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Decentralized Optimal Frequency Control of Interconnected Power
Systems with Transient Constraints

Zhaojian Wang, Feng Liu, Steven H. Low, Changhong Zhao, Shengwei Mei

Abstract— We design decentralized frequency control of
multi-area power sysiems that will re-balance power and
drive frequencies to their nominal values after a disturbance.
Both generators and controllable loads are utilized to achieve
frequency stability while minimizing regulation cost. In contrast
to recent results, the design is completely decentralized and does
not require communication between areas, Our control enforces
operational constraints not only in equilibrium but also during
transient. Moreover, our control is capable of adapting to
unknown load disturbance. We show that the closed-loop system
is asymptotically stable and converges to an equilibrium that
minimizes the regulation cost. We present simulation results to
demonstrate the effectiveness of our design.

I. INTRODUCTION

In a modem power system, multiple regional power grids
are usually interconnected for improving operation reliability
and economic efficiency. This paper addresses the decen-
tralized optimal frequency control for restoring frequencies
and tie-line power flows of such a system with transient
operational constraints.

In the literature, different distributed strategies have been
developed and applied to power system frequency con-
trol, which are mainly divided into two typical categories
in terms of different regulation resources: the automatic
generation control (AGC) [1], [2], [3] and the load-side
frequency control [4], [5], [6], [7]. The former category
focuses on the optimal regulation of generators. In [4] a
flatness-based control combining trajectory generation and
trajectory tracking is proposed for AGC in multi-area power
systems. The trajectory generation is realized via economic
dispatch globally, while the trajectory tracking is achieved
by generation allocation based on PMU measurement. In
[2], generators are driven by AGC to eliminate sudden
frequency deviations. Correspondence between the partial
primal-dual gradient algorithm for solving the associated
optimization and the physical frequency control dynamics
is established. The resulting decomposition method enables
the design of fully distributed frequency control to solve the
original centralized optimal frequency control problem.

As for the load-side frequency control, controllable load
is utilized for frequency regulation. In [4], a distributed
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adaptive control to guarantee acceptable frequency deviation
from the nominal value is presented. In [7], load frequency
dynamics are formulated similar to the generator model,
resulting in a distributed frequency control that takes both
generation and controllable load into account. In [5], an
optimal load control (OLC) problem is formulated, rendering
an ubiquitous load-side primary frequency control based on
the partial primal-dual gradient algorithm for solving the
OLC problem. However, it does not restore the nominal
frequency. To address this problem, [8] enforces a power bal-
ance constraint only on generation and frequency-insensitive
load. [6] further proposes a distributed optimal load control,
where the controllable load can individually estimate the
power mismatch from frequency measurement. To mitigate
the effects of measurement noise, communication between
neighboring control areas is required.

In terms of design methodologies, distributed frequency
control design mainly exhibits three trends: the droop control
based approach [9], [10], the consensus based approach [11],
[12], [13] and the primal-dual decomposition based approach
[51, [14], [15]. [10] suggests a distributed adaptive droop
controller for DC microgrid control with proportional load
sharing. In [18], a theoretical framework for consensus based
controller design is derived and several typical consensus
controllers are provided. [13], [16] demonstrates that con-
sensus can be achieved among PV generators with the same
reserve ratio. Although the droop and the consensus based
approaches lead to distributed control, the feasibility and
optimality of controllers may not be guaranteed. The primal-
dual decomposition based approach is associated with its
specific centralized optimization counterpart whose solution
is identical to the desired distributed controllers [14], [15].
Then typical primal-dual algorithms can be used to design
the distributed optimal controllers [14]. However, this ap-
proach relies largely on specific properties of the associated
optimization problem, such as convexity, which restricts its
deployment. In practice, a control area always has certain
regulation capacity bounds that restrict power generation
and controllable load within an available range, either in
equilibrium or during transient. Only steady-state constraints
have been imposed in the literature. In contrast, we enforce
constraints during transient as well. To do this, we design
primal-dual based algorithms and prove that the closed-loop
system remains asymptotically stable. Moreover, it converges
to an optimal equilibrium point.

Specifically we reveal the comrespondence between our
controller and the primal-dval gradient algorithm for solving
its optimization counterpart. Then we prove the optimality



of our control by exploiting the equivalence between the
equilibrium of the closed-loop system and the optimal so-
lution of the optimization counterpart. We prove the stability
of closed-loop system by combining projection technique
with LaSalle invariant principle, excluding the impacts of
nonsmooth dynamics created by the transient constraints.
The salient features of our control are: 1) Congrol goals:
it restores both nominal frequency and tie-line power after
a disturbance while minimizing the regulation cost; 2) Con-
straints: regulation capacity constraints are enforced even
during transient; 3) Communication: it is completely decen-
tralized without the need for communication even among
neighboring areas; 4) Measurement: our control is capable
of adapting to unknown load disturbance autonomously with
no requirement of load measurement.

The rest of this paper is organized as follows. In Section
I, we formulate the optimal frequency control problem.
Section I presents our controller and its relationship with
the primal-dual update. We further prove the optimality and
stability of the closed-loop system in Section IV. Then we
confirm the performance of our controller in Section V.
Section VI concludes the paper.

II. PROBLEM FORMULATION

A. Nerwork model

A large power network is usually composed of multiple
control areas each with its own generators and loads. These
control areas are interconnected with each other through
tie lines. For simplicity, we treat each control area as a
node with an aggregate power generation, an aggregate
controllable load and an aggregate uncontrollable load. Then
the power network is model by a graph G := (N,E) where
N ={0,1,2,..n} is the set of nodes (control areas) and
E C N x N is the set of edges (tie lines). If a pair of nodes
i and j are connected by a tie line directly, we denote the
tie line by (i,/) € E. Let m = |E| denote the number of
tie lines. Unless otherwise specified, graph & is considered
undirected. Sometimes, however, we treat (& as directed with
an arbitrary orientation, in which case we use {(i,j) € F or
i:i— j interchangeably to denote the directed edge from i
to j. It should be clear from the context which is the case.
Without loss of generality, we assume the graph is connected
and node 0 is a reference node (slack bus).

For each node j < N let 8;(r) denote the rotor angle
at node j at time ¢ and @;(r) the frequency. Let Pf @)
denote the (aggregate) generation at node j at time ¢ and
ui(a‘) its generation control command. Let P:f(r) denote
the (aggregate) controllable load and u"r(t) its load control
command. Let p;{r) denote the (aggregate) uncontrollable
load.

We adopt a second-order linearized model to describe the
frequency dynamics of each node, and two first-order inertia
equations to describe the dynamics of power generation
regulation and load regulation at each node. We assume the
tie lines are lossless and adopt the DC power flow model.
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Then for each node je XN

o — o) (1a)
Mio; = PHr)—Pir) —p;— D;o;(r)
+'Z'sz(9i(f)—9j(f))
Li—vj
— ¥ Ba(8;()— 6(1) (1b)
kj—k
I = B0 - (1)
TP = Pl +ub(r) (1d)

where D; > 0 are damping constants, R; > 0 are droop
parameters, and B > 0 are line parameters that depend on
voltage magnitudes at nodes j, & and the reactance of the line
(j,k). Let x:= (8, ®, P2, P") denote the state of the network
and u = (u#,u') denote the control.!

Our goal is to design feedback control laws for the
generation command ##(x(7)) and load control #/(x(z)). The
operational constraints are:

P{ < Pi@) <P, jeN

i ! 5
Bj = P](f) Spja jeN

(Za)
(2b)

We will design controllers so that these constraints are
satisfied not only in equilibrium, but also during transient.

We assume that the system operates in a steady state
initially, i.e., the generation and the load are balanced and the
frequency is at its nominal value. All variables represent de-
viations from their nominal or scheduled values so thate.g.,
o;(r) = 0 means the frequency is at its nominal value.

There are two possible modes of operation. In the first
mode, each node (control area) balances its own supply and
demand after a disturbance. We design controls that will
drive the power flow on each tie line to its scheduled value.
In the second mode, all nodes cooperate to rebalance power
over the entire network after a disturbance. The tie-lie power
flows may deviate from their scheduled values and we require
that they satisfy line limits. We refer to the first case as per-
node power balance and the second retwork power balance.

Here we consider the per-node power balance case, mod-
eled by the requirement:

P = le + P jeN {3)
The network power balance case is modeled by the require-
ment:
Y P =Y (P+p;) @)
i i

instead of (3). This case is considered in the journal version
of our paper.

LGiven a collection of x; for f in a certain set A, x denotes the vector
x = (x;,i € A) with x; as its components.



B. Control goals

The control goals are formalized as:

2 2
min ;;aj (Pf) —i—;;B](Pj) +;;Djwf
(5a)
over =(8,0,P* P") and u:= (1 ,u')
st (2),03)
PE=Pltp;+Ei0,0), jEN (5b)
Pf =, jeN (5¢)
Pl =4, jeN (5d)

7

where o; >0, 8; > 0 are constant weights and

Ei(8,0;) = Djo;— Y Byt ) Bubi

fi—j ki j—vk

Here we have abused notation and use 8;; := 6;— 8;. In vector
form we have

E(8,0) Do+CBCT e

©)

where D := diag(D;,i € N), B := diag(B;;,(i,j) € E), C is
the (n+ 1) % m incidence matrix.

We comment on the optimization problem (5).

Remark 1 (Control goals). 1) Since the variables are de-
viations from their nominal values, the parameters
(@}, B;) in the objective function (5a) are not electricity
costs Minimizing the objective aims to track gener-
ation and consumption that have been scheduled at a
slower timescale, e.g., to optimize economic efficiency
or user utility. The parameters («;,(3;) weigh the
relative costs of deviating from scheduled generation,
load, and the nominal frequency.

For the definition of (5), the regulation capacity limits
(2) apply only at optimality. The transient constraints
can only be considered in the dvnamic model.

The per-node balance requirement (3) and the con-
straint (5b) imply E(8,®) =0 at any feasible x. This
will drive the power flow on every line to its scheduled
value (see Theorem 2 below). We assume that these
scheduled values satisfy line limits and therefore do
not impose line limits in (5).

The constraints (5¢)(5d) require that, at optimality, the
power injection Pg and controllable load Pl are equal
to their control commands u‘g and u respectlvely

2)

3)

4)
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I1I. CONTROLLER DESIGN
A. Decentralized controllers

Our feedback control laws for #¢ and «' are: for each node
JjeN

A= vt (Pf(t)—P}(f)—pj) (7a)

P

a0 = [PO-7 (6B 0 00+ 10)]
+ mjét) (7b)

o = (PO (BRO - o0 140) E
(7e)

where }f]”,y’,yj‘ are (strictly) positive constants. For any
x:;,a;,b; € R with a; < by, [xi]zj = min{k;, max{a;,%; }}. For
vectors x,a, b, [x]g is defined accordingly componentwise.

The control is completely decentralized where each node
Jj updates its inzernal state A;{r) in (7a) based only on
the generation P}g(.t) the controllable load Pj(z) and the
uncontrolled load p;{r) locally at j (within a control area).
The control laws #(z) and u]( ) in (7b) and (7¢) are then
static functions of the state (Pg (),P (),coj(a‘)) and the
internal state A;(7). No commumcatlon is required between
nodes.

We often write #; and “fr as functions of (P,
for jeN

Py, )

75

J

)
i

(8a)
(8b)

() GAORMORNO)
() S{ORMORN0)

where these functions are given by the right-hand side of
(7b) (7c). We now comment on measurements required to
implement the control (7).

Remark 2 (Implementation). The variable A;(r) in (7a) is
a cyber guantity that is computed at each node j based
on the generation Pg (), the controllable load P* :(¢) and the
uncontrolled load p j(.t) locally at j (within a control area).
These guantities can in principle be measured at j. We
would however like to avoid measuring the uncontrolled load
change p;(r) for the convenience in practice.

To this end, let AP;(z) := Pf(r) — Pi(t) — p; (1), jeN,
denote the surplus generation at node j. We then have
from (1b) and (6) that AP;(z) = M;; + E;(8,,(t)). Since
?L —}/IAP (£, {Ta) becomes

A; ¥ Mio;+ v} Djooy(e)
A £ a0~ Lm0 |
i Kk

where P;; := B;;(6;— 8;) are the tie-line flows from nodes i
to j according to the DC power flow model. Hence, to update
the internal state A;(r), we only need to measure the local
frequency deviation @;(r), its derivative @;(r) and the tie-
line flows P;(r) incident on node j, and not the uncontrolled



load p;(r). A salient feature is that the controller naturally
adapts to unknown load changes p;(z). This feature will be
illustrated in case studies.

The control inputs u?(z‘) and uf,(z‘) in (8) can then be
implemented using measurements of the local generation
Pf (1), controlled load Pj (r), frequency deviation @;(r) and
the internal state A;(z).

