed unique. Henceforth, we refer to this unique
decomposition as the p-decomposition of G.

In general, a Multilinear set SG is decomposable into simpler sets via a series of
p-decompositions of G until none of the newly generated Multilinear sets are decom-
posable. Given a hypergraph G, we define its full-decomposition as a decomposition
of G given by a family Gk , k ∈ K , with the following two properties:

(i) There exists no Gk , for some k ∈ K , and p ⊂ V (Gk) such that p decomposes
Gk .

(ii) No hypergraphGs , s ∈ K , in the decomposition is a section hypergraph of another
hypergraph Gt , t ∈ K , with t 	= s.

We should remark that ifGs is a section hypergraph ofGt for some s, t ∈ K with s 	= t ,
then MPGs corresponds to a face of MPGt . Thus, removing Gs from a decomposition
of G, translates into removing redundant inequalities from the facet description of
MPG , which is highly beneficial from a computational point of view.

Finding a full-decomposition of a hypergraph has certain similarities to the prob-
lem of decomposing a graph by means of clique separators, where a clique separator
is defined as a clique whose removal disconnects the graph. Given a graph G with
n nodes and m edges, Tarjan [29] presents an O(nm)-time algorithm to decompose
the graph. The decomposition obtained using this algorithm depends on the ordering
of the clique separators and is far from unique, in general. Leimer [17] introduces
a modification of Tarjan’s algorithm in which minimal clique separators are utilized
in the recursive decomposition of the graph. The author shows that the output of this
algorithm is unique and that the number of subgraphs in the decomposition is minimal.
In the remainder of this section, we present results on uniqueness and optimality of
our proposed decomposition algorithm (see Propositions 3 and 5), which are of similar
flavor to the results presented in [17,29] regarding the decomposition of graphs by
clique separators. While it is possible to obtain alternative proofs for our aforemen-
tioned results using the machinery developed in [17], to keep the presentation simple,
we utilize our techniques to prove these propositions.

In the following, we first show how to obtain the p-decomposition of G algorith-
mically. Subsequently, we define a general algorithm to obtain a full-decomposition
of a hypergraph and detail on possible enhancements.
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4.1 An algorithm to obtain the p-decomposition of G

We start by introducing some graph terminology. Throughout this section, we assume
that a hypergraph is represented by an incidence-list in which edges are stored as
objects, and every edge stores its incident nodes. In order to use efficient searching
algorithms, we assume that the vertex list for each edge is sorted. Otherwise, such a
sorted data structure for a rank-r hypergraph can be obtained in O(r |E |) time by using
some integer sorting algorithm such as counting sort [11]. In addition, we assume that
the edges of E are sorted in increasing cardinality, and edges of the same cardinality are
sorted lexicographically. For a rank-r hypergraph, such a sorting order can be obtained
using the least significant digit (LSD) radix sort in O(r |E |) operations (cf. [11]). For
graphs however, we consider a slightly different data structure as it is widely-used for
some of the graph algorithms that we utilize in this paper. We represent a graph by an
adjacency-list in which nodes are stored as objects, and every nodes stores its adjacent
nodes.

Given a rank-r hypergraph G = (V, E), we define a graph reduction of G as
a graph G ′ = (V, E ′) obtained from G by replacing each edge of cardinality at
least three with one cycle containing all of its nodes, where no node is repeated.
Furthermore, to obtain a simple graph, all parallel edges are removed. A hypergraph
can have many different graph reductions, in general. It can be shown that any graph
reduction of G has at most r |E | edges and can be obtained in O(r |E |) time: we
construct a graph reduction of a hypergraph G in two steps: (i) starting from the
incidence-list of the hypergraph G, we first generate the adjacency-list for the (multi)-
graph Ĝ = (V, Ê) obtained by replacing each edge of cardinality at least three in
G by a cycle containing all of its nodes, where no node is repeated, (ii) given the
adjacency-list representation of the (multi)-graph Ĝ, we compute the adjacency-list
representation of the equivalent simple graph G ′ = (V, E ′), where E ′ consists of
the edges in Ê with all multiple edges between two nodes replaced by a single edge;
note that the adjacency-list of a multi-graph is similar to that of a simple graph except
that in a multi-graph the list of adjacent nodes for each node may contain repeated
elements. It is simple to check that both of these steps can be performed in O(r |E |)
time.

Given a hypergraph G = (V, E) and an edge ẽ ∈ E , the hypergraph G ′ = (V ′, E ′)
obtained from G by contracting ẽ is defined as V ′ = V \ẽ ∪ {ṽ}, where ṽ is a new
node, and E ′ = {e : e ∈ E, e ∩ ẽ = ∅} ∪ {e\ẽ ∪ {ṽ} : e ∈ E, e ∩ ẽ 	= ∅}. For
a rank-r hypergraph G, the hypergraph G ′ can be constructed in O(r |E |) time. To
see this, note that since by assumption the vertex lists corresponding to all edges of
G are sorted, for each e ∈ E we can obtain e\ẽ in O(max(|e|, |ẽ|)) time. It then
follows that G ′ can be obtained in O(r |E |) time. Finally, given a graph G = (V, E),
and a node v ∈ V , we denote by G\v, the graph obtained from G by remov-
ing node v and all edges containing v. In the sequel, for notational simplicity, we
sometimes identify a node, say v, with the set containing it, say {v}. The following
proposition provides a simple algorithm for constructing the p-decomposition of a
hypergraph G.
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Proposition 1 Given a connected rank-r hypergraph G = (V, E) and p ⊂ V , we
can test if p decomposes G, and, if so, obtain the p-decomposition of G in O(r |E |)
time.

Proof Clearly if p decomposes G, then p ∈ V ∪ E . We first check if condition (a)
in the definition of p-decomposition is satisfied; that is, if the section hypergraph
induced by p is complete. This condition is trivially satisfied if p ∈ V . Thus, assume
that p ∈ E . It then suffices to check if each subset of p of cardinality at least two
is an edge of G. Clearly, if 2|p| − |p| − 1 > |E |, then such subsets of p are not all
present in E . Therefore, suppose that 2|p| − |p| − 1 ≤ |E |. By assumption, edges
of G are sorted in increasing cardinality and edges of the same cardinality are sorted
lexicographically. By using a similar ordering for the subsets of p, we can check in
O(|E |) time, if the section hypergraph induced by p is complete.

We now assume that the section hypergraph induced by p is complete, and we show
how to check if condition (b) holds. Let G ′ be the hypergraph obtained from G by
contracting p, which can be constructed in O(r |E |) time. Let ṽ ∈ V (G ′) be the new
node added to V after contraction of p in G, and let G ′′ be a graph reduction of G ′,
which has at most r |E | edges and can be obtained in O(r |E |) time. It is then easy to
see that p decomposes G if and only if G ′′\ṽ is a disconnected graph, which can be
tested using the classical depth-first search algorithm of Hopcroft and Tarjan [16] that
runs in O(r |E |) time.

Now assume that p decomposes G. We show how to obtain the p-decomposition
of G. Let Vj , j ∈ J , be the subset of nodes of G corresponding to the con-
nected components of G ′′\ṽ. Denote by G ′′

j the subgraph induced by Vj ∪ {ṽ},
for each j ∈ J . Then the depth-first search algorithm of [16] can further be aug-
mented to label edges of G ′′ corresponding to different subgraphs G ′′

j , j ∈ J , in
O(r |E |) time. Define the hypergraph Gj , for each j ∈ J , as the section hyper-
graph of G induced by Vj ∪ p. It is simple to check that Gj , j ∈ J , is the
p-decomposition of G. To characterize the edge set for each Gj , we first note
that by definition, each e ∈ E with e ⊆ p is present in all Gj , j ∈ J . To
characterize the remaining distinct edges, it suffices to label edges of G accord-
ing to the labeling available for the edges of G ′′ as described above; suppose
that for each edge e in G we associate a pointer to an edge e′′ in G ′′ with
e ⊇ e′′. It then follows that any two edges e1 and e2 in G belong to the
same Gj if and only if the corresponding edges e′′

1 and e′′
2 in G ′′ are present in

the same G ′′
j . Therefore, hypergraphs Gj , j ∈ J , can now be characterized in

O(|E |) time. ��
We should remark that for a given p that decomposes a hypergraph G into Gj ,

j ∈ J , the output of the p-decomposition test described in the proof of Proposition 1
provides a labeling of the edges of G that belong to exactly one new hypergraph Gj ,
with the understanding that the edges contained in p are present in all Gj , j ∈ J .
Consequently, generating a complete list of edges belonging to each Gj for all j ∈ J
can be done in |E |+ (|J |−1)|Ē | steps, where Ē denotes the set of edges contained in
p. Since, |J | ≤ |E | and |Ē | ≤ |E |, we conclude that the cost of storing hypergraphs
Gj , j ∈ J , in the incidence-list format, in the worst case is O(|E |2).
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4.2 Full-decompositions

In the following, we define a general algorithm to obtain a full-decomposition of a
hypergraph G.

Gen_dec : General full-decomposition algorithm
Input: A hypergraph G
Output: A full-decomposition of G
Initialize the family L = {G};
while L does not satisfy property (i) of full-decomposition do

select a hypergraph G̃ ∈ L and p ⊂ V (G̃);
if p decomposes G̃ then

let Gj , j ∈ J , be the p-decomposition of G̃;
let J̃ be the subset of J such that each Gj , j ∈ J̃ , is not a section
hypergraph of any hypergraph in L different from G̃;
in L, replace G̃ with Gj , j ∈ J̃ ;

return L;

Proposition 2 The family L returned by Gen_dec is a full-decomposition of G.

Proof To check that L is indeed a full-decomposition of G, it suffices to show that
property (ii) of full-decomposition is satisfied; that is, in L, there exist no two distinct
hypergraphs Gs and Gt such that Gs is a section hypergraph of Gt . We prove this
statement by induction on the iterations of the algorithm. That is, we now assume that
it is true at the point G̃ and p are selected.

By condition (b) in the definition of p-decomposition, no hypergraph Gj , j ∈ J̃ ,
can be a section hypergraph of a different hypergraph Gj , j ∈ J̃ . Let u ∈ J̃ , and
consider the hypergraph Gu . By definition of J̃ , the hypergraph Gu is not a section
hypergraph of any hypergraph inL different from G̃. Therefore, we only need to show
that no hypergraph in L different from G̃ is a section hypergraph of Gu . By induction,
no hypergraph in L different from G̃ is a section hypergraph of G̃. As Gu is a section
hypergraph of G̃, it follows that no hypergraph in L different from G̃ is a section
hypergraph of Gu . ��

In Algorithm Gen_dec, we have not specified which G̃ ∈ L and p ⊂ V (G̃) to
choose at every iteration. We refer to different choices of G̃ and p throughout the
execution of Gen_dec, as decomposition orders. In the sequel, we denote a specific
decomposition order by the sequence of choices that defines it, where each choice
consists of a pair (G̃, p), for some hypergraph G̃ ∈ L and a set of nodes p ⊂ V (G̃) that
is tested for p-decomposition of G̃, as described in Proposition 1. The next proposition
demonstrates that a full-decomposition of a hypergraph obtained by Gen_dec does
not depend on the specific decomposition order used.

Proposition 3 The full-decomposition of a hypergraph obtained by Algorithm
Gen_dec is independent of the decomposition order.
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Proof Assume by contradiction that G has two different full-decompositions L1 and
L2. Let Ĝ be a hypergraphwith themaximumnumber of nodes among the hypergraphs
in the symmetric difference of L1 and L2. Without loss of generality, assume Ĝ ∈ L1.
We show that Ĝ is not a section hypergraph of any hypergraph in L2. Otherwise, there
exists Ĝ ′ ∈ L2 such that Ĝ is a section hypergraph of Ĝ ′. Clearly |V (Ĝ ′)| > |V (Ĝ)|.
Thus, by maximality of Ĝ, it follows that Ĝ ′ is also in L1, contradicting property (ii)
in the definition of a full-decomposition.

Therefore, the hypergraph Ĝ is a section hypergraph of G that is not a section
hypergraph of any hypergraph in L2. Let (G̃, p) be the last pair in the decomposition
order that yieldsL2 for which Ĝ is a section hypergraph of G̃. This implies that Ĝ is not
a section hypergraph of any hypergraph in the p-decomposition of G̃. We will show
that p ∩ V (Ĝ) decomposes Ĝ, contradicting the fact that L1 is a full-decomposition
of G. Let Gj , j ∈ J , denote the p-decomposition of G̃. Let J ′ be the subset of indices
j ∈ J such that Gj contains at least a node of Ĝ that is not in p. Since Ĝ is not a
section hypergraph of any Gj , j ∈ J , it follows that |J ′| ≥ 2. For every j ∈ J ′, let
G ′

j be the section hypergraph of Gj induced by V (Gj ) ∩ V (Ĝ). Clearly G ′
j , j ∈ J ′,

are section hypergraphs of Ĝ, and ∪ j∈J ′G ′
j = Ĝ. Moreover, the hypergraph G ′

j ∩G ′
j ′

for all j, j ′ ∈ J ′, is the complete hypergraph on the nodes p ∩ V (Ĝ). This implies
that p ∩ V (Ĝ) decomposes Ĝ. However, this contradicts with the fact that L1 is a
full-decomposition of G. ��

By Proposition 3, all decomposition orders yield the same full-decomposition of a
hypergraphG. Henceforth, we will speak of the full-decomposition ofG. However, as
we argue next, different decomposition orders result in different computational costs
for Algorithm Gen_dec. Let us revisit Gen_dec; to ensure that property (ii) in the
definition of the full-decomposition is satisfied, every time the p-decomposition of
G̃ is generated, each new hypergraph Gj is compared with the existing ones and is
added to L only if it is not a section hypergraph of another hypergraph in L. Let us
refer to the section hypergraphs not added to L; i.e., Gj with j ∈ J\ J̃ , as redundant
hypergraphs. The following example shows that different decomposition orders in
Algorithm Gen_dec may result in distinct redundant hypergraphs.

Example 3 Consider the hypergraph G = (V, E) depicted in Fig. 4. It is simple to
verify that p1 = {v2, v3, v4} decomposes G and the p1-decomposition of G is given
by G1,G2, where G1 and G2 are section hypergraphs of G induced by {v1, v2, v3, v4}
and {v2, v3, v4, v5}, respectively. Now consider the hypergraph G1; it can be seen
that p2 = {v2, v3} decomposes G1, and the p2-decomposition of G1 is given by
G3,G4, where G3 and G4 are section hypergraphs of G1 induced by {v1, v2, v3} and
{v2, v3, v4}, respectively. The hypergraphG4 is redundant as it is a section hypergraph
of G2. Moreover, after additional p-decomposition tests, it can be verified thatG2 and
G3 cannot be further decomposed. Thus, we obtain the full decomposition of G given
by G2, G3 (see Fig. 4a). Let us denote the decomposition order used in this case by
O1.

Now we consider a different decomposition order O2 to obtain the full-
decomposition of G. It is simple to check that p2 = {v2, v3} decomposes G and
that the p2-decomposition of G is given by G2, G3, where G2 and G3 are as defined
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Fig. 4 Using two different decomposition orders to obtain the full-decomposition of the hypergraph G in
Example 3: while the full-decomposition of G is independent of decomposition orders, different decompo-
sition orders may generate distinct redundant hypergraphs

above and we find that they cannot be decomposed any further after a number of
p-decomposition tests, as defined by O2 (see Fig. 4b).

For brevity, we have not included the full description of decomposition orders O1
andO2, utilized above. However, it is important to note in the sequence defined byO1,
the pair (G, p1) appears prior to the pair (G1, p2), whereas, in O2, the pair (G, p2)
appears as the first element. We will detail on the significance of this difference in the
next section.

In this example, the decomposition orderO2 seems to “outperform”O1: by utilizing
O2 no redundant hypergraph was generated and the full-decomposition of G was
obtained after one decomposition, while applying O1 leads to the generation of one
redundant hypergraph, and two recursive decompositions were needed to obtain the
full-decomposition.

Thus far, via Example 3, we have observed that the generation of redundant hyper-
graphs depends on the decomposition order used in Gen_dec. As the redundancy
check is computationally expensive in general, a natural question is whether it is possi-
ble to characterize a decomposition order that does not generate redundant hypergraphs
for any input hypergraph. We will answer this question rigorously in the next section.

Before proceeding further, let us take a closer look at the computational cost
of Gen_dec; as we detail in the next section, Algorithm Gen_dec can be
implemented as a sequence of p-decomposition tests as defined by the specific decom-
position order used. It then follows that the length of the decomposition order utilized
in Gen_dec is a reasonable measure for the overall computational cost of this algo-
rithm. That is, we would like to identify a decomposition order consisting of the
minimum number of pairs (G̃, p). Clearly if some p ⊂ V (G̃) decomposes G̃, then
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p ∈ V (G̃)∪ E(G̃). Henceforth, at each iteration of Algorithm Gen_dec, we select a
hypergraph G̃ ∈ L and a subsets of nodes p ∈ V (G̃) ∪ E(G̃). Given any decomposi-
tion orderO, in order to satisfy condition (i) in the definition of the full-decomposition
of a hypergraph G via Algorithm Gen_dec, each p ∈ V (G) ∪ E(G) has to be tested
for the p-decomposition of some section hypergraph of G at least once during the
execution of the algorithm; that is, each p ∈ V (G) ∪ E(G) should appear in at least
one pair (G̃, p) in O. It then follows that for a hypergraph G, every decomposition
order contains at least |V (G)| + |E(G)| pairs. Clearly, one can use a variety of tricks
to reduce the upper bound |V (G)|+|E(G)|, based on the structure of the given hyper-
graph. For instance, suppose that at given iteration, we select a pair (G̃, p), where
p ∈ V (G̃) ∪ E(G̃). Subsequently, we apply the p-decomposition test as described
by Proposition 1 and it turns out that the section hypergraph of G̃ induced by p
is not complete. It then follows that the section hypergraph of G̃ induced by any
q ∈ V (G) ∪ E(G) with q ⊃ p is not complete either and therefore does not need to
be considered for a p-decomposition test in Gen_dec. Clearly, such techniques can
be incorporated in any decomposition order to reduce the running time of Gen_dec.
However, in the remainder of this paper, for simplicity of presentation and without
loss of generality, we consider a basic implementation of Gen_dec in which every
subset of nodes p ∈ V (G) ∪ E(G) is tested for p-decomposition in the course of the
algorithm. Such an assumption enables us to obtain an optimal decomposition order
with the minimum length |V (G)| + |E(G)|, which in addition does not generate any
redundant hypergraphs.

4.3 The optimal full-decomposition algorithm

In this section, we derive the “best” decomposition order for Gen_dec, and
present an efficient algorithm to obtain the full-decomposition of a given hyper-
graph. To this end, we first establish an important property regarding the recursive
decomposition of hypergraphs. This property enables an efficient implementation of
Algorithm Gen_dec, by eliminating many unnecessary decomposition tests in its
“while loop”. In the following, we refer to hypergraphs Gj in Gen_dec as the chil-
dren of G̃, while G̃ is called the parent of each Gj . The ancestors of Gj are the parent
of Gj , and the ancestors of the parent of Gj . In addition, the descendants of G̃ are the
children of G̃ and the descendants of the children of G̃.

Proposition 4 Let G̃ be ahypergraph, and let p ⊆ V (G̃). Suppose that the pair (G̃, p)
is considered at some iteration of Algorithm Gen_dec. Then p does not decompose
any descendants of G̃ in this algorithm.

Proof We assume that the section hypergraph of G̃ induced by p is complete, as other-
wise p does not decompose any hypergraph. First assume that p does not decompose
G̃. We show that such a p does not decompose any of the descendants of G̃ generated
during the course of Algorithm Gen_dec. To obtain a contradiction, let Hj̄ be the

first descendant of G̃ generated by Gen_dec that can be decomposed by p. Let H
denote the parent of Hj̄ and suppose that q ⊂ V (H) decomposes H into Hj , j ∈ J ,
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where we have j̄ ∈ J . Note that by assumption, p does not decompose H . We now
utilize p to decompose Hj̄ into Hj̄k , k ∈ K . Clearly, q ⊂ V (Hj̄ ).

We now show that q � p. Assume by contradiction that q ⊆ p. Let Hp denote
the complete hypergraph with node set p. Then Hp is a section hypergraph of Hj̄

and of no other Hj with j 	= j̄ . It can be now checked that p decomposes H into
Hj ∪ Hp for all j ∈ J , which gives us a contradiction. We now assume q � p. Hence
q ⊂ V (Hj̄k̄) for only one k̄ ∈ K , since by assumption V (Hj̄k) ∩ V (Hj̄k′) = p for

all k, k′ ∈ K with k 	= k′. Now, let Ĥ j̄ k̄ = ⋃
j∈J\{ j̄} Hj ∪ Hj̄k̄ . It then follows that

V (Ĥ j̄ k̄) ∩ V (Hj̄k) = p for all k ∈ K\{k̄} and it can be checked that p decomposes

H into Ĥ j̄ k̄ and Hj̄k , k ∈ K\{k̄}, which is in contradiction with the assumption that p

does not decompose H . Hence, if p does not decompose G̃, then it does not decompose
any descendants of G̃ generated by Algorithm Gen_dec.

Now assume that p decomposes G̃ into Gj , j ∈ J . Then by definition of p-
decomposition, the set p does not decompose any of the resulting hypergraphs Gj and
therefore, by the above proof, it does not decompose any of their descendants either.

��
Next, we define a special sequence of choices Ō in the the execution of Algo-

rithm Gen_dec with highly desirable algorithmic properties. At a given iteration of
Gen_dec, we say that p ∈ V (G̃) ∪ E(G̃) is tested in G̃, if the pair (G̃, p) has been
already considered in an earlier iteration of Gen_dec. To characterize Ō, it suffices
to define the pair (G̃, p) at at each iteration of Gen_dec: at a given iteration, any
hypergraph in the current familyL can be chosen as G̃. Let the list {qk, k ∈ K } contain
all nodes and edges of G̃ ordered by increasing cardinality. We define p to be the first
element qk in the above list that is not tested in G̃ and in any ancestor of G̃. The
sequence Ō ends when no such pair (G̃, p) can be found.

Proposition 5 The sequence Ō is a decomposition order. Moreover, it creates no
redundant hypergraphs.

Proof Let Ō be given by (G1, p1), (G2, p2), . . . , (Gt , pt ), for some positive integer
t . To show that Ō is a decomposition order, we prove that it yields the full-
decomposition of G. Let L̄ be the family of hypergraphs obtained by execution of
Algorithm Gen_dec with the decomposition order Ō. Let G̃ denote a hypergraph in
L̄. By definition of Ō, each p̃ ∈ V (G̃) ∪ E(G̃) is tested in G̃ or in an ancestor of G̃.
We only need to show that no p̃ decomposes G̃. If p̃ is tested in G̃, then clearly p̃
does not decompose G̃. Thus, suppose that p̃ is not tested in G̃ implying p̃ is tested in
an ancestor of G̃, denoted by Ĝ. By Proposition 4, it follows that p̃ does not decom-
pose any descendant of Ĝ. As G̃ is a descendant of Ĝ, we conclude that p̃ does not
decompose G̃. Therefore, the decomposition order Ō yields the full-decomposition
of G.

We now show that decomposition order Ō creates no redundant hypergraphs. To
obtain a contradiction, let G̃ be the first redundant hypergraph generated and suppose
that G̃ is one of the hypergraphs in the p j -decomposition of Gj for some positive
integer j . This implies that at the iteration of Algorithm Gen_dec where the pair
(Gj , p j ) is selected, there exists a hypergraph Ĝ ∈ L different from Gj such that G̃
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is a section hypergraph of Ĝ. In the sequence (G1, p1), (G2, p2), . . . , (Gt , pt ), let
Gk be the last hypergraph that is an ancestor of both G̃ and Ĝ. Let G̃ ′ be the child
of Gk that is an ancestor of G̃, or G̃ itself. Similarly, let Ĝ ′ be the child of Gk that is
an ancestor of Ĝ, or Ĝ itself. Clearly V (G̃) ⊆ V (G̃ ′), and V (G̃) ⊆ V (Ĝ) ⊆ V (Ĝ ′).
Therefore, V (G̃) ⊆ V (G̃ ′)∩V (Ĝ ′) = pk . By definition of p-decomposition, we have
that p j ⊂ V (G̃), thus we have p j ⊂ pk . However, this is a contradiction, since Gk is
an ancestor of Gj and, by definition of Ō, the ancestors of Gj are decomposed using
sets of cardinality at most |p j |. Therefore, we conclude that the decomposition order
Ō generates no redundant hypergraphs. ��

As a direct consequence of Proposition 5, in Algorithm Gen_dec with decom-
position order Ō, at every iteration we have J = J̃ . That is, by employing Ō
in Algorithm Gen_dec, we can eliminate the redundancy check, which is com-
putationally expensive in general. As we detailed before, for a hypergraph G, any
decomposition order must contain at least |V (G)| + |E(G)| pairs. We now show that
Ō is optimal in the sense that the p-decomposition test is performed exactly once for
each p ∈ V (G) ∪ E(G).

Proposition 6 Consider a hypergraph G with n nodes and m edges. Let the decom-
position order Ō for G be given by (G1, p1), (G2, p2), . . . , (Gt , pt ). Then t = n+m,
and pi 	= p j if i 	= j .

Proof Let the decomposition order Ō for G be given by (G1, p1), (G2, p2), . . . ,
(Gt , pt ). We show that pi 	= p j if i 	= j , which directly implies t = n + m, since
each pi is in V (G) ∪ E(G).

Assume by contradiction that there exist indices i, j with i 	= j such that pi = p j .
By Proposition 4, Gi is not an ancestor of Gj , and Gj is not an ancestor of Gi . In
the sequence (G1, p1), (G2, p2), . . . , (Gt , pt ), let Gk be the last hypergraph that is
an ancestor of both Gi and Gj . Let G ′

i be the child of Gk that is an ancestor of
Gi , or Gi itself. Similarly, let G ′

j be the child of Gk that is an ancestor of Gj , or
Gj itself. Clearly pi ⊂ V (Gi ) ⊆ V (G ′

i ), and p j ⊂ V (Gj ) ⊆ V (G ′
j ). Therefore,

pi ⊂ V (G ′
i ) ∩ V (G ′

j ) = pk . However, this is a contradiction, since Gk is an ancestor

of Gi and, by definition of Ō, the ancestors of Gi are decomposed using sets of
cardinality at most |pi |. Therefore, we conclude that pi 	= p j if i 	= j . ��

We should remark that while Ō contains the minimum number of p-decomposition
tests for Algorithm Gen_dec, it might be possible to obtain the full-decomposition of
hypergraphs with a smaller number of p-decomposition tests usingmore sophisticated
algorithmic frameworks. For example, in [17,29], the authors utilize the concept of
perfect elimination orderings for chordal graphs to identify clique separators of general
graphs in n iterations, where n is the number of nodes of the graph. We leave it as an
open question whether similar elimination orderings can be defined for constructing
the full-decomposition of hypergraphs.

A natural question regarding the applicability of our decomposition scheme in
the context of MINLP solvers is the final number and size of hypergraphs present
in the full-decomposition of a given hypergraph. That is, while decomposition of a
Multilinear set SG into lower-dimensional Multilinear sets enables us to convexify
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SG more efficiently, the presence of a large number of overlapping hypergraphs in
the full-decomposition of G leads to a significant increase in the size of the result-
ing relaxations, which in turn deteriorates the performance of branch-and-cut based
MINLP solvers. The following proposition shows that our decomposition algorithm
always leads to relaxations of reasonable size.

Proposition 7 Consider a hypergraph G with n ≥ 2 nodes and m ≥ 1 edges. Then
the full-decomposition of G consists of at mostmin{n−1,m} hypergraphs. Moreover,
the total number of hypergraphs generated in the course of Algorithm Gen_dec with
decomposition order Ō is at most min{2n − 3, 2m − 1}.
Proof By Proposition 3, the full-decomposition of a hypergraph G is independent of
the decomposition order. Thus in the following, we consider Algorithm Gen_dec
with the decomposition order Ō. Both upper bounds on the final and total number of
hypergraphs generated by Gen_dec follow directly by setting Ĝ := G and k := 1 in
the following claim. ��
Claim Let Ĝ be a hypergraph with n̂ nodes and m̂ edges considered at some iteration
of Algorithm Gen_dec with decomposition order Ō applied to G. Assume that for
each pair (G̃, p) tested in the algorithm, where G̃ is Ĝ or a descendant of Ĝ, we have
|p| ≥ k, for some integer k ≤ n̂. Then:

(i) The number of hypergraphs in the full-decomposition of G that are Ĝ or descen-
dants of Ĝ is at most max{1, n̂ − k}.

(ii) The number of hypergraphs that are Ĝ or descendants of Ĝ is at most
max{1, 2(n̂ − k) − 1}.

(iii) The number of hypergraphs in the full-decomposition of G that are Ĝ or descen-
dants of Ĝ is at most max{1, m̂ − 2k + k + 1}.

(iv) The number of hypergraphs that are Ĝ or descendants of Ĝ is at most
max{1, 2(m̂ − 2k + k + 1) − 1}.

Proof of Claim We prove the claim by induction on n̂ − k ≥ 0. First, we show the
base case n̂ − k = 0. In this case, for every pair (Ĝ, p) tested by the algorithm we
have |p| = k = n̂. This implies that Ĝ will not be further decomposed and hence the
claim is satisfied.

Next, we assume n̂ − k > 0 and we show the inductive step. If Ĝ is not decompos-
able, we are done. Therefore, we now consider a pair (Ĝ, p̂) such that p̂ decomposes
Ĝ. LetGj , j ∈ J , be the p̂-decomposition of Ĝ, let k̂ := | p̂| ≥ k, let n j be the number
of nodes of Gj , and let m j be the number of edges of Gj . Note that k̂ < n j < n̂, and

n̂ =
∑

j∈J

(
n j − k̂

)
+ k̂, (22)

m̂ =
∑

j∈J

(
m j − 2k̂ + k̂ + 1

)
+ 2k̂ − k̂ − 1. (23)

Bydefinition of the decomposition order Ō, for eachpair (G̃, p) tested in the algorithm,
where G̃ is Gj or a descendant of Gj , we have |p| ≥ k̂. Note that n j − k̂ < n̂ − k.
Hence, we can apply induction to each hypergraph Gj .
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We now derive the bound given in (i). By induction, the number of hypergraphs in
the full-decomposition ofG that areGj or descendants ofGj is at most max{1, n j −k̂}.
Therefore, the number of hypergraphs in the full-decomposition of G that are Ĝ or
descendants of Ĝ is at most

∑

j∈J

max{1, n j − k̂} =
∑

j∈J

(
n j − k̂

)
= n̂ − k̂ ≤ n̂ − k,

where the first equality follows from n j−k̂ ≥ 1, the second equality follows from (22),
and the last inequality follows from k̂ ≥ k.

Next, we derive the bound given in (ii). By induction, the number of hypergraphs
that are Gj or descendants of Gj is at most max{1, 2(n j − k̂) − 1}. Therefore, the
number of hypergraphs that are Ĝ or descendants of Ĝ is at most

1 +
∑

j∈J

max
{
1, 2

(
n j − k̂

)
− 1

}
= 1 +

∑

j∈J

(
2(n j − k̂) − 1

)

= 1 + 2
∑

j∈J

(
n j − k̂

)
− |J | ≤ 1 + 2

(
n̂ − k̂

)
− 2 ≤ 2

(
n̂ − k

) − 1,

where the first equality follows from 2(n j − k̂) − 1 ≥ 1, since n j − k̂ ≥ 1, the first
inequality follows from (22) and |J | ≥ 2, and the last inequality follows from k̂ ≥ k.

We now derive the bound given in (iii). By induction, the number of hypergraphs in
the full-decomposition of G that are Gj or descendants of Gj is at most max{1,m j −
2k̂ + k̂+1}. Therefore, the number of hypergraphs in the full-decomposition of G that
are Ĝ or descendants of Ĝ is at most

∑

j∈J

max
{
1,m j − 2k̂ + k̂ + 1

}
=

∑

j∈J

(
m j − 2k̂ + k̂ + 1

)

= m̂ − 2k̂ + k̂ + 1 ≤ m̂ − 2k + k + 1,

where the first equality follows from m j − 2k̂ + k̂ + 1 ≥ 1 since Gj is connected, the
second equality follows from (23), and the last inequality follows from k̂ ≥ k.

Finally, we derive the bound given in (iv). By induction, the number of hypergraphs

that areGj or descendants ofGj is at most max{1, 2(m j −2k̂ + k̂+1)−1}. Therefore,
the number of hypergraphs that are Ĝ or descendants of Ĝ is at most

1 +
∑

j∈J

max
{
1, 2

(
m j − 2k̂ + k̂ + 1

)
− 1

}
= 1 +

∑

j∈J

(
2

(
m j − 2k̂ + k̂ + 1

)
− 1

)

= 1 + 2
∑

j∈J

(
m j − 2k̂ + k̂ + 1

)
− |J | ≤ 1 + 2

(
m̂ − 2k̂ + k̂ + 1

)
− 2

≤ 2
(
m̂ − 2k + k + 1

)
− 1,
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where the first equality follows from2(m j−2k̂+k̂+1)−1 ≥ 1 sincem j−2k̂+k̂+1 ≥
1, the first inequality follows from (23) and |J | ≥ 2, and the last inequality follows
from k̂ ≥ k. ��

It can be shown that for a graph that is a path, all four bounds given in Proposition 7
are tight.

We now present an optimal full-decomposition algorithm, obtained by an efficient
incorporation of the decomposition order Ō in Algorithm Gen_dec. To simplify
the presentation, at a given iteration of Gen_dec, we say that p ∈ V (G̃) ∪ E(G̃)

is checked in G̃, if p is tested in G̃ or in an ancestor of G̃. In this algorithm, the
input hypergraph G = (V, E) is represented by its incidence-list, where, as described
before, the edges are sorted in increasing cardinality, and edges of the same cardinality
are sorted lexicographically. Subsequently, each hypergraph G̃ generated in the course
of this algorithm is characterized by two integer arrays: I1(G̃) containing the indices
of those edges of G that are present in G̃, and I2(G̃) containing the indices of those
elements of V (G̃) ∪ E(G̃) that are not checked in G̃. Moreover, we assume the
indices in I1 and I2 are in the same order as their corresponding nodes and edges in
the hypergraph G.

Opt_dec : Optimal full-decomposition algorithm
Input: A hypergraph G
Output: The full-decomposition of G
Initialize the lists L1 = {G} and L2 = {};
Initialize the integer arrays I1(G) and I2(G);
while L1 is nonempty do

Let G̃ be the first element in L1;
for each i ∈ I2(G̃) do

if pi decomposes G̃ then
let Gj , j ∈ J , be the pi -decomposition of G̃;
remove G̃ from L1;
for each j ∈ J do

if I2(Gj ) 	= ∅ then
insert Gj in L1;

else
insert Gj in L2;

exit the for loop;

if G̃ is still present in L1 then
remove G̃ from L1 and insert it in L2;

return L2;

In Algorithm Opt_dec, we define two distinct listsL1 andL2 to store the interme-
diate and final hypergraphs, respectively; namely, the list L1 contains all hypergraphs
G̃ with at least one unchecked element pi ∈ V (G̃) ∪ E(G̃) for some i ∈ I2(G̃),
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whereas, the list L2 contains all hypergraphs that cannot be further decomposed (by
Proposition 4); i.e., I2(G̃) = ∅ for all G̃ ∈ L2. Each time G̃ ∈ L1 is decomposed into
Gj , j ∈ J , the hypergraph G̃ is removed from L1, hypergraphs Gj with I2(Gj ) 	= ∅
are inserted in L1 and hypergraphs Gj with I2(Gj ) = ∅ are inserted in L2. In addi-
tion, if a hypergraph G̃ cannot be decomposed after all sets associated with I2(G̃)

are tested in G̃, we remove it from L1 and insert it in L2. The algorithm terminates
when the list L1 is empty. By using linked lists or dynamic arrays to store pointers
to each hypergraph in L1 and L2, the above insertion and removal operations can be
performed efficiently in time and memory. That is, each single insertion or removal
operation can be done in O(1) time, as for example, in a linked list implementation,
it amounts to a simple rearrangement of pointers to the head of the list.

It is simple to see that Algorithm Opt_dec is an efficient implementation of the
decomposition order Ō in Algorithm Gen_dec. This can be seen by noting that the
indices in I2, for each G̃, are ordered such that the corresponding edges are sorted in
increasing cardinality. Thus, by Proposition 5, we have:

Proposition 8 Algorithm Opt_dec terminates with the full-decomposition of G and
creates no redundant hypergraphs.

Finally, we analyze the worst-case running time of Algorithm Opt_dec as a func-
tion of the rank, number of nodes, and number of edges of the input hypergraph G.

Proposition 9 Consider a connected rank-r hypergraph G with n nodes and m edges.
Then, the running time of Algorithm Opt_dec is O(rm(n + m)).

Proof The initialization step consists of forming the incidence-list representation of
the input hypergraph G and the integer vectors I1(G), I2(G). As described before, for
a rank-r hypergraph with m edges, its sorted incidence-list can be obtained in O(rm)

time. In addition, initializing I1(G) and I2(G) takes m and n +m steps, respectively.
We now proceed to the main body of the algorithm. We claim that the “while loop”

of this algorithm is executed at most n + m times. In fact, each time the while loop
is executed, at least one p-decomposition test is performed, and by Proposition 6
Opt_dec consists of a total number of n +m p-decomposition tests. It then follows
that, the “while loop” in Opt_dec is executed at most n + m times. Now consider
the outer “for loop” in Opt_dec. Again by Proposition 6, this for loop is executed
exactly n + m times; that is, once for each element in V (G) ∪ E(G) as indicated by
the I2 arrays and it terminates when there exists no unchecked element in any of the
hypergraphs generated by Opt_dec.

Now consider some pi ∈ V (G)∪E(G)with i ∈ I2(G̃) for some G̃ ∈ L1.Wewould
like to find an upper bound on the running time of the pi -decomposition test for G̃. By
assumption, the initial hypergraphG is a connected rank-r hypergraph. Moreover, it is
simple to check that all children of G obtained by a single application of Proposition 1
are also connected as their corresponding graph reductions are biconnected. By a
recursive application of this argument, it follows that all hypergraphs G̃ in L1 at any
iteration of Algorithm Opt_dec are connected rank-r ′ hypergraphs, where r ′ ≤ r .
Therefore, by Proposition 1, the running time of each p-decomposition test is O(rm),
implying that the overall computational cost of performing p-decomposition tests
in Opt_dec is O(rm(n + m)).
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Finally, we analyze the cost of storing the hypergraphs generated in the course
of Opt_dec. Clearly, for any hypergraph G̃ generated by this algorithm, we have
|I1(G̃)| + |I2(G̃)| ≤ n + 2m, as |I1(G̃)| ≤ m and |I2(G̃)| ≤ n + m. Now, consider
the hypergraphs Gj , j ∈ J , obtained from the p-decomposition of G̃. By Proposi-
tion 1, the output of a p-decomposition test provides a labeling of the edges of G̃
that belong to exactly one new hypergraph Gj , with the understanding that the edges
contained in p are present in all Gj , j ∈ J . It then follows that for each Gj , the integer
arrays I1(Gj ) and I2(Gj ) can be constructed in O(n + m) steps. Furthermore, by
Proposition 7, the total number of hypergraphs generated by Algorithm Opt_dec is
O(min{n,m}). Hence, the overall cost of storing hypergraphs in the proposed algo-
rithm is O(min{n,m}(n + m)). As we described before, by employing a linked list
implementation of L1 and L2, each single insertion or removal of a hypergraph can
be done in constant time, implying that the overall cost of insertion and removal
operations is O(n + m).

Thus, the total running time of Algorithm Opt_dec is given by O(rm(n + m)).
��

As we described throughout this section, in comparison to Algorithm Gen_dec
with an arbitrary decomposition order, the advantages of Algorithm Opt_dec are
two folds. First, the number of p-decomposition tests applied by Opt_dec to obtain
the full-decomposition of a hypergraph with n nodes and m edges is exactly n + m,
which is the minimum number of tests needed to obtain the full-decomposition of any
hypergraph. Second, no redundant hypergraph is generated in the course ofOpt_dec,
and hence the costly redundancy test (as described in Gen_dec) is not required. The
following example demonstrates that Algorithm Opt_dec significantly outperforms
a naive implementation of Algorithm Gen_dec.

Example 4 Consider a hypergraph G = (V, E) with V := {vi : i = 1, . . . , r} ∪ {wi :
i = 1, . . . , r} for some r ≥ 3. Let E contain the following set of edges: E1 :=
{{vi , wi } : i = 1, . . . , r}} and E2 := {{vi : i ∈ I } : I ⊆ {1, . . . , r}, |I | ≥ 2}. In this
case, we have n := |V | = 2r and m := |E | = 2r − 1. In the following, we denote by
Kl,q the complete hypergraph on the nodes {vl , . . . , vq}, where 1 ≤ l ≤ q ≤ r .

We first utilize Algorithm Opt_dec to decompose G: after r p-decomposition
tests where p = vi for i = 1, . . . , r , we obtain r + 1 hypergraphs, r of which consist
of a single edge of the form {vi , wi }, for i = 1, . . . , r , and the last one is the complete
hypergraph K1,r . By performing an additional n + m − r = r + m p-decomposition
tests, Algorithm Opt_dec confirms that these r + 1 hypergraphs cannot be further
decomposed and thus form the full-decomposition ofG. Clearly, we could improve the
performance of Algorithm Opt_dec, by inserting every new complete hypergraph
Gj in L2 without performing any additional p-decomposition test, as a complete
hypergraph is not decomposable.

Next, we demonstrate the significance of our optimal decomposition algorithm
by analyzing the performance of a naive implementation of Algorithm Gen_dec
applied to the hypergraph G defined above. That is, we define a decomposition order
different from Ō and we do not make use of Proposition 4 to eliminate unnecessary
p-decomposition tests. Suppose that in the first iteration of Gen_dec, we choose
p = {v1, . . . , vr }. It then follows that Gen_dec decomposes G into r hypergraphs
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of the form Gi = K1,r ∪ Hi , for all i = 1, . . . , r , where Hi consists of the single edge
{vi , wi }. In the next iteration,Gen_dec selects one of these hypergraphs; without loss
of generality, suppose that we pickG1. Subsequently, Gen_dec perform |V (K2,r )|+
|E(K2,r )| = 2r−1 − 1 p-decomposition tests for all p ∈ V (K2,r ) ∪ E(K2,r ). It is
simple to check that none of such tests decomposes G1. In the next iteration, we
let p = {v1, . . . , vr−1}. It then follows that Gen_dec decomposes G1 into the two
hypergraphs K1,r−1 ∪ H1 and K1,r . At this stage, performing the redundancy test
reveals that K1,r is a redundant hypergraph, as for example it is a section hypergraph
of G2. Next, we select the hypergraph G̃ = K1,r−1 ∪ H1 and apply |V (K2,r−1)| +
|E(K2,r−1)| = 2r−2 − 1 p-decomposition tests for all p ∈ V (K2,r−1) ∪ E(K2,r−1),
none of which decompose G̃. In the next iteration, we let p = {v1, . . . , vr−2} to obtain
a decomposition of G̃ given by K1,r−2∪H1 and K1,r−1.Again, it is simple to check that
K1,r−1 is a redundant hypergraph. Applying such a decomposition order recursively,
it can be shown that the total number of p-decomposition tests performed in the course
of the algorithm is given by n + m + r(

∑r−1
i=1 2

i − 1) + r(r − 1) = n + m + n(m −
1)/2. That is, while Algorithm Opt_dec requires n + m decomposition tests, this
naive implementation of Gen_dec, requires n(m−1)/2 additional p-decomposition
tests to obtain a full-decomposition of G. In addition, the total number of redundant
hypergraphs generated in the process is given by r(r − 1) − 1 = n(n − 2)/4 − 1.
Thus, we conclude that the algorithmic enhancements presented in this section have
a significant impact on the performance of the proposed decomposition algorithm.

We conclude this paper by noting that an interesting future direction is to develop
an optimal decomposition algorithm that incorporates our theoretical results presented
in Sect. 3; namely, it would be interesting to investigate an optimal decomposition of
hypergraphs with sparse intersections. Such a generalization will enable us to decom-
pose many more types of Multilinear sets into simpler sets.
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