This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI10.1109/T8G.2017.2731511, IEEE

Transactions on Smart Grid

JOURNAL OF EfEX CLASS FILES, VOL. XX, NO. X, X XXX

Distributed Frequency Control with Operational
Constraints, Part II: Network Power Balance

Zhaojian Wang, Student Member, IEEE, Feng Liu, Member, IEEE, Steven H. Low, Fellow, IEEE,
Changhong Zhao, Member, IEEE, and Shengwei Mei, Fellow, IEEE

Abstract—In Part 1 of this paper we propose a decentralized
optimal frequency control of multi-area power system with oper-
ational constraints, where the tie-line powers remain unchanged
in the steady state and the power mismatch is balanced within
individual control areas. In Part II of the paper, we propose a
distributed controller for optimal frequency control in the net-
work power balance case, where the power mismaich is balanced
over the whole system. With the proposed controller, the tie-
line powers remain within the acceptable range at equilibrium,
while the regulation capacity constraints are satisfied both at
equilibrium and during transient. It is revealed that the closed-
loop system with the proposed coniroller carries out primal-dual
updates with saturation for solving an associated optimization
problem. To cope with discontinuous dynamics of the closed-loop
system, we deploy the invariance principle for nonpathological
Lyapunov function to prove its asymptotic stability, Simulation
resulis are provided to show the effectiveness of our controller.

Index Terms—Power system dynamics, frequency control;
network power balance; distributed control

NOMENCLATURE
A. Variables

g; Rotor angle at node j.

; Frequency at node j.

Pf (Aggregate) mechanical power input at node j.
P} (Aggregate) controllable load at node j.

1t Generation control command at node j.

ui Controllable load command at node j.

0 Virtual phase angles at node j.

6 Angle difference between node 7 and j.

0;f Virtual angle difference between node i and j.
By Power from node 7 to j.

A Lagrangian multipliers.

iz Lagrangian multipliers.

n;:, ni; Lagrangian multipliers.

B. Parameters

m Number of tie lines.
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i (Aggregate) uncontrollable load at node j.
M; Inertia constants
D; Damping constants.
R; Droop parameters.
B;; Inverse of line (i, f/) impedances.
B‘;T ,P%  Lower and upper bounds of Pf .
Bﬂ,’ﬁi Lower and upper bounds of P}.
P j,ij Lower and upper bounds of Fj;.
Qij, 8;; Lower and upper bounds of 8;;.
& Reference value of angles.
o Reference value of virtual angles.
o Constant weights for cost of generation.
B; Constant weights for cost of controllable load.
i’}‘? Time constants of generation.
T; Time constants of controllable load.
}'}3 ,yf,» Positive constants.
7, }ff} Positive constants.
k  Positive constants.

e

I. INTRODUCTION

In Part T of the paper we have investigated the optimal
frequency control of multi-area power system with operational
constraints [1]. Tn that case, the tie-line powers are required to
be unchanged in the steady state after load disturbances, which
implies the power mismatch in each area has to be balanced
individually. It is referred to as the per-node power balance
case. In Part II of the paper, we consider the transmission
congestion in the distributed optimal frequency design.

The per-node balance case in Part [ mainly considers the
situation where the power delivered from one area to another
is fixed, e.g. contract power, which should not be violated in
normal operation. However, in some circumstances, control ar-
eas may cooperate for better frequency recovery or regulation
cost reduction. In this case, power mismatch may be balanced
by all generations and controllable loads among all control
areas in cooperation. Similar situations also appear in one
confrol area with multiple generators and controllable loads
that cooperate to eliminate the power mismatch in the area. It
is referred to as the network power balance case. Compared
with the per-node balance case, the most challenging problem
in this case is that the tie-line powers may change and
congestions may occur. In addition, local information is not
sufficient and neighboring information turns to be helpful.
As for the constraints, the tie-line power constraints are not
hard limits, which only need to be satisfied at equilibrium.

1943-3053 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See httpy/fwww.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI10.1109/T8G.2017.2731511, IEEE

Transactions on Smart Grid

JOURNAL OF EfEX CLASS FILES, VOL. XX, NO. X, X XXX

The capacity limits on the generations and controllable loads
also required to be satisfied both in steady state and during
transient.

In the recent literature of frequency control, tie-line power
constraints are considered in [2]-[7]. In [2], tie-line power
constraints are included in the load-side secondary frequency
control. A virtual variable is used to estimate the tie-line pow-
er, whose value is identical to the tie-line power at equilibrium.
In [3], [4], an optimal economic dispatch problem including
tie-line power constraints is formulated, then the solution
dynamics derived from a primal-dual algorithm is shaped as
a port-Hamiltonian form. The power system dynamics also
have a port-Hamiltonian form, which are interconnected with
the solution dynamics to constitute a closed-loop Hamiltonian
system. Then, the optimality and stability are proved. In [6], a
unified method is proposed for primary and secondary frequen-
cy control, where the congestion management is implemented
in the secondary control. In [7], a real-time control framework
is proposed for tree power networks, where transmission
capacities are considered.

Similar to the per-node balance case, hard limits, such as
capacity constraints of power injections on buses, are enforced
only in the steady-state in the literature, which may fail if such
constraints are violated in transient. Here we construct a fully
distributed control to recover nominal frequency while elim-
inating congestion. Differing from the literature, it enforces
regulation capacity constraints not only at equilibrium, but
also during transient. We show that the controllers together
with the physical dvnamics serve as primal-dual updates with
saturation for solving the optimization problem. The optimal
solution of the optimization problem and the equilibrivm point
of closed-loop system are identical.

The enforcement of capacity constraints during transient and
tie-line power limits simultaneously makes the stability proof
difficult. Specifically, the Lyapunov function is not continuous
anymore, as in the per-node case in Part I of the paper. In
this situation, the conventional T.aSalle’s invariance principle
does not apply. To overcome the difficulty, we construct a
nonpathological Lyapunov function to mitigate the impacts of
nonsmoocth dynamics. The salient features of the controller
are:

1) Control goals: the controller restores the nominal fre-
quency and balance the power mismatch in the whole
system after unknown load disturbance while minimiz-
ing the regulation costs;

2) Constraints: the regulation capacity constraints are al-
ways enforced even during transient and the congestions
can be eliminated automatically;

3) Communication: only neighborhood communication is
needed in the network balance case;

4) Measurement: the controller is adaptive to unknown
load disturbances automatically with no need of load
measurement.

The rest of this paper is organized as follows. In Sec-
tion II, we describe our model. Section III formulates the
optimal frequency control problem in the network balance
case, presents the distributed frequency controller and proves
the optimality, uniqueness and stability of the closed-loop

2

equilibrium. Simulation results are given in Section IV. Section
V concludes the paper.

II. NETWORK MODEL

We summarize the notation used in Part I [1]. The power
network is model by a directed graph & := (N,E) where N =
{0,1,2,...n} is the set of nodes {control areas) and E C N x N
is the set of edges (tie lines). If a pair of nodes i and j are
connected by a tie line directly, we denote the tie line by
(i,/) € E. Let m:= |E| denote the number of tie lines. Use
{i,/) € E or i — j interchangeably to denofe a directed edge
from i to j. Assume the graph is connected and node 0O is a
reference node.

The power system dynamics for each node j & N is

Qj = (D](I)
My = PE()— PL6) — by~ Dy )
+ Y Bi(8:(r) - 6;(0)) — Y, Bu(8;(r) — 8:(r)) (1b)

(1a)

fimr j kij—k
j’}sg’Pf = 7PJ§(1) +u§(z) —;{(1)/R; (1c)
TP — Py +ul) (1d)

Let x := (8,0,P2,P) denote the state of the network and
u = (u8,u') denote the control. !
The capacity constraints are:

P < Pi) <P, jeN (2a)
P, < Plg) <P, jeN (2b)

Here (2a) and (2b) are hard limits on the regulation capacities
of generation and controllable load at each node, which should
not be violated at any time even during transient.

The system operates in a steady state initially, i.e., the
generation and the load are balanced and the frequency is at
its nominal value. All variables represent deviations from their
nominal or scheduled values so that, e.g., @;(r) = 0 means the
frequency is at its nominal value.

In this paper, all nodes cooperate to rebalance power over
the entire network after a disturbance. The power flows P; on
the tie lines may deviate from their scheduled values and we
require that they satisfy line limits, i.e.,

By & Py < Py Y(i,j)€E

for some upper and lower bounds Bijaﬁij-

In DC approximation the power flow on line (i, j) is given
by P;; = B;;(8; — 8;). Hence line flow constraints in the per-
node balance case is §; = 6; for all (7, j) € E and in the network
balance case is:

8.5 9;=6; < By V({i,/) e E 3)

where Qij :Bjj/Bij’ Eij :I_Jij/Bij-
As the generation PJg and controllable load P! in each area
can increase or decrease, and a line flow P; can in either

direction, we make the following assumption.

1Given a collection of x; for 7 in a certain set A, x denotes the column
vector x := (x;,i €A) of a proper dimension with x; as its components.
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Al: 1) PA<0<Pand PL<0 <P, for VjeN.

2) 8,;<0 < 8y for (i, /) € E.

3) Bp(t):=0and ¢(#):=0for all ¢ = 0.
The assumption 8y = ¢ =0 amounts to using ((z), ¢olz)) as
reference angles. It is made merely for notational convenience:
as we will see, the equilibrium point will be unique with
this assumption (or unique up to reference angles without this
assumption).

III. CONTROLLER DESIGN FOR THE NETWORK POWER
BALANCE CASE

In the per-node balance case, individual control areas rebal-
ance power within their own areas after disturbances. However,
in many circumstances, it may be more efficient for all control
areas to eliminate power imbalance of the overall system in a
coordinated manner. This can be modeled as the condition:

L% = L,(B+n) @

In this case the tie-line flows may not be restored to their pre-

disturbance values. To ensure that they are within operational
limits, the constraints (3) are imposed.

Even though the philosophy of the controller design as well

as the proofs are similar to the per-node case, the details are

much more complicated. Our presentation will however be
brief where there is no confusion.

A. Control goals

In the network power balance case, the control goals are
formalized as the following optimization problem.

. 5% ; ) ; 2
NBO: min ;‘;f (Pf) +;‘if (P}) +;%m§+;2
(5a)

over Fi= (9,¢,m,Pg,Pl) and u = (ug,ul)

s.t. (2),

PS=Pj+pi+Ui(8,0) jeN (5b)
PE=Pl+p;+U;i(¢) jeN (5¢)
8y <9i—9; < 9, (.))eE (5d)
Pf =, jeN (5e)
Pl =, jeN {5f)

where z ¢ is a shorthand defined for convenience as

z; = PS—Pl—p;—Ui(9)
U(8,0):=Dw+CBCTe, and U(¢) := CBCT¢.

As in the per-node case, we define the variables éij =0
8;, or in vector form, 8 :=C78. As we fix 6 :=0 to be
a reference angle under assumption Al, 8 = 7@ defines a
bijection between 8 and 6. Similarly we define (,5,3» = —¢;
or ¢ :=CT¢, and ¢g:= 0 so there is a bijection between ¢
and ¢. Note that both 8 and ¢ are restricted to the column
space of CT'. We will use (8,¢) and (8,¢) interchangeably.
For instance we will abuse notation and write I (¢) := CBCT ¢
or U($) :=CBé.
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We now summarize some of the interesting properties
of NBO (5) that will be proved formally in the next two
subsections. We first compare NBO (5) with PBO in [1] for
the per-node balance case.

Remark 1 (Comparison of NBO and PBO). 1)

Intuitively the network balance condition (4) is a
relaxation of the per-node balance condition (3) in [1],
and hence we expect that the optimal cost of NBO
lower bounds that of PBO. This is indeed the case,
as we now argue. Constraint (5¢) implies that any
feasible point of (5) has z; = 0 and hence these two
optimization problems have the same objective function.
Their variables and constraints are different in that PBO
directly enforces the per-node balance condition while
NBO (5) has the additional variable ¢ and constraints
(5¢)(5d). Any optimal point (8*,@*,P#* P} for PBO
however defines a feasible point (8*,¢,@*,Ps*, P¥)
for NBO (5) with the same cost where ¢ = 8*. The
point (8*,¢,w*, P8, P*) satisfies (5c)(5d) because
(8%, @*,P2* P satisfies (5b), ®* =0 and 6 = 8} by
Theorem 2 in [1], and Qij <0< Eij by assumption Al.

2) Even though any feasible point of (5) has z; = 0, the
objective function is augmented with z? to improve
convergence (see [&]).

Even though neither the network balance condition (4) nor
the line limits (3) are explicitly enforced in (5), they are
satisfied at optimality (Theorem 2 below). Indeed, the virtual
phase angles ¢ and the conditions (5b)-(5d) are carefully
designed to enforce these conditions as well as to restore
the nominal frequency @* = 0 at optimality. This technigue
is previously used in [2].

Remark 2 (Virtual phase angles ¢). 1) Under mild con-
ditions, ®* = 0 at optimality for both PBO and NBO.
For NBO, this is a consequence of the constraint (5¢)
on ¢; see Lemma A.1. Summing (5¢) over all j e N
also implies the network balance condition (4) since
1'0(6)=1"CBCT ¢ =0.

2) In PBO, 8} = 9; at optimality (i.e., tie-line flows are
restored P =0) and U(8*,w") = 0. This does not
necessarily hold in NBO. However ¢ is regarded as
virtual phase angles because, at optimality, ¢* differs
from the real phase angles 6* only by a constant,
0* — 8" =1(dp — 8) (Lemma A.1 in the appendix).
Hence CTo* —te* = . 1(¢o — 60) = 0, implying
éif,» = éij». Then the constraints (5d) are exactly the flow
constraints (3). In other words, we impose the flow
constraints on & indirectly by enforcing such constraints
on the virtual angle ¢.

B. Distribured conrroller

QOur control laws are:

A

by = N (PEO-BlO)—pi— 0,60, jeN  (60)
myo= () 8yl ¥(i,j) €E  (6b)
o= ey eyl WU EE 1)

iz
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by = o Bl — )+ alr) -
+ 15 (0 - 150)

7
0 = [P0 (P + 00 +50+40)] )

z;{(1)]

Vi, e E  (6d)

5
(1) /R, JEN (6e)
i I { g
o) = [P - {BP0 - o) 50~ 240) |,
jeN (;6f)

For any x;,4; € R, the operator [xj; is defined by

bl == {)&

For a vector case, [x]1 is defined accordingly component-
wise [9],

Here we assume that each node 7 updates a set of internal
states (lf(t),n$ @), (), 0:;()) according to (6a)-(6d).> In
contrast to the complerely decentralized control derived in the
per-node balance case, here the control is distributed where
each node i updates (lj(f),n;} (r),n;; (1)) using only local
measurements or computation but requires the information
(2;(t),z;(r)) from its neighbors j to update ¢;;(¢). Note that
z;(f) is not a variable but a shorthand for (function) Pg (r)—
PI(I) — p; — U;(6()). The control inputs (uf (¢), ! (t)) in
(6e)(6f) are functions of the network state (P} (1), P (1), 0,())
and the internal state (A;(z), TLJ S0 n;; (1), 9:5(1)). We write uﬁ

and u as functions of (]f,PJ,coj,l ). for jeN

if @;>0or x>0
otherwise.

£ = 8 (PO.00M050] 0
o) = W (PO.00.40.50) )

where the functions are defined by the right-hand sides of
(6e)(61).

Now we comment on the implementation of the control (6).

Remark 3 (Implementation). 1) As  discussed above,
communication is needed only between neighboring
nodes (areas) to update the variables @j(t).

2) Similar to the per-node power balance case, we can
avoid measuring the load change p; by using (1b) and
the definition of z;(z) to replace (6a) with

zit) Y P+ ¥

iy f k j—k

= M;o;+D;0;(1)—

— U;(8(0))
2@

The controller (6) can also achieve per-node balance by
setting 8 yy Eij =0, it is still distributed and needs more
computation and communication compared to the controller
in Part [.

Puit)

“For each (directed) link (7, /) € E we assume that only node { maintains
the variables (7% (1), 15 (1), §:;(t)). In practice, node j will probably maintain
symmetric varial i)les to reduce communication burden or for other reasons
outside our mathematical model here.
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C. Design rationale

The controller design (6) is also motivated by a (partial)
primal-dual algorithm for (5), as for the per-node power
balance case.

Primal-dual algorithms. The optimization problem in the
network balance case differs from that in the per-node bal-
ance case in the inequalities (5d) on ¢. Consider a general
constrained convex optimization with inequality constraints:

min f() st g0

where f:B*— R, g:B* > R%, b B* - RB*, and X C R?
is closed and convex. Here an inequality constraint 2(x) <0
is imposed explicitly. Let p; « R*! be the Lagrange multiplier
associated with the equality constraint g(x) =0, p; < R*2 that
associated with the inequality constraint A(x) <0, and p =
(p1,p2). Define the Lagrangian L{x;p) := f(x) + p{ g(x) +
pTh(x). A standard primal-dual algorithm takes the form:

=0, hix)<0

x(t+1) = Projy (x(t) — T*V.L{x{#);p())) (8a)
prle+1) = pi(r) + IV, Lx@ip()  (8b)
p2li+1) = (p2t) + TPV, Lix(rip(1)))"  (8¢)

where I, IP1 T2 are strictly positive diagonal gain matrices.
Here, if a4 is a scalar then {a)" := max{a,0} and if a is a
vector then (a)* is defined accordingly componentwise. For a
dual algorithm, (8a) is replaced by

*e) = minL(sp())

As for the per-node balance case, all variables in x(7) are
updated according to (8a) except o(f) which is updated
according to (8d), as we see below.

The set X in (Ba) is defined by the constraints (2):

(8d)

X = {(PP): (@ P) < (PP < (P P)] ©

Controller (6) design. Let p; := (A, ) be the Lagrange mul-
tipliers associated with constraints (5¢) and (5b) respectively,
p2 := (nT,n7) the multipliers associated with constraints
(5d), and p := {p1,p>). Define the Lagrangian of (5) by (10).
Note that it is only a function of (x,p) and independent of

= (u2,u") as we treat u as a function of (x,p) defined by
the right-hand sides of (6e)(6f).

The closed-loop dynamies (1)(6) carry out an approximate
primal-dual algorithm (8) for solving (5) in real time over the
coupled physical power network and cyber computation. Since
the reasoning is similar to the per-node balance case, we only
provide a summary. Rewrite the Lagrangian L in vector form

1
Lxp) = ((Pg)TA3P3+ (P AP |- mTDm+sz)

3 }LT(Pg ot fpch(;S)
,LLT(ngPprchofCBé)
+ @ (6-8) + (n) (8-9)
where A' :=diag(f};, j € N), B :=diag(B;, (i, j) € E).

(11)
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Y o () X i (P

jew jew

Ly(x;p) = ;(

jEN i g kij—k

5

>
) + ED]'G)?—FEZ?) + ) (Pf—P}—pj—Djwj—i- Y Bijoi— Y} Bjkgjk)
jen 7 jen =

k) &
(i, )EE

+ YA (prfpﬁ Y Biby— ), Bad,

iy ki j—k

Y n;(0,-0u0) + X 0 (95(0)—8y)

(i,7)€E

(10)

First, the control (6b)(6¢) can be interpreted as a continuous-
time version of the dual update (8c¢) on the dual variable ps :=

(m* @)= (0):
At =
- =

I [VW+L2 (x(t);p(t))} ¥+(z)
I [V La(x()ip ()]

where I'" := diag(y}, (i, j) € E).
Second, the control (6a) carries out the dual update (8b) on
A(r):

A= T*Vala(x(t),p(0)) (12a)

where I'* := diag(}%,j £ N). The swing dynamic (1b) carries
out the dual update (8b) on p(r) because, as in the per-node
balance case, we can identify p(r) = @(r) so that

go= 0 = M VLO0:pE)

where M 1= diag(M;, j e N).

Finally we show that (la), (1lc), (1d), and (6d) implement
a mix of the primal updates (8a) and (8d) on the primal vari-
ables x 1= (8(1);6(1); @(1); P2 (¢); P'(r)). Setting & (r) = p(r)
is equivalent to the primal update (8d) on @(z), as in the per-
node balance case. Moreover the control laws (6e)(6f) are then
equivalent to

(12b)

TP = [P() — T2 VeeLo(a(0),p (D) — P2()  (120)
TP = Pl — TVl (x(1), p (1)) ; - Pl (2d)

i.e., the generator and controllable load at each node j carry
out the primal update (8a). For (8,¢), (la) and (6d) are
equivalent to the primal update (8a):
) = B VL ()0 (1)
0 —I? VLa(x(t),p (1))

where T'% := diag(yi-, (i, eE).

6 = (12e)

(12f)

D. Opfimaliry of equilibrium point

In this subsection, we address the optimality of the e-
quilibrium point of the closed-loop system (1)(6). Given an
(x,p) == ((8,¢,0,P2,P)), (A1), (n,n 7)), recall that the
control input u{x,p1,p2) is given by (7).
Definition 1. A point (x*,p*):= (8*,¢*, @*, P2* P A% nt*,
nTr MY is an equilibrium point or an equilibrium of the
closed-loop system (1)(6) if

1) The right-hand side of (1) vanishes at x* and u(x*, p*).

2) The right-hand side of (6a)—(6d) vanishes at (x*,p*).

Definition 2. A point (x* p*) is primal-dual optimal if
(x*,u(x*,p*)) is optimal for {3) and p* is optimal for its dual
problem.

We make the following assumption:
A2: The problem (5) is feasible.

The following theorem characterizes the correspondence
between the equilibrium of the closed-loop system (1)(6) and
the primal-dual optimal solution of (5).

Theorem 1. Suppose A2 holds. A point (x*, p*) is primal-dual
optimal if and only if (x*, p*) is an equilibrium of closed-loop
system (1)(6) satisfying (2) and p* = 0.

Next result says that, at equilibrium, the network balance
condition (4) and line limits (3) are satisfied and the nominal
frequency is restored. Moreover the equilibrium is unique.

Theorem 2. Suppose Al and A2 hold. Let (x*,p*) be primal-
dual optimal. Then
1) The equilibrium (x*,4*) is unique, with (8*,¢*) being
unique up to (equilibrium) reference angles (6o, ¢o).
2) The nominal frequency is restored, i.e., w}‘ =0 for all
j €N; moreover ¢ = ég for all (i, ) € E.
3) The network balance condition (4) is satisfied by x*.
4) The line limits (3) are satisfied by x*, implying By &
P;; < Py; on every tie line (i, j) € E.

Theorem 2 shows that the equilibrium point has a simple
yet intuitive structure. Moreover, Theorem 2 implies that the
closed-loop system can autonomously eliminate congestions
on tie lines. This feature has important implications. It means
our distributed frequency control is capable of serving as a
corrective re-dispatch without the coordination of dispatch
centers if a congestion arises. This can enlarge the feasible
region for economic dispatch, since corrective re-dispatch has
been naturally taken into account.

The proofs of Theorem 1 and 2 are given in Appendix A.

E. Asymptofic stability
In this subsection, we address the asymptotic stability of the
closed-loop system (1)(6), under an additional assumption:
A3: The initial state of the closed-loop system (1)(6) is finite,
and p? (0}, pf,»(D) satisfy constraint (2).
Asg in the per-node balance case the closed-loop system
(1)(6) satisfies constraint (2) even during transient.

Lemma 3. Suppose Al and A3 hold. Then constraint (2) is
satisfied for all £ > 0, ie. (P2(r),P'{r)) € X for all # > 0 where
X is defined in (9).
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The proof is exactly the same as that for Lemma 3 in [1]
and omitted.

Similar to the per-node balance case, we first rewrite the
closed-loop system using states 8,9 instead of 8,¢ (they are
equivalent under assumption Al). Setting ¢ = o, the closed-
loop system (1)(6) is equivalent to (in vector form):

8y = Lol (13a)
o) = M (pg(z)_pf(z)_p_Dw(z)_CBé(z))
(13b)
Pty = (T (—P*() + g(ﬂ‘)) (13¢c)
o = @ (Pf(z ) (13d)
7@ = Moo, (13¢)
n@ = TTe-é@)l;- (13f)
M) = THP)-P0)-p-CBRG)) (%)
o) = 9 (BCTA(0)+BCTz(0)+ 0~ (1) — nt (1) )13h)
where z(r) := P2(t) — P'(t) — p— CB () and
}—)g
w2 = {Pg(t)—l"g(Ang(t)—i—w(z)+z(z)+l(z))}£€
) = p%yiwyﬁm_w@—wyw@ﬂz

Denote w:= (8,0,P2,PL. A, n",n,d).

Note that the right-hand sides of (13e)(13f) are discon-
tinuous due to projection to the nonnegative quadrant for
(nt{),n (). The system {13) is called a projected dy-
namical system and we adopt the concept of Caratheodory
solutions for such a system where a trajectory (w(z),r > 0)
is called a Caratheodory solution, or just a solution, to (13)
if it is absolutely continuous in ¢ and satisfies (13) almost
everywhere. The result in [10, Theorems 2 and 3] implies that,
given any initial state, there exists a unique solution trajectory
to the closed-loop system (13) as the unprojected system is
Lipschitz and the nonnegative quadrant is closed and convex.
See [11, Theorem 3.1] for extension of this result to the Hilbert
space.

With regard to system (13), we first define two sets, ot and
¢, as follows [8].

—gjj < 0}
—¢; <0}

=0, @j

1‘1.1

ot = {(.j)eE|n}
o- = {{L)eE[n;=

Then (6b) and (6¢) are equivalent to

; Vil — 0y), if(Q,)) ¢ ot
??;} B { Daj ’ ! if(i, e o™. ez
A= Y8, —by), ifGj)¢do;

;; { L i iy il (14b)

6

In a fixed ot,0™, define F(w).
[ —BY2(T
MY (p2_Pl_p—_Dw—CBd)
(T8 L (A2PE @ 12+ 1)
(TH=1 (AP —w—z—1)
—(@IM2[G -8ty
—()! 2l ¢
—(CMY2(pe— P —p—CB§)
_(1"45)1/2 (BCT?L +BCT2+ n

(15)

—nt)
If ot and 6~ do not change, F(w) is continuously differen-
tiable in w.

Similarly, we define § 1= R7™t71 x X » R0 where
the closed convex set X is defined in (9). Then for any w we
define the projection of w— F(w) onto S as

H(w) :=Projg(w—F{w)) =

argmin ||y — (w — F(w))||2
yES

Then the closed-loop system (13) is equivalent to

w(t) = Da(H(w(E))—w))

where the positive definite gain matrix is :

(16)

I; = diag (B—I/Z,M—lﬂ, Ty

(F}L)I/Z’ (1—-'-';)1/27 (1—-'-1)1/27 (1—-5)1/2)

Note that the projection operation H has an effect only on
(P2;P") and Lemma 3 indicates that w(r) « § for all r > 0,
justifying the equivalence of (13) and (16).

A point w* € § is an equilibrium of the closed-loop system
(16) if and only if it is a fixed point of the projection H (w*) =
wh Let Ex:=4 we S | H(w(t))—w() =0 } be the set of
equilibrium points. Then we have the following theorem.

Theorem 4. Suppose Al, A2 and A3 hold. Starting from any
initial point w(0), w{r) remains in a bounded set for all 7 and
wit) > w" as r — = for some equilibrium w* € E» that is
optimal for problem (3).

For any equilibrium point w*, we define the following
function taking the same form as the per-node case.
Va(w) =

~(HO0) ) F o) — [ |HO) w3

= %k(w—w*)Trgz(w—w*) (17
where k is small enough such that I —kl"z_1 > 0 is strictly
positive definite.

For any fixed ot and o, ¥ is continuously differentiable
as F'(w) is continuously differentiable in this situation. Similar
to Vi(w) used in Part I of the paper, we know Vg(w) >0 on
§ and Va(w) = 0 holds only at any equilibrium w* = H(w*)
[12]. Moreover, Vs is nonincreasing for fixed ot a.nd o, as
we prove in Appendix B.

It is worth to note that the index sets ¢ and ¢~ may change
sometimes, resulting in discontinuity of ¥,(w). To circumvent
such an issue, we slightly modify the definition of Vao(w) at
the discontinuous points as:
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1) Va(w) :=Va(w), if V2(w) is continuous at w;

2) Va(w) :=limsup V2 (v), if Va(w) is discontinuous at w.
VW
Then Va(w) is upper semi-continuous in w, and Va(w) > 0 on

§ and Va(w) = 0 holds only at any equilibrium w* = H(w").
As Va(w) is not differentiable for w at discontinuous points,
we use the Clarke gradient as the gradient at these points [13,
Page 27].

Note that ¥ is continuous almost everywhere except the
switching points. Hence both Va(w) is nonpathological [14],
[15]. With these definitions and notations above, we can prove
Theorem 4. The detail of proof is provided in Appendix B.

IV. CASE STUDIES
A. System configuration

A four-area system based on Kundur's four-machine, two-
area system [16] [17] is used to test our optimal frequency
controller. There are one (aggregate) generator (Genl~Gend),
one controllable (aggregate) load (Lle~L4e) and one uncon-
trollable (aggregate) load (LL1~14) in each area, which is
shown in Fig.1. The parameters of generators and controllable
loads are given in Table I. The total uncontrollable load in
each area are identically 480MW. At time f = 20s, we add
step changes on the uncontrollable loads in four areas to test
the performance of our controllers.

All the simulations are implemented in PSCAD [18] with
8GB memory and 2.39 GHz CPU. We use the detailed
electromagnetic transient model of three-phase synchronous
machines to simulate generators with both governors and
exciters. The uncontrollable load L1-L4 are modelled by
the fixed load in PSCAD, while controllable load Llc-Ldc
are formulated by the self-defined controlled current source.
The closed-loop system diagram is shown in Fig.2. We need
measure loacal frequency, generation, controllable load and
tie-line power flows to compute control demands. Only @j
are exchanged between neighbors. All variables are added by
their initial steady state values to explicitly show the actual
values.

Busl Bus5 Bus6é Bus7

LlJ;

Bus8 Bus% Busl®t Busll Bus2

I I ™
Il I Genl
$ L2 WLl Area

Bus3 Busld Busl3 Busl2 Busl5 Buslée Busl7 Bus4

b b

Fig. 1: Four-area power system

Genl

Gend
Ldc  Aread

Gen3d

TABLE [
SYSTEM PARAMETERS
Area j D R, o B TT T
1 004 004 2 25 4 4
2 0045 006 25 4 6 5
3 005 005 15 25 5 4
4 0055 0045 3 3 55 5

i

i
B BB BB | | ocifiglin,
¥ i ¥
Controlier } ------- Looeees | Controffer

Fig. 2: Closed-loop system diagram

B. Simulation results

In this case, the generations in each area are initiated as
(560.9, 548.7, 581.2, 540.6) MW and the controllable loads
(70.8, 89.6, 71.3, 79.4) MW, The load changes are identical to
those in Table II, which are also unknown to the controllers.
We use method in Remark 4 to estimate the load changes.
Operational constraints on generations, controllable loads and
tie lines are shown in Table II.

TABLE 1IL:
CAPACITY LIMITS IN NETWORK CASE
Area 1 Area 2 Area 3 Area 4
[f‘ffj] MW)  [350, 650]  [530, 650]  [5350, 700]  [530, 670]
E".,}_Jj.] (MW) [20, 80] [60, 100] [20, 80] [35, 80]
Tie line 2. 1) 3.1 (32) (4,2)
@i,ﬁij] (MW) [-65, 65] [-65, 65] [-65, 65] [-65, 65]

1) Srability ard optimality: The dynamics of local fre-
quencies and tie-line power flows are illustrated in Fig.3.
The frequencies are well restored in all four control areas
while the tie line powers are remained within their acceptable
ranges. The generations and controllable loads are different
from that before disturbance, indicating that the system is
stabilized at a new steady state. The resulting equilibrium
point is given in Table IV, which is identical to the optimal
solution of (5) computed by centralized optimization using
CVX. These simulation results confirm that our controller
can autonomously guarantee the frequency stability while
achieving optimal operating peint in the overall system.

.
=

)
=3

Line 21|
Line 31
i 1 790 1) SRS SRR
Line 42

Froqueney (Hz)
2z

Tis Lins Powsr (MW)
L =
= = 2

00 120 140 180 ° 35 40 6080 100 120 140 16

Time (5)

W40 &0 s aio“
Fig. 3: Dynamics of frequency (left) and tie-line flows (right)
in network balance case

2) Pynamic performance: In this subsection, we analyze
the impacts of operational (capacity and line power) con-
straints on the dynamic property. Similarly, we compare the
responses of frequency controllers with and without consider-
ing input saturations. The trajectories of mechanical power of
turbines and controllable loads are shown in Fig.4 and Fig.5,
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TABLE III:
EQUILIBRIUM POINTS
Areal Area? Area3d Aread
P (MW) 620 596 660 580
Pl (MW) 236 59.8 236 397
Tie line 2.0 [ENY) 3.2) @2
PE(MW) 3994 1335 5327 596

respectively. Inn this case, the system frequency is restored, and
the same optimal equilibrium point is achieved.

900)
&sof :
200 —Arsa 1 Area ]
~Arsa 2| Arca 2
750 ——Area} Area 3
= Area 4 Area 4
700}
(="
3 6s0f
A sool-
g
2 5505
S0}

&
=

80 100 120 140 160

Time (8)

20 A0 60 80 100 120 140 1600 20 40 6D
Time (&)

Fig. 4: Mechanical outputs with(left)/without(right) capacity
constraints

8
502
i IO O PO OO | SO SO
3}
gsn ....................
3, Feesspduedesngiaadssiisiaeaiiannd e :
g Areal : : Areal
4990 Areadl | 1 H H ~Atea
Arsa3 ; ; Area 3
Aread]fnessd i : ; Area
- (IR S S N S S P S
ot 20 40 60 80 1o0 120 140 1& 20 40 60 80 lo0 120 140 16
Time (5) Time ()

Fig. 6: Dynamics of frequency with proposed controller(left)
and AGC(right)

the tie line powers remain within the limits. Thus, congestion
control is achieved optimally in a distributed manner.

TABLE IV:
SIMULATION RESULTS WITH CONGESTION
Area 1 Area?2 Area3 Aread
P;;?* (MW) 618 595 658 585
P}* MWy 251 60.7 25.1 34.9
Tie line 2.0 3.0 3.2) 4.2)
P MW) 364 13.1 493 -49.9

20
SN VO WUV U . U WO U | T S S T T
Area ] Ara ] s
Areal Area 2|
Areald i Area 3 20
Argad[ o] Area 4 2 3 E
1 H % ok Ling 21).ieoee A et Ling 2]+ oo
| ] Line 51 H H H iheal
| 8 pop Lne 2 R Line 32
e i Line 4]
=t
T l\‘/\* L\M_... ;
P B o
Y 60
g 20 40 60 80 [00 120 140 16 20 40 60 80 100 120 140 16 #0520 45 0 80 100 120 140 1600 20 40 60 &0 100 120 140 16
Time (8] Time (5) Time (5) Time (5]

Fig. 5: Controllable loads with(left)/without(right) capacity
constraints

3) Comparison with AGC: AGC is often utilized in the
conventional secondary frequency control. To compare perfor-
mance of our controller, we give the frequency dynamics of
proposed controller (left) and AGC (right) in Fig.6.

The results show that frequency nadir under the proposed
controller similar to that under AGC. The AGC does not cause
frequency overshoot, while the proposed controller causes a
small overshoot (about 0.04Hz). In addition, the convergence
times are also similar. To achieve the optimal regulation with
capacity constraints and tie-line congestions, our controller
may cause a small frequency overshoot, but it still has a pretty
smooth transient performance.

4) Congestion analysis: In this scenario, we reduce tie-
line power constraints to Pij = —Bij = 50MW, which causes
congestions in tie-line (2,3) and (2.4). The steady states
under the distributed control are listed in Table V. Note that
P —pj+Pj* — ¥ Pi+ ¥ P;=0hold in each area.

Rij—rk B g

The dynamics of tie-line powers in two different scenarios
shown in Fig.7 indicate that (2,4) reaches the limit in steady
state. However, by adopting the proposed fully distributed

optimal frequency control, the congestion is eliminated and all

Fig. 7: Tie line power with(left)/without({right) capacity con-
straints

5) Time delay analysis: As shown in Fig. 2, @j are con-
veyed between area i and j. In the real power system, there
may be communication delays between areas, which vary from
tens of milliseconds to hundreds of milliseconds [19]. In this
paper, time delays are set to be 100ms and 500ms. Dynamics
of mechanical power outputs and controllable loads with
different time delays are shown in Fig.8 and Fig.9 respectively.

L00 ms 500 ms
500 T T H !
250 ; i :
3 3 i Arcal : Arzal
ggm, i H i . Al i g : el
Aread : Area’
= Ts0r — Auead Tr ; Arcad|
£ 1000 s 1t e
a :
2 650f 1L ; - :
k= N
£ 600f i T
2 1
= 550F 1F FEnt
SO0
020 a0 66 80 00 120 140 1800 20 40 60 86 100 120 140 160

Tirme (5] Time (s)

Fig. 8: Mechanical outputs with different time delays

It is shown in Fig.8 and Fig.9 that dynamics of mechanical
power outputs and controllable loads converge to the same
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100 ms 500 ms

Area ]
- Area 2|
Area
hon 4

Area ]
Area 2|
Area
Raeid] 4

30 40 B0 0 100 120 140 18006 20 40 60 &1 100 130 140 18
Time (5) Time (5]

Fig. 9: Controllable loads with different time delays

value in both cases. However, the convergence time of 500ms
delay is a little longer than that of 100ms delay. These results
also show that our controller adapt to common time delays in
the real power system.

V. CONCLUDING REMARKS

In this paper, we have devised a distributed optimal fre-
quency control in the network balance case, which can au-
tonomously restore the nominal frequencies after unknown
load disturbances while minimizing the regulation costs. The
capacity constraints on the generations and controllable loads
can also be satisfied even during transient. In addition, conges-
tions can be eliminated automatically, implying tie-line powers
can be remained within given ranges. Only neighborhood
communication is required in this case. Like the per-node
case, here the closed-loop system again carries out a primal-
dual algorithm with saturation to solve the associated optimal
problem. To cope with the discontinuity introduced due to
enforcing different types of constraints, we have constructed
a nonpathological Lyapunov function to prove the asymptot-
ically stability of the closed-loop systems. Simulations on a
modified Kundur's power system validate the effectiveness of
our controller.

This approach is also applicable to other problem involving
frequency regulation, e.g. standalone microgrid or demand
side management. We highlight two crucial implications of
our work: First, our distributed frequency control is capable
of serving as an automatically corrective re-dispatch without
the coordination of dispatch center when certain congestion
happens; Second, the feasible region of economic decisions
can be enlarged benefiting from the corrective re-dispatch.
In this sense, our work may provide a systematic way to
bridge the gap between the (secondary) frequency control in a
fast timescale and the economic dispatch in a slow timescale,
hence breaking the traditional hierarchy of the power system
frequency control and economic dispatch.

APPENDIX A
ProOOFS OF THEOREM 1 AND THEOREM 2

We start with a lemma.

Lemma A.l. Suppose (x*,1*} is optimal for (5). Then

1) @o*=0, ie., the nominal frequency is restored;
2) the network balance condition (4) is satisfied by x*;

3) ¢'—8"= (95— 8L

9

4) Qij < 9;‘} < EU, i.e., the line limits (3) are satisfied.
Proof. Suppose (x*,u*) is optimal but @* £ 0. Then (5¢)
implies

p*_pr_p CBCT§* (A.1)
Consider % := (8, 0%, &,P#* P*) with 8 := ¢* and & := 0.
Then £ satisfies (5b)(5¢) due to (A.1). Hence (£,2*) is feasible
for (5) but has a strictly lower cost, contradicting the optimality
of (x*,u*). Hence o* =0.

Multiplier both sides of (A.1) by 17 yields the network
balance condition (4), proving 2).

To prove 3), setting @* =0 in (5b) and combining with (5¢)
yield

CBCTg* P _p¥_p CBCT ¢*
Since CBCT is an (n+1) x (n4 1) matrix with rank n, its null
space has dimension 1 and is spanned by 1 because €71 =0,
Hence CBCT (¢* — 8*) = 0 implies that ¢*— 6" = (¢5 — ;) 1.
To prove 4), note that § =CT ¢ and 8 = 7 8 and hence
¢*—8* = CT(0"—0") = (#—6)C"1 = 0O
ie. §* = 8*. We conclude from (5d) that 8 < 91»1} < Ej. This
completes the proof. |
We have the following result.

Lemma A.2. Suppose (x*,p*) is primal-dual optimal. Then

T

J

g = = (o ea)])
7

A L R
=r

forany}/f>0andy}>0.

Lemma A.2 shows that the saturation of control input does
not impact the optimal solution of optimization problem (5).

With Lemma 3, Lemma A.1 and LLemma A.2, we now can
prove Theorem 1 and Theorem 2.

Proof of Theorem 1. =: Suppose (x*,p*) is primal-dual opti-
mal. Then x* satisfies the operational constraints (2). Moreover
the right-hand side of (1) vanishes because:
« 8 =0since ® =0 from Lemma A.l.
« @ =0 since constraint (5b) holds for x*.
o P2 =P =0 since o* =0 and x* satisfies (5e) and (5f).
« A =0 since (5¢) holds for x*.
« BT =7 =0 since (5d) holds for x*,
« From (12f) we have
¢ =
Since (x*,p*) is a saddle point, we must have
ViLa(x*,p*) =0, implying ¢ = 0.
Hence (x*,p*) is an equilibrivm of the closed-loop system
(1)(6) that satisfies at{le operational constraints (2). Moreover
pr=o*=0since 52 x*p*Y) =Dj(of —ul)=0and D; >0
for all j e N. - e '

—I? ViLa(x*,p")

<: Suppose now (x*, p*) is an equilibrium of the closed-loop
system (1)(6) that satisfies (2) and ¢* = 0. Since (5) is convex
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with linear constraints, (x*,p*) is a primal-dual optimal if and
only if (x*,u(x*,p*)) is primal feasible and satisfies

x* = argmin{l(x; p™)|(x,u(x,p")) satisfies(2),{5e), (50}
{A.2)

This is because Vp,, La(x*,p*) =0 since gt =4 =0, pt* >
0, n7° > 0, and the complementary slackness condition
n;:*((bg,— ;) =0, n;"(8;;~ p;) =0 is satisfied since 7T =
7 =0
To show that (x*,u(x*,p*)) is primal feasible, note that
since (x*,u(x*,p*)) is an equilibrivm of (1), it satisfies @* =0
and hence (5e)(5f), in addition to (2). Moreover @ = 0 means
(x*,u(x* p*)) satisfies (5b), A =0 implies (5¢), Tt =7~ =0
implies (3d).
To show that (x*, p*) satisfies (A.2), note that (5e){5f) and
{6e)(6f) imply that
*
Pf

{Pg* yg(aJPg*Jrco +z + A )]

P (B —af -2 f;a,;)ff

{
-

=N

1]
P;

The rest of the proof follows the same line of argument as that
in Theorem 1 in [1]. This proves that (x*,p*} is primal-dual

optimal and completes the proof of Theorem 1. [
Next we prove Theorem 2.
Proof of Theorem 2. Let (x*,p*) = (8*,9%, w*, P2* P

Attt n . u*) be primal-dual optimal. For the uniqueness
of x*, (w*, P*,P™*) are unique because the objective function
in (5) is strictly convex in (e, P2, P"). Hence u* = " is unique
as well. Assumption Al that ¢ :=0 and (A.1) imply that ¢*
is uniquely determined by the equilibrium (e*, P2*, P, Since
— 0" = (8] —¢;)1, assumption Al that 87 := 0 then implies
that 8* is unique. This proves the uniqueness of (x*, t*).
The remaining three parts of the theorem follow from
Lemma A.1. O

APPENDIX B
ProOOF THEOREM 4

We start with a lemma.

Lemma B.1. Suppose Al, A4 and A5 hold. Then
1) %(w(z)) <0 in a fixed o7 and 0.
2) The trajectory w(z) is bounded, i.e., there exists W such
that ||w(z)|| <w for all ¢ > 0.

Proof of Lemma B.1 . Given fixed o™, o, forall (i, /)¢ o,
{i,/) € 67, we have

Va(w) < k(H(w) —w")T - T (H(w)— (w—F(w))) (B.1a)

— (Hw)—w) Ty @ -T3(H(w) —w) (B.1b)

— (H(w)— (w—F(w)))" (T2— k7 ") (w—H(w))
(B.1c)

—k(w —wT T3 F (w) (B.1d)

where ( is a semi-definite positive matrix and I'2Q =V, F(w),
which given in (B.2). Here, the subscript of 7 means its
dimension, and |4| means the cardinality of set A.

Given fixed o and o, F(w) is continuous differentiable.
In this case, (B.1a) and (B.lc) are nonpositive due to as
discussed in the proof of Theorem 4 in [1]. (B.1bh) is also
nonpositive as @ is semi-definite positive (see Eq. (B.2)).

Next, we prove that (B.1d) is nonpositive. Similar to the
per-node case, substituting 1i(r) = @(¢) into the Lagrangian
L2 (x,p) in (11) we obtain a function 5 (w) defined as follows.

EZ(W) :LZ (érmrpgvplvlrurn+7n776)

L=
1
- ((Pé’)TAgpg (PYTAP o Do +sz)
¥ ?LT(Pg—Pf—p—CB&) 3 mT(Pg—Pf—p—CBé)
+m) (e—¢)+ ") (6-0)
In addition, denote wy = (6,P%,P,¢), wa = (A, 0,n7,77).
Then iz is convex in wyq and concave in wa.
In F{w), [6—6] ;Jr and [8— &];, have unknown dimensions
(up to o and o). Fortunately, we have

(=6~ < (1 — T (G- B)
o (n+ 5 n+*)TVTI+£2
where the inequality holds since 0 = 0.< l];f *and ¢;;— ;5 <
0 for (i,j) € o™, ie., (nf —m*) - (b;; — 6;;) > 0. Similarly,
(n~—nTe—8; < -0 (6-¢)
=" -0 )V,-Ly.
Consequently, it can be verified that
(w—wHTTF(w) < (w—w"TV,E2(w)
L
_ o $5T W AZ
= (W w ) { VWZLJ (Wl,WZ)
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Véig Vliz
+ Vpela 2 Vola

here, Vi f2 1= 2 d Vy,Lr:i= s .
where iz Va f‘l an oLe2 V.rls
Vila VLo

Then we have

—k(w—wHITIF(w) < —k(w—w*)! T1F (w)
== k(Wl = WT)Tleiz (W1 ,Wz) +k(W2 — W;)vaziz (W1 ,Wz)
<k (La(wi,wo) — La(wi, w2) + La{wi, wa) — Lo (w1, w3))

= k| La(w],wa) — La(wi,w3) + La(wf, wh) — La(wy, w3)

<0 <0

<0 (B.3)
where the first inequality holds because f,z i8 convex in wy
and concave in we and the second inequality follows because
(wi,w5) is a saddle point. Therefore (B.1d) is nonpositive,
proving the first assertion.

To prove the second assertion, we further investigate the
situation that 6% or 6~ changes. We only consider the set ¢+
since it is the same to 6. We have the following observations:

«+ The set ot is reduced, which only happens when é,j —8; ;
goes through zero, from negative to positive. Hence an
extra term will be added to V5. As this term is initially
zero, there is no discontinuity of V» in this case.

« The set ot is enlarged when n;f goes to zero from
positive while (51‘; 2t ﬁij. Here ¥ will lose a positive term
(1’,?})2(@1;—@]-)2 /2, causing discontinuity.

In the context, we conclude that V» is always nonincreasing
along the trajectory even when o1 or ¢~ changes and
discontinuity occurs.

To prove that the trajectory wiz) is bounded note that [12,
Theorem 3.1] proves that Va(w) := — (H(w) —w)” F(w) —
%||H(w) — WH% satisfies f@(w) > 0 over 8. Therefore, we have

1
Shw(e) =W LA w)—w") < Valw() < Va(w(0))
indicating the trajectory w(¢) is bounded. B

Lemma B.2. Suppose Al, A4 and A5 hold. Then

1) The trajectory w(r) converges to the largest weakly in-
variant subset Wy contained in Wa := {w < §|Va(w) = 0}.
2) Every point w* « W' is an equilibrium point of (16).

Proof of Lemma B.2 . Given an initial point w(0) there is a
compact set Qg 1= Q(w(D)) C § such that w(r) € Qg for 1 > 0
and Vg(w) < 0in Qp.

Invoking the proof of Lemma B.1, V5 is radially unbounded
and positively definite except at equilibrium. As ¥ and V; are
nonpathological, we conclude that any trajectory wiz) starting
from o converges to the largest weakly invariant subset Wy
contained in Wy ={ we Qg | Va(w) =0 } [14, Proposition 3],
proving the first assertion.

For the second assertion, We fix w(0) € W} and then prove
that w(0) must be an equilibrium point.
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From (B.1b), direct computing vields

Va(w(r)) < —o' Do — (P2)T A2P2
—(PYTAIP — (CB$ — P2+ PYT(CBG — PE + P
<0 (B.4)

Since A%, A" and D are positively definite diagonal matrices,
Va(w) =0 holds only when P2 = P! = @& = 0. Therefore, for
any w(0) € Wy, the trajectory w(r) satisfies
P = Py = @) =0, >0 (B.5)

Hence P2(z), P'(r) and @(r) are all constants due to the
boundedness property guaranteed by Lemma B.1.

On the other hand, for V2(w) =0, both terms in (B.3) have
to be zero, implying that

La(wy (£),wh) = La(wi, w3)

must hold in W,. Differentiating with respect to ¢ gives

7
(gt w0 =0=§TC6 o)
The second equality holds due to Eq. (B.5) and (13h). Then we
can conclude ¢ — 0 immediately, implying ¢ is also constant
in W* due to its boundedness. )

Invoking the close-loop dynamics (13), 8(7), 7+ (), 777 ()
and A(r) must be constants in Wy as P2(t),P'{t),(t) and
¢(z) are all constants. Then we conclude that é(r) = ftie) =
17 (r) = A(r) = 0 holds for all 7 > 0 due to the boundedness
property of w(z) (Lemma B.1). This implies that any w(0)
W3 must be an equilibrium point, completing the proof. [

Proof of Theorem 4 . Fix any initial state w(0}) and consider
the trajectory (w(z),z = 0) of the closed-loop system close-
loop dynamics (13). As mentioned in the proof of Lemma B.2,
w(r) stays entirely in a compact set £9. Hence there exists an
infinite sequence of time instants r, such that w(z) — #W* as
Iy — oo, for some w* € WJ. Lemma B.2 guarantees that #*
is an equilibrivm point of the closed-loop system (13), and
hence w* = H(w*). Thus, using this specific equlibrium point
w* in the definition of V3, we have

Vi = lim Va(w(r)) = lim Va(w(a))

= lim W (W(Ik)) = Vz(‘ﬂ;‘*) =0

wity )i

Here, the first equality uses the fact that V5 (r) is nonincreasing
in #; the second equality uses the fact that 5, is the infinite
sequence of #; the third equality uses the fact that w(z) is
absolutely continuous in r; the fourth equality is due to the
upper semi-continuity of V3 (w), and the last equality holds as
W* is an equilibrium point of V5.

The quadratic term (w—w*)" T, *(w—%*) in V3 then implies
that w(#) — #w* as # — =, which completes the proof. O
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