B. Design rationale

The controller design (7) is motivated by a partial primal-
dual algorithm for (5) that dualizes the constraints (3)
and (5b), as we now explain. Define the corresponding
Lagrangian of (5) as:

Mp) = 3Ee(F) 3 EH () 3200

I

1Y (PP )
i
+ Yk (PPl p;— Do
7
+Y B8 Y, Bjkgjk) 9)
Pyt ki

where p := (A, 1) are Lagrange multipliers of (5). A primal-
dual algorithm takes the form

52 0.0

0 526090

where I',,I, are (sirictly) positive diagonal gain malrices.

We will analyze the optimality and stability of the closed-
loop system where the controls uf(x,p) and #'(x,p) are
functions of {x,p) defined by the right-hand side of (7h)(7c).
Hence the Lagrangian is defined to be only a function of
(x,p) and does not involve u:= (2, u').

We now explain that the closed-loop dynamics (1)(7)
carries our an primal-dual algorithm (10) for solving (5)
in real time over the power network.

We first show that the control (7a) and the swing dynamic
{1b) are carrying out the dual update (10b). We then show
that the generation and load dynamic (lc¢) and (1d) are
carrying out the primal update (10a). Finally we show that
(1a) minimizes [ over 8.

First the variable A is the Lagrange multiplier vector for
the per-node power balance constraint (3). It is a cyber
guantity that the controllers update according to (7a). This
control law is exactly the dual update (10b) in the primal-
dual algorithm (in vector form):

i (10a)

p (10b)

hoo= THVLx(),p(0) (11a)
where I'* .= diag(y;‘,j EN).
2We use %% to denote a row vector and V.7 (x) = (%)T a column

vector,
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Second the variable g is the Lagrange multiplier vector for
the constraint (5b). It can be identified with the frequency
deviation @ because the KKT condition

aL

0

implies u} = @} at optimality since D; > 0. Moreover we
can identify p(r) = @(r) during transient if we update the
cyber quantity gi(f) according to

M (P2() — P() — pyl) — (O (1), 00)) )
M~ VuL(x(2),p(1)) (11b)
where M := diag(M;, j € N). Then ¢ and o have the same
dynamics {compared with (1b)) and hence p(r) = o(r) as
long as p(0) = @(0). Therefore the swing dynamic (1b) is
equivalent to {11b) and carries out the dual update (10b) on
the dual variable p.
Third if we identify u(r) = @(r) then
Ve L(x(2), (1)) AP () + o)+ 2(1)

where A? := diag(c;, j € N). Therefore the control law (7b)
is equivalent to

W) = [P0~ T VaeL(x(),p(O)pe + B 0(0)

where % := diag(y}g,j € N) and R := diag(R;, j € N). Then
the generation dynamic (1c) becomes

it

P = P[P0 = VL), p ()]s
It can be verified that this is equivalent to
: E_pe
Pt [DEVRLG).0O) i sy (110)

That is, the generator at each node j carries out the primal
update (10a) with a saturation:
P min{ﬁ?—]f’(l), max{—( ),

J

P

J

—ﬁ%u(x),p(z))}}
J

Ag shown in Lemma 3 below, the saturation in #2(¢) ensures
that P#(¢) satisfies control capacity limits (2) at all times z.
Similarly the control law (7c) is equivalent to

P

-

(1) —

A0 = PO O],

where IV 1= diag(yj{, Jj € N). The controllable load dynamic
(1d) is equivalent to

PPl

P [

Poo= TR0 0)]

i.e., the controllable load at each node j carries out the primal
update (10a) with a saturation:

min {7 P, max| (224},

2 o) }}
J

(11d)

3l
P



Finally, to relate (1a) to a primal update, note that the last
term in the definition (9) of the Lagragian I, is:

Y uy ( Y Bio;— Y, Bjk%’k)
K i [aymty

— Y Bi(ui ) (8- 6)
(i,/1€E

= = —uTcBcTe

Hence in vector form

L % ((Pg)TAng L (PHTAP coTDco)

+ ?LT(Pg—P'!—p) — uTcBCTo
where A’ 1= diag(f;, j € N) and
Vol —CBCT

_ = —CBC'w

This and (1a) imply

CBCTé —Vaol (11e)

Crucially, this implication means that the physical dynamic
{la) implements a component of the primal-dual algorithm
that minimizes I, over 8. The converse is not necessarily
true, i.e., (11e) does not imply (1) because CBCT is an (n+
1) % (n+ 1) matrix with rank .

In summary the closed-loop system (1)(7) is almost e-
quivalent to (11) in the sense that (la) implies (11le), (1b)
is equivalent to (11b), (1c) is equivalent to {11c), (1d) is
equivalent to (11d), and (7a) is equivalent to {L1a).

IV. OPTIMALITY AND STABILITY
A, Oprimality of equilibrium point
Given an (x,p) := (6,®,P2, P! A ), recall that the con-
trol input u(x,p) is given by (&).

Definition 1. A point (x*,p*) = (8%, @*, P* P™* L* u*)
is an eguilibrium point or an eguilibrium of the closed-loop
system (1)(7) if
1) The right-hand side of {1} vanishes at x* and u(x*, p*).
2) The right-hand side of (7a) vanishes at x*.

Definition 2. A point (x*,p*) is primal-dual oprimal if
(x*,u(x*,p*)) is optimal for (5) and p* is optimal for its
dual problem.

Section III-B says that the closed-loop system (1)(7)
carries out an primal-dual algorithm in real time to solve (3).
In this section we prove that a point (x*, p*} is an equilibrium
of the closed-loop system if and only if it is primal-dual
optimal. Moreover the equilibrium is almost unique. In the
next subsection we prove that the closed-loop dynamics
converge to the equilibrium point. We make the following
assumption:

Al: Problem (5) is feasible and has a finite optimal solution.

Then we have the following theorems

Theorem 1. Suppose assumption Al holds. A point (x*,p*)
is primal-dual optimal if and only if (x*, p*} is an equilibrium
of the closed-loop system (1)(7) that satisfies (2) and yu* =0.

Theorem 2. Suppose assumption Al holds. Let (x*,p*) be
primal-dual optimal. Then

1) x¥* and p* are unique, with 8* being unique up to
an (equilibrivm) reference angle 8. For je N, A is
unique if either B}g < Pf* < T’f or Bf,» < PJI* < ﬁﬂ-.
nominal frequencies are restored, ie., a);‘ =0 for all
J €N, moreover 8 = 87 for all je N,

the power flow P 1= B (8 — 9}’?) =0 holds on every
tie line (i, /) € E.

If Ef < Pf* < I_Jf and Bf,» < Pj»* < ﬁff then, at optimality,
the marginal generation regulation cost is equal to the
marginal load regulation cost at node j, i.e., ajP‘.g* =

L * !
_JBJ'Pj M

Remark 3. 1) Theorem 1 shows the equivalence between
the equilibrium of closed-loop system and the primal-
dual optimal sclution. It also implies that, in equilib-
rium, per-node power balance (3) is achieved and the
operational constraints (2) are satisfied.

Theorem 2 says the equilibrium point is almost unique
and has a very simple structure.

2)
3)

4)

2)

B. Asymprotic stability

Next we justify the asymptotic stability of the closed-loop
system (1) (7).We start with the following assumption.

A2: The initial states, uf (0) and uff(O), of the closed-loop
system (1)(7) strictly satisfy constraint (2).

Sinece (1c)(1d) and (7b)(7c) are first-order inertia dynam-
ics, it is easy to prove that every trajectory starting from an
initial state that satisfies the regulation capacity limits (2)
will satisfy these capacity limits for all ¢ > 0.

Lemma 3. Suppose A2 holds. Then trajectories Pjg (¢) and
Pdf» (1) of the closed-loop system (1)(7) satisfy constraint (2)
for all ¢ > 0.

We now turn to the stability of the closed-loop system
{(1)(7). Inspired by [17], we use the projection operator to
describe the saturation dynamics of the controller (7). Let
|| ||g dencte the G-norm defined in R" by ||£||q ={&,GE)
for £ € R”, where {-,-) is the inner product in " while G
is an n x p symmetric positive matrix. Then the projection
of a point & € R* onto a closed convex set S, denoted by
Projs g(§) : R* — § is defined as the (unique) solution of
minyeg ||y — &[] The projection operator is non-expansive
and for all § € R, Projg (&) satisfies

(& —Proj(8)se, Glx —Proj(§)sc)) <0, xe8 (12
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Let 8(r) :=CT8(r). The closed-loop system (1)(7) can be
converted, in vector form, into

6y = Clo@) (13a)
o) = M (Pg(t)—P"(z)—p—Dm(z)—CBé(r))
(13b)
PO = (17 (PO W) (13¢)
Pay = (@ P+ O (13d)
i) = (Pg(z)—P"(z)— p) (13¢)

where T¢ := diag(i’}fg,j eN), T = diag(Tj,j EN).
Denote z := (8, @, P2, P 1), and

—I?BCTw(r)

—T® (P#(t)— P'(t) — p— Do (r) — CBO (1))
I (A2P2 () + (1) + A 1))

I (AP (1) — o) — A1)

~TH{P2(r) - P(1) - p)

F(z)

(14)

where I'? := diag(, /B;jl,(i,j) € E); T'™ := diag(, /M;l,j €
N); T¥ = diag(T5)™1,j € N); T = diag((T)~1,j € V)
I = diag(y},j e N).
In terms of the definition above, we simply let G =1 and
S:={(P4,P) | PP <P <P, P <P <P, jeN}

Since Lemma 3 indicates that P2(z) and P'(r) are always
within S, we can define the projection of z(r) — F(z(¢)) onto
the closed convex set § as Hy(z(2)) 1= Projg ;{z(t) — F (z(2))).
Then system (13) can be rewritten as

2(7) L(H(z(1)) —2(1))

where I' = diag(I'®, ['®, % 7, ).
Then we consider a Lyapnunov function candidate as

Vi(z(1)) - iF(Z(f)), Hy(z(r)) —2(2))
—5|1H1 () — =013

Let z* denote the equilibrium of (15) or (13). Then we
have Hr(z*) = z*, implying V3(z*) = 0. In addition, in light
of Theorem 3.1 in [17], V;(z) is non-negative. Then in terms
of (16), we have the following theorems.

Theorem 4. Suppose Al and A2 hold. Then
1) Every trajectory z(z) of {13} starting from a finite initial
state asymptotically converges to its equilibrium z* &
Z} ast — +oo, where ZJ = {z| z(tr) =0}
2) Constraint (2) is satisfied for all z > 0.
3) At equilibrium, o* = 8* =0.

Theorem 5. Suppose Al and A2 hold. Then

1) Closed-loop system (1){(7) asymptotically converges to
its equilibrium (x*,p*) defined by Definition 1.
2) Constraint (2) is satisfied for all z > 0.

{15)

(16)

669

Remark 4. Theorem 4 and Theorem 5 indicate that the
system (13) and the closed-loop system (1)(7) are “glob-
ally” stable, i.e., the two systems are asymptotically stable
provided both the equilibrium point and the initial state are
within the feasible region.

The proof of Theorem 4 relies on a lemma that character-
izes the monotonic decreasing property of V5(r) subject to
{13).

Lemma 6. Suppose Al and A2 hold. Then V;(z) is always
decreasing along system (13). Moreover, every trajectory z(r)
of (13} starting from a finite initial state ultimately converges
to the largest positive invariant subset Z; of Z; := {z| & =
PE=P =0} as 1 — foo.

Based on Lemma 6, we can further prove that Z;L implies
Zp, thus completes the proof of Theorem 4.

As Theorem 4 confirms the asymptotic stability of (13), we
only need to prove it is equivalent to the asymptotic stability
of system (1)(7). It can be justified by the following lemma.

Lemma 7. Suppose assumptions Al and A2 hold. Then the
following are equivalent.

1) The system {13) is asymptotically stable at its equilib-
rivm Z7;

2) The closed-loop system (1)(7) is asymptotically stable
at its equilibrium (x*,p*) defined by Definition 1.

Then Theorem 5 is a direct result of Theorem 4, Lemma
7, Theorem 1, Theorem 2 and Lemma 3.

V. CAST STUDIES

A. System configuration for test

We use a four-area IEEE 39-bus system with slight mod-
ifications [1] to test our decentralized optimal frequency
controller (see Fig. 1). For better power balance in area 2,
we remove the line between bus 1 and bus 39, move the
load on bus 16 to bus 19. Then we set generators #2, #4,
#06, #8 as frequency regulation units. The controllable loads
are aggregated and directly add on the generator nodes. The
parameters of generators and controlled loads are given in
Table I. Other parameters can be found in [1] [18].

TABLE I:
S YSTEM PARAMETERS
Araj D; R oy B T T
T 13 004 27 30 656 516
2 14 006 292 36 569 474
3 14 005 315 42 73 608
4 12 0045 338 48 67 558

In the simulation, we add step changes on the loads of
all four areas to test the performance of our controller. The
load changes are given in Table II, which are unknown to the
decentralized controllers. We also show the operational con-
straints on generations and controllable loads in individual
control areas in Table IL.
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TABLE II:
CAPACITY LIMITS AND LOAD DISTURBANCE

Area j  Load changes [P, P41 (pu) [ffi, ?ﬁ] {p)
1 01 [:0.07, 0.07] [0.07, 0.07]
2 0.15 [0.105, 0.105]  [-0.105, 0.105]
3 0.075 [0.0525, 0.0525] [-0.0525, 0.0525]
4 0.125 [-0.0875, 0.0875]  [-0.0875, 0.0875]

B. Stability and optimality

The dynamics of local frequencies and tie-line power
flows are illustrated in Fig.2, where the left is the frequency
dvnamics, and the right is the tie-line power dynamics. Both
the frequency and tie-line power deviations are restored in
all four control areas. The generation and controllable load
are different from that before the disturbance, indicating that
the system is stabilized at a new equilibrinm point. The new
equilibrium point is given in Table 111, which is identical to
the optimal solution of (5) by using centralized optimization.
These simulation results confirm that our controller can
autonomously guarantee frequency stability while achieving
optimal operating point in a fully decentralized manner.

ooz — 01
1,'\‘ —hrea ||
vorr - ol — =13
§ ey = —Lire 1.4)
W2l & | [ Tire 23
s L B P05 =
é«ﬂm H ) pg: I
L i W
! o e ity
a8 | g0 E-I A e
ol 20 e
|
[_": [
oozl -0.035
= D‘U 20 40 60 20 1000 120 140 140 130 200 -D'IU 70 40 é0 %0 100 120 140 160 130200
Time (s) Time (s)

Fig. 2: Dynamics of frequency and tie-line flows

C. Dynamic property

In this subsection, we analyze the impacts of operational
(capacity) constraints on the dynamic property. To do this,
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TABLE III:
EQUILIBRIUM POINTS
Areal Arsal2 Area 3 Area 4
Pf* 0.0526 0.0828 -0.0429 0.0734
Pj* 0.0474  0.0672 -0.0321 0.0516

we compare the dynamic response of the frequency con-
trollers with and without input saturation. The trajectories
of generators’ outputs and controllable loads are shown
in Fig.3 and Fig.4, respectively. We found in both cases,
the system frequency and tie-line flows are restored, and
the same optimal equilibrium point is achieved. With input
saturation, the trajectories of both generation and controllable
load remain within their capacity limits even during transient.
Without input saturation, however, capacity constraints are
frequently violated during transient.

With constraint Without constraint
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Fig. 3: Generators’ outputs with/without capacity constraints
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Fig. 4: Controllable loads with/without capacity constraints

D. Adapration to unknown load change

In this subsection, we add 0.03p.u. load in area 2 at
100s, while keeping other conditions unchanged. The load
change is unknown to individual control areas. Then each
control area estimates the regional power difference using
the method suggested in Remark 2. The power generation
and controllable load dynamics are illustrated in Fig.5. Both
generation and controllable load in control area 2 increase
rapidly to rebalance power within the area, while other areas
remain almost unchanged. The new equilibrium is close to
the optimal solution given by centralized optimization (3).
This result indicates that our controller is capable of correctly
distingnishing between inside or outside disturbance and then
adaptively compensating it even if it is unknown.
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Fig. 5: Dynamic response to unknown load change

VI. CONCLUSION AND FUTURE RESEARCH

We have studied the decentralized frequency control of
individual control areas with aggregate generators and con-
trollable loads. Our controller can autonomously restore
both the frequency and tie-line power after unknown load
disturbance while minimizing the regulation cost. The op-
erational constraints can be satisfied even in transient. Our
controller is completely decentralized without the need for
communication between control areas. We have revealed that
the closed-loop system carries out an primal-dual algorithm
to solve the associated optimal dispatch problem, hence
guarantees the optimality of closed-loop equilibrium point.
Although conventional stability analysis based on primal-
dual theory does not apply due to the embedded saturation
of the controller, we have alternatively used the projection
technique to prove the stability of the closed-loop system.
Simulations on the IEEE 39-bus power system verifies our
theoretic results.

In this work, we do not consider the cooperation among
control areas, where the tie-line powers are not fixed, but
bounded within given ranges. Our ongoing work shows that
this can be achieved via a distributed control. A crucial
implication is it may provide a systematic way to bridge
the gap between the (secondary) frequency control in a fast
timescale and the economic dispatch in a slow timescale.
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