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Abstract—Historically, centrally computed algorithms have
been the primary means of power sysiem optimization and con-
trol. With increasing penetrations of distributed energy resources
requiring opiimization and control of power systems with many
controliable devices, distributed algorithms have been the subject
of significant research interest. This paper suivevs the literature
of distributed algorithms with applications to optimization and
control of power systems, In parliculas, this paper reviews dis-
iribuled algorithms for offline solulion of optimal power fow
(OPF) problems as well as online algorithms for real-lime solu-
tion of OPF, optimal frequency control, optimal voltage control,
and optimal wide-area control problems.

Index Terms—Disiributed oplimization, online oplimization,
electric power systems.

I, INTRODUCTION

ENTRALIZED computation has been the primary way

that optimization and conlrol algorithing have been
applied to electiic power systems. Notably, independent
systern operators (ISOs) seek a minimum cost generation
dispatch for large-scale transmission systems by solving an
optimal power flow (OPF) problem. (See [1]-{8] for related lit-
erature reviews.) Other conirol objectives, such as maintaining
scheduled power interchanges, are achieved via an Automatic
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Generation Control (AGC) signal that is sent to the generators
that provide regulation services.

These optinization and control problems are formulated
nsing network parameters, such as line impedances, system
topology, and flow limits; generator paramesters, such ag cost
functions and output limits; and load parameters, such as an
estimate of the expected load demands. The ISO collects all
the necessary parameters and performs a central computation
to solve the corresponding optimization and controf problems.

With increasing penetrations of distributed energy resources
{e.g., reoftop PV generation, baltery energy storage, plug-in
vehicles with vehicle-to-grid capabilities, controllable loads
providing demand response resources, elc.), the centralized
paradigm most prevalent in current power systems will poten-
fially be augmented with distributed optimization algorithms.
Rather than collecling all problemn parameters and performmg
a central caleulation, distributed algorithms are computed by
many agents thal obtain certain problemn parameters via com-
munication with a limited set of neighbors. Depending on the
specifics of the distributed algorithm and the application of
interest, these agents may represent individual buses or large
portions of a power system.

Distributed algorithms have several potential advantages
over centralized approaches. The computing agents only have
to share limited amounts of information with a subset of
the other agents. This can improve cybersecnrity and reduce
the expense of the necessary communication infrastructure.
Distributed algorithms also have advanfages in robusiness with
respect to failure of individual agents. Further, with the abil-
ity to peiform parallel computations, distributed algorithms
have the potential fo be computationally superior to centralized
algorithms, both in terms of solution speed and the maxi-
mum problem size that can be addressed. Finally, distributed
algorithms also have the potential to respect privacy of data,
measurements, cost functions, and constraints, which becomes
mereasingly mnportant in a distributed generation scenario.

This paper surveys the literature of distributed algorithms
with applications to power systemn oplimization and control.
This paper first considers distributed optimization algorithms
for solving OPF problems in offline applications. Many dis-
fributed optimization techniques have bheen developed con-
currently with new representations of the physical models
describing power flow physics (i.e., the relationship between
the complex voltage phasors and the power injections). The
characteristics of a power flow model can have a large impact
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o1 the theoretical and practical aspects of an optimization for-
mulation. Accordingly, the offiine OPF section of this survey
is segmented into sections based on the power flow model
considered by each distributed optimization algorithm. This
paper then focuses on online algorithms applied to OPE opti-
mal frequency control, optimal voltage control, and optimal
wide-area control problemns for real-lime purposes.

Note that algorithms related to those reviewed here have
found a wide variety of power system applications in dis-
fributed optimization and control. See, for instance, surveys
on the large and growing literature relevant to distributed opti-
mization of electric vehicle charging schedules [9] and demand
response applications {10} as well as work on distribuled
solution of multi-period formulations for model predictive
control problems, e.g., [11] and [12]. With an emphasis on
algorithmic developments, this paper does not attempt to sur-
vey the power systerns literature regarding all applications of
distributed optimization and conirol algorithins.

Throughout the paper, we use the following terminclogy:

1} Decentralized: purely Jocal algorithins, i.e., no commu-
nication between agents;

2) Distributed: algorithms where each agent comrmuni-
cates with its neighbors, but there is not a centralized
controller;

3) Hierarchical: algorithms where computations are done
by agents that communicate with other agents at a higher
level in a hierarchical structure, eventually leading to a
centralized controller;

4) Cenfralized: Bach agent communicates with a central-
ized controller that perforins computations and sends
new commands.

This paper is organized as follows. Section II overviews
background material: the power flow equations (along with
various relaxations and approximations), the OPF problem,
and common distributed optimization technigues. Section [T
reviews distributed algorithms for offline OPF problems.
Section TV summarizes the literature of online algorithms
for solving OPF, optimal frequency control, optimal voliage
coutrol, and optimal wide-area control problems. Section V
concludes the paper.

II. OVERVIEW OF BACKCROUND MATERIAL
This section overviews the power flow equations, presents
the OPF problem, and summarizes several distributed opti-
mization lechniques thal are used by a varnely of algorithuns.

A, Power Flow Representations

This section summarizes the power flow equations and some
relaxations and approximations which are relevant to existing
distributed optimization techniques.

(1,...,n} denotes the set of buses. Let £ denote the sel of
lines. The network admittance matrix coitaining the electrical
parameters and topology information is dencted Y = G + jB,
where j .= +/—1. Define (-} as the complex conjugate.

For notational brevity and to match the development of
many of the distributed optimization approaches that are
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reviewed in this paper, the power flow equations given here
use a balanced single-phase-equivalent network representation.
An unbalanced three-phase representation is more appropri-
ate for some applications, such as models of distribution
networks. Many of the algorithms surveyed in this paper could
be extended to an unbalanced tlwee-phase power flow model.

Fach bus has an associated voltage phasor as well as aclive
and reactive power injections. The voltage phasors are denoted

where [V| > 0 e R* and 8 & (—180°, 180°}". Each bus i & A/
has active and reactive power injections P; + jO;, P, 0 € ™.
The power flow equations are

PitjQi=Vi)> Yavi (1a)
k=1
Sqguared voltage magnitudes are
vi = ViVi = |Vi*. (1b)

Splitting real and imagmary parts of (1) and using polar
voltage coordinates yields

n
Pi= Vil Y IVil(Gi cos(®; — 6) + By sin(®; — 60)) (24
k=1

Qi = Vil > IVl (G sin(®; — 6) — Bgcos(®; — 6))  (2b)
k=1

As an alternative to (2), balanced radial distribution
networks can be represented using the DistFlow model {13].
Unlike the model (2), the DistFlow model implicitly assumes
a directed graph with an arbilrary orientation. We will use
{#,/) and i — j interchangeably to denote the directed line
from bus 7 to bus j. Define the active and reaclive sending-end
power flows on the line from bus i (o bus & as Py and Gy,
respectively. (Note that we abuse notation to use P; and O
to denote nodal injections and Pi and @y to denote hranch
flows.) Denote by fz the squared magnitude of the current
flow from bus i to bus &. The DistFlow model is

P =rple — P+ Z Frm (3a)
Mmk-em

Ou = xuly — Or + Z: Orm (3b)
mk—m

Ve = v — 20 Py + X 0w + (f’f;\ + ka)f:k (3c)

Luvi = P + 0% (3d)

for each line (i, k) € £ with series impedance ryy + jxik.l
The DistFlow model (3) fully represents the power flows
for a balanced radial network. However, (3} is a relaxation for
mesh network topologies due to the lack of a consiraint ensur-
ing consistency in the voltage angles. Indeed, as explained
i [14] and [15], if a set of non-linear equations, called the
cycle condition, is added to (3), the resulling model is equiv-
aleiit to the models (1) and (2) for general mesh networks,
mn the sense that there is a bijection beiween their solution

!The DistFlow model can be extendsd to more general line models with
shunt admittances, non-zero phase shifts, and off-nonunal voltage ratics.
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sets [16]-{18]. Hence any power flow analysis or optimization
problem can be equivalently posed in any of these models. The
cycle condition is vacuous for radial networks.

Use of any of the power flow models (1), (2), or (3)
results in non-convex optimization problems that can be
difficult to directly handle in distributed optimization algo-
rithins. Therefore, many algorithing have focused on linear
approximations and comvex relaxations of the power flow
equations.

The most commonly used linear approximation is the DC
power tlow model [19], which is based on several assumptions:

a. Reactive power flows can be neglected.

b. The lines are lossless (e, & & 0 and shunt elements

can be neglected.

c. The voltage magnitudes at all buses are approximately

equal, so |V;] #= 1 at all buses { = V.
d. Angle differences between connected buses are small
such that sin(8; — &) = 8; — 8, Vi, kb L.
Applying these assumptions to (2) yields the DC power flow
model:

B0, —6) = P,
G,kyel

Vie N “)

Distribution networks typically violate these assumptions,
which motivales the development of alternate linearizations.
One approach that is relevant to distitbuted optimization tech-
nigues performs a linearization around the “no-load” voltage
profile under the assumptions of negligible shunt impedances
and near-nominal voltage magnitudes. The voltage magni-
tudes can then be approximated as funciions of the active and
reactive power injection vectors P and ¢

Vie N )
where Y™ L= R | JX. See [20]-122] for further details.

Alternatively, another linear approximation can be for-
mulated by neglecting the losses in the DistFlow model
{setting £ = 0 in (3)} to oblain the Limearized DisiFlow
modet {23]:

Py = —Fp + Z Fra, (Ba)
ke

Qi =~0x+ Y Qo (6b)
mk—m

Vi = v + 20raPy + x50) (6c)

for each line (i, k) ¢ £.

The linearizations {4), (6), and (5} approximate the power
flow equations. Alternative approaches form convex relax-
afions of the power flow equations. Convex relaxations enclose
the non-convex feasible spaces associated with the power flow
equations in a larger space. Convex relaxations bound the opti-
mal objective value for the original non-convex problem and
provide sufficient conditions for certifying problem infeasibil-
ily. Certain convex relaxations also yield the globally optimal
decision variables for some optimization problems.

We next present two convex relaxations of the power flow
equations: a semidefinite programming (SDP) relaxation of
the model (1) for general networks [24], [25], and a second-
order cone programming (SOCP) relaxation of the DistFlow

2943

model (3) for radial networks [14], [15], [26]. SOCP relax-
ations are also proposed in [27] and [28] for the model (1).
See the tutorial [17] and [18] on semidefinite relaxations of
OPF for extensive references. See [29]-[31] for generaliza-
fions of these convex relaxation approaches as well as [30]
for a comparison of various relaxations.

The SDP relaxation is derived by lornulating a rank-one

Jugate transpose operator. The power flow equations (1) are
linear in the entries of W. Let ¢; ¢ R® denote the & standard
basis vector. Define the matrices
HooT o 0 Ty
YVeie, +e8 Y
3

I, o

_ YHeie; e,-e;Y
2
where (-} is the transpose operator. An SDP relaxation of (1)
is formed by relaxing the non-convex rank constraint to a
positive semidefinite matrix constraint:

(7a)

Pi+ 0 tr(HiW) + jtr(fLW) (8)
Vil? = tr{ee] W) (8h)
W= 0 (8¢)

where tr(-) is the matrix trace operator and » indicates positive
semnidefiniteness. I a solution to an asseciated oplithization

vields globally optimal solutions. Specifically, let n denote
a wit-length eigenvector of W, rotated such that /iy = 0
to set the angle reference at bus 1, with associated non-zero
eigenvalue A. The globally optimal voltage phasors are then
Vo \/Z g, M rank(W) = 1, the SDP relaxation does not
directly provide globally optimal decision variables, bul does
vield a bound on the optimal objective value of the non-convex
problem.

An SOCP relaxation can be formulated in terms of the
DistFlow model (3) variables [14], [15], [26]. With the excep-
tion of the guadratic equation {3dj, the DistFlow model is
linear in the variables (P, ¢4, vy, £ij, Py, ). To consiruct
a comvex SOCP relaxation of (3), replace the equality con-
straint (3d) by an inequality:

Lavi > PL+ 0f Vb el )

The SOCP relaxation considered in this paper is (3a)-(3c), (9),
and it applies to single-phase balanced models of radial
networks.

Distribution systems are mostly radial and unbalanced.
The power Jow model (1) can he generalized to an unbal-
anced network (radial or mesh topologies). By considering its
single-phase equivalent circuit, the SDP relaxation is extended
n [32] and [33] o this generalized model. For radial networks,
the DistFlow model (3} is extended in [33] to unbalanced
networks and the SOCP relaxation (9) is extended to an SDP
relaxation using a chordal decomposition.

B. Optimal Power Flow Formulation

The OPF problem optimizes system performance according
to a specified objective function. Typical objective functions
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are based on generation cost (le, O = ZEG c;,iPZGi +
ci,ifgi + coj where ¢ = 0, ¢ and ¢p,; are scalar

coefficients associated with the generator at bus i, Pg; is the
generation at bus ¢, and G is the set of generator buses), losses
(e, C:= 3, a Poi), proximity to a desired voltage profile
(Le., Cu= 3 o (IVi2— V752, where | V| denotes a desired
vollage profile), or some combination of these.

Engineering constraints in the OPF problem limit the
power injections and voltage magnitudes, and the power flow
equations must be satisfied. Flow linits (ypically based on
apparent power, active power, or current magnitude) are also
generally enforced. The specific line flow formulation depends
oit the power flow model and type of flow. Denote iz (V;, Vi)
as the appropriate flow function for line (i, k) € £, with the
specific Tunction descriptions excluded for brevity.

The OPF problem considered in this paper is?

min
subject to (10a)
Prin < P < PP Vi2 N (10b)
O < ;< QM Vi N (10¢)

(vrmy? < V2 < (v vie N (10d)

faVi, Vi = B Vi ke L (10¢)
A power flow model (10f)

where “max” and “min” denote specified upper and lower
limits on the comresponding quantities and the power flow
maodel (10f) may be

« a non-convex formulation (1), (2), or (3);

« the DC power flow formulation (4),
case the reactive power and voliage
comstraints {10c¢) and (10d) are ignored;

« the linear power  flow  representation  (5)
from [20] and [21];

« the linearized DistFlow model (6),

« the SDP relaxation (83,

« the SOCP relagation (3a)-(3¢) and (9).

Amn advantage of solving OPF problems via a relaxation is
the ability to certify a solution as being globally optimal: if an
optimal solution of a relaxation satisfies an easily checkable
condition {e.g., if the optimal matrix for the SDP relaxation
is of rank 1 or if the optimal solution of the SOCP relaxation
attains equality in (9)), then a globally optimal solution to the
original non-convex OPF problemn can be recovered. We say
in this case that the relaxation is exact. The SOCP relaxation
is much simpler computationally than the SDP relaxation, but
SDP relaxation is tighter for general networks. For single-
phase models of radial networks, however, they have the same
tightness, i.e., given any OPF mstance, its SOCP relaxation is
exact if and only if its SDP relaxation is exact [16], [17].

Semidefinite relaxations of OPE, however, are generally
imnexact [34]-[38]. This is nol surprising as OPF has been
shown in [25], [39], and [40] to be NP-hard in general. When
it 18 not exact, the solution of a relaxation does not sat-
isfy Kirchhoff’s laws, but it does provide a lower bound on

in  which
magnitude

2There exist a variety of generalizations and extensions of the OPF problem,
many of which are offen used in practical applications. See [7]. i8]
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objective value of the non-coiwvex OPF problem. For radial
networks, a set of sufficient conditions have been derived
under which SOCP (and hence SDP) relaxations of OPF are
always exact, e.g., [28] and [41]-[47] for power flow mod-
els {1) and (2), and [14], [15], [26], [48]-[50] for the [stFlow
model (3), see [18] for other references. These sufficient
conditions may not be satisfied in practical networks.

C. Summary of Distributed Optimization Techniques

This section next summarizes several distributed opti-
mization fechniques. Adopting from the exposition in [51],
the first set of distributed optimization technigues are based
on augmented Lagrangian decomposition. These include
Dual Decomposition, the Altermating Direction Method of
Multipliers with Proximal Message Passing, Analytical Target
Cascading, and the Auxiliary Problem Principle. The second
set of techniques are based on decentralized solution of
the Karush-Kuln-Tucker (KKT) necessary conditions for
local optimality [52]. These include Optimality Condition
Decomposition and Consensus+lmiovation. Two  other
approaches, Gradient Dynamics and Dynamic Programming
with Message Passing, are discussed in Section [11-C86.

Given its widespread use, the Alternating Direction Method
of Multipliers (ADMM) is given a more detailed overview,
while other decomposition technigues have a more summary
treatmernt. These techniques have a broad conceptual similarity
in thal each considers distributed agents that pass information
among one another and perform local computations to solve
the overall problem. However, the defails of the mathematical
structure (which information is shared, how the algorithms
ensure consistency between different subproblems, the spe-
cific computations performed by each agent, ete.) lead to
differences in practical performance and theoretical proper-
ies. See [51], [53] or the references below for more detailed
discussions of these techniques. See also [51], [54], [55] for
numerical comparisons between different distributed optimiza-
tion technigues in the context of power system optimization
problems, including empirical analyses of convergence rates.

1) Precursors (o ADMM and Lilerature Survey: Keepmg
i view our aim at providing a detailed suivey of ADMM, we
first give a brief literature overview for ADMM in which we
describe the algorithin’s evolution. This is followed by two
sections where we detail the Dual Decomposition algorithm
and the ADMM algorithm.

The Alternating Direction Method of Multipliers first orig-
mated in the 1970s with the works of Mercier-Gabay [56],
Glowinski-Marocco [57], etc. Gabay and Eckstein-Bertsekas
first offered the convergence properties of the ADMM algo-
rithm in their works [58] and [59], respectively. In that same
work, (abay also showed that there exists a more general-
ized method called the Douglas-Rachford method of splitting
monotone operators [60], [61], of which ADMM is a special
case. ADMM came into being as a result of the amalgamation
of two previously proposed algorithms: Dual Decomposition
{which is, in turn, based on the Dual Ascent algorithm) and
the Method of Multipliers for solving augmented Lagrangian
problems in a distributed manner (which 15 also similar in
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flavor to the Gauss-Siedel iterative method), ADMM com-
bines the robustness of the angmented Lagrangian and the
method of multipliers with the distributed computational capa-
bility of dual decomposition. Hestenes [62] and Powell [63]
first proposed the augmented Lagrangian and the method
of multipliers in the 1960s, Dual Decomposition also made
ils appearance i the 1960s in the works of Bverett [64],
Dantzig and Wolfe [65], Benders [66], and Dantzig [67].

2} Dual Decomposition: The Lagrangian functions of opti-
mization problems that have a separable structure can be
exploited using dual decomposition techniques [53], [64], [68].
Consider an optimization problem of the form

N
min Z fiGx) (11a)
=1
N
subject to > " Ap =b (11b)
=1

where, for i = 1,.. . N, fi(-) is a cost function, x; ¢ RY is
the length »n; vector of decision variables associated with the
function f;, A; £ R™% is a specified matrix, and » ¢ R" is a
specified vector. The Lagrangian for (11} is
N
Ly = Litxi, y)

i=1

(12)

where ;6. v) = fie) + ¥ A — (/NwTE and y « R7
is the vector of dual variables. A decomposable mathematical
structure in this form can often be constructed by duplicating
variables shared by multiple functions f; along with addi-
tional equality constraints that ensure consistency among the
duplicated variables.

Dual decomposition methods use an iterative method called
“dual ascent™

x‘?” = argmin (x;,yk) (13a)
Xf £
N
Vb g gt (Z(AM{;{H) _____ i)) (13b)
i=1

where k is the iteration counter and ot > 0 is the speci-
fied step size al ieration k. Ohserve thal each update of (13a)
can be performed independently, which enables a decentral-
ized implementation of this step. (The dual variable update
step (13b) requires a central coordinator.) Note that the con-
vergence of dnal decomposition technigques is generally not
guaranteed, even for convex problems, and depends on the
step size of and problem characteristics.

3} Alternafing Direction Method of Mullipliers: Many dis-
tributed oplitnization approaches are based on the ADMM
algorithm or its variants. Similar to dual decomposition,
ADMM has minimization and dual variable update steps, but it
uses an augmenited Lagrangian function. This section provides
an overview, see [68] for a detailed tutorial,

ADMM is applicable to oplimization problemns of the form

(14a)
(14h)

min. fex) + @)

subject to Ax+ Bz =¢
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where x and z are decision variables, A and B are specified
matrices, ¢ is a specified vector, and f(x) and g(z) are specified
functions. The ADMM algorithm is based on the augmented
Lagrangian for (14):

Ly =)+ 8@ +y (Ax + Bz~ o) + QAX + Bz |3
“
{15)
where p = 0 is a specified penalfy parameter and || - |[2 is

the two-norm. Observe that (13) is the Lagrangian of (14)
augmeitted with a weighted squared norm of the constraint
residual. The ADMM algorithm iferatively minimizes the
aungmented Lagrangian by performing the following updates:

¥ aremin L, (X,Zk. }*Jc) {16a)

e argmin L, (xkﬂ,z, }"k) (16b)
Z

WL p(z—w"‘“ + B c) (16¢)

where superscripts mdicate the ileration index and y is the
dual variable. Since the x and z updates in (16a) and (16b) are
ndependent, they can be performed in a deceniralized fashion.

If the functions f{x) and g(z) are convex, the constraint
residual under ADMM (16) is guaranteed to converge to zero
and the objective value to the minimum of (14). Typically,
the iterations converge quickly to moderate accuracy but can
be slow o converge 1o high accuracy. The convergence rale
depends on the choice of p, and different strategies have
been proposed for adaptatively choosing this parameter [68].
(The Hlerature also describes optimal stralegies for choosing
ADMM parameters for certain problems [69].) The ADMM
algorithm can be applied to non-convex problems, but there is
no guarantee of convergence.

The flexibility afforded by the choice of the functions f{x)
and g(z) allows for consideration of oplimization problems
with non-linear consiraints. Consider, for instance, the opti-
mization problem ming f(x) st g;(x) > 0,1 = 1,....m
ADMM can be applied to this problem using the reformu-

0 g@=0,i=1,...,m

function h(z) = . The varia-

oo otherwise
tions among the ADMM algorithms considered in this survey
are often related lo different choices for the decomposition
between f(x) and g(x).

Ag described above, ADMM algorithms require a central
coordinator to manage the dual variable update siep (16c).
However, a modification known as Proximal Message Passing
(PMP) facilitates a distributed algovithm. At each ileration of
the proximal message passing algorithm, each agent evaluates
a “prox” functiomn:

wi—vilif). a7

prox , () = argmin{f; %) + (o/2)

Wi

The vector w; contains both the decision variables (which
themselves are chosen based on the power flow model) and the



2046

dual variables for agent i.° The vector v; contains the average
values of the variables in w; for all neighboring nodes. The
function f;(w;) is the local objective for a specific agent with
respect to the decision variables in w;. The scalar p is a tuning
parameter. Thus, the prox function optimizes an agent’s local
objective f;(w;) while minimizing the weighted mismatch to
the primal and doal variables from the agent’s neighbors. The
agents pass the results of the prox algorithm (i.e., their local
copy in the variable wy) to their neighbors such that each agent
can compute the average value v; 1o execule the next iteration.
The algorithm converges when the agents agree on common
values for w;. The Proximal Message Passing algorithm is
a gpecial case of ADMM and thus inherits the coivergence
guarantees for convex problems. See [70] for further details.

4) Analvtical Target Cascading:  Analytical Target
Cascading (ATC) is a hierarchial, iterative approach for
distributed solution of an optimization problem. The opii-
mization problem is split into subproblems which are related
by a tree structure. Parent and children subproblems in this
tree share optimization variables, with the coupling modeled
usimg penalty funclions that are modified at each iteration. I
all subproblems are convex, the algorifhim is guaranteed (o
converge to the solution. Note that ATC algorithms require a
cenlral coordimator (o manage the distributed compulations.
See [71], [72] for further details.

3) Auxiliary Problem Principle: Similar to the previous
techiiiques, the Auxiliary Problem Principle (APP) technique
decomposes an oplimization problem o subproblems with
shared wvariables [73]. Hach subproblem coriesponds to a
region of the system with shared variables at the tie-lines
connecling to neighboring regions. An augmented Lagrangian
approach is again used to ensure consistency between the sub-
problems for neighhoring regions. The key difference for APP
techiiiques is that the cross-terms in the two-norm expression
employed in the augimented Lagrangian (15) are linearized
rather than modeled directly as in ADMM and ATC tech-
nigues. This deccuples the subproblems such that no central
coordinator is required for APP techniques. Convergence is
guaranteed if all subproblems are convex.

6) Optimality Condifion Decomposifion: Rather than dupli-
cating shared variables as in the previous techniques, the
Optimality Condition Decomposition (OCD) technigue assigns
each primal and dual variable to a specific subproblem [74].
Each agent considers a subproblem under the condition that
only ils assigned variables are allowed o change (1.e., all vari-
ables that are assigned to other subproblems are fixed to their
previous values). The couplings for the variables assigned o
other subproblems are modeled using linear penalties that are
added to the objective, The coefficients for these linear penal-
ties are defined by the Lagrange multipliers resolting from
other subproblems. At each iteration, each agent applies one
step of a Newton-Raphson method to the KKT conditions
for its subproblem and then shares the resulting primal and
dual values with its neighboring agents. Thus, the OCD tech-
nigue is effectively an approach for distributed solution of the

31n the notation of (1 6}, the vector w; in (17) for each agent contains local
copies of both the primal vaoables (x or 7 in (14). depending on the agent)
and the dual variables v,
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KKT conditions for an optimization problem. Note that OCD
technigues do not require a cenlral coordinator. A sulficient
condition for convergence holds when the coupling between
subproblems is relatively weak (ie., there is a small number
of sparsely connected subproblems) [74]. A modified OCD
algorithm using “correction terms” improves the convergence
rate at the cost of some additional communication between
agents [75], [76].

7) Consensus+Innovation: The Consensus+Innovation
(C+1D) technigue [77], [78] is similar o the OCD technigue
in that both perform a distributed solution of the KKT
conditions, However, rather than assigning each variable to
a certain subproblem as in the OCD technique, the C+1
technique uses an iterative algorithm that allows all variables
m a subproblem fo vary. A limit point of the iterative algo-
rithm satisfies the KKT conditions. For convex problems, any
limit point of this iterative algorithm is therefore an optimal
solution [78]. Since each step of the iterative algorithin can
be performed using only local and neighboring information,
computations in the O+ lechnique can be performed m a
distributed fashion without the need for a central coordinator.
Unlike OCD techniques, the C+I technique is applicable at
any level of partitioning: an individaal agent could potentially
represent a single bus or a large region of the network.
Various mwodifications of C+1 speed convergence via addi-
tional communication links [791 and facilitate consideration
of communication delays [80].

III. DISTRIBUTED ALGORITHMS FOR OPTIMAL
POWER FLOW PROBLEMS

The OPF problem (10} minimizes the total system cost sub-
ject to engineering limits and the physical constraints dictated
by the power flow equations. This section surveys the applica-
tion of distributed optimization technigues to the OPF problem
for offiine applications. The survey is organized by the type
of power flow representation (linear, convex non-linear, and
nor-cotivex ) and oplimization tachmigue.

A. Disiributed Algorithms for Linear Approximations
of the OPE Problem

This section reviews distributed algorithms developed for
optimization problems that employ the DC power flow
model (4) for transmission systems and two power flow
linearizations applicable to distribution systems, (5} and (6).

1) Distribuied Opfimizafion With a DC Power Flow Model:
Following the exposition in [51], this section summarizes
distributed optimization approaches for DC OPF problems
categorized by the associated solution technique discussed in
Section II-C. See [51] for an extensive review with detailed
mathematical descriptions for many relevant algorithms and
formulations,

a) Applications  of  dual  decomposifion o DO
OPF problems: Barly work [81] in distributed approaches
for solving DC OPF problems employs a dual decomposition
technique that adds fictitious buses at the interconnections
between independently coordinated areas. Note that the
approach in [81} augments the DC power flow model (4}
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with an approximation of the line losses. Other work that
applies dual decomposition techniques includes [82], which
incorporates discrete decision variables. The approach in [82]
uses so-called “ordinal optimization” techniques that aim
to achieve “good enough™ choices for the discrete variables
while using a dual decomposition for the continuous vari-
ables. Recent publications [83], [84] study the integration of
demand response resources, including privacy considerations
and multiple time periods. Other recent work [85] applies the
dual decomposition approach to the DC OPF problem (with
a quadratic line loss approximation) in an electricity market
context.

b) Applications of ADMM 1o DC OPF problems:
ADMM techniques have recently been applied to a variety of
power system optimization problems. Reference [86] presents
a mathematical treatment of ADMM in the context of DC OPF
problems, including the consideration of asynchronous updates
(i.e., only some of subproblems are updated at each iteration
of the ADMM algorithm).

The proximal message passing variant of ADMM
(see Section II-C3) eliminates the need for a central coor-
dinator to perform the dual update step, thus enabling a
distributed implementation. In [70], ADMM with proximal
message passing is applied to DC OPF problems, including
a multi-period formulation with many possible device types
(HVDC lines, storage devices, controllable loads, etc.). Each
component (generator, transmission line, load, and bus) has
an associated computing agent. At every iteration, the com-
puting agents solve (in parallel) prox functions (17) to update
the variables associated with each component. For generators,
f:(-) in the prox function consists of the generation cost, while
v; is computed by averaging the neighboring components” val-
ues for the power generation and voltage phase angles. For
lines, f;(-) is an indicator function signaling satisfaction of the
relationship between the power flow and phase angle differ-
ence across the line, such that the prox function (17) can be
computed analytically. The prox functions for loads consist of
update equations for active power and phase angle that can
also be evaluated analytically. Computing agents for the buses
update the Lagrange multipliers for nodal power balance and
nodal phase angle consistency. The iterations proceed until the
agents agree on all values for the variables shared by multiple
components.

Extension of the proximal message passing variant of
ADMM is proposed for security-constrained DC OPF prob-
lems in [87]. As depicted in Fig. 1, this extension requires that
each component (generator, transmission line, load, and bus)
has a computing agent for the base case and each contingency
scenario.

c) Applications of ATC fo DC unit commifment problems:
Studies of ATC techniques with DC power flow models have
been conducted in the context of security-constrained unit
commitment problems [88], [89]. The approach in [88] has
one central coordinator with multiple lower-level agents, each
associated with a region of the transmission network. The
approach in [89] models a transmission system with multiple
connected distribution systems, decomposed at the boundary
substations. Note that a DC power flow model is used for
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1 Scenario 4

Scenariol  Scenario2 SearaHs 3
Fig. 1. Depiction of the proximal message passing variant of the ADMM

algorithm proposed in [87] for the Security-Constrained DC OPF problem.
Each generator “g”, transmission line “T”, load “D”, and bus “N” has an
associated computing agent for the base case and each contingency scenario.

the distribution systems, which is generally not appropriate.
However, the general decomposition approach could conceiv-
ably be applied using a more realistic power flow model for
the distribution systems.

d) Applications of APP to DC unit commitment prob-
lems: An APP technique is applied in the context of the unit
commitment problem in [90] using a two-level generalized
Benders” decomposition approach. The top level determines a
generator schedule by solving a conventional unit commitment
problem. Multi-peried DC OPF subproblems, each decom-
posed regionally using the APP technique, provide cuts for the
master problem. This improves computational tractability and
protects private utility data. Reference [91] also uses the APP
technique to solve a two-stage stochastic unit commitment
problem which considers wind uncertainty with geographically
distributed reserves.

e) Applications of OCD [0 DC OPF problems: DC OPF
problems were among the first applications of OCD tech-
niques. Rather than adding fictitious border buses, [92] uses
OCD to decompose the DC OPF problem at the tie lines
to neighboring regions. Reference [92] also demonstrates the
capabilities of OCD techniques using a 583-bus model of the
Balkan system. Demonstration on a network of computers
is presented in [93], which includes some modifications that
require a central coordinator to check for convergence.

A so-called Heterogeneous Decomposition (HGDY) algo-
rithm related to OCD techniques is used in [94] to jointly
model transmission and distribution systems, decomposed
at the boundary substations. The transmission system sends
Locational Marginal Prices (LMPs) at the boundary substa-
tions to the distribution system, while the distribution systems
pass power consumptions back to the fransmission system.
The approach in [94] uses a DC power flow model for
both fransmission and distribution systems, with the con-
sideration of possible modifications to account for voltage
constraints.

Improvements in the convergence speed of OCI techniques
can be achieved by computing linear sensitivities for the dual
variables passed to each subproblem [95]. A similar approach
is applied in [96], which extends [94] by computing the sen-
sitivities of the LMPs to the load injections at the boundary
substations.
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T} Applications of C+1 to DC OPF problems: The C+41
decomposition technique has solely been applied to DC OPF
problems [77], [78]. At each iteration, the buses send their
phase angle, power generation, and dual variables for the
power balance and line flow constrainis {o their neighbors.
Each bus then uses these shared variables to analytically com-
pute an update for the next ieration. The C+] technique is
guaranteed to converge to the DC OPT solution. Improvements
made to the C+I technique include faster convergence rates via
cominunicating with buses beyond immediale neighbors [79],
the consideration of asynchronous updates [80], and incorpo-
ration of security constraints [97].

2} Disiributed Oplimization With Linearized Power Flow
Models for Distribution Networks: While generally well suited
for transmission systems, the DC power flow model is typi-
cally inappropriate for distribulion systems. The other power
flow linearizations discussed I Section II-A (i.e., (5) and (6))
are better models for distribution networks. This section next
surveys the literature of distributed optimization algorithms
that nse these power flow models.

a} Applications of dual decomposition ¢ linear
power flow models: Reference [98] uses the linearized
DistFlow model (6) in conceit with dual decomposition.
Specifically, [98] considers a distributed two-level stochastic
optimization problem, with the first level representing the
decisions for a microgrid and the second level represeit-
ing the decisions for the distribation network operator.
The microgrids are coupled by penalty functions that are
iteratively determined by the distribution network operator.

b} Applications of ADMM o linear power flow models:
The linearized DistFlow model (6) is also used as the basis of
the work in [99]-{101]. The approach in [99] minimizes power
losses in a distribotion systern subject to limits on voltage
magnitudes and inverter reactive power capabilities. ADMM
is found to oulperforin a dual decomposition method for
this problem. The approach in [100] uses ADMM in concert
with stochastic programming in order to consider uncertainty
m distribution systems, with decomposition over each bus
and each scenario inn the stochastic program. Using a regret
minitization approach, [101] also considers uncertainty.

Asg an alternative to the linearized DistFlow equations,
the approach in [102] uses the power flow linearization (3)
from [20] and [21] fo optimize distribution systems with
large penetrations of solar PV. The ability to regulate voltage
magmitudes is validated using test cases with realistic solar
generation data.

The power flow model employed in [103] is based on a
linearization of the DhstFlow model (3) aboul a specified oper-
ating point. The approach in [103] provides an optimal reactive
power dispatch for voltage regulation in unbalanced radial
distribution systems.

B. Distributed Algorithms for Non-Linear Convex
Approximations of the OPE Problem

Convex relaxations based on SDP and SOCP have shown
promise for a variety of power systemn oplimization problems.
This section reviews distributed approaches for solving these
relaxations.
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1) Distributed Optimization With the SDP Relaxation:
As formulated in Section II-A, the positive semidefinite
constraint (8¢) in the SDP relaxation couples the vari-
ables associated with all buses. There exists an equivalent,
sparsity-exploiting reformulation of this constraint that resuits
i a mathematical structure that more closely represents
the network topology [104}1-{106]. Specifically, the positive
semidetinite constraint on the # x » matrix W in (8¢) can
be decomposed into positive semidefinite constraints on cer-
tain submatrices of W. (The submatrices are determined by
the maximal cliqgues of a chordal extension of the network
graph. See [107] for further details.) This helps facilitate the
application of various decomposition techniques. This section
reviews applications of dual decomposition and ADMM tech-
migues used in the context of SDP relaxations of the power
flow equations.

a) Applicafions of dual decompostiion Yo the SDP relax-
afion: Reference [106] proposes two decompositions for the
SDP relaxation derived from the primal and dual problem
formulations, exploiting network sparsity through chordal
extension. Computing agenis solve SDP subproblems, one for
each maximal clique, corresponding to small regions of the
network and share primal or dual variables with the other
comnected subregions. The updates can be performed asyn-
chronously. Reference [46] applies related techniques to the
voltage regulation problem for distribulion systems.

b) Applications of ADMM o the SDP relaxafion:
ADMM technigues are applied to solve OPF problems for
three-phase unbalanced models of radial disiribution networks
in [32], which shows improved convergence relative to dual
decomposition approaches, A similar ADMM approach is
applied m {108] to oplimize distribution systems with large
quantities of solar PV generation. Reference [109] applies
ADMM io OPF problems for balanced mesh network models
suitable for transmission systems. The heart of the approach
in [109] consists of eigenvalue computations that can be
performed in parallel. Reference {110] proposes an ADMM
algorithm for unbalanced three-phase models of distribution
systemns. In the key step for the algorithin in [110], each of
the agents’ problemns reduces Lo evaluating either a closed form
expression or the eigendecomposition of a 6 x 6 matrix.

2) Distributed Optimization With the SOCP Relaxation:
Reference [111] applies an ADMM technique to the SOCP
relaxation (i.e., (3a}—3c¢c), (9)) for single-phase models of
radial nelworks 4 manner that creates subproblems asso-
ciated with each bus. An analyfical solation for each sub-
problem vields favorable computational characteristics. This is
extended to the case of unbalanced radial networks in [110],
where each subproblem either has a closed-form solution or is
a small eigenvalue problem whose size is independent of the
network size. Related work [1121 considers methods for tun-
ing the ADMM parameter o in (16), which can have a large
impact on the convergence rate.

O Disiributed Algorithms for the Nom-Convex
OPF Problem

Other than the C+1 technigue, all other decomposition
techmiques described in Section II-C have been applied to



MOLZAHN et ol 1 SURVEY OF DISTRIBUTED OPTIMIZATION AND CONTROL ALGORITHMS FOR ELECTRIC POWER SYSTHMS

non-convex formulations of the OPF problem. Note that the
theorefical guarantees associaled with convex formulations
(i.e., the linear approximations reviewed in Section IIT-A and
the relaxations reviewed in Section III-B) are generally not
available for non-comvex formulations. However, the papers
reviewed below demonstrate that various distributed opti-
mization technigues are capable of solving certain practical
non-convex OPF problems.

1} Applications of Dual Decompaosition fo the Non-Convex
OPF Problem: Barly work [113] applies a dual decomposition
method that dualizes the coupling constraints associated with
the tie lines hetween regions. Hach subproblem is a non-convex
OPF problem with a penalization term in the objective asso-
ciated with the coupling constraints. The approach in [113]
uses an interior point algorithm in combination with culling
plane methods to solve these subproblems. In more recent
work, [114] proposes a dual decomposition based algorithm
for balanced radial networks using an augmented Lagrangian
approach. The algorithm in [114] can be implemented asyi-
chronously and has associated theory claiming a convergence
guarantee,

2 Applicaiions of ADMM o ithe Non-Cowvex OPF
Problem: Reference [115] applies ADMM (o a decoupled
power flow model, which independently considers the active
power/voltage angle and reactive powerfvollage magnitade
couplings. The algorithm in [115] decomposes the active and
reactive power ows hetween regions.

Recent ADMM-based research efforts [75], [116]-]119]
model the fully coupled AC power flow equations in terms
of the voltage phasors. Reference [116] decomposes coupling
constraints on the rectangular voltage components (ie., ¢
and f; where the voltage phasor V; = ¢;  if., i ¢ N). The
dual variable updates (16¢) can be computed locally by each
agent in this approach. Reference [117] also describes an
ADMM approach that regionally decomposes subproblems
based on shared rectangular voltage coordinates. Subsequent
work [118] proposes a decomposition using auxiliary vari-
ables that represent the sums and differences of voliage
phasors between the terminals of lines that are shared by
multiple regions. The sums and differences of the voltage
phasors more closely represeiit the expressions found in the
power flow equations, which results in improved convergence
characteristics. Under the assumption thal the solver applied
to each subproblem is reliable in finding a local solution,
an approach for updating the penalty parameter (p in (16))
gurantees convergence of the ADMM algorithm. In order to
apply ADMM techniques to large problems, [75] proposes a
speciral partitioning technique for determining the regional
decomposition. In combination with the coupling approach
proposed in [118] and a strategy for updating the penalty
parameter, the spectral partitioning technique results in
tractability for large problems (e.g., the 2383-bus Polish
systetn i MATPOWER [120}) [75]. In recent work, [119]
performs extensive numerical studies via application of an
ADMM technique to a variety of test cases. The results show
that the mumerical performance of the ADMM algorithm is
sensitive to the penalty parameter, with certain parameter
valnes reducing the number of iterations required by an order
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of magnitude relative to other parameter values. The results
also empirically demonsirate the existence of parameter values
that vield near globally optimal solutions for all test cases
considered. However, appropriate parameter values ranged
over several orders of magnitude, and the paper does not
provide a method for choosing appropriate parameter values.

The algorithm m [121] uses a power flow formulation that
meludes variables for both current and voltage phasors. Each
iteration of the algorithm in [121] solves a gquadratic program
derived via applying linearizalion techmigues, with the overall
algorithm yielding a solution that satisfies the non-linear power
flow eguations.

3) Applications of ATC to the Non-Convex OPF Problem.
A two-level ATC algorithm is applied in [122] to coordinate
the operation of a distribution grid that contains microgrids.
The voltage magnitudes and angles at the boundaries of the
distribution system and microgrid subproblems are coupled
using an exponential penalty formulation [123].

4) Applications of APP to the Non-Convex OPF Problem:
Barly work m distribuled oplimization techniques for OPF
problems includes the APP-based approach in [124]. The OPF
problem is decomposed regionally vsing “dummy generators”™
whose active and reactive power oulputs and voltage pha-
sors model the neighboring regions. Subsequent work [125]
demonstrates the capahilities of this decomposition using a
2587-line mode! of ERCOT. Case studies with multiple regions
are presented m [126], which also provides guidance regardmg
the choice of penalty parameiers in the APP formulation.

5) Applications of OCD 1o the Non-Convex OPF Problen:
OCD techniques were first proposed in the context of the
non-convex OPF problem [74], with a more detailed descrip-
fion and analysis of the convergence characteristics presented
in [127]. Several advances are presented m [128], includmg
parameter tuning and better consideration of the reference
angle. The approach in [129] considers the coordinated opera-
tionn of FACTS devices using an overlapping regional decom-
position. In order to speed convergence rates, [76] proposes the
use of “correction terms” that require some additional sharing
of information between buses which are 1ot directly connected
in the power system network. Reference [130] describes a par-
titioning method based on a spectial analysis that results in
computational improvements for the OCD approach.

6) Applications  of  Other  Disiribuled  Oplimizalion
Technigues to the Non-Convex OPF Problem: Two other
distributed optimization techniques have also been applied to
non-convex OPF problems: Gradient Dynamics and Dynamic
Programming with Message Passing.

First proposed in [131] with more recent itreatments
in [132] and [133], the Gradient Dynamics (GD) technique
embeds the KKT conditions for an optimization problem in
a dynamical system. The equilibria of the dynamical system
correspond to KKT points for the original OPF problem.
Asswining the satisfaction of certain technical conditions, the
approach in [134] and [135] constructs a formulation which
ensures that only the optima of the OPF problem are locally
stable, with other KKT points being unstable. Thus, the OPF
problem can be solved by infegrating the dynamical system.
This technigue inherits the decomposibility associated with
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the network structure: when integrating the dynamical system,
each bus can serve as a computing agent that only commu-
nicates with its neighbors. The Gradient Dynamics approach
is applied to solve the non-convex OPF problem in [134].
Theoretical analyses of the proposed approach and comparison
to convex relaxation techniques are presented in [135]-[137].

A Dynamic Programming technique proposed in [138] (see
also the more general presentation in [139]) performs an
interval-based discretization of the power flow variables in
the DistFlow model (3). For tree networks, this discretization
enables the application of tools from dynamic programming to
compute both a lower bound on the optimal objective value of
the OPF problem and an approximately feasible solution (to
within a tolerance that depends on the discretization). Discrete
variables can also be incorporated into this formulation. The
tree topology enables a natural distributed implementation
using a message passing approach. Extension to more general
network topologies is also possible using more sophisticated
ideas from constraint programming,

D. Comparison of Distribuled Algorithms for Power
System Optimization

Most of the existing numerical algorithms for solving power
systern optimization problems are based on either first-order
methods relying on gradients of the objective and constraint
functions or second-order methods relying on both gradients
and hessians of the objective and constraint functions. Second-
order methods benefit from a small number of iterations and
a high convergence rate, but the complexity of each iteration
is prohibitive for large-scale problems in general. In particu-
lar, these methods are not parallelizable unless the problem
is highly sparse and structured. Conversely, first-order meth-
ods have cheap iterations that can often be parallelized, but the
convergence rate is low and is highly affected by the condition
number of the problem data.

Although first-order methods all have the same convergence
rate in the worst case, they exhibit different performances
on specific applications, with the empirical convergence and
complexity of each method depending on the specifics of the
underlying problem. This explains the large number of first-
order methods surveyed in this paper. Bach of these methods
has some tunable parameters to improve the performance, and
there is a trade-off between how many iterations are required
to obtain a high-quality approximate solution and how many
computing nodes (and how much communication) are used for
parallelizing the computations. For instance, the performance
of an ADMM-based algorithm depends on the step size param-
eter o in (16), which balances the convergence rates of the
primal and dual residuals. While there are various strategies
to select an appropriate value of p (see the review of such
strategies for general optimization problems in [68, Sec. 3.4]),
performance is generally problem dependent [112].

With a strong dependence on the application and problem of
interest as well as appropriate parameter tuning, quantitative
analyses via numerical simulations are key for understanding
performance in practice. See [51], [54], [35], [112] for addi-
tional discussion and quantitative comparisons among some of
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min  f(x,u)

L

s.t. power flow equations
operational constraints

power network model

state x(f) control u(¥)

real-time feedback optimization

Fig. 2. General structure of real-time, or online, algorithms for optimization
problems.

the methods surveyed in this paper. Further empirical work is
needed to better characterize the practical performance of dis-
tributed optimization algorithms and the selection of appropri-
ate tuning parameters for various power system optimization
problems.

IV. ONLINE OPTIMIZATION AND CONTROL

Section [T focuses on offline algorithms for solving OPF
problems. Even though these algorithms are distributed, they
iterate on all variables in the cyberspace until they converge
before their solutions are applied to the physical grid. In par-
ticular, the intermediate iterates typically do not satisfy the
power flow equations (Kirchhoff’s laws) nor operational con-
straints. While offline algorithms have been widely used in
traditional power system applications, they may become inad-
equate in some future applications that involve a large network
of distributed energy resources, especially in the presence of
fluctuating loads and volatile renewables.

In this section, we summarize recent research on real-time,
or online, algorithms for solving power system optimization
and control problems. These algorithms iterate only on vari-
ables corresponding to controllable devices (e.g., intelligent
loads) in feedback interaction with the grid. The grid may be
modeled by a set of algebraic power flow equations for slow
timescale behavior or by a set of differential equations for
fast timescale behavior. The general structure is illustrated in
Fig. 2, where a model of the physical network is given and
an optimization problem is specified as the control objective.
Our task is to design a real-time feedback controller so that
the closed-loop system converges to an equilibrium that solves
the optimization problem. Different papers use different power
flow models and different algorithms to compute the control
in each iteration within this general framework.

There are two important advantages of real-time closed-
loop implementation of optimization algorithms. First, this
approach naturally tracks changing network conditions as
these changes manifest themselves in the network state x(r)
that is used to calculate the control u(f) (see Fig. 2). These
algorithms therefore tend to be robust to uncertainties and
disturbances, e.g., due to fluctuating loads and volatile renew-
ables. Furthermore, as we will see below, many of the
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proposed algorithms are to some extent decentralized and
model-free {e.g., ndependent of system parameters and rely-
ing only on local measurements) which makes them attractive
in a plug-and-play scenario. Second, for some applications
that involve a large network of distributed energy resources in
the future, solving the optimization centrally will be infeasible
because of the high cost of collecting and communicating the
required state and parameter data and because of the desire
to protect private information spread across multiple organi-
zations. Real-time disiributed selution may be the only viable
strategy in these sitnations.

In the following, we first summarize distributed conirol
theory for general systeins. We then review four prominent
applications of online feedback optimization algorithms spe-
cific to power systems: real-time optimal power fow, oplimal
frequency control, optimal voltage regulation, and optimal
wide-area control.

A, Querview of Distributed Control Theory

Classical control theory provides a rich mathematical
foundation for the design of cenfralized controllers for an
interconnected or multi-chanmel system composed of several
(interconnected) subsystems. A centralized control framework
is concermed with a single confrol unit responsible for col-
lecting the outputs of all subsystems, processing the acquired
miformation, and generating the inpuls of those subsystemns.
This cenfralized control approach is an unatiractive, il not
infeasible, strategy for many real-world systems due in part
to its computation and communicalion complexity.

The area of decentralized control has been created to address
the challenges arising in the control of complex networks and
large-scale systemns [140]-{143). The ohjective is to design
a structurally constrained controller with the aim of reduc-
ing the computation and communication complexity of the
overall controller. The confrol layer consists of a number of
local controllers (sub-controllers), where each sub-controller
is in charge of controlling only one of the subsystems of the
interconnected system. The local controllers are often allowed
to exchange hmited information with one another. Recalling
the definitions in the introduction, this type of controller is usu-
ally referred to as a distributed controller (especially when the
focal confrollers are geographically distributed). In contrast, a
deceniralized controller has no information exchange among
the local confrollers.

Consider the problem of designing an optimal decentral-
ized controller for a multi-channe! deterministic or stochastic
systern, where the optimality is measured with respect to a
linear-quadratic, Ho, or H, performance mndex. It has long
heen known that this problem is computationally hard to solve
and, i particular, NP-hard in the worst case [144]-[146].
Great effort has been devoted to iwestigating this highly
complex problem for special types of systems, including spa-
tially distributed systems [147]-{151], dynamically decoupled
systerns [152], [153], weakly coupled systems [154], and
strongly connected systems [155]. Another special case that
has received considerable aftention is the design of an opti-
mal static distributed controller {156], {1571, Barly approaches
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for the optimal decentralized control problem were based on
parameterization techmigues [158], [159], which were then
evolved into mafrix optimization methods [160], [161].

Duie to the recent advances in the area of convex optimiza-
tion, the focus of the existing research efforts has shifted from
deriviig a closed-form solution for the above control synthe-
sis problem o finding a convex formulation of the problem
that can be efficiently solved numerically [162]-{169]. This
has been carried out in the seminal work [170] by deriving
a sufficient condition named quadratic invariance, which has
been generalized in [171] by deploying the concept of partially
ordered sets. These conditions have been further investigated
in several other papers [172}-{174]. A dilferent approach is
taken in the recent papers [175], [176], where it has been
shown that the deceniralized control problem can be cast as
a convex optimization for positive systems. More recently,
conie optimization has been applied to the optimal distriboted
confrol problem, and it has been shown that a semidefinite
programming (SDP) relaxation of this problem always has
a low-rank solution [177], [178]. Finally, another stream of
reseaich attemipts to overcome the complexity of decentral-
ized optimal control problems by appropriately regularizing
ceniralized problems so that they are either convexified (even
in presence of structural constraints) [179] or admit a sparse
solution [1571, [169], {1801, {181].

The optimal distributed control problem in a general setting
deals with the minimization of a cost functional that is com-
posed of both terminal and transient (stage) costs. Moreover,
the state and input constraints are requited to belong to pre-
specified sets at all times. Although this problem has a high
computational complexity, a special case of the problem is
much more fractable where the stage cost is zero and there is
1o hard constraint on the state and inpul rajectories. The lat-
ter problem has been studied in the context of electric power
systemns for various applications such as real-time optimal
power flow control, frequency control, and voltage control.
We will survey these papers in the rest of this section.

B. Real-Time Optimal Power Flow

We first consider the problem of solving OPF in closed
loop. While this problem has emerged only recently, it has
already led to several parallel research developments by differ-
ent groups. Here we focus on slow timescale behavior where
the network is modeled by a set of power flow eguations. In
each iteration, the real-time optimization algorithm computes
a control #(f) and applies it to the grid, which then computes
the state x(f) by implicifly solving the power flow equations in
real time at scale, as illustrated in Fig. 3. This approach hence
explicilly exploits the law of physics as a power flow solver.
Unlike many offline algorithms, the intermediate iterates not
only satisfy the power flow equations by design, but may
also salisly operational constraints, depending on the specific
algorithm.

In [182], a radial network is modeled by the DistFlow equa-
tions (3) and a first-order gradient algorithm is used to compute
the control in each iteration. Barrier functions are used to
ensure that operational constraings are satisfied at all times.
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Grid: power system dynamics o
x(2) : F(x(£), u(£)) =0 network
measurement control
x(t) (1)
Realtime OPF: gradient update -
u(t+1) = G(x(1), u(t)) natwork

Fig. 3. Online or real-time algorithms for OPF problems where the controller
updates the control variable x(f) in each period and applies it to the grid. The
grid implicitly solves the power flow equation F(x,x(£f)) = 0 to determine
the state variable x(f), which is measured and used to compute the control
#(f+ 1) in the next period.

Sufficient conditions for convergence to a local or a global
optimum of the non-convex OPF problem are both established.
The same problem is studied in [183] using a completely dif-
ferent approach that does not require the controller to know the
network model. This approach uses a gradient-based extremum
seeking algorithm where a sinusoidal probing signal is injected
into the network in order to estimate the gradient of the cost
function with respect to control variable u(f). Reference [183]
proves a sufficient condition for the cost function to be con-
vex in the control # and, under this condition, it shows that
the algorithm converges to a neighborhood of the optimum.
Incidentally, this sufficient condition also guarantees that the
gradient algorithm of [182] attains global optimality. A gen-
eral network is modeled in [184] using the AC power flow
equations (1) in the complex form. The paper proposes a first-
order distributed subgradient algorithm for solving the SDP
relaxation of the OPF problem and proves its global conver-
gence. The methods in both [182] and [184] extend to the
case of multiphase unbalanced networks. In [185], an online
projected-gradient approach is proposed that steers the closed-
loop system on the power flow manifold (the space of solutions
of the power flow equations [22]) towards a locally optimal
solution. The performance and robusiness of this approach
have been demonstrated in [186].

A key assumption in all of the above papers is that the
OPF problem is static. The time-varying case where the OPF
problem changes in each iteration is studied in [187]. A lin-
earized power flow model closely related to (5) is used and
a first-order primal-dual algorithm is proposed based on a
regularized Lagrangian. The paper characterizes the tracking
performance of the proposed algorithm in terms of the rate
at which OPF drifts and errors due to regularization and in
gradient updates. In [188], the AC power flow model (1) is
used and a quasi-Newton method is proposed for better track-
ing of the time-varying OPF problem. Tracking performance
is characterized in terms of the rate at which OPF drifts, the
error in the Hessian estimation, and the condition number of
the approximate Hessian. A different approach is proposed
in [189] to deal with time-varying and random OPF problems
using the DistFlow model (3) and its linearization (6) for radial
networks. Stochastic dual subgradient algorithms are proposed
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and certain operational constraints are enforced in an average
serse.

Since the problem is motivated by the control of a large
network of distributed energy resources in the future, decen-
tralized or distributed algorithms are desirable. Most schemes
proposed, however, are centralized. Notable exceptions are
online algorithms for volt/var control that are decentralized
(e.g., [190] and [191]) or distributed (e.g., [192] and [193]).
Many of these papers are discussed in Section IV-D on optimal
voltage regulation.

In summary, real-time online optimal power flow is a
relatively young problem, but it has already triggered a
wide-spread interest. Most fundamental questions concern-
ing convergence, robustness properties, and the cyber-physical
implementation, especially distributed versions of online algo-
rithms, are wide open to date.

C. Opiimal Frequency Conlrol

Maintaining the system frequency close to its nominal value
despite fluctuating loads and generation is one of the cen-
tral tasks in controlling power systems. At its core, frequency
confrol is an optimal resource allocation problem, where gen-
eration and load have to be balanced in the economically most
efficient way. Traditionally, this is achieved using a hierar-
chical control scheme consisting of primary (Droop Control),
secondary (AGC), and tertiary (Economic Dispatch) layers
operating at different time scales [194]. Droop controllers
installed in synchronous generators and in voltage-source
mverters are fully decentralized and operate on a fast time
scale, but cannot by themselves restore the system frequency to
its nominal value following load changes. To ensure a correct
steady-state frequency and a fair power sharing among gener-
ators and inverters, centralized AGC and Economic Dispatch
schemes are traditionally employed. Developing more flexible
distributed schemes to replace, or complement, these tradi-
tional control layers has been a very active research area in
the past few years. The interest is explained by the wide-spread
integration of distributed power generation, the deployment of
smart frequency-responsive loads, and the increasing interest
in microgrids with a need for independent operation.

In the following, we focus primarily on schemes sup-
porting the secondary and tertiary layers, that is, asymptotic
frequency regulation in an economically efficient way and pos-
sibly subject to operational constraints. We begin by reviewing
mntegral-conitrol strategies focusing on the optimal balancing
problem and then discuss primal-dual control strategies that
directly attack the resource allocation optimization problem.

1) Distributed Averaging for Optimal Frequency Conirol:
To obtain correct steady-state frequency without a centralized
controller, it has been proposed to complement the droop con-
trollers with fully decentralized integral control [195]-[197].
Although these schemes ensure system stability and cor-
rect steady-state frequency in theory, in practice they suf-
fer from poor robustness to measurement bias and clock
drifts [196], [198]-[200]. Furthermore, the injections of such
decentralized integral controllers generally do not lead to an
efficient allocation of generation resources.
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To alleviate this shortcoming, distributed averaging-based
integral control can be implemented [197], [198], [201]-[206].
These schemes are no longer decentralized and require com-
munication between the local controllers, but they can, on
the other hand, also ensure a fair sharing of power genera-
tion by equalizing the marginal prices, so-called active power
sharing. Hence, they can also perforim the duties normally
assigned to the tertiary power dispatch layer. Coordination
of generation via discrete-time consensus [207] or via ratio
consensus [2081], [209] have also been considered in the liter-
ature. It should be pointed out that while centralized schemes
suffer from a single point of failure, the distributed schemes
require relrofitting of the communication architecture, which
may prevent implementation in practice. It has also been
demoensirated that the distributed schemes can be sensitive Lo
faults and misbehavior of agents [199].

To combine the advantages of centralized and distributed
frequency-regulation schemes, semi-decentralized schemes
based on a single average of the local measurements have
been proposed [196]), [199], {210}, [211]. These methods
can be derived from a dual-gradient approach, and stabil-
ity and optimal economic digpatch can be ensured [199].
The papers {212}-{217] have characterized and compared the
transient control performances of certain semi-decentralized,
distributed, and decenfralized control schemes under vary-
ing network topologies and parameters. In particular, for
decentralized and semi-decentralized schemes, losses due to
nor-eguilibrium power flows have been show to be equal, and,
for uniform network parameters, independent of the network’s
conneclivity. However, in the case of distributed averaging-
based integral control, there is a dependence on network con-
nectivity that can be exploited to decrease fransient resistive
losses [218].

Extensions of some of the above distributed frequency-
control schemes to more general dynamical models have been
pursued in [219]-{224] by means of a passivify-based analysis.

2} Primal-Dual Methods for Optimal Freguency Conirol:
In parallel to integral-control strategies, a rich literature has
emerged that directly attacks the optimal generator dispatch
problem by means of oplimizalion strategies which can be
implemented online as frequency controllers. Typically, these
strategies are based on primal-dual gradient methods dat-
ing back to [225]-[227] that seek the saddle points of the
Lagrangian function of the underlying optimization problem.

To the best of our knowledge, the earliest work that adopted
this approach was [228], which also exploited the pricing
interpretation of the Lagrange multipliers as a byproduct of
the dualization-based method. This pricing aspect of frequency
control has also been picked up in the recent literature on so-
called fransactive control, bridging the gap hetween real-time
control, offline optimization, and market aspects [229], [230].

Aside from pricing, ancther interpretation of dualization-
based wethods 18 that the primal-dual dynammics of a care-
fully crafted generator dispatch optimization problem are
formally equivalent to the power system physics plos addi-
tional controller dynamics [231]-[236], e.g., certain Lagrange
multipliers formally comrespond to generator frequencies.
Thus, part of the frequency control problem is already solved
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by the power system physics, and additional controllers
enforce operational consfraints. Inlerestingly, part of these
additionally needed control loops already exist (e.g., droop
confrollers) whereas others are novel. Once having under-
stood that optimization algorithms can be used to reverse-
engineer the power system physics and controllers already
in place, the exisling controllers can also be tuned accord-
ingly so that the closed-loop system optimizes a desired cost
function {2371-{239].

Finally, independently of pricing interpretations and reverse
engineering of the power system physics and controls, primal-
dual-based optimal frequency conirollers have also bheen
deployed in [219], [240], and [241] for fairly general, detailed,
and non-linear power system dynamics.

3} Comclusions om Oplimal Freguency Conlrol: Frequency
control is a well studied and mature problem area that has
seen various contributions from different directions. In the
following, we review a few open problems. It is generally
not known whether economically efficient frequency control
is possible in an entirely deceniralized fashion. Furthermore,
the analysis of the widely adopted distributed averaging-based
mtegral controllers is thus far restricted to symmelric com-
munication topologies and the case of quadratic optimization
problems subject to power balance constraints. Hence, the
exisling setup precludes uni-directional communication, non-
quadratic objectives as well as inequality constraints arising,
e.g., [rom generation Hmits. Finally, primal-dual algorithms
are very appealing since their implementation can partially be
outsourced to the system physics. If we take this striking idea
from frequency control to general power system operation,
it is vet unclear which control actions can be cutsourced to
the system physics and which have to be implemented in a
cyber-layer.

D. Optimal Voliage Countrol

Optimal voltage regulation is generally considered to be
a more complex task than frequency regulation. Whereas in
frequency regulation the system can be balanced in the eco-
noinically most efficient way while respecting operational
constraints, the task of regnlating the voltages is inherently not
aligned (and sometimes even in contradiction) with economic
ohjectives such as minimizing power losses, achieving a desir-
able fair power sharing (or curtailment), or other operational
objectives such as maximizing the distance to voltage col-
lapse [206], [242]-[245]. Due to this multi-objective nature of
voltage regulation, typically weighted sums of cost functions
are considered, voltages are regulaled only outside certain safe
deadbands, or voltage bands are imposed as constraints rather
than as objectives.

The settings in the literature vary between transmission and
distribution scenarios, dominantly inductive or resistive grids,
and accordingly compensators provide etther active or reaclive
power to support the voltages. In the following, we will (with
slight abuse of netation) employ the colloquial terminology of
reactive power support. The relevant literature is rich in terms
of centralized approaches that aim at transferring existing cen-
tralized transmission-level solutions to distributed generation
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scenarios and distribution systems. On the other hand, it has
been recognized that the task of voltage regulation is to a large
part a truly localized problem and fully decentralized con-
trollers [242], [246] can in certain instances perform equally
well as centralized strategies. However, it is also known that
mere decentralized strategies [247]1-1249] cannot successfully
regulate the vollages in the presence of cerlain constraints.
In this case, the local compensators need to be coordinated
through a communication infrastructure.

1) Deceniralized Oplimal Voliage Conlrol Stralegies: We
begin our literature survey with fully decentralized control
strategies. 1t has been broadly recognized that the uncon-
strained oplithization problem of minfmizing a combination
of power losses and sum-of-squared voltage deviations admits
an entirely decentralized optimal solution described by a lin-
ear trade-off between the local reactive power injection and
the local voltage deviation — colloquially also known as droop
control. This finding that droop-like behaviors are inverse opli-
mal is fairly robust to modeling assumptions and has been
made i meshed networks (modeled by the non-linear reactive
power flow (2b) with fixed angles) [250] and in radial networks
using the Linearized DistFlow model (6) [231]. Similar droop
hehaviors are heing incorporated into national grid codes as
technical specifications for grid connected generators [252],
[253]. The gains of these droop control laws can be optimized
according to both the grid topology and the operating point
of the grid, especially with respect 1o the active power injec-
tion of the same generators [254]. Likewise, the IEEE 1347.8
conirol standard proposing piece-wise linear droop behavior
has been found to be inverse oplimal to a cost composed of
sum-of-squared voltage deviations and reactive power provi-
sioning in a Linearized DistFlow setting [190]. Even for the
full AC power flow (2}, a variety of local contro] sirategies give
rise to gradient-type closed-loop dynamics that are implicitly
oplitnal to cost functions composed of power losses, voltage
deviations, and injection costs [244]. For example, a popular
theme throughout the literature is that the gradient of a power
loss cost gives rise to power Hows according to the principle
of least action.

(Given these msights, different opfimalily-seeking conirollers
can be engineered. References [191] and [255] provide pro-
jected (sub)gradient algorithms that can be implemented as
fully decentralized conirol sirategies. The resulting closed-
loop dynamics converge to the same optimizers as the
droop-like IBEH 1547.8 standard, but under less resiric-
tive conditions and with better transient performance. These
results have been extended in [256] towards asynchronous
updates and dynamically changing network conditions and
in [257] towards pseudo-gradient algorithms easing the imple-
mentation. Different cost functions have been considered
and optimized through local gradient-based control strate-
gies: [258] considers reactive power loss minimization via
projected integral controllers and dual gradient ascent meth-
odg (13), [259] considers the objective of power transfer max-
imization through a projected gradient scheme, [260] develops
local proximal gradient schemes to minimize sum-of-squared
voltage deviations and the cost of reactive power provisioning,
and [261] provides a gradient-based algorithm that changes the
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reactive power provisioning only when voltages are outside
the admissible range. All of these schemes consider linearized
power flow models. Finally, inverse optimal droop-like con-
trollers with guadratic nonlinearities are advocated in [262]
for the quadratic power flow formulation (1), in {250] for a
non-linear reactive power flow model (2b) neglecting angles,
and m [244] for the full AC power flow model (2).

2) Distributed Optimal Voltage Contiol: Despite the
widespread success of fully decentralized control strategies,
a number of recent references [247]-[249] observed that a
large class of local confrollers cannot successfully regulate
the voltages within prescribed bounds when the compensators
are also limited in terins of their reaclive power injection.
The reason for this shortfall is the same that allowed the
previous references to prove their convergence statements:
namely, i1 a linearized system setting, monotone droop-like
strategies give rise to a unigue closed-loop voltage and injec-
fion profile. The latter may he feasible or not depending on
the constraints and system loading. Hence, in such scenar-
ios the local compensators need to be coordinated through a
commurnication infrastructure. We refer to such strategies as
disiribuied.

In {192], an optimal reactive power flow problem is for-
mulated for a linearized power flow model that gives rise
to a linearly-consirained quadratic program whose optimizer
can be computed in a distributed fashion. A distributed online
control algorithun is tasked with tracking and stabilizing this
optimizer in closed loop. In order to incorporate the generator
consiraints on reactive power injection, a distributed gradient
projection approach has been proposed in [263]. For the same
task, a distributed dual ascent method is proposed [193] that
guarantees convergence to the operating region where both
reactive power lithils and vollage constraints are satisfied. A
projected dual ascent and an accelerated version are presented
mn [248] and [249]. Another sel of distributed strategies target
the objective of fair reactive power sharing based on aver-
age consensus of the injection ratios [206], [244], [264]. Yet
another objective is that of maximizing the distance to volt-
age collapse, which is approached by means of regularization
and a distributed dual ascent method [245]. Finally, there are
many appioaches decomposing centralized voltage optimiza-
tionn problems into local subproblems that need to be coordi-
naled through communication. BExamples are decompositions
of SDPs [32], [46], ADMM schemes [108], [265], broad-
cast communication [266], and leader-follower schemes [267].
Whereas these approaches can be used for distributed closed-
loop control, the communication and computation load is
guite high making them more suitable for parallel and offline
computation.

3} Comclusions on Opfimal Voliage Conirol: In conclo-
sion, the field of distributed optimal voltage control is rich
i terms of objectives, architectures, and algorithms. It is vet
o be undersicod which problems admit fully decentralized
solutions and when communication is needed. Another open
guestion is whether the design of these control stralegies can
be performed in a decentralized manner, i.e., based only on
the system's local parameters, enabling scalable and adaptive
phig-and-play deployments of these solutions.



MOLZAHN et ol 1 SURVEY OF DISTRIBUTED OPTIMIZATION AND CONTROL ALGORITHMS FOR ELECTRIC POWER SYSTHMS

E. Oprimal Wide-Area Conirol for Oscillation Damping

Inter-area oscillations in bulk power systems are associated
with the dynamics of synchronous machines oscillating rela-
tive to each other. These system-wide oscillations arise from
maodular network topologies, adversely interacting controllers,
and large inler-area power (ransfers. Inler-area oscillalions
induce severe stress and performance limitations on the trans-
mission network and may even cause instabilities and outages.

These oscillations are conventionally damped by generator
excitation control via power system stabilizers (PSSs) or as
proposed more recently via HVDC links or FACTS devices.
However, mere decentralized control actions can interact it an
adverse way and destabilize the overall system. Furthermore,
even when decentralized controllers provide stability they may
result in poor performance, and their optimal tuning presents
nen-trivial design challenges [268], [269].

The deployment of renewables in remote locations, the
ncreasingly deregulated operation of power systems, the
advent of low-inertia generation, and transmission network
expansions put inter-area oscillations back in the spotlight. The
monitoring and analysis of inter-area oscillations has recently
been enhanced by advances in wide-area measurement and
cominunication technologies as well as scientific advances
in large-scale and multi-agent systems. These advances pave
the way to wide-area control (WAC), where control loops
are closed from remole phasor measurements to local syn-
chronous machine excitation controllers enabling real-time
distributed control on a continental scale. We refer to the
surveys [2701-1273] and the articles in [274] for further
information.

Several efforts have been directed towards the selection
of few but critical WAC chammels [273], [275] and decen-
tralized or distributed WAC design based on robust and
oplitnal control methods; see [276]-{281] and references
therein. However, it is to be noted the majority of the existing
approaches are either based on centralized (output feedback)
control or pre-paramelrized and sub-optimally tuned con-
trollers. More recently, several approaches emerged that use
the decentralized control technigques reviewed in Section TV-A.
Particularly, sparsity-promoting approaches have been applied
very successfully: the fy-regularized Hi-control approach
developed in [169] has been applied to WAC by means of
PSS [2821-1284] and HVDC links [285], and it has also
heen adopted for pricing in WAC [286]. An £y-regularized
H-control approach is presented in [287]. A static H»-output
feedback problem for PSS design has been proposed in [288]
using the methods in [157]. Finally, it has recently been
observed that DC-segmented power systems are poset-
causal [289] making them amenable o decentralized Hs
control as in [171].

The above recent references indicate that optimal decentral-
ized and distributed control techniques are very much suited
for wide-area damping control. We firmly believe that further
powerful optimmal design methods will be successfully applied
to WAC problems in the near future. However, we emphasize
optimalily is merely one side of the story, and robusiness
of WAC to communication issues and changing system
corfigurations should not he sacrificed for performance.

Y. CONCLUSION

After summarizing various power flow models and tech-
nmiques for distributed optimization, this paper has sor-
veyed the literature regarding offline distributed optimiza-
tion and control algorithms for a variety of power system
applications. Algorithms based on Dual Decomposition,
the Alternating Direction Method of Multipliers, Analytical
Target Cascading, the Auxiliary Problem Principle, Optimality
Condition Decomposition, and Consensus+Innovation have
shown promise in solving a variety of power system optimiza-
fion and control problems. This paper then reviewed progress
on online optimization and control algorithms for the purposes
of real-time optimal power flow, optimal frequency conirol,
optimal voltage control, and optimal wide-area control. Recent
developments suggest the great potential of these approaches
for power system conirol, but further work is required lo
address a variety of open questions. Aside from specific
algorithmic questions, more general concerns of distributed
strategies relate to privacy issues, cyber-physical security, as
well as robustness to communication unceirtainties and failures.

REFERENCES

1} Z. Qiu, G. Deconinck, and R. Belmans, “A literature survey of
optimal power fow problems in the electsicity markel context,” in
Froc. JERE/PES Fower Syst. Conf Expe. (PSCE), Seattle, WA, USA,
Mar. 2009, pp. 1-6.

21 T. A, Momoh, R. Adapa, avd M. E. El-Hawary, “A review of selected
optimal power flow literature to 1993. 1. Nonlinear and quadratic
programining appivaches” IFEE Trans. Power Syst, vol. 14, uo. 1,
pp. 56-104, Feb. 1999,

31 I. A, Momeh, M. E. El-Hawary, and R. Adapa, “A review of selected
optimal power flow literature to 1993. II. Newton, linear programming
and interior point methods,” IEEFE Trans. Power Syst, vol. 14, no. 1,
pp. 105-111, Feb. 1999

{4} S, Frank, L. Steponavice, and 8. Rebennack, “Optimal power flow:
A bibliograptoc svivey, parts I and 1L Erergy Syst, vol. 3, no. 3,
pp. 221-289, 2012

[5] A. Castillo and R. P. O’Neill, “Survey of approaches to solving the
ACOPF (OPF paper 4),” U.S. Federal Energy Regul. Commission,
Washington, DC, US4, Tech. Rep., Mar 2013

{61 B. Stott and Q. Alsag, “Optimal power Bow—basic requirements for
real-life problems and their solutions,” in Froc. SEPCOPE XIT Svmp.,
Rio de Janeiro, Brazil, 20612.

[71 P. Panciatici ef al, “Advanced optiurization methods for power
systems,” in Proc. 18tk Power Syst. Comput. Cenfl (PSCC), Wroctaw,
Poland, Aug. 2014, pp. 1-18.

[8] F. Capitanescu ef al. “State-of-the-art, challenges, and future trends
in security constrained optimal power flow,” Klect. Fower Sysi. Res.,
vol. 81, no. &, pp. 1731-1741, 2611

[9] 1. C. Mukherjee and A. Gupta, “A review of charge scheduling of elec-
tric vehicles in smart grid,” {EEE Syst. J., vol. 9, no. 4, pp. 15411553,
Dec. 2015

{16} J. 8. Vardakas, N. Zorba, and C. V. Verikoukis, “A survey on demand
response programs in smmart grids: Prcing methods and optinmbzation
algorithms,” HEFE Commun. Surveys Tufs., vol. 17, no. 1, pp. 152-178,
Ist Quaut., 2015.

[11] D. Zha and G. Hug, “Decomposed stochastic model predictive control
Grid, vol. 5, no. 4, pp. 2044-2053, Jul. 2014,

[12] S. Riverso and G. Fepran-Trecate, “Plug-and-play distributed model
predictive control with coupling attenuation,” Opfima! Control Appl
Methods, vol. 36, no. 3, pp. 292-305, 2015,

[13] M. E. Baran and F. F Wy, “Optimal capacitor placement ou radial dis-
trbution systems,” JEEE Trans. Power Del., vol. 4, no. 1, pp. 725734,
Jan. 1989

{14} M. Farivar and 5. H. Low, “Branch flow model: Relaxations and
convexification—Part 17 IEEE Trans. Fower Sysf, vol 28, no. 3,
pp. 25542564, Ang. 2013,



2956

[16]

[17]

[18]

(18]

20}

211

[22]

[23]

[24]

[25]

[261

[28]

[291

[20]

31

[32]

[33]

[34]

{35

(371

[38]

M. Farvar and S. H. Low, “Branch flow model: Relaxaiions and
convexification—Part IL” IEEE Trans. Fewer Syst, vol. 28, no. 3,
pp. 2565-2572, Aug. 2013.

S. Bose, 8. H. Low, T Teerratkul, and B. Hassibi, “Equivalent melax-
ations of optimal power flow,” IEEE Trans. Autom. Centrol. vol. 60,
no. 3, pp. 729-742, Mar. 2015,

S. H. Low, “Convex relaxation of optimal power flow—Pats L
Formulations and equivalence,” IFEE Trans. Control Neiw. Syst., vol. 1,
no. 1, pp. 15-27, Mar. 2014,

5. H. Low, “Convex relaxalion of optiunal power flow—Pat 1L
Exactness,” IEEE Trans. Control Netw. Syst.,vol. 1, no. 2, pp. 177189,
Jan. 2014.

B. Stott, I Jardim, and O. Alsag, “DC power flow revisited,” JEEH
Trans. Pewer Svst., vol. 24, no. 3, pp. 1290-1300, Aug. 2009,

S. Bolognani and 5. Zampied, “On the existence and linear approx-
imation of the power flow solotion in power distitbution nelworks,”
IEEE Trans. Power Syst., vol. 31, no. 1, pp. 163-172, Jan. 2016,

S. V. Dhople, 8. 5. Guggilam, and Y. . Chen, “Linsar approxima-
Hons to AC power flow iv reclangular coordinates,” in FPree. 55nd
Annu. Allerton Conf. Commun. Contro! Compuf., Sep/Oct. 2015,
pp. 211217,

S. Bolograni and F. Darfler, “Fast power system analvsis via
implicit lipeanization of the power flow manifold” in Prec. 53w
Annn. Allerion Confl Commun. Control Compuf, Sep/Qct. 2015,
pp. 402409,

M. E. Baran and F. F Wi, “Optimal sizing of capacitors placed on
a radial distribution systemn,” JEEFE Trans. Power Del, vol. 4, no. 1,
pp. 735-743, Jan. 1989

X. Bai, H. Wei, K. Fujisawa, and Y. Wang, “Semidefinite programming
for optimal power flow problems,” Inf J. Elect Power Energy Syst,
vol. 30, nos. 6-7, pp. 383382, 2008.

I Lavaet and S. H. Low, “Zero duality gap in optimal power fow
problem,” [EEE Trans. FPower Syst, vol. 27, mo. 1, pp. 92-107,
Feb. 2012.

M. Farivag, C. R. Clarke, S. H. Low, and K. M. Chandy, “Inverter
VAR control for disiribution systems with renewables,” ie Proc. IEEF
SmartGrid Comm Conf, Oct. 2011, pp. 457-462.

R. A, Jabr, “Radial distmbution load flow uwsing conic program-
ming,” [FEL Trans. Power Syst, vol. 21, no. 3, pp. 1458-1459,
Aug. 2006.

S. Sojoudi and J. Lavaei, “Physics of power networks makes hard
aptimization problems easy to solve,” in Froc. IEREE FES Gen. Meeting,
Jul. 2012, pp. 1-8.

. Coffrin, H. L. Hijazi, and P Van Hentenryck, “The QC relaxation:
A theoretical and computational stady on optimal power flow.” IEEF
Trans. Fower Syst., vol. 31, no. 4, pp. 3008--3018, Jul. 2016.

B. Kocuk, S. S. Dey, and X. A, Sun, “Strong SOCP relaxations
of the optimal power flow problem” Oper Res., vol. 64, no. 6,
pp. 11771146, 2016,

D K. Molzahn and L A, Hiskens, “Sparsity-exploiting moment-based
relaxations of the optimal power flow problem,” IEFE Trans. Fower
Sysi., vol. 30, no. 6, pp. 3168-3180, Nov. 2015,

B Dall’Anese, H. Zhu, and G. B. Gdannakis, “Distributed optimal
power flow for smadt microgrids,” IEFE Trans. Smart Grid, vol. 4,
no. 3, pp. 146414735, Sep. 2013,

L. Gan and S. H. Low, “Convex relaxations and linear approximation
for optimal power flow in multiphase radial networks,” in Froc. [8th
Power Syst. Ceompul. Conf (PSCC), Wroclaw, Poland, Aug. 2014,
op. 1-9.

B. C. Lesicutre, 2. K. Maolzahn, A. R. Borden, and C. L.. DeMaico,
“Exarminiing the linits of the application of sermidefinite prograimming
to power flow problems,” in FPrec. 49t Annu. Allerten Conf Commun.
Conirol Comput., Sep. 2011, pp. 1492-1499.

W. A. Bukhsh, A. Grothey, K. 1. M. McKinnon, and P. A. Trodden,
“Local solutions of the optimal power flow problem,” IEEE Traws.
Fower Svst, vol. 28, no. 4, pp. 47804788, Nov, 2013

R. Louca. P. Seder, and E. Bitar, “A rank mimmization algo-
dthm to enhance semidefinite relaxations of optimal power tlow.” in
Proc. 31st Annu. Allerton Conf. Commun. Conirel Comput., Oct, 2013,
pp- 1010--1020.

B. Kocuk, 8. 5. Dey, and X. A. Sun, “Inexactness of SDP relaxation
and valid inequalities for optimal power flow” IEEE Trans. FPower
Syst., vol. 31, no. 1, pp. 642651, Jan. 2015.

K. Christakou, D.-C. Tomozei, J.-Y. Le Boudec, and M. Paolone,
“AC OPF in radial distobution networks—Pat I On the limits of
the branch flow convexificalion and the allernating direction method of

awiltiplies,” Elect. Power Svst. Res., vol. 143, pp. 438-450, Feb, 2016,

TEEE TRANSACTIONS ON SMART GRID, VOL. 8, NO. 6, NOVEMBER 2017

39]

{40]

{41]

{42}

{43]

fa4]

[45

—

£46)

7]

[48]

[54]

{55]

£56]

[57]

[58]

[59]

{6t]

{61}

D. Bierstock aed A. Verma, “Stropg NP-hardness of AC power fows
feasibility,” arXiv:1512.07315, Dec. 2015.

K. Lehmann, A. Grastien, and P. Van Hentenryck, “AC-feasibility on
tise nebworks is NP-tard.” IFEE Trans. Power Svst., vol. 31, wo. 1,
pp. 798-801, Jan. 2016.

S. Bose, D.F Gayme, 5. H. Low, and K. M. Chandy, “Optimal power
flow over tree networks” in Proe. 49k Annu. Allerion Conf. Commun.
Contrel Comput., Oct. 2011, pp. 13421348,

S. Bose, D. F. Gayme, K. M. Chandy, and $. H. Low, “Quadratically
constrained guadratic programs on acyclic graphs with application
to power fow,” IEEE Trans. Conirol Netw. Svsf, vol. 2, uo. 3,
pp. 278-287, Sep. 2015,

B. Zhang and D, Tse, “Geometry of feasible injection region of
power nelworks,” in Proc, 496k Annu. Allerton Conf. Commun. Control.
Comput., Sep. 2011, pp. 1508-1515.

B. Zhang and D. Tse, “Geometry of injection regions of power
networks.” IEEE Trans. FPower Syst., vol. 28, no. 2, pp. 788-797,
May 2013,

1. Lavaei, D). Tse, and B, Zhang, “Geometry of powear flows and opti-
mization in distobution networks” IEEE Trans. Power Syst, vol. 29,
no. 2, pp. 572383, Mar. 2014,

B. Zhang, A. Y. 5. Lam, A, D. Doninguez-Garcia, and 2. Tse, “An
optimal and distaibuted method for voltage regulation in power distribu-
tion systems,” TEEE Trans. Fower Syst., vol. 30, no. 4, pp. 1714-1726,
Tul. 2015

S. Sojoud: and I, Lavaei, “Convexification of optimal power fow
problem by means of phase shifters” in Froc. [EEE Int. Conf. Smart
Grid Commurn. (SmartGridCommy), Vancouver, BC, Canada, Oct. 2013,
pp. 756-761.

N. Li, L. Cheun, and S. H. Low, “Exact convex relaxation of OPF for
radial networks using branch flow model,” in Froc. fEEE Int. Conf
Smart Grid Commun. (SmartGridComm), Tainan, Taiwan, Nov. 2012,
pp. 7-12.

L. Gan, N. Li, U. Topcu, and S. H. Low, “Optimal power tlow in dis-
trbution networks,” in Proc. 52ad IEEE Conf Decis. Contrel (CDC),
Florence, ltaly, Dec. 2013, pp. 2313-2318.

L. Gan, N. Li, U. Topen, and 5. H. Low, “Hxact convex relaxation of
optimal power fow in radial networks,” IEEE Trans. Autom. Conirol,
vol. 60, no. 1, pp. 72-87, Jan. 2015

A. Kargarian ef gl, “Toward distrdbuted/decentralized DC optimal
power flow implementation in future electric power systems,” IEEE
Trans. Smart Grid, to be published.

J. Nocedal and S. Wright, Numerical Optimization, 2nd ed. New Yoik,
NY, USA: Springer-Verlag, 2000,

E. Castillo, R. Mingnez, A. J. Conejo, and R. Garcia-Bertrand,
Decomposition Technigues in Mathematical FProgramming. Bedin,
Germany: Springer, 2006,

B.H. Kim and R. Baldick, “A comparison of distributed optimal power
flow algorithins,” IEEE Trans, Fewer Syst., vol. 15, wo. 2, pp. 559604,
May 2000,

M. Amold, 3. Krepfli, and G. Arndewmssen, “Improvement of OPF
decomposition methods applied lo mudti-area power systems” in
Froe. IEEE Lausanne FPoweriech, Lausanne, Switzedand, Jul. 2007,
pp. 1308-1313.

D Gabay and B. Mercier, “A dual algonithio for the solution of nou-
linear vadational problems via finite element approximation,” Comput.
Math, Appl, vol. 2, no. 1, pp. 1740, 1976,

R. Glowinski and A. Mawoce, “Sur Uapproximation, par éléments finis
d’ordre un, et la résclution, par pénalisation-dualité d'une classe de
problémes de Dirchlet non linéaires,” ESAIM Math. Model Numer
Anal. Modélisation Mathématigue ef Analvse Numérigue, vol. 9,
no. R2, po. 41-76, 1975

D. Gabay, “Applications of the method of multipbers to vara-
tional inequalities,” in Augmented Lagrangion Methods: Applications
to the Numerical Selution of Boundary-Value Problems (Studies in
Mathematics and Its Applications), vol. 15, M. Fortin and R. Glowinski,
Bds. Amsterdam, The Netherands: Hisevier, 1983, pp. 209-331.

J. Eckstein and 3. P Bertsekas, “On the Douglas-Rachford split-
ting method and the proximal point algorithm for maximal monotons
operators,” Math. Frogram., vol. 53, nos. 1-3, pp. 203-318, 1992,

1. Douglas and H. H. Rachford, “On the numerical sclution of heat
conduction problems in two and thiee space vadables,” Trans, Amer
Math. Sec., vol. 82, no. 2, pp. 421439, 1956,

PoL. Lions and B. Marcier, “Splitting algorithms for the sum of
two nonlinear operators,” SIAM J Nuwmer Anal, vol 16, wo. 6,

pp. G64-079, 1979,



MOLZAHN et ol 1 SURVEY OF DISTRIBUTED OPTIMIZATION AND CONTROL ALGORITHMS FOR ELECTRIC POWER SYSTHMS

[62]

[63]

[541

[63]

[66]

fe71

[68)

[s9]

[70]

(801

(&1}

[82]

[$3

[84]

[83]

M. R. Hestenes, “Multiplier and gradient methods” J Optim. Theory
Appl., vol. 4, no. 5, pp. 303-320, 1969,

M. 1. Powell, “A method for nonlinear constraints in minimization
problems,” in Optimization, R. Fletcher, Ed. New York, NY, USA:
Academic Press, 1969, pp. 283-208.

H. Everett, III, “Genemlized Lagrange multiplier method for solving
preblems of optium allocation of resources.” Cper Res., vol 11,
no. 3, pp. 399417, 1963.

G. B. Dantzig and P. Wolfe, “Decomposition prnciple for linear
programs,” Oper. Res., vol. §, no. 1, pp. 101111, Feb. 1960.

J. E Benders, “Partitioning procedures for solving mixed-variables
programnng problems,” Nigmerische Mathematik, vol. 4, uwo. 1,
pp. 238232, Diec. 1962.

G. B. Dantzig, Linear Frogramming and FExtensions (Princeton
Landmarks in Mathematics and Physics). Princeton, NI, USA:
Princeton Univ. Press, 1963,

S. Boyd, N. Parikh, E. Chu, B. Peleato, and 1. Bekstein, “Distributed
optirmization and statistical learuing via the alternating direction method
of multipliers,” Found. Trends Mach. Leara., vol. 3, no. 1, pp. 1-122,
2011

A. Teixeira, E. Ghadimi, I. Shames, I. Sandberg, and M. Johansson,
“The ADMM algorithm for distributed guadmtic problems: Pammeter
selection and coustraint preconditioning,” IFEE Trans. Signal Process.,
vol. 64, wo. 2, pp. 290-305, Tan. 2016.

M. Krauing, E. Chu, J. Lavaei, and S. Boyd, “Dynanoe network energy
management via proximal message passing,” Found. Trends Optim.,
vol. 1, no. 2, pp. 70-122, 2013,

S. Tosserams, L. F Etman, P. Y. Papalambros, and J. E. Rooda, “An
augmented Lagrangian relaxation for analytical target cascading using
the alternating divections method of multiphers” Struct. Multidiscipl
Optis., vol. 31, no. 3, pp. 176189, 20006,

S. DorMohammadi and M. Rais-Rohani, “Comparison of altemative
sirategies for mullilevel optinnzation of hierarchical systems,” Appl
Marh., vol. 3, no. 10A, pp. 14481462, 2012,

G. Coben, “Auxiliary problem principle and decomposition of
oplimization problems,” J Opfim. Theory Appl, vol. 32, no. 3,
pp. 277303, Nov. 1980.

A. I Congjo, K. J. Nogales, and F. I Prieto, “A decomposition pro-
cedure based on approximate Newton directions,” Math. Frogram.,
vol. 93, no. 3, pp. 485-515, 2002

1. Guo, G. Hug, and O. K. Tonguz, “Intelligent partitioning in dis-
tributed optimization of electric powsr systems,” IEEE Trans. Smart
Grid, vol. 7, no. 3, pp. 1245-1258, May 2016.

K. Baker, J. Guo, G. Hug, aud X. Li, “Distributed MPC for effi-
cient coordination of storage and renewable anergy sowces across
control areas,” IEEE Traps. Smari Grid, vol. 7, no. 2, pp. 992-1001,
Mar. 2016.

S. Kar, G. Hug, 1. Mobammadi, and J. M. B Moura, “Distdbuted
state estirnation and energy management in smart gods: A consensis+
innovations approach” IEEE J Sel Topics Signal Process., vol. 8,
no. 8, pp. 1022-1038, Dec. 2014,

I Mobarmad:, G. Hug, and S. Kar, “Distributed approach for DC
optimal power flow calculations,” @Xiv.1410.4236, Oct. 2014,

I. Mohammadi, G. Hug, and S. Kar, “Role of communication on
the convergence rate of fully distributed DO optimal power ow,” in
Proc. IFEE Int. Conf. Smari Grid Comm., Veunice, Italy, Nov. 2014,
pp. 43-48.

J. Mohammadi, G. Hug, and 5. Kar, “Asyrchronous distributed
approach for DO optimal power fow,” in Prec. IEEE Eindhoven
FowerTech, Jun. 2015, pp. 1-6.

AL Conejo and J. A, Aguade, “Multi-area coordinated decentralized
DC optimal power flow,” IEEE Trans. Power Syst, vol. 13, no. 4,
op. 12721278, Nov. 1998.

C-H. Lin and S-Y. Lin, “Distributed optimal power flow with dis-
crete control variables of large distiibuted power systems,” IEEE Trans.
Fower Syst., vol. 23, no. 3, pp. 13831302, Aug. 2008.

N. Gatsis and GG. B. Giannakis, “Decomposition algorithms for market
clearing with Jarge-scale demand response,” JEEE Trans. Smart Grid,
vol. 4, no. 4, pp. 1976-1987, Dec. 2013,

J-Y. Joo and M. D. Wi'e, “Multi-layered optimization of demand
resources using Lagrange dual decomposition,” JTEEE Trans Smoart
Grid, vol. 4, no. 4, pp. 20812088, Dec. 2013,

E. Miehling and D. Teneketzis, “A decentralized mechanism for com-
puting competitive equilibria in deregulated clectricity markets” in
Proc. Amer. Contrel Conf (ACC), Boston, MA, TUSA. JTul 2015,
op. 4107-4113.

[86]

87}

[88]

[89]

{e0]

1]

192

[93]

94]

{95}

6]

971

[o8]

£99]

[100]

[101]

[102]

[103]

1104}

[105]

[106]

1107}

2957

A, Abboud, R. Couillet, M. Debbah, avd H. Siguerdidjane,
“Asynchronous alternating direction method of multipliers applied
to the direct-current optimal power flow problem,” in Proc. IEEE
int. Confl Acoust. Speech Signal Process. (FUASSP), Florencea, ltaly,
May 2014, pp. 7764-7768.

S. Chakrabarti, M. Kraning, E. Chu, R. Baldick, and S. Bovd, “Security
constrained optimal power flow via proximal message passing,” in
Proc. Clemsor Univ. Power Sysi. Conf (PSC), Clemson, SC, USA,
2014, pp. 1-8

A. Kargadan, Y. Fu, and Z. Lz, “Distributed security-coustrained unit
commitment for large-scale power systems,” JEEE Trans. Fower Syst.,
vol. 30, no. 4, pp. 1925-1936, Jul. 2015.

A. Kargarian and Y. Fu, “System of systems based security-constrained
unit comimitinent incorporating active distribulion gnds,” IFEE Trans.
Fower Syst., vol. 29, no. 3, pp. 2480-2408, Sep. 2014,

K. H. Chung, B. H. Kim, and D. Hur, “Distributed iinpleinentation
of generation scheduling algorithin on liferconnected power systems,”
Energy Convers. Manag., vol. 52, no. 12, pp. 3457-3464, 2011.

A, Abroadi-Khatir, AL 1. Congjo, and R. Cherkaoui, “Multi-area unit
scheduling and reserve allocation under wind power uncertainty,” /EEE
Trans. Power Syst., vol. 29, no. 4, pp. 1701-1710, Jul. 2014.

A. (. Bakinzis and P N, Biskas, “A decentralized solution to the
DC-OPF of interconuected power systemns,” IEEE Trans. Pewer Svst,
vol. 18, no. 3, pp. 10071013, Aug. 2003,

P N. Biskas, A. G. Bakidzs, N. . Macheras, and N. K. Pagialis,
“A decentralized implementation of DO optimal power flow on a
vetwork of computers” TEEE Trans. Power Syst, vol. 20, no. 1,
pp. 25-33, Feb. 2005.

Z. 1i, Q. Guo, H. Sun, and J. Wang, “Coordinated economic dis-
patch of coupled transmission and distribution systems using hetero-
geneous decomposition,” IEEE Trans. Fower Sysf, vol. 31, no. 6,
pp. 48174830, Nov. 2016.

X. Lai, L. Xie, Q. Xia, H. Zhong, and . Kang, “Decentralized
nilti-area economic dispatch via dypamic multiplier-based Lagrangian
relaxation,” IEEF Trans. Power Syst, vol. 30, no. 6, pp. 32253233,
Nov. 2015,

Z. L4, Q. Gue, H. Sun, and J. Wang, “A new LMP-sensitivity-based
heterogeneous decomposition for transmission and distribution coordi-
nated economic dispatch,” IEFE Trans. Smart Grid, to be published.
J. Mobammadi, (G. Hug, and 3. Kar, “Agent-based distributed secu-
rity constraived oplimal power flow.” IEEE Trans. Smar! Grid, to be
published.

Z. Wang, B. Chen, J. Waug, and J. Kim, “Decentralized eneigy
management system for retworkad microgrids in grid-connected and
islanded modes” IEEE Trans. Smart Grid, vol. 7, no. 2, pp. 1097-1105,
Mar. 2016.

P éulc, S. Backhaus, and M. Chertkov, “Optimal distzibuted control
of mactive power via the alternating direction method of multipliers,”
THEE Trans. Evergy Convers., vel. 29, noe. 4, pp. 968-977, Dec. 2014,
M. Bazrafshan and N. Gatsis, “Decentralized stochastic programining
for real and reactive power management in distobution systems,” in
Proc IEEE Int. Conf. Smart Grid Commun. (SmartGridComm), Veuice,
Ttaly, Nov. 2014, pp. 218-223.

W-I Ma, J. Wang, V. Gupta, aed €. Chen, “Distribated energy man-
agement for networked microgrids using online alternating direction
method of multipliers with regret,” IEEE Trans. Smart Grid, to be
publishad.

S. S Guggilam, E. Dall’Anese. Y. €. Chen, S. V. Dhople, and
G. B. Giannakis, “Scalable optimization methods for distrbution
networks with high PV integration,” TEEE Trans. Smart Grid, vol. 7,
no. 4, pp. 20612070, Jul. 201s.

B. A. Robbing, H. Zhy, and A. D. Dominguez Garcfa, “Optimal
tap setting of voltage regolation trapsformers i unbalanced disteibn-
tion systems,” JEKE Trans. Power Svst., vol. 31, no. 1, pp. 256267,
Jan. 2016.

X. Bai and H. Wei, “A semidefinite programming method with graph
partitioning technique for oplimal power fow problems,” Int. J. Elect
Fower Energy Syst., vol. 33, no. 7, pp. 1309-1314, 2011.

R. A. Jabr, “Exploiting sparsity in SDP ielaxations of the OPF
problem,” FEEE Trans. Fower Syst, vol. 27, no. 2, pp. 11381139,
May 2012

A, Y S Lam, B. Zhang, and D. N. Tse, “Distribuied algorithms
for optimal power flow problem,” in Froc. [EEE 5lst Cenf Decis.
Ceonirel (CDC), Dec. 2012, pp. 430-437.

L. Vandenberghe and M. S, Andarsen, “Chordal graphs and seridefi-
nite oplimmization,” Found. Trends Cptim., vol. 1, no. 4, pp. 241433,
2015



2958

[108]

[109]

{110]

[111)

[112]

[113]

[114]

[115]

[116]

[117]
[118]

[119]

[120]

[121]

[123]

[124]

[125)

[129]

[130]

[131]

E. Dall’Anese, S. V. Dhople, B. B. Jolmson, and G. B. Giannalkss,
“Decentralized optimal dispatch of photovoltaic inverters in residential
distribution systems,” JELE Trans. Energy Convers., vol. 29, no. 4,
pp. 957-967, Dec. 2014,

K. Madani, A. Kalbat, and J. Lavaei, “ADMM for sparse semidafinite
programnng with appbcations to optunal power flow problem,” iu
Proc. 54th IEEE Conf. Decis. Control (CDC), Osaka, Japan, Dec. 2015,
pp. 59325939,

Q. Peng and 5. H. Low, “Distributed algorithm for optimal power flow
on an unbalanced radial network” in Proc. IFEL 54th Annu. Conf
Decis. Control (CDC), Osaka, Japan, Dec. 2015, pp. 6915-6420,

(3. Peng and 5. H. Low, “Distributed optimal power flow algorithin
for radial networks, I Balanced single phase case,” IEEFE Trans. Smart
(rid, to be published.

W. Zheng, W. Wu, B. Zhang, H. Sun, and Y. Liu, “A fully distributed
reactive power optimization and control method for active distzibu-
tion networks,” JEEE Trans. Smart Grid, vol. 7, no. 2, pp. 1021-1033,
Mar. 2016.

J. A Aguado and V. H. Quintana, “Inter-utilities power-exchange
coordination: A market-oriented approach,” THEE Trans. FPower Svst.,
vol. 16, no. 3, pp. 513-519, Aug. 2001

K. Chrigtakou, D.-C. Tomozeid, J.-Y. Le Boudec, and M. Paolone,
“AC OPF in radial distobution networks—FPart I An augmented
Lagrangian-based OPF algorithm, distributable via primal decompo-
sition,” Elect Fower Sysé Res., vol. 150, po. 24-35, Sep. 2017,

X. Wang and Y. H. Song, “Apply Lagrangian relaxation to mulli-zone
congestion management,” in Froc. JEEE Fower Eng Soc. Win. Meeting,
vol. 2. Colurnbos, OH, USA, 2001, pp. 395404,

A.X. Sun, D. T. Phan, and S. Ghosh, "TFully decentralized AC opti-
mal power flow algorithms,” in Proe. IEEE Power Energy Soc. Gen.
Meeting, Vancouver, BC, Canada, Jul. 2013, pp. 1-5.

T. Emseghe, “Distributed optimal power flow using ADMM,” JEEE
Trans. Power Syst., vol. 29, no. 5, pp. 2370-2380, Sep. 2014,

T. Erseghe, “A distributed approach to the OPF problem,” EURASIF
J. Adv. Signal Process., vol. 45, pp. 1-13, May 2015.

S. Mhaona, G. Verbic, and A. Chapman, “A component-based dual
decomposition method for the OPF problem,” arXiv 1704.03647,
Apr. 2017

R. D. Zimmeman, . B. Murillo-Sinchez, and R. J. Thomas,
MATPOWER: Steady-state operations, planving, and analysis tools
for power systems research and education,” JIEEE Trans. Fower Syst.,
vol. 26, no. 1, pp. 12-19, Feb. 2011

S. Magadsson, P €. Weeraddana, and C. Fisclione, “A distzibuted
approach for the optimal power-tlow problem based on ADMM and
sequential couvex approximatious,” IFEE Trans. Control Netw. Syst.,
vaol. 2, no. 3, pp. 238-253, Sep. 2015,

1 A K. Marvasti, Y. Fu, 5. DorMohammadi, and M. Rais Kohani,

“Optimal operation of active distribution grids: A system of systems
framewok,” IEEE Trans. Smart Grid, vol. 5, no. 3, pp. 1228-1237,
May 2014,

S. DorMobainmadi and M. Rais-Rohani, “Exponential penalty func-
tion formulation for multilevel optimization vsing the analytical target
cascading framework” Struct Multidiscipl Optim., vol. 47, no. 4,
pp. 559-612, 2013,

B. H. Kim and R. Baldick, “Coarse-grained distributed optimal power
flow.” {EEE Trans. Power Svst., vol. 12, no. 2, pp. 932-939, May 1997.
K. Baldick, B. H. Kim, C. Chase, and Y. Luo, “A fast distributed imple-
mentation of oplimal power fow,” IEEE Trans. Power Syst., vol. 14,
no. 3, pp. 858-864, 1999,

| D. Har, J-K. Park, and B. H. Kim, “Evaluaticn of convergence rate in

the auxiliary problem principle for distributed optimal power flow,” IEE
Froc. Gener. Transm. Distrib., vol. 149, no. 5, pp. 525-532, Sep. 2002
E J. Nogales, F. J. Prieto, and A. 1. Congjo, “A decomposition method-
ology appled to the mudii-area optimal power flow problem,” Anp.
Oper. Res., vol. 120, nos. 1-4, pp. 99116, 2003,

| P.N. Biskas and A. G. Bakintzis, “Decentralised OPF of large multiarea

power systems,” JEE Proc. Gener. Transm. Distrib., vol. 153, no. 1,
pp. 99-105, Jan. 2006.

G. Hug-Glanzmann and G. Andersson, “Decentralized optimal power
flow control for overlapping areas in power systers,” IEEE Trans.
Power Syst., vol. 24, no. 1, pp. 327-336, Feb. 2009,

I Guo, G. Hug, and O. K. Tonguz, “A case for nov-convex distribuled
optimization in large-scale power systems,” IEEE Trans. Fower Syst.,
to be published.

K. Amow, L. Hurwicz, and H. Uzawa, Siudies in Linear and Non-
Linear Programming. Stanford, CA, USA: Stanford Univ. Press, 1958,

TEEE TRANSACTIONS ON SMART GRID, VOL. 8, NO. 6, NOVEMBER 2017

[132]

[133]

[134]

[135]

[136]

[137)

[138]

[138]

[140]

[141

[142]

[143]

[144]
[145]

[146)

[147]

1148]

[148]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157)

D Fegjer and F. Paganini, “Stability of primal-duoal gradient dynarncs
and applications to network optimization,” Amtematica, vol. 46, no. 12,
pp. 1974-1981, Dec. 2010.

I. Wang and N. Elia, “A conlrol pemspeclive for centralized and dis-
tributed convex optimization,” in FPrec. IEEE 50th Annu. Conf. Decis.
Control (CDC), Odando, FL, USA, Dec. 2011, pp. 38G0-3805.

X. Ma and N. Elia, “A distributed continuous-time gradient dynam-
ics approach for the active power loss nunimizations,” in Prec. 5ist
Annu. Allerton Conf. Commun. Control Comput., Monticello, IL, USA,
Oct. 2013, pp. 100-106.

X. Ma aud N. Elia, “Couvergence analysis for the primal-dual gradient
dynamics associated with optimal power flow problems,” in FProc. Eur
Contrel Conf. (ECC), Linz, Awstida, Tul. 2015, pp. 1261-1266.

X. Ma and N. Eha “Existence of strong Lagrange dnals to certain
optimal power flows,” in Froc. 22nd Mediterrancan Conf Centrol
Aufom. {MED), Palermo, Italy, Jun. 2014, pp. 540-645.

X. Ma and N. Elia, “A sufficient saddle point characterization for
the Lagrangian associated with general OPF problems.” in Prec. 53rd
TEEE Conf. Decis. Control (CDC), Los Angeles, CA, USA, Dec. 2014,
pp. 1119-1124.

K. Dviyotharn, M. Chertkov, P. Van Hentenryck, M. Vulfray, and
§. Misra, “Graphical models for optimal power flow” Consfraints,
vol. 22, no. 1, pp. 24-49, 2017,

M. Chertkov, S. Misra M. Vuffiay, D. Koshmamutdy, aod
P. Van Hentenryck, “Graphical models and belief propagation-hierarchy
for optimal physics-constrained network flows” @Xi1702.01890,
Feb. 2017.

D. D. Sikak, Deceniralized Control of Complex Sysfems. Acaderic
Press, 1994,

.. Bakule, “Decentralized control: An overview,” Awmaui. Rev. Control,
vol. 32, no. 1, pp. §7-98, 2008,

S-H. Wang and E. J. Davison, “On the stabilization of decentral-
ized control systems,” IEFFE Trans. Autom. Ceafrol, vol. AC-18, no. 5,
pp. 473478, Qct. 1973.

N. Sapdell, Jr, P Varalya, M. Athans, and M. Safonov, “Survey of
decentralized control methods for large scale systems,” IEEE Trans.
Autom. Contrel, vol. 23, no. 2, pp. 108-128, Apr 1978,

H. 5. Witsenhausen, “A counterexample in stochastic optimum con-
tiol” SIAM J. Control, vol. 6, no. 1, pp. 131-147, 1968,

C. H. Papadimitricu acd J. Tsitsiklis, “Intractable problems in control
theory,” SIAM F. Controf Opfim., vol. 24, no. 4, pp. 630654, 1086.
Y. D). Blondel and J. N. Tsitsiklis, “A survey of computational com-
plexily results in systems and control” Awtematica, vol. 36, no. 9,
pp. 12401274, 20600,

R. I Andrea and G. E. Dullemd, “Distributed control design for spa-
tially interconvected systems,” IEEE Trans. Autom. Contrel, vol. 48,
no. 9, pp. 1478-1493, Sep. 2003,

B. Bamieh, F Paganini, and M. A. Dableh, “Distributed control of
spatially invaoant systems,” JEEE Trans. Autem. Centrel, vol. 47, ne. 7,
pp. 10911107, Jul. 2002.

C. Langboit, R. S, Chaudra, and R, D’Andiea, “Distrbuted coutrol
design for systems interconnected over an arbitrary graph,” IFEE Trans.
Autom. Conirol, vol. 49, no. 9, pp. 1502-1519, Sep. 2004,

N. Motee and A. Jadbabaie, “Optimal control of spatially distributed
systemns,” JEEE Trans. Autom. Centrel, vol. 53, no. 7, pp. 1616-1629,
Aung. 2008,

G. E. Dollerud and R. D’ Andres, “Distributed control of heterogeneous
systems,” TEEFE Trans. Autom. Control, vol. 49, no. 12, pp. 2113-2128,
Diac. 2004,

T. Keviczky, F Borrelli, and G. J. Balas, “Decentralized reced-
ing honzon control for large scale dypamdcally decoupled systems,”
Automatica, vol. 42, no. 12, pp. 2105-21135, 2006.

F. Borrelli and T. Keviczky, “Distributed LQR design for identical
dynaimically decoupled systems,” IEEF Trans. Autom. Control, vol. 53,
no. §, pp. 19011912, Sep. 2008.

D. D Sﬂjak, “Decentralized control and computations: Status and
prospects,” Annu. Rev. Control, vol. 20, pp. 131-141, 1996,

I. Lavaei, “Decentralized umplementation of centralized controllers for
interconnected systems,” TEFEE Trans. Autom. Confrol, vol. 57, no. 7,
pp. 1860-1865, Jul. 2012,

M. Fardad, F Lin, and M. K. Jovanovie, “On the optimal design of
structured feedback gains for interconnected systems,” in FProc. 48k
IERE Confl Decis. Control, Shanghai, China, 2009, pp. 978-083.

H Lin, M. Fardad, and M. R. Jovanovic, “Augmented Lagrangian
approach to design of structured oplimal state feedback gains,” IEEE
Trans. Auior. Cenfrel, vol, 56, no. 12, pp. 29232025, Dec. 2011,



MOLZAHN et ol 1 SURVEY OF DISTRIBUTED OPTIMIZATION AND CONTROL ALGORITHMS FOR ELECTRIC POWER SYSTHMS

[158]

[159)

[160]

[161)

[162]

(163}

[164)

[165]

[166]

[167]

[168]

[169)

[170]

[171]

[174]

{175}

[176]

[178]

[179)

[180]

[181]

[182]

I. C. Geromel, I. Bernussou, and P L. D. Peres, “Decentralized control
through parameter space optimization,” Aufomatica, vol. 30, no. 10,
pp. 1565-1578, 1994,

K. A Date and 1. H. Chow, “A parametdzation approach to optitaal Hy
and Hoo decentralized control problems,” Aufomatica, vol. 29, no. 2,
pp. 457-463, 1993,

G. Scorletti and G. Duc, “An LMI approach to decentralized Hoo
control,” Iaf J Cenfrel, vol. 74, no. 3, pp. 211224, 2001,

G. Zhai, M. lkeda, and Y. Fujisaki, “Tecentralizad H., controller
design: A matrix inequality approach vsing a homotopy method,”
Automatica, vol. 37, no. 4, pp. 565-572, 2001

G. A. de Castio and F. Pagapini, “Convex synthesis of localized con-
trollers for spatially invatant systems,” Amtomatica, vol. 38, no. 3,
pp. 445456, 2002.

BE. Bamieh and P. G. Voulgaris, “A convex characterization of dis-
tributed control problems in spatially invadan! systems with commu-
nication constraints,” Syst. Cenirol Lett., vol. 54, no. 6, pp. 575-383,
2005,

XK. Qi M. V. Salapaka, P G. Voulgaris, and M. Khammash, “Structured
optirmal and robust control with multiple criteria: A convex solution,”
TEEE Trans. Autom, Control, vol. 49, no. 10, pp. 16231640, Oct. 2004,
N. Matni and J. C. Doyle, “A dual problem in  decentialized con-
trol subject to delays,” in Proc. Amer Confrol Conf, Washington, DC,
USA, 2013, pp. 5772-5777.

L. Lessard, “A separation ponciple for decentialized state-feedback
optimal control,” in Frec. 5ist Annu. Allerton Conf. Commun. Control
Comput., Monticello, IL, USA, 2013, pp. 528-534.

L. Lessard and A, Nayyar, “Structural sesults and explicit selution for
two-player LQG systems on a finite e horizon,” in Prec, 52nd IEEE
Conf Decis. Control, Flovence, ltaly, 2013, pp. 6542-6549.

M. Fardad acd M. R. Jovanovie, “On the design of optimal struc-
tured and sparse feedback gains via sequential convex programming,”
in Proc. Amer. Control Conf., 2014, pp. 2426-2431.

F Lin, M. Fardad, and M. R. Jovanovié, “Design of optimal spaise
feedback gains via the alfernating direction method of mudiipliers,”
TEEE Trans. Autom. Conirel, vol. 58, no. 9, pp. 2426-2431, Sep. 2013.
M. Rotkowitz and S. Lall, “A characterization of convex problems in
decentralized control®st” IEEE Trans. Autom. Conirel, vol. 51, no. 2,
pp. 274-286, Feb. 2006.

P Stah and P A, Pamilo, “Hy-oplimal decentialized control over
posets: A state-space solution for state-feedback,” IFEE Trans. Autom.
Control, vol. 58, uo. 12, pp. 3084-3096, Dec. 2013,

J L. Lessard and S. Lall, “Optimal controller synthesis for the decentral-

izad two-player problem with output feedback)” in Prec. Amer. Control
Conf, Montreal, QC, Canada, 2012, pp. 6314-6321.

A Lampenski and J. C. Doyle, “Output feedback Hy model malching
for decentralized systems with delays,” in Froc. Amer Control Conf.,
2013, pp. 5778-5783.

M. C. Rotkowitz and N. €. Magins, “On the nearest guadratically
invatiant information constraint,” IEEE Trans. Autom. Conirel, vol. 57,
no. 3, pp. 13141319, May 2012.

T. Tanaka and C. Langbort, “The bounded real lemma for internally
positive systems and H-infinity structured static state feedback,” IEFE
Trans. Autom. Cenirel, vol. 56, no. 9, pp. 2218-2223, Sep. 2011.

A, Rantzer, “Distributed coutrol of posilive systemns,” 1n Proc. 50th
TEEE Conf. Decis. Control Eur. Control Confl (CDC-ECC), Orlando,
FL, USA, 2011, pp. 6608-6611.

1 1. Lavaei, “Optimal decentralized control problem as a rank-constrained

optirization,” in Proc, 5ist Annw. Allerfon Conf. Commun. Control
Comput. (Allerfon), Monticello, 1L, USA, Qct. 2013, pp. 30-45.

. Fazelnia, R. Madani, A. Kalbai, and J. Lavaei, “Convex relaxation
for optimal distributed control problems,” IEEFE Trans. Autom. Control,
vol. 62, no. 1, pp. 206-221, Jan. 2017.

K. Dvijotham, E. Todorov, and M. Fazel, “Convex structured controller
design in finite horizon,” IEEF Trans. Control Netw. Sysf., vol. 2, o, 1,
pp. 1-10, Mar. 2015

S. Schuler, P. Li, J. Lam, and F Allgéwer, “Design of structured
dynamic output-feedback controllers for interconnected systems,” fuf.
FoControl, vol. 84, no. 12, pp. 2081-2091, 2011

M. R. Jovanovié aud N. K. Dhingra, “ConbroHler architectures:
Tradeoffs betwaen performance and structure,” Eur J. Controi, vol. 30,
pp. 76-91, Inl. 2016,

L. Gan and 8. H. Low, “An online gradient algosithm for optimal power
flow on radial networks,” IEFEE J Sel Areas Commun., vol. 34 no. 3,
op. 625638, Mar. 2016,

[183]

[184]

[185]

[186]

[187)]

[188]

[190]

[191]

[192]

[153]

[194]

[155]

[196]

{197]

[198]

[199]

[200]

[201]

[202]

[203]

[204]

[205])

2959

D. B. Areold, M. Negrete-Pincetic, M. D. Sankur, D. M. Auslacder,
and D. S. Callaway, “Model-free optimal control of VAR resources
in distoibution systemns: An extremum seeling approach,” IFEFE Trans.
Power Syst., vol. 31, no. 3, pp. 35833593, Sep. 2016.

E. Dall’Anese, S. V. Dhople, and G. B. Giannakis, “Photovoltaic
inverter conlrollers seeking AC optiimal power flow solutions,” IEEF
Trans. Fower Syst., vol. 31, no. 4, pp. 28092823, Jul. 2016.

A. Hauswirth, 5. Bolognani, G. Hug, and F. Dérfler, “Projected gradient
descent on Riemannian manifolds with applications to online power
systemn optimization,” in Proc. 54tk Annu. Allerton Conf. Commun.
Contrel Comput., Sep. 2016, pp. 225-232.

A. Haunswinh, A. Zanardi, S. Bolognani, F. Dirfler, and G. Hag,
“Oulive optimization iu closed loop ou the power flow manifold,” in
Froe. IEEE PES FowerTech, 2017.

E. Dali’Anese and A. Simonetto, “Optimal power flow pursuit,” /EEE
Trans. Smart Grid, to be published.

Y. Tang, K. Dvijotham, and S, Low, “Real-time OPF based on quasi-
Newton methods,” in Froc. 5ist Aanu. Conf. Inf. Sci. Svsi (CISS),
Baltimore, MD, USA, Mar. 2017.

G. Wang, V. Kekatos, A, I. Conejo, and G. B. Gianpalds, “Ergodic
energy management leveraging resource variability in distribution
grids” JEKE Trans. Power 3yst., vel. 31, no. 6, pp. 47654775,
Nov. 2016.

M. Farivar, L. Chen, and S. H. Low, “Equilibrium and dynanmies of
local voltage control in distitbufion systems,” iu Proc. 52nd IEEE Conf.
Decis. Control, Florence, Raly, Dec. 2013, pp. 4329-4334.

M. Farivar, X. Zho, and L. Chen, “Local voltage control in distribution
systems: An incremental control algorithm,” in Froc. IEEE Int. Conf
Swart Grid Commun. (SmartGridComm), Nov. 2015, pp. 732-737.

S. Bolognani and S. Zampien, “A distnibuled control strategy for reac-
tive power compensation in smart microgrids,” IEEE Trans. Aufom.
Contrel, vol. 58, uo. 11, pp. 2818-2833, Nov. 2013,

S. Bolograni, R. Carli, G. Cavrare, and S, Zampied, “Distdbuoted
reactive power feedback control for voltage regulation and loss
minimazation,” IEEE Trans. Aufom. Corfrel, vol. 60, no. 4,
pp. 966-981, Apr. 2015,

J. Machowski, J. Bialek, and J. R. Bumby, Power Svstem Dynamics
and Stabilify. Chichester, UK Wiley, 1957,

N. Aipsworth and S, Grjalva, "Design and quasi-equilibrium analy-
sis of a distributed frequency-restoration controller for inverter-based
micrognds,” in Pree. North Amer Power Symp. (NAFS), Manhattan,
KS, USA, 2013, pp. 1-6.

M. Andreasson, D. V. Dimarogonas, H. Sandberg, and K. H. Johansson,
“Distiibuted control of networked dynamical systems: Static feedback,
integral action and consensus,” IEEF Trans. Autom. Confrol, vol. 59,
ne. 7, pp. 1750-1764, Jul. 2014,

. Zhao, E. Mallada, and F. Dirfler, “Distributed frequency control for
stability and economic dispatch in power networks” in FProc. Amer
Conirel Conf. (ACC), Chicago, I, USA, Jul. 2015, pp. 23582364,
M. Andreasson, . V. Dimarcgonas, H. Sandberg, and K. H. Johansson,
“Distiibuted Pl-coutrol with applications to power systems [iequency
control” in Frec. Amer Control Conf. (ACC), Portland, OR, USA,
2014, pp. 3183-3188.

F. Dirfler and S. Gramimatico, “Gather-and-broadeast frequency control
in power systeras,” Aufomatica, vol. 79, pp. 296-305, May 2017,

J. Schitfer, C. A Haps, T. Keal, R. Ortega, and J. Raisch, “Modeling,
aualysis, and expenmental vabidation of clock diift effects in low-
inertia power systems,” IEEE Trans. Ind. Electron., vol. 64, no. 7,
pp. 5942-5951, Jul. 2017

. W. Simpsonr-Porco, I Dirfler, and F. Bullo, “Synchronization and
power shadng for dioop-controlled inverters in islanded microgrids,”
Aufomeatica, vol. 49, no. 9, pp. 2603-2611, 2013,

L.-Y. Lu, “Consensus-based P —f and (2 —V droop control for multiple
parallel-connected inverers in lossy networks” in Free [EEE Int
Svap. Ind. FElectron., Taipel, Taiwan, May 2013, pp. 1-6.

D. Busbano and M. di Bemardo, “Consensus and synchronization of
complex networks via proportional-integral coupling,” in Proc. IEEF
int. Symp. Cirenit Syst. (ISCAS), Melboume, VIC, Australia, 2014,
pp. 1796-1799.

M. Andreasson, D. V. Diinarogonas, K. H. Johansson, and H. Sandberg,
“Distributed vs. centralized powsr systems frequency control” in
FProc. 12th Fur Contrel Conf (ECC), Ziitich, Switzerand, Tul. 2013,
pp. 3324-3524.

H. Difler, J. W, Simpson-Porce, and F Bullo, “Breaking the hierar
chy: Distributed control and economic optimality in rmcrogrids,” JEEE
Trans, Control Netw. Svst., val. 3, no. 3, pp. 241-253, Sep. 20146,



2960

[206]

[207)

[208]

[209]

[210]

[211]

2123

[213]

[214]

[215]

[216)

[217]

[218]

[219)

{2261

[221]

[222]

{223]

[224]

[225)

{226]

[227]

[228]

I W. Sumpson-Porce ¢f al, “Secondary frequency and voltage control
of islanded microgrids via distoibuted averaging,” IEEE Trans. Ind.
Electron., vol. 62, no. 11, pp. 7025-7038, Nov. 2015.

K. Mudumbai and S. Dasgupta, “Distribnted control for the smart
grd: The case of economc dispatch,” in Proc. Inf. Theory Appl
Workshop (fTA), Sar Diego, CA, USA, 2014, pp. 1-6.

S. T. Cady, A. D. Dominguez-Garcfa, and C. N. Hadjicostis, “A dis-
tributed generation control architecture for islandad AC microgrids,”
IEEE Trans. Control Syst. Technol., vol. 23, no. 5. pp. 1717-1735,
Sep. 2015.

A.D. Dominguer-Garcia and C. N, Hadjicostis, “Coordination and con-
trol of distributed energy resources for provision of ancillary services,”
in Prec. Ist IEEE Int. Conf Smart Grid Commun. (SmartGridComm),
Gaithersburg, M, USA, Oect. 2010, pp. 337-342.

H. Bowattour, T. W. Simpson-Porco, F Difler, aud F Bullo, “Further
results on distributed secondary control in microgrids,” in Froe. IEFE
Conf. Decis. Contrel, Florence, Italy, Dec. 2013, pp. 1514-1519.

(3. Shafiee, J. M. Guerrero, and J. C. Vasquez, “Distabuted secondary
control for islanded MicroGrids—A unovel approach” IEEFE Trans.
Fower Hlectron., vol. 29, no. 2, pp. 1018-1031, Feb. 2014,

B. Bamieh and D. F Gayme, “The price of synchrony: Resistive
losses due to phase synchronization in power networks,” in Froc.
Amer Control Conf. {ACC), Washington, DC, USA, Jun. 2013,
pp. 5815-5820.

M. Siarm and N. Motee, “T'undamental imits ou robustness measures iu
networks of interconnected systems,” in Proc. 52nd IEEE Conf. Decis.
Contrel (CDC), Florenes, Italy, Dec. 2013, pp. 67-72.

B, Sjodin and D F Gayme, “Transient losses in synchronizing
renewabls energy integrated power networks,” in Froc. Amer Control
Conf. (ACC), Portland, OR, USA. Jun. 2014, pp. 5217-5223.

E. Tegling, B. Bamieh, avd D. F. Gayme, “The price of synchrony:
Evalvating the resistive losses in synchronizing power networks,”
IEEE Trans. Confrel Netw. Syst, vol. 2, no. 3, pp. 254-266,
Sep. 2015,

XK. Wu, F Dirtles, and M. R. Jovanovié, “Topology identification and
design of distributed integral action in power networks,” 10 Proc. Amer
Conrol Conf. (ACC), Boston, MA, US4, 2016, pp. 5921-5926.

E. Tegling, M. Andreasson, . W. Simpson-Porco, and H. Sandberg,
“Improving petformance of deoop-controlled microgrids through dis-
tributed Plcontrol,” in Froe. Amer. Control Conf. (ACC), Boston, MA,
USA, Jul. 2016, pp. 2321-2327.

E. Tegling, “Ou performance Hinttations of large-scale nelworks with
distributed feedback control,” Licentiate thesis, School Elect. Eng.,
KTH Roy. Inst. Technol., Stockholm, Sweden, 20165,

T. Stegink, €. De Persis, and A. van der Schaft, “A unifying energy-
based approach to stability of power grids with market dynamics,”
TEEE Trans. Autom. Control, vol. 62, no. &, pp. 2612-2622, Jun. 2017,
S. Trip, M. Biirger, and C. De Persis, “An internal model approach
to {optimal} frequency regulation in power grids with time-varying
voltages,” Aufomafica, vol. 64, pp. 240-253, Feb. 2016.

J. Schiffer, E Diérfler, and E. Fridmann, “Robustness of distributed
averaging control in power systers: Time delays & dynamic commu-
nication topology.” Automatica, vol. 80, pp. 261-271, Jun. 2017.

N. Monshizadeh and C. De Persis, “Output agreement in networks with
unimatched disturbances and algebraic constraints,” in Proc. 54th IEEE
Conf. Decis. Control (CDC), Osaka, Japan, 2015, pp. 4196-4201.

C. D2 Persis, N. Monshizadeh, J. Schiffer, and F. Dirfler, “A Lyapunov
approach to control of microgrids with a  network-preserved
differential-algebraic model” in Froc. IEEE 35th Conf Decis.
Conlrol {TDC), Las Vegas, NV, USA, Dec. 2016, pp. 2565-2500.

T. Stegink, C. De Persis, and A. van der Schaft, “Optimal powear
dispatch in petworks of figh-dimensional models of synchronous
machines,” in Proc. IKEE 55th Conf. Decis. Control (CDC), Las Vegas,
NV, USA, 2015, pp. 41104115,

T. Kose, “Solutions of saddle value prablems by differential equations,”
Econometrica J. Econometric Soc., vol. 24, no. 1, pp. 59-70, 1956,
K. J. Amow, L. Hurwice, H. Uzawa, and H. B. Chenery, Stugies in
Linear and Non-Linear Programming. Stanford, CA, USA: Stanford
Univ. Press, 1958,

G. W. Brown and I. Von Nevinaun, “Solufious of garnes by differential
equations,” DTIC, Foit Belvoir, VA, USA, Tech. Rep. ADOG03877,
1950,

A, Jokié, M. Lazar, and P. P. Van den Bosch, “Real-time control of
power systemns usiag nodal prices,” Il [ Elec!. Fower Energv Syst,
vol. 31, no. 9, op. 522-536G, 2009,

TEEE TRANSACTIONS ON SMART GRID, VOL. 8, NO. 6, NOVEMBER 2017

{2293

[230]

[232]

[233]

[235]

[236]

[237]

[238]

[236

el

[240]

[241)

[242]

[243]

1244]

[245]

[246]

247

[248]

[249]

[250]

[251)

A. K. Bejestani, A, Annaswamy, and T. Samad, “A hierarchdcal trans-
active control architecture for renewables integration in smant grids:
Analytical modeling and stability,” IEEE Trans. Smart Grid, vol. 5,
no. 4, pp. 2054-2065, Jul. 2014.

D Cai, E. Mallada, and A. Wierman, “Distributed optimization decom-
position for joint economic dispatch and frequency regulation,” in
Froc. 54th {EEE Conf. Decis. Conirol (CDC), Osaka, Japan, Dec. 2015,
pp. 15-22.

. Zhao, U Tepen, N. Li, and 8. H. Low, “Power system dyramics
as primal-dual algonthm for optimal load coenirol,” arXiv. 13050583,
2013.

. Zhao, U. Topcu, N. Li, and S. I Low, “Design and stability of
load-side pomary frequency contiol in power systems,” JEEE Trans.
Autom. Control, vol. 59, no. 5, pp. 1177-1189, May 2014.

E. Mallada, . Zhao, and S. H. Low, “Optimal load-side control for
frequency regulation in smart grnids,” IEEE Trans. Autom. Control, to
be published.

N. Li, L. Chen, C. Zhae, and S. H. Low, “Connecting automatic gen-
eration conlrol and economnnc dispateh from ae optimization view,” in
Proc. Amer. Control Conf., Portland, OR, USA, 2014, pp. 735-740.
Z. Wang, F. Liv, S. H. Low, C. Zhao, and S. Mei, “Distubuted
frequency control with opermtional constraints, part I Pernode power
balance,” 2017.

Z. Wang, F. Liu, S. H. Low, C. Zhao, and S. Mei, “Distabuted
frequency control with operational constraints, part II: Network power
balance,” 2017.

S. You and L. Chen, “Reverse and forward enginearing of frequency
control in power networks” in FPree 53rd IEEE Confl Decis.
Control (CDC), Los Angeles, CA, USA, Dec. 2014, pp. 191198,

E. Mallada, . Zhao, and S. H. Low, "Optimal load-side control for
frequency regulation in smat grids,” in Froc. 32nd Annn. Allerten
Conf. Commun. Contrel Compul., Monlicello, IL, TUSA, Sep. 2014,
pp. 731-738.

C. Zhao, E. Mallada, S. H. Low, and J. Bialek, “A unified framework
for frequency control and congestion management,” in Proc, Fower
Syst. Comput. Conf. (PSCC), Genea, Ttaly, 2016, pp. 1-7.

X. Zhang and A. Papachristodoulou, “A real-time control framework
for smart power networks with star topology,” in Proc. Amer Conirol
Conf. (ACC), Washington, DC, USA, 2013, pp. 5062-5067.

X. Zhang and A. Papachristodonlou, “Distobuted dynamic feedback
control for smant power networks with tree topology,” 1o Prec. Amer
Confrol Conf (ACC), Porland, OR, USA, 2014, pp. 1156-1161.

K. Turitsyn, P. Sule, S, Backhaus, and M. Chertkov, “Options for cou-
trol of reactive power by distributed photovoltaic generators” Froe.
IEFE, vol. 99, no. 6, pp. 1063-1073, Jun. 2011,

H. G. Yeh, D. E Gayme, and S. H. Low, “Adaptive VAR control for
distribution circuits with photovoltaic generators,” IEEE Trans. Power
Syst., vol. 27, no. 3, pp. 1656-1663, Aug. 2012

C. De Pemis and N, Monshizadeh, “Bregman storage functions for
ricrogrid conteol” IEEE Trans. Autem. Control, to be published.

M. Todescato, J. W. Simpson-Porco, F Didrfler, R. Cadi, and ¥ Bullo,
“Ounlive distribuled vollage stress miniimization by optimal feedback
reactive power control” [EEE Trans. Control Netw. Sysi, to be
published.

P N. Vovos, A. E. Kiprakis, A. R. Wallace, and G. P. Harrison,
“Centralized and distributed voltage control: Impact on distmbuted
generation penetration,” JEEE Trans. Power Syst, vol. 22, no. 1,
pp. 476483, Feb. 2007.

F. Olivier, P Aristidou, 120 Emst, and T. Van Cuisem, “Active
Management of low-voltage networks for mitigating overvoltages
due to photovoltaic units,” IFEE Trans. Smart Grid, vol. 7, no. 2,
pp. 926-936, Mar. 2016.

G. Cavrare and R. Carli. Zeca! and Distributed Velluge Contrel
Algerithms in Distribution Network. Accessed on Mar 24, 2017,
[Online].  Available:  http:/automatica.dei.unipd it/tl files/utenti2/
cavraro/Pubblications/Local %20and %2 0distributed %20voltage %20
control%20algorithms%20in%20distribution . pdf

G. Cavraro, 8. Bolognani, R. Cardi, and S. Zampieri, “The value
of communication in the vollage regulation problem,” in Proc. 556k
IEEE Conf. Decis. Control, Las Vegag, NV, USA, Dec. 2016,
pp. 5781-5786.

1. W. Simmpson-Porco, F Dérfler, and E Bullo, “Voltage stabilization in
microgrids via quadratic droop control,” IEEE Trans. Autom. Control,
vol. 62, no. 3, pp. 12391253, Mar. 2017

5. Kundu, S. Backhaus, and I. A. Hiskens, “Distributed conteol of
reactive power from photovoltaic inverters,” in Proc. TEEE Inf Symp.
Circuit Syst. ($SCAS) Bedjing, China. May 2013, pp. 249252,



MOLZAHN et al.: SURVEY OF DISTRIBUTED OPTIMIZATION AND CONTROL ALGORITHMS FOR ELECTRIC POWER SYSTEMS

[252]

[253]

[254]

[255]

[256]

[257]

[258]

[259]

[260]

[261]

[262]

[263]

[264]

[265]

[266]

[267]

[268]

[269]

[270]

[271]

[272]

[273]

“VDE-AR-N 4105: Generators connected to the LV distribution
network—Technical requirements for the connection to and parallel
operation with low-voltage distribution networks,” DKE, Tech. Rep.,
2011.

“Network code for requirements for grid connection applicable to all
generators,” ENTSO-E Standard Draft, Brussels, Belgium, Tech. Rep.,
2012.

A. Samadi, R. Eriksson, L. Soder, B. G. Rawn, and J. C. Boemer,
“Coordinated active power-dependent voltage regulation in distribu-
tion grids with PV systems,” IEEE Trans. Power Del., vol. 29, no. 3,
pp. 1454-1464, Jun. 2014.

H. Zhu and H. J. Liu, “Fast local voltage control under limited reactive
power: Optimality and stability analysis,” IEEE Trans. Power Syst.,
vol. 31, no. 5, pp. 3794-3803, Sep. 2016.

H. J. Liu, W. Shi, and H. Zhu, “Decentralized dynamic optimization
for power network voltage control,” IEEE Trans. Signal Inf. Process.
Over Netw., to be published.

X. Zhou, M. Farivar, and L. Chen, “Pseudo-gradient based local volt-
age control in distribution networks,” in Proc. 53rd Annu. Allerton
Conf. Commun. Control Comput., Monticello, IL, USA, Sep. 2015,
pp. 173-180.

N. Li, G. Qu, and M. Dahleh, “Real-time decentralized voltage control
in distribution networks,” in Proc. 52nd Annu. Allerton Conf. Commun.
Control Comput., Monticello, IL, USA, 2014, pp. 582-588.

P. Nahata, S. Mastellone, and F. Dorfler, “Decentralized optimal pro-
jected control of PV inverters in residential microgrids,” in Proc. IFAC
World Congr., Toulouse, France, Nov. 2017.

V. Kekatos, L. Zhang, G. B. Giannakis, and R. Baldick, “Voltage regu-
lation algorithms for multiphase power distribution grids,” IEEE Trans.
Power Syst., vol. 31, no. 5, pp. 3913-3923, Sep. 2016.

X. Zhou and L. Chen, “An incremental local algorithm for better volt-
age control in distribution networks,” in Proc. IEEE 55th Conf. Decis.
Control (CDC), Las Vegas, NV, USA, Dec. 2016, pp. 2396-2402.

B. Zhang, A. D. Dominguez-Garcia, and D. Tse, “A local control
approach to voltage regulation in distribution networks,” in Proc. North
Amer. Power Symp. (NAPS), Manhattan, KS, USA, 2013, pp. 1-6.

S. Bolognani et al., “Distributed multi-hop reactive power com-
pensation in smart micro-grids subject to saturation constraints,” in
Proc. IEEE 51st IEEE Conf. Decis. Control (CDC), Dec. 2012,
pp. 1118-1123.

J. Schiffer, T. Seel, J. Raisch, and T. Sezi, “Voltage stability and reactive
power sharing in inverter-based microgrids with consensus-based dis-
tributed voltage control,” IEEE Trans. Control Syst. Technol., vol. 24,
no. 1, pp. 96-109, Jan. 2016.

B. A. Robbins and A. D. Dominguez-Garcia, “Optimal reactive power
dispatch for voltage regulation in unbalanced distribution systems,”
IEEE Trans. Power Syst., vol. 31, no. 4, pp. 2903-2913, Jul. 2016.
K. Christakou, D. C. Tomozei, M. Bahramipanah, J.-Y. Le Boudec, and
M. Paolone, “Primary voltage control in active distribution networks
via broadcast signals: The case of distributed storage,” IEEE Trans.
Smart Grid, vol. 5, no. 5, pp. 2314-2325, Sep. 2014.

A. Bernstein, L. Reyes-Chamorro, J.-Y. Le Boudec, and M. Paolone,
“A composable method for real-time control of active distribution
networks with explicit power setpoints. Part I: Framework,” Elect.
Power Syst. Res., vol. 125, pp. 254-264, Aug. 2015.

J. H. Chow, J. J. Sanchez-Gasca, H. Ren, and S. Wang, “Power system
damping controller design-using multiple input signals,” IEEE Control
Syst., vol. 20, no. 4, pp. 82-90, Aug. 2000.

R. A. Jabr, B. C. Pal, N. Martins, and J. C. R. Ferraz, “Robust and coor-
dinated tuning of power system stabiliser gains using sequential linear
programming,” IET Gener. Transm. Distrib., vol. 4, no. 8, pp. 893-904,
Aug. 2010.

A. Chakrabortty and P. P. Khargonekar, “Introduction to wide-area
control of power systems,” in Proc. Amer. Control Conf. (ACC),
Washington, DC, USA, 2013, pp. 6758-6770.

K. Seethalekshmi, S. N. Singh, and S. C. Srivastava, “Wide-area pro-
tection and control: Present status and key challenges,” in Proc. 15th
Nat. Power Syst. Conf., Mumbai, India, Dec. 2008, pp. 169-175.

J. Xiao, F Wen, C. Y. Chung, and K. P Wong, “Wide-area pro-
tection and its applications—A bibliographical survey,” in Proc.
IEEE PES Power Syst. Conf. Expo., Atlanta, GA, USA, Oct. 2006,
pp. 1388-1397.

Y. Chompoobutrgool, L. Vanfretti, and M. Ghandhari, “Survey on
power system stabilizers control and their prospective applications for
power system damping using synchrophasor-based wide-area systems,”
Eur. Trans. Elect. Power, vol. 21, no. 8, pp. 2098-2111, 2011.

[274]

[275]

[276]

[277]

[278]

[279]

[280]

[281]

[282]

[283]

[284]

[285]

[286]

[287]

[288]

[289]

2961

M. Amin, “Special issue on energy infrastructure defense systems,”
Proc. IEEE, vol. 93, no. 5, pp. 855-860, May 2005.

H. Nguyen-Duc, L. Dessaint, A. F. Okou, and I. Kamwa, “Selection of
input/output signals for wide area control loops,” in Proc. IEEE Power
Energy Soc. Gener. Meeting, Providence, RI, USA, Jul. 2010, pp. 1-7.
W. Qiu, V. Vittal, and M. Khammash, “Decentralized power system
stabilizer design using linear parameter varying approach,” IEEE Trans.
Power Syst., vol. 19, no. 4, pp. 1951-1960, Nov. 2004.

Q. Liu, V. Vittal, and N. Elia, “LPV supplementary damping controller
design for a thyristor controlled series capacitor (TCSC) device,” IEEE
Trans. Power Syst., vol. 21, no. 3, pp. 1242-1249, Aug. 2006.

K. Tomsovic, D. E. Bakken, V. Venkatasubramanian, and A. Bose,
“Designing the next generation of real-time control, communication,
and computations for large power systems,” Proc. IEEE, vol. 93, no. 5,
pp. 965-979, May 2005.

M. Zima, M. Larsson, P. Korba, C. Rehtanz, and G. Andersson, “Design
aspects for wide-area monitoring and control systems,” Proc. IEEE,
vol. 93, no. 5, pp. 980-996, May 2005.

G. E. Boukarim, S. Wang, J. H. Chow, G. N. Taranto, and N. Martins,
“A comparison of classical, robust, and decentralized control designs
for multiple power system stabilizers,” IEEE Trans. Power Syst.,
vol. 15, no. 4, pp. 1287-1292, Nov. 2000.

Y. Zhang and A. Bose, “Design of wide-area damping controllers
for interarea oscillations,” IEEE Trans. Power Syst., vol. 23, no. 3,
pp. 1136-1143, Aug. 2008.

F Dorfler, M. R. Jovanovi¢, M. Chertkov, and F. Bullo, “Sparsity-
promoting optimal wide-area control of power networks,” IEEE Trans.
Power Syst., vol. 29, no. 5, pp. 2281-2291, Sep. 2014.

X. Wu, E Dorfler, and M. R. Jovanovi¢, “Input-output analysis
and decentralized optimal control of inter-area oscillations in power
systems,” IEEE Trans. Power Syst., vol. 31, no. 3, pp. 2434-2444,
May 2016.

M. Wytock and J. Z. Kolter, “A fast algorithm for sparse controller
design,” arXiv preprint arXiv:1312.4892, 2013.

S. P. Azad, J. A. Taylor, and R. Iravani, “Decentralized supplemen-
tary control of multiple LCC-HVDC links,” IEEE Trans. Power Syst.,
vol. 31, no. 1, pp. 572-580, Jan. 2016.

FE Lian, A. Chakrabortty, and A. Duel-Hallen, “Game-theoretic multi-
agent control and network cost allocation under communication con-
straints,” [EEE J. Sel. Areas Commun., vol. 35, no. 2, pp. 330-340,
Feb. 2017.

S. Schuler, U. Miinz, and F. Allgower, “Decentralized state feedback
control for interconnected systems with application to power systems,”
J. Process Control, vol. 24, no. 2, pp. 379-388, 2014.

N. R. Naguru and V. Sarkar, “Optimal wide area control of a power
system with limited measurements,” in Proc. IEEE Int. Conf. Signal
Process. Informat. Commun. Energy Syst. (SPICES), Kozhikode, India,
2015, pp. 1-5.

J. A. Taylor and L. Scardovi, “Decentralized control of DC-segmented
power systems,” in Proc. 52nd Annu. Allerton Conf. Commun. Control
Comput. (Allerton), Monticello, 1L, USA, 2014, pp. 1046-1050.

Daniel K. Molzahn (S’09-M’13) received the
B.S., M.S., and Ph.D. degrees in electrical engi-
neering and the Master of Public Affairs degree
from the University of Wisconsin—-Madison, where
he was a National Science Foundation Graduate
Research Fellow. He is a Computational Engineer
with Argonne National Laboratory. He was a Dow
Post-Doctoral Fellow in Sustainability with the
University of Michigan, Ann Arbor. His research
focuses on optimization and control of electric power
systems.



2962

Florian Dorfler (M’15) received the Diploma
degree in engineering cybernetics from the
University of Stuttgart in 2008 and the Ph.D. degree
in mechanical engineering from the University
of California at Santa Barbara in 2013. He is an
Assistant Professor with the Automatic Control
Laboratory, ETH Zurich. From 2013 to 2014, he
was an Assistant Professor with the University
of California Los Angeles. His primary research
interests are centered around distributed control,
complex networks, and cyber physical systems
currently with applications in energy systems and smart grids. His students
were finalists for the Best Student Paper Awards at the European Control
Conference in 2013 and the American Control Conference in 2016. He
was a recipient of the 2010 ACC Student Best Paper Award, the 2011
O. Hugo Schuck Best Paper Award, the 2012-2014 Automatica Best
Paper Award, the 2016 IEEE Circuits and Systems Guillemin-Cauer Best
Paper Award, the 2009 Regents Special International Fellowship, the 2011
Peter J. Frenkel Foundation Fellowship, and the 2015 UCSB ME Best Ph.D.
Award.

Henrik Sandberg (S°02-M’04) received the M.Sc.
degree in engineering physics and the Ph.D. degree
in automatic control from Lund University, Lund,
Sweden, in 1999 and 2004, respectively. He is
a Professor with the Department of Automatic
Control, KTH Royal Institute of Technology,
Stockholm, Sweden. From 2005 to 2007, he was a
Post-Doctoral Scholar with the California Institute
of Technology, Pasadena, USA. In 2013, he was a
Visiting Scholar with the Laboratory for Information
and Decision Systems, MIT, Cambridge, USA. He
has also held visiting appointments at the Australian National University and
the University of Melbourne, Australia. His current research interests include
security of cyberphysical systems, power systems, model reduction, and fun-
damental limitations in control. He was a recipient of the Best Student Paper
Award from the IEEE Conference on Decision and Control in 2004 and an
Ingvar Carlsson Award from the Swedish Foundation for Strategic Research
in 2007. He is an Associate Editor of the IFAC Journal Automatica and the
IEEE TRANSACTIONS ON AUTOMATIC CONTROL.

Steven H. Low (F’08) received the B.S. degree
from Cornell and the Ph.D. degree from Berkeley,
both in EE. He was with AT&T Bell Laboratories,
Murray Hill, NJ, USA, from 1992 to 1996, and with
the University of Melbourne, Australia from 1996 to
2000. He has been a Professor with the Department
of Computing and Mathematical Sciences and the
Department of Electrical Engineering, Caltech, since
2000. He was a co-recipient of the IEEE Best
Paper Awards, on the editorial boards of major jour-
nals in networking and power systems, and the
Honorary/Chair Professors in Australia, China, and Taiwan. His research on
communication networks has been accelerating over 1 TB of Internet traffic
every second since 2014.

i

IEEE TRANSACTIONS ON SMART GRID, VOL. 8, NO. 6, NOVEMBER 2017

Sambuddha Chakrabarti (S’14) received the
B.Tech. degree in electrical engineering from the
National Institute of Technology, Allahabad, India.
He is currently pursuing the Ph.D. degree with the
Department of Electrical and Computer Engineering,
University of Texas at Austin under the supervision
of Prof. R. Baldick. His present research focuses
on application of distributed optimization to optimal
power flow problem.

Ross Baldick (S’90-M’91-SM’04-F’07) received
the B.Sc. degree in mathematics and physics and
the B.E. degree in electrical engineering from the
University of Sydney, Sydney, Australia, and the
M.S. and Ph.D. degrees in electrical engineering and
computer sciences from the University of California,
Berkeley, CA, USA, in 1988 and 1990, respectively.
From 1991 to 1992, he was a Post-Doctoral Fellow
with the Lawrence Berkeley Laboratory, Berkeley,
CA, USA. In 1992 and 1993, he was an Assistant
Professor with the Worcester Polytechnic Institute,
Worcester, MA, USA. He is currently a Professor with the Department of
Electrical and Computer Engineering, University of Texas, Austin, TX, USA.

Javad Lavaei received the Ph.D. degree in con-
trol and dynamical systems from the California
Institute of Technology. He is an Assistant Professor
with the Department of Industrial Engineering and
Operations Research, UC Berkeley. He was a
Post-Doctoral Scholar with Electrical Engineering
and the Precourt Institute for Energy of Stanford
University for one year. He has worked on different
interdisciplinary problems in power systems, opti-
mization, and control theory. He was a recipient of
several awards, including the DARPA Young Faculty
Award, the Office of Naval Research Young Investigator Award, the Air Force
Office of Scientific Research Young Investigator Award, the NSF CAREER,
the Google Faculty Award, the Governor General’s Gold Medal given by
the Government of Canada, the Best Paper Award given by the IEEE PES
Power System Analysis Computing and Economics Committee in 2015 for
his paper entitled Zero Duality Gap in Optimal Power Flow Problem, the
2015 INFORMS Optimization Society Prize for Young Researchers, the 2016
Donald P. Eckman Award from the American Automatic Control Council,
the 2016 INFORMS ENRE Energy Best Publication Award, