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ABSTRACT

We formulate EV charging as a feasibility problem that meets all
EVs’ energy demands before departure under charging rate con-
straints and total power constraint. We propose an online algorithm,
the smoothed least-laxity-first (sLLF) algorithm, that decides on
the current charging rates based on only the information up to
the current time. We characterize the performance of the sLLF
algorithm analytically and numerically. Numerical experiments
with real-world data show that it has significantly higher rate of
generating feasible EV charging than several other common EV

charging algorithms.
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1 INTRODUCTION

The electrification of transportation provides a great opportunity
for energy efficiency and sustainability. There were over a million
electric vehicles (EVs) worldwide as of 2015 [1], and accelerated
EV proliferation is expected for many years to come. To charge a
large number of EVs however presents a tremendous challenge, in
terms of both its impact on power grid and management complexity.
While the flexibility in charging time and rate can be exploited for
coordinated EV charging to control and mitigate the impact on the
grid, its efficacy often depends on accurate prediction of EV arrivals
and energy demands as well as coordination across time among
different EVs. However, the accurate prediction is usually either
impossible or very costly (in data collection and computation), and
the temporal coordination among a large number of EVs may incur
prohibitively large complexity. In view of these limitations, in
this paper we investigate low-complexity EV charging that does
not require the prediction of EV arrivals/demands or the temporal
coordination.

Specifically, we formulate EV charging as a feasibility problem
that meets all EVs” energy demands before departure under individ-
val charging rate constraints and total charging power constraint.
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We then propose an online algorithm, the smoothed least-laxity-
first (sLLF) algorithm, that decides on the current charging rates
based on only the information up to the current time. The laxity is
defined as an EV’s remaining time at the charging station minus
the time needed to fully charge it at the maxinmm rate, and can be
seen as the feasibility margin for EV charging, Without informa-
tion on future EV arrivals, the sLLF algorithm makes best possible
decision by maximizing the minimum resulting laxity for the next
time among the EVs currently in the system.

As the sLLF algorithm does not take future EV arrivals into con-
sideration, an (offline) feasible EV charging instance may be (online)
infeasible under sLLF. We use the resource augmentation frame-
work to study the sLLF algaorithm, and characterize the minimum
amount of additional resources (total power supply and charging
rates) that will allow the algorithm to generate a feasible charging
for any offline feasible charging instances. We further carry out nu-
merical experiments using real-world data, and show that sLLF has
significantly higher rate of generating feasible EV charging than
several other comumon EV charging algorithms. This is expected, as
the sLLF algorithm tries to leave the largest feasibility margin, so it
can best accommodate arbitrary future EV arrivals,

Related Works

The existing EV charging algorithms can be categorized into either
offline or online. The offline algorithms require complete informa-
tion on all EVs to decide on the charging rates [4, 8, 16, 18, 23, 24].
However, information on future EV arrivals may not be avail-
able or very costly to obtain, which motivates online algorithms
[2,3,5, 9, 13,19,22, 23, 23, 26, 26]. The performance of the online
algorithm is generally analyzed for the worst-case [5, 13] or average-
case [9, 26]. Other desirable properties of charging algorithms are
low complexity in computation and memory usage, which can be
achieved by sorting or bisection based methods, such as earliest-
deadline-first, least-laxity-first [21], Whittle’s index policy [25, 26],
among others.

The multi-processor deadline scheduling problem [6, 7, 15] con-
siders the scheduling of jobs on multiple processors. We can view
the EV charging problem as a deadline scheduling problem by
considering chargers as processors, and EVs with certain energy
demand as jobs. Resource augmentation is a prominent analysis
framework [10-12, 17] for analyzing the performance of online
algorithms for multi-processor scheduling, we apply this frame-
work to the EV charging problem. The main difference is that in
our setting the power limit is time-varying, the maximum rates are
heterogeneous, and the power limit may not necessarily be integer
multiplication of the maximum rate,
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Table 1: Notation

I EV charging problem instance
YV set of EVs
Ve set of EVs remaining in the charging station at time ¢
77 set of times
e;  energy demand of EVieV
e;(f) remaining energy demand of EV i at time t € 7~
ri(t) chargingrate of EV i at time ¢
P(t) power limit of the charging station at time ¢
a; arrival time of EV i
di  departure time of EV i

2 MODEL AND ALGORITHM
2.1 System Model

Consider a system with one charging station that serves a set of
EVs, indexed by i € V = {1, 2, 3, ---]. We use a discrete-time
model where time is divided into slots of equal sampling intervals,
mdexedbyt €7 =1{0, 1, 2, ---,TL EV i arrives at the charging
station with an energy demand e; at time a;, and departs from the
station at time d;.! During its stay at the station, the FV is charged
at a rate (or power) of r;(t) = 0, a; <t < d;. For convenience, we
extend this definition of #;{t) to the entire temporal domain. The
notations are summarized m Table 1.

To account for limitations in the charger or battery of an EV, each
EV i can only be charged up to a peak rate 7;, i.e

t € [asdp), ieV
t¢lagdi), i€V

ri{t) < F,
ri(t) = 0, M

To account for limitations in the grid or power station, the charging
station has a (possibly time-varying) power limit P(t) such that?

Z ri() < P, t €T @
eV
Furthermore, the power limit and maximum charging rates fall
within the following nominal ranges:
Ppin £ P(t) < Pmax,
Fmin < Fi < Fmax, 1 €Y.
Finally, every FV’s energy demands needs to be satisfied, ie.,?
Z rilt) = e, ic V.

te7

(3)

Next, we define an EV charging problem instance as a quintuple
I ={aj,di, e;,Fi; P(t)}icy teq . The primary goal of EV charging
is to satisfy every EV's energy demands under the above power
supply and peak rate constraints.

IEach EV leave at its departure time regardless of its charging conditions. This assump-
tion is applicable for most slow chargers including ACN [14]. Under this assumption,
we do need to explicitly model number of stations, as the speed of charging does not
affect the availability of chargers for incoming EVs.

ZAll EVs at the charing station can be simultanecusly as long as the constraints (1)-(2)
are satisfied.

*The actual constraint in ACN is ¥, .+ 8r3(t) = e;, i € V, where & (h) is the
sojourn time of sampling time intervals, ; has unit kWh, r;(#) has unit kW [14].
Since r;(#) can always be rescaled according to 8, we set § = 1 without loss of
generality.
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Definition 2.1 (Feasible instance). An EV charging problem in-
stance 7 is offline feasible if there exist charging rates » = {r;(¥) :
i €V, t e 7} that satisfy constraints (1)-(3).

Constraints (1)-(3) are affine. Therefore, verifying the feasibility of
an EV charging instance is a linear program (LP) for which many
efficient algorithms exist.

2.2 Online Scheduling

In practice, the energy demand and departure time of an EV are
only informed after its arrival* Consequently, the charging station
must use an oiline algorithm to determine an EV’s current charging
rate r;(t) using only information up to the current time

Iy ={asdi, e (T), Fis PT) bV, o<t (@
=1

where ¢;{(1) = e; — 3\;7, ri(t) is the emaining energy demand of
EV iat the begmning of time slot 7.

Definition 2.2 (Online algorithin). An online algorithm is a se-
quence of functions A = { Az } where each function Az : Iz — r(t)
maps the information up to the current time 7; to the current charg-

ing rates r{t) = {ri(t)};ev,.

Definition 2.3 (Feasibility of the algorithm). An (online) alporithm
A is feasible (online feasible) on instance 7 ifit gives charging rates
that satisfy constraints (1)-(3).

2.3 ‘'The Smoothed Least-Laxity-First Algorithm

2.3.1 The Laxity. A measure for the flexibility (or urgency) in
charging of an EV is its remaining time minus the minimum re-
maining time needed to fully charge it {time needed to fully charge
it at the maximum rate). We refer to this measure as laxity.

Definition 2.4 (Laxity). The laxity of an EVi e Vattime t € 7~
is defined as®

[d; -]t - , b oa,

tilt) = Fi

+ca, b < aj,

where “+” denotes the projection onto the set R of non-negative
real numbers.

PROPOSITION 2.5 (FEASIBILITY CONDITION). The algorithm A is
Jeasible on an instance T if and only if A gives charging rates that
result in non-negative laxities for all EVs, Le.,

L zo, i€V, teT. (5)

Proposition 2.5 suggests that the minimum laxity among all EVs
can serve as a measure of the distance from infeasibility. A naive
approach—referred to as the least laxity first (LLF) algorithm—is
to charge EVs starting from those with the least laxity to those
with the most laxity. However, the LLF algorithim may compromise
the feasibility of certain offline feasible instances (see Section 4)

4In ACN, the energy demand and departure time of EV i is gathered from user inputs
upon arrival

5The feasibility is defined for an instance T with respect to an online algorithm A,
whereas the offline feasibility is defined for an instance 7. Offline feasibility is a
necessary condition for an instance I to be feasible with respect to algorithm . An
instance 7 can be online feasible with respect to algorithm A but infeasible with
respect to another algorithm A",

¢ For convenience, laxity is defined on the whole temporal domain 7.
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and cause excessive preemptions and oscillations in the charging
rate’, which may reduce the lifetime of certain batteries {(e.g, Li-
ion) [13]. Alternatively, we consider maximizing the minimum
laxity among all EVs in order to maximize the feasibility margin,
max, min;ca €;(T). Although its solution may be non-unique, the
following optimization problem produces an unique solution that
is also a solution of max, min; -y £;(T).2

COROLLARY 2.6 (EQUIVALENT PROBLEM). Consider the optimiza-
tion algorithm

max ) RfGT) st W@ ) ) <enieV (@
eV tey”
where f is strictly increasing. Algorithm (6) is feasible for any offline
Jeasible instance.

However, we cannot solve (6) because of the lack of future infor-
mation of incorming EVs. Instead, we replace (6) with the following
online algorithm; at each time ¢ € 77, given £3(t), i €V, compute’

max FFER+1)) st (10),@,r0) <e(t), i€V (D
r() ieV,

The optimization problem (7) also maximizes the minimum laxity

min;e-y, £;(t+1), and thus maximizes the feasibility margin at time

.19 Next, we show the structure of the optimal solution, which will

be used to construct a scalable algorithm.

PROPOSITION 2.7 (VALLEY-FILLING SOLUTION). Assume that [ is
strictly concave, strictly increasing, and twice continuously differen-
tiable. A solution to the optimization problem (7) is

) = [ - G() + D Tes® ey ()

where [x]2 denotes the projection of the scalar x on interval [a, b],
and the value L(t) satisfies

> i) - &y + e
i€V,
)
= 3w =min|P@), Y minr, ()
ieV, i€V,

Observe that for EV i € V; with 7; < e;(t), the charging rates
(8) resultin &; (t+ 1) = [L(l‘)]?g;i1 Hence, L{t) can be considered
as a threshold of £;(t + 1), below which the energy is charged to
EV i Since r}(t) in (8} is an increasing function of L(t), a binary
search can be used to find the threshold L(¢) in (9). Given L(1),
the charging rates r} (¢) is then determined using (8). We formally
state this procedure in Algorithm 1, and name it as the smoothed
least-laxity-first (sLLF) algorithm.

The computational complexity of the sLLF algorithm is OV |+
log(1/8)), where & is the level of tolerable error. Lastly, we note
that the sLLF algorithm has other useful properties such as Least-
laxity-first property and faimess.

"For example, consider a system of two EVs, where £ (0) = 1.25, £2(0) = 0.75
and /i = F» = P(f) = L € 7. EV 1 and EV 2 will be charged according to
(11 (0), 72(00) = (0, 1), (£1(1), £2(1)) = (0.25, 0.75); (11 (1), rz(1)) = (1, 0), and 50
on. In this example, both EV switches in-between charging and not charging.

& Additionally, we can show the problem (6) also has a fairness property.

For more complex form of power limits, in optimization problems (6) and (7), the
power constraints (2) can be replaced by Ar(t) <., P(t), for element-wise inequal-

ity and positive matriz A. The Result in Corollary 2.6 also holds for Ar{f) <e.... F{f).
1"The selution of (7) is alse unique.
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fort € 7 do
Update set of EVs Vy and laxities £;(t), i € V4
Obtain L(t) that solves (9) using bisection
Charge according to rates »;{(t) in (8)

end for

Algorithm 1: The Smoothed Least-Laxity-First (sLLF) Algorithm.

LEMMA 2.8 (LEAST-LAXITY-FIRST PROPERTY). If there exist two
EVsi,j €V under the sLLF algorithm such that

£ < £5(1), (10)
it +1) > £t +1), {11)

then either one of the following holds:
t=d; &rit) = 0, {12)
t<di&t<dj&ej(t+l):O&Ti(t)#o. {(13)

Due to space constraints, the proofs are given in Appendix. The
above properties will be useful in the analysis of feasibility condi-
tions.

3 PERFORMANCE ANALYSIS

There are two extreme cases, F; — co, i € Vand P(f) — oo, in
which online algorithms can be feasible for any offline feasible
instances. When 7; — o0 i € V, or equivalently P(t) < min;e«y, 7;
for all t € 7, the charging problem is identical to the single
processor preemptive scheduling problem where the processing
capacity is time-variant. For this case, the earliest-deadline-first
(EDF) algorithm is feasible for any offline feasible instances [20].
When P(t) — oo, or equivalently P(t) > ¥ ey, Fi(t) for all t € 7,
the sLLF algorithm is feasible for any offline feasible instances.
However, beyond the above two extreme cases, no online algorithm
can be feasible on all offline feasible instances [23]. The hardness of
finding feasible online algorithms motivates a quantitative measure
to evaluate the likelihood of an algorithm being feasible. Observe
that if more resources {e.g., P(t), i) are allowed, an otherwise
infeasible problem instance may become online feasible under the
online algorithm. We use this (minimum) additional resource to
analyze the performance of the sLLF algorithm, where either power
P or both power P and peak rate #; are augmented. The former
allows more EVs to be charged simultaneously, while the latter
additionally allows EVs to be charged faster. As we will demonstrate,
these two ways of resource augmentation are qualitatively different
and provide complementary insights into the behavior of the sLLF
algorithm.

3.1 Power Augmentation

In the case of power augmentation, the online algorithm is allowed
to use more power than the offline algorithm, Le, P??(t) = (1 +
e)P(t), 1" =7

Definition 3.1. [e-power augmentedinstance] Given an EV charg-

ing instance { = {a;,di, ei, f’i;P(t)}iEry,fegr, we define its e-power
augmented instance as

(14

{aj, di, e573; (1 + PO ey, e



e-Energy’17, May 2017, Hong Kang

Definition 3.2, [e-power feasibility] An online algorithm A is e-
power feasible if A is feasible on the e-power augmented instances
Tp(€) generated from any offline feasible instance 7.1t

Unfortunately, there is no e-power feasible online algorithm for
any finite € > 0[17].' However, under a mild assunmiption, e-power
feasibility condition can be obtained for a finite e. Assume that the
energy demand of each EV is bounded by X and the inter-arrival
time between consecutive arrivals are greater than N, ie.,

eV,
ijeV.

e = X, {15)
(16)

We can characterize the relation between N and the sufficient

laj — aj| > N,

amount of resource augmentation ¢ as follows.

THEOREM 3.3. Assume (15), (16). The sLLF algorithm is e-power

Jfeasible with
5X 1
{logqp( V5 +7)+2}71,
NPpax 2

where ¢ = 1.61803 is the golden ratio.

PII]BX

£ =
Prin

In particular, when N = X/ Pmax,'? we can further simplify the
feasibility condition in Theorem 3.3.

COROLLARY 3.4 If N > X/[/Pnay, then the sLLF algorithm is 3-
power feasible.

3.2 Power and Rate Augmentation

In the case of power and maximum charging rate augmentation,
the online algorithm is allowed to use more power and higher
maximum rate than the offline algorithm: P°*{t) = (1 + )P(1),
P =(1+er

Definition 3.5. [e-augmented instance] Given an EV charging
instance I {a;, d;, e;, Fi; P(1)}jev seq, we define its € augmented
instance as

{ap, di e, (1 + €)Fi (1 + )P ey rer (17)

Definition 3.6. [e-feasibility] An online algorithm A is e-feasible
if A is feasible on the e-augmented nstances I,,(e) generated
from any offline feasible instance 7.

Contrary to the power augmentation, the sLLF algorithm is e-
feasible for a finite value of ¢ > 0 without any assumptions of the
arrival patterns.

11 Alternatively, the {(minimum) value of & can also be interpreted as the constraints
on instances that are online feasible. That is, given the original resource P{f), 7;(f),
the algorithm is online feasible for any instances 7 = {ay, ds, e, Fs; P(E) /(1 +
€)}1ev, ey that is offline feasible given the reduced resource Fi#) /(1 + €}, F;(£).
Large € restricts possible instances, thus less likely to be online infeasible.

121t is shown in [17] that the LLF algorithm is not e-power feasible for any ¢ > 0 for
uniform processors and time-invariant number of processors. Since their setting is a
special case of our setting, the same results extend to our setting.

131f the inter-arrival time is N, and the power demand is X, the incoming energy
demand per unit time is X / N. Since the total power supply is Py, per unit time, N
ghould be at least X / P for offline feasiblity. Therefore, X /P < N is amild assumption.

THEOREM 3.7. The sLLF algorithm is e-feasible with

B P(r1) Fi
€ = 1max max —  max
i€V o, nefand] P(1)  refa,di) PiT)
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As we demonstrate in the next section, the actual EV instance in
ACN and others requires smaller amount of resource augmentation
than the worse-case upper bound in practice.

4 SIMULATION

In this section, we show the performance of the sLLF algorithm
using trace-base simulation on real EV datasets and compare it to
that of several heuristic onlme EV charging algorithms.

4.1 Experimental Setup

Our simulations use datasets from the ACN deployment (CAGarage)
and Google's facilities in Mountain View (Goople mtv) and Sunny-
vale (Google_svl). They include a total of 52,362 charging sessions
over more than 4,000 charging days in 2016 at 104 locations. See
Table 2 for a summary of the data. Each instance consists of one
day of charging. We can see that there is a large degree of variation
in the sojourn time and laxity of the vehicles in the instances.

For each instance, we compute the minimum power capacity in
which the instance is feasible by using offline an LP, ie., we mini-
mize P = P(t), subject to (1)-(3). This corresponds to the mininmim
power supply in order for the nstance to be offline feasible. We
use this minimum power supply to generate an offline instance,
and tested if the instance is feasible under online algorithms. Be-
sides the sLLF algorithm, we also implemented some common
(online) scheduling algorithms: earliest-deadline-first (EDF), least-
laxity-first (LLF), equal share (ES), remaining energy proportional
(REP) [20], and an online linear program (OLP) [3]: . Due to space
constraints, precise description of each algorithm is given in Ap-
pendix C.

Instances | EV sojourn time (m) Laxity (m)
CAGarage 92 321(11, 720) 231 (0.1, 660)
Googlemtv | 3793 149 (10, 720) 35 (0.001, 694)
Google_svl 245 152 (11, 720) 38 (0.02, 676)

Table 2: Statistics of the EV charging instances. Each entry
is formated as average (minimum, maximum), unit (m) de-
notes minutes,

4.2 Results without Augimented Resources

We first evaluate the success rate of the online algorithms without
resource augmentation. We define the success rate of an algorithm
as the percentage of online feasible instances under the algorithm.
The sLLF algorithm achieves uniformly high success rate for all
datasets compared to other online algorithms considered. The EDF,
ES, and REP algorithms perform much worse in terms of finding
feasible schedules (Figure 1). This is not surprising as feasibility
requires online algorithms to jointly consider deadline, maximum
charging rate, and remaining energy of each EV. However, none of
these (the EDF, ES and REP algorithms) consider all three factors
simultaneously. The low success rate of the LLF algorithm, despite
its similarity to the sLLF algorithm, suggests the importance of
maximizing minimum laxity (see Section 2.3).

Next, we study what characteristics of the instances affect the
success rate. We find that the mmimum normalized laxity and the
maximum ratio between EV sojourn times have high correlations
with the successrate. The maximumratio between EV sojourn times
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Figure 1: Success rates of finding feasible online schedule
without resource augmentation.
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Figure 2: Success rate of finding feasible online schedule
without resource augmentation.

REP | ES | EDF | LLF | OLP | sLLF
power 461 | 3.65 | 1.39 | 0.07 | 0.28 | 0.07
power and rate | 4.61 | 3.24 | 0.54 | 0.05 | 0.28 | 0.05

Table 3: Minimum resource augmentation for online feasi-
bility for all instances. The LLF and sLLF algorithms have
the smallest € among algorithms considered.

is defined as the maximum ratio between the longest and shortest
EV sojourn times in the instances. The minimum normalized laxity
of an EV is defined as the laxity divided by the EV sojourn times
¢i(ai)/(di—a;). Fig. 2 shows that as the minimum normalized laxity
increases, all algorithms considered have improved success rates.
Among these algorithms, the sLLF algorithm has one of the highest
success rate for all minimum normalized laxity. Fig. 2b shows
that as the maximum ratio between EV sojourn times increases, all
algorithms considered have decreased success rates. Among these
algorithms, the SLLF algorithm is least sensitive to the maximum
ratio between EV sojourn times and maintains highest success rate
across all sojourn times. Although instances with urgent schedule
(small minimum normalized laxity) and large variety of EV sojourn
times tend to have lower success rate, the SLLF algorithm has the
best performance in almost all scenarios.
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Figure 3: Success rate of finding feasible online schedule un-
der resource augmentation.

4.3 Results with Augmented Resources

While the sLLF algorithm has shown high success rate in finding
feasible online EV charging schedules without resource augmenta-
tion, we further analyze the performance of online algorithms with
resource augmentation in (a) power, and (b) both power and rate.
Fig. 3 shows that the SLLF and OLP algorithm have the highest suc-
cess rate of among other algorithms under various level of resource
augmentation. We can see that to achieve 95% success rate for the
sLLF algorithm, only 2% increase in resources is required. Table
3 shows that the minimum e resource augmentation required for
each algorithm to achieve 100% feasibility for all instances is small-
est for the LLF and sLLF algorithms. Other algorithms (EDF, ES,
REP and OLP) require significantly larger augmentation compared
to the sLLF algorithm. While the OLP algorithm has high success
rate without augmentation (Fig. 1), it requires much more resource
augmentation to achieve 100% success rate (Table 3).

5 CONCLUSION

We have formulated EV charging as a feasibility problem that meets
all EVs” energy demands before departure under charging rate
constraints and total power constraint, and proposed an online
algorithm, the sLLF algorithm, that decides on the current charging
rates based on only the information up to the current time. We
characterize the performance of the sLLF algorithm analytically and
numerically. Numerical experiments with real-world data show that
it has significantly higher rate of generating feasible EV charging
than several other common EV charging algorithms. By finding
feasible EV charging schedules using only a small augmentation to
the absolute minimum resource needed for offline feasibility, our
proposed algorithm (sLLF) can significantly reduce infrastructural
cost for EV charging facilities.
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APPENDIX
A  PROOFS FOR SECTION 2

PrOOF (PROPOSITION 2.5). Observe that feasibility is equivalent
with the condition

ei(di) = 0, eV, (18)

Condition (5) implies that for any EV i € V, £;(d;) = —e;{d;)/F; =
0, which yields e;(d;) = 0. Next, notice that the laxity of EV i is
monotonically decreasing at t < d; and constant at t > dj, i.e,

G =&+ D)+ 1 —r (D) fF = E(E+ 1), t < dj (19)
L) =60+ 1) t=d; (20)
Therefore, condition (21) implies that £;(t) = 0 at any time ¢ €
VAR ml

ProoF (COROLLARY 2.6). From constraint ¥;.+ ri(t) < ¢; and
f being strictly increasmg, the objective function satisfies

PG EIFIO!

icV eV
Moreover, if an instance [ is offline feasible, then there exists
somme charging rates that achieve £;(T) = 0,¥i € V. Since the
laxity is monotonically decreasing at any ¢ € 7, such charging
rates also satisfy £;(1) = 0,i € V.t € 7. From Proposition 2.5,
£i(t) = 0,i € V,t € 7 implies that algorithm (6) is feasible on
instance . Therefore, the cost ¥;cv F(€i(T)) = Xicev f(O) is
attainable. o

PrOOF (PROPOSITION 2.5). Observe that feasibility is equivalent
with the condition

ei(d;) =0, eV, (21)

Condition (5) implies that for any EV i € V, £;(d;) = —ei(di)/7i =
0, which yields e;(d;) = 0. Next, natice that the laxity of EV i is
monotonically decreasing at t < d; and constant at ¢ > d;, i.e,

G =&+ D)+ 1 —r (D) fF = E(E+ 1), t < dj (22)
() =6t +1) t=d; {(23)
Therefore, condition (21) implies that £;(t) = 0 at any time ¢ €
7. a

ProoF (COROLLARY 2.6). From constraint } ;eo ri(t) < ¢; and
f strictly increasing, the objective function satisfies

PG EIFIO!

eV icV
If an instance 7 is offline feasible, then there exists certain charging
rates that achieve £;(T) = 0,¥i € V, whichyields ¥ ;c«y F(£i(T)) =
¥ ey F(0). Since the laxity is monotonically decreasing at any
t € 7", such charging rates also satisfy condition (5). From Propo-
sition 2.5, condition (5) implies that algorithm (6) is feasible on
mstance 1. i
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Proor (PrROPOSITION 2.7). From the Karush-Kuhn-Tucker (KKT)
conditions for the optimization problem (7),

ri(f) 2 0 iV (29)

ri(1) < min(e;(t), 7) iV, (25
Z i) < P(D) ieV: (26
=

Flit+ 1)+ -4, +0v=0 icVy (2D

Ayz0, ;20 iV (28)

Arilt) =0, Ai{ri(0) — min{e; (), 7))} = 0 i€V (29)

where ;,1;, v are the dual variables for constraints (24), (25), (26),
respectively. We consider three mutually exclusive cases: r; (i) = 0,
ri(t) € (0,min{e; (), 7;)), or r;(t) = min{e; (t),7;). When r;(t) =0,
;_Li =0and

ri(0/r = ) - b+ 1-4 < FUH) - L + 1, (30)

where the the inverse of f” exists since [ is strictly concave, strictly
increasing, and twice continuously differentiable. When »;(t) <
{0,min(e;(t),7;)), then from (29) (complementary slackness), 4; =
A; = 0. Substituting A; = 4, = 0 into (27), we obtain

L -1+ 7t/ = £ (o)
When ri(t) = min(ei(t), 7), A, = 0 and
r®/F = ) LM 1Az fN D) - () 1 (32)
Combining (30)-(32), we abtain

(31)

(33)

Because the same value of f"~'(~v) is shared for all EVs at the
charging station, we can define an variable Z.(t) = f"~!(-v). Since
the optimal solution is attained at the boundary »;ccy, ri{t) =

ri() = i (=0) - k() + IO,

min (P(l‘),zjeryr mjn(fj,ej(t))), we obtain the optimal solution
(8)-(9). o

ProoF (LEMMA 2.8). First notice that, by Definition 2.4, it satis-
fies the following relation:

Gt)— 1= &+ 1) = &(t), i eV, (34)

First, consider the case r;(t) = 0. The evolution of ¢; satisfies
£i(t) -1
£ilt)

Suppose that t < d;, combining (10) and (34) gives

t < d;,
t = d;.

Gt 1) = { (35)

it +1) = &) -1 = 6 —1=£(t+ 1),
which contradicts (11). Therefore, t = d;, and (12) follows.

Next, consider the case #;(t) # 0. Non-zero r;(t) implies ¢ < d;.
Ift < dj, (10) and (11) jointly implies
ity n)
— < = .
Fi(t) - Fl)
Under the sLLF algorithm, (36) happens only when e;(t) = r; (),
which leads to e;(t + 1) = 0. Il t = d}, then £(t + 1) = £;(1) =
€;(t) = £;(t+1), which contradicts (11). Therefore, (13) follows. O

(36)
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B PROOEFS FOR SECTION 3

Notations. Next we introduce some notation that will be used
later. Denote by As = {i € V : q; < t} the set of EVs that have
arrived by time t, Dy = {i € Ay 1 d; < tore(t) = 0} the set
of EVs that have either departed or finished charging by time ¢,
Vi =1{i € As 1 a; <t < d;}the set of EVsremaining in the charging
station at time t, and Uy = {i € ¥ : e;(t) > 0} the set of EVs with
unfulfilled energy demand at the beginning of time slot ¢, where we
reload the notation and use e;(t) to denote the remaining energy
demand of EV i at the beginning of time slot t. In addition, denote
by Als, 5] =11 € V i a; € [t1, £2]} the set of EVs that arrive during
time interval [t1,tz], t1,f2 € 7. See Table 4 for a summary of
notation.

Denote the total energy supply to EVs in set § € V' during the
interval [#;,#;] under the (feasible) offline algorithm by

ty
Pyt (S5 1) 1= Z Z rifr),

ies T=h
and the total energy supply to EVsin set § € V during the interval
[t1, t2] under the e-power augmentation (or e-augmentation) by

ty
D= 3, 3o

ies T=h
We use superscript * to indicate variables under an (feasible) offline
algorithm with original power limit P(t) and maximum charging
rates F;, and use superscript € to indicate variables under the aug-
mented resources.

Table 4: Additional Notation

A set of EVs arriving by time ¢
Alty, 1] set of EVs arriving during interval [i1, 2]
Dy set of EVs either departed or finished by time ¢
Vi set of EVs at the charging station at time ¢
U set of EVs unfinished charging at time &

total energy supplied to the set of EVs &
during the interval [#, ] under instance J
total energy supplied to & during [t1, t2]
under instance 7 with ¢ augmented resources

€
‘P[h:tz

[(S:7)

B.1 Preliminaries

B.1.1  The infeasibility condition. For a charging instance =
{ai,di. e, Fi;P(D)}icv req that is not online feasible under the
sLLF algorithm, there are times when some EV has negative laxity.
Denote by t_ the earliest among such times. Let & = {i € A;
£;(t-) < 0} denote the set of EVs arriving at the changing station by
time ¢_ that have nepative laxity, S; = {i € A;_ : f;(t-) > 0& d; <
t_} the set of EVs with non-negative laxity that depart by time {_,
and S; = {i € A; : £;(t-) = 0 & d; > t_} the set of EVs with
non-negative laxity that remain at the charging station at time ¢—.
Sets 7, 51 and S, are mutually exclusive, and Ay = 7 US; USs.

LEMMA B.1. When the sLLF algorithm is used on instance I, for
anyi € Sz and j € F, the laxities satisfy

(37

£i(t) > 5]'(1“), e [max(ai,aj), t_].



e-Energy’17, May 2017, Hong Kang

Proor (LEMMA B.1). By the construction of S, relation (37)
holds at t = t_. By Lemma 2.8, a necessary condition for the
mequality in (37) to flip at some time { + 1 < {_ 1s for (13) to hold
for EV i. We show below that this condition canmot holds for any
EVin 7 or &;. For EVsin 7, condition e;(¢ + 1) = 0in (13) cannot
happen because negative laxity at some time implies the energy
demand will not be fulfilled. For EVs in &1, (37) holds only after
e;(t + 1) = 0 when they have energy demand fulfilled at time ¢ + 1.
Consequently, condition (37) holds for all t € [max(a;, a;),t-]. O

Notice that the sLLF algorithm prioritizes EVs with smaller laxity
so the presence of EVs with strictly greater laxity will not impact
the charging of the EVs with smaller laxity. Let V' = F U .Sy, and
use it to define another instance that does not contain the EVs in
Sa: 7= {aj,di,ej,f’i;P(t)}ie(f/ seq-- Following Carollary can be
obtamed as a consequence of Lemma B.1.

COROLLARY B.2. Regardless of the actual instance being T or 7,
the EVs in 7 are charged in exactly the same way under the sLLF
algorithm by timet_.

B.1.2  The infeasibility condition of an augmented instance. Let
I be an EV charging instances that are offline feasible. Consider
using the sLLF algorithm with the ¢ augmented resources (either
power augmentation P?7(t) = eP(t), or power and rate augmen-
tation PO*(t) = eP(t),F{"(t) = F;(t)). Now, the above result from
previous section, we derive a condition for the sLLF algorithm being
infeasible on some online feasible instance, which holds for both
power augmentation and power and rate augmentation.
Since the EVs in &y are fully charged by time i under both the
sLLF algorithm and the offline algorithm, we have
‘P[%:t_](Sl;I) = ‘P[*():f_](SI;I)s (38)
where 81, 7 are the sets defined above under the sLLF algorithm
using augmented resources. Notice that £;(t) > 0, ¥t € 7 s a
necessary condition for EV i to be feasible. Thus, for EVi € 7,
the offline algorithm must maintain £;(i_} > 0. Given that laxity
£;(1) is strictly decreasing in the remaining energy demand e;(t),
the total energy fulfilled by t— under the offline algorithm must be
strictly greater than that with the sLLF algorithm, i.e,

‘P[Eo:ti]({i};f) < \PFO:L](“};I)’ ied (39)
from which
‘P[Eo:f,] (F;1) < ‘PFO:L] (F,71). (40)
Recall that V' = VS, Combining (38) and (40), we have
\P[%:t_]((?;f) <V (V, 1), (41)
Corollary B.2 mmplies
Wop g (57) = W, D) ieV, (42)
\y[%:t_]((?-,f) = ¥ v, . (43)

Further, since the charging instance J is offline feasible, its sub-
instance 7 is offline feasible too. Similar to equations (38)-(41), we
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can show that
oSl = P, (ST, (44)
WD) < B (kD) e F, (45)
e (D) < Wy (FiD), (46)
\P[%:t_](fﬁ;f) < W (V... (47

B.2 Proof of Theorem 3.3

Consider the use of the sLLF algorithm on an offline feasible n-
stance I = {a;,d;, e;, 74; P(i) ey s under e-power augmented
resources. Let
P .
n={1+e&-0,
Pmax

(48)

For m < n, we define the earliest time to charge at a power greater
than #Pmax for the rest of the time until {— as

tm=mim<teT : Z min(7;, e;(7)) = mPrax.7 €[], (49)
v

Let Tre = [tm—1,tm) and fm = [tm, t-] and denote their lenpths by
[T | and [Tp,|.

We first present a lemma that is used in the proof of Theorem
3.3.

Lemma B.3. Forany integeri < n — 1, the following two relations
hold:

(50)
(51)

Wi AT ) = (AT ) > P Tial,

Tl > |Tial.
ProoF (LEMma B.3). On one hand, from definition (49),

Z min(7, ej{ti—1 — 1)) < (i — 1)Pmax.

JeVie 1

This implies that the EVs that have arrived before t;—1 are charged
at a total power of at most (i — 1) Ppax at t;—1 and after. On the other
hand, from definition (49}, the total power supply is at least iPmax
during the interval Tiyq = [t;, ti+1]. Therefore, the total charing
power to the EVs that arrive after ¢;_ is at least Ppay during T4,
Since the offline algorithm can only use a power of at most Ppay,
for the EVs that arrive after t;_; we obtain

‘P[*O;fm] (AfH;I) B ‘P[EO;fz'ﬂ](AfH 1)

; N : 62
< ‘P[O;tz'](Afiq ) - ‘P[Eo;fz'] (Afi—l 3 1)

The same argument can be applied to the interval T = [tivn -]
From definition (49), the total charging power is at least (i+ 1)Pmay
during ﬁ-ﬂ. Therefore, during fi+1, the total charing power to
the EVs that arrive after t;_; is at least 2P 4. Since the offline
algorithm can only use a power of at most P,y the total energy
supply to EVs in T;_; under the augmented resources is greater
than that without augmented resources, ie.,

0< \PFO;L] (Afz'q ’j) - ‘P[EO;L] (Afz'q ’j)

1) — W,

. . (53)
[OQtiH](A‘fz‘—] :I) - Pmax|Ti+1‘-

* -
< \P[O;fm] (ATH
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Combining (52)-(53), we have

Phoeg A, 1) > PmaxTia .

Since the set Ay, is identical to the subset of Af“q
only the EVs that have arrived by ¢;,
* LT € T
\P[O;rﬂ (ATisI) - ‘P[O-tr] (ATI-sI)
= Voug s, 1) = Vg (Ag, 3 ).

Combining (54) and (53) leads to relation (50).
Finally, as all EVs in Ay, arrives after t;—;, during T; the offline
algorithm can charge a total energy of at most |T;|Ppax, we obtain

o q(Agy i) - {54)

that contains

(55)

[Ot](ATIaI) ‘Pof](ATlaI)<‘Tl‘Pmax
which together with (50) leads to (51). |

ProoF (THEOREM 3.3). Suppose that there exists an offline fea-
sible instance T = {a;,d;, e;, Fi; P(t)}izev 7 such that the sLLF
algorithm is not feasible with e-power augmented resources. Then,
from Appendix B.1.1, there exists another offline feasible instance
i= {ai,di,ei,ﬁ;P(t)}iE(‘; seq- such that

Iy < W (i), i eV (56)

When m = 1, we obtain EJ'Ean min(Fj,eJ,-(tl — 1)) < Ppax. Let
8 ={i € Ay, : ¢;{t1) > 0} C Ay, denote the set of EVs that arrive
during Ty and have not yet been fully charged by t;. Because the
number of EVs is upper bounded by Ppax /Fmin (from (49)), and the
EVs in A \S are all fully charged,
Pmax|Ta| < \P[O, (Ag: 1) ¥, (A D)
= [Of ](S - ‘Por](s D

< X Pmax/Fmin-

‘P[Eo:t_] ({1 [o:7_ ](

This leads to

1Tl < =

min

(57)
At time t < t;,—1, we have
D min{, ejltno - 1) < (m = 1)Prax,
JeVe,, 111
which implies that there are at most (i — 1) Ppax/Fmin EVs with

unfulfilled energy demand by time tp. Meanwhile, at time t > tr,
we have

D" minGy, e(tm)) > MPmax,
JEVi,

which implies that there are at least mPyay/Fmax EVs with unful-
filled energy demand during T,;,—4. Therefore, the number of EVs
that arrive during [t;—1, tm] is greater than the following:

_ (m — 1)Pmax

Fmin
Since the inter-arrival periods of EVs are at least N, the length of
fm_l satisfies

mPrax FPrax

> . (58)

"min

FII] ax

PraeN
‘Tm1‘> — .

(59)
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Now, consider the following recursion:
T3] = T3] + [T3]
T3] + Ty > 2Ty + |15
> 3[T5] + 2/Ts| = 5T6] + 3177
2 feoalTmatl + fios|Tmls

where fr. is the Fibonacci sequence defined by fi =1, £ =1and
J& = fr—1 + fx—p for k = 3. From the above, we have

T2l > fn-alTm-1l.
Combining equations (57)-(59) gives

Y

I

PraxN
60
: (60)

min

> Tal > fin-2lTm-1] > fm—z
rmlﬂ
From m = n for n defined in (48), we obtain

min

Pmaxj i S
=log, (\Efn—z + %)
VEX 1

<1 —+ -,
Og?’(NPmax 2)

which gives (1 + €)Ppin/Pmax < logw (N/EX/NPIHBX + 1/2) +2

(1+¢) m—2

a

COROLLARY 3.4, Suppose there exists an offline feasible instance
1 that is not feasible under the sLLF algorithm with 3-power aug-
mentation. Using the same argument of the proof for Theorem 3.3,
we obtain inequality (60). However, from assumption

meaxNi X

Ymin Fmin

which contradicts (60). m|

B.3 Proof of Theorem 3.7

ProoF (THEOREM 3.3). Suppose that there exists an instance
I = {aj.di, e;. Fi; P(D) }ev t eg- such that the sLLF algorithm is
not feasible with e-augmented resources. We then have equation
(47), repeated here for convenience:

‘P[Eo:f ]((V D<w [Ot ]((‘/-,I)

{ai diei, rl’P(t)}1€W teT
Let S{“V) be the set of EVsin the instance 7 that receive strictly

less energy under the online algorithm than under the offline algo-
rithm by some time  at which ¥¢ [0:£] (Vs I) < ‘PEO r]((V I)

for another instance 7 =

S{(V) = {i eV AeT st ‘P[O:f]({i};f) < ‘P[O:f]({i};f)
o (Vid) < ¥, (Vi)

In view of (47), S('V) # 0. Consider EV j = argmin, g ) @i
that arrives the earliest among those in S(°V). There exists a time
t € [aj,d;] such that

(61)
(62)

Uhd) < By (kD)
(Vi D).

Ploer) (1)

(V.5 < ¥

Pl [0:1]
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Notice that \P[Eo:aj—l] (Vi) < ‘Pf‘o:aj_l] (V1) can only happen

when there is another EV in S(*V) that arrives before EV j, which
however contradicts the definitions of S{"V') and j. So,

‘P[eo:aj—l]((V"I) z ‘Pfo:afl] (Vi1),
which mplies

(63)

Now, let us take a look at the energy demand fulfilled during
the interval [a;, t] under the sLLF algorithm with e-augmented
resources. Define the overloaded times

T, = {: e [a;1] : Z r(t) = (1+ e)P(t)}

eV

& T #
PV D) <Py

](ﬂ?-j).

and underloaded times

Ty = {t€[an1]: Z rilf) < (1+ P+,
eV

we have [Ty| + |Tyy| = t + 1 - a;. The total energy demand ful-
filled during the averloaded period is lower bounded by [T, [{1 +
€)ming ¢4, 4,1 P(r), while that during the underloaded period is at
least |T,|(1 + €)F;. Hence, the total and individual energy demands
fulfilled during [a;, t] are lower bounded by

1+ [|Tulri + |1Tol min P(r)| <98 (V. 1), 64

o) (It 16l _min, P0)) < ¥ (ViD) 0

(65)

Next, let us take a look at the energy demand fulfilled during
the interval [a;, t + 1] by the offline algorithm without resource
augmentation. The total energy fulfilled is upper bounded by

(1+€)|TylF; < ‘P[eaj:ﬂ({j};f).

¥, 0] (V1) < (t+1-aj) eﬁf‘dﬂ P(r), (66)
and the energy fulfilled to EV j is upper bounded by
Wy () = (E41 - ap)Fy. (67)
By equations (61), (65) and (67), we have
ITol(1+€) < (t —a; +1). (68)

By equations (63) (64) and (66), we have

1+ e)(|Tylry + ‘T"'feﬁ?dﬂp(f))
<{t+1-a; Pir).
( aj)rer[rgffj] (z)

Combining equation (68) becomes

(Tl + [Tol)(1+€) min P(r)
Teldp iy
<(t—-a;j+1 max P(r)+ min P{r)-7¥;
(t —aj )(Te[%dﬂ () nin, | (r)—rj)

Notice that |T,| + |Ty| = t + 1 — aj, the above inequality leads to

P(Tl) . Fi
max — Imin Imax .
nmeland] P(a) i€V vefasd;] P(r)

€<
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C BENCHMARK ALGORITHMS

We summarize the online algorithms evaluated in Section 4. See
[20] for a review of each algorithrm.

Earliest Deadline First (EDF). All EVs in Vs are sorted by their
deadlines d; in an increasing order. The available power P(t) is
assigned to EVs in this order up to min{F;, e; (t)).

Least laxity first algorithms (LLF). All EVs in "V} are sorted by
their laxities £;(¢) in an increasing order. The available power P(t)
is assigned to EVs in this order up to min(7;, &;(t)).

Equal Share (ES). The available power supply P(t) is divided
equally to all commected EVs able to charge more energy, each EV
receives the minimum between their fair share and their maximum
charging rate. Repeat until either P(#) power is supplied or no more
EV can be charged further.

Remaining Energy Proportional (REP). The available power P(t)
is divided to EVs in proportion to their remaining energy demand
e;(t). Each EV receives the minimum between their proportional
share and their maximum charging rate. Repeat until either P(t)
power is supplied or no more EV can be charged further.

Online Linear Program (OLP) [3]. At each time t, the charging
rate r;(t) to EV i € V; is provided according to the solution of the
followng LP:

T

min Z eri(:r)
icV, z=t
T
subject to Z ri{t) = e;(t), Yi e Ur
7=t
Z ri(r) < P(r), ¥r =t,...,T
€Uy

0 <ri(t) =¥

The constraints of the online LP to find a feasible schedule for all the
currently active EVs assuming no EV arrivals in the future, while
objective function encourages the charging station to charge EVs
as early as possible.
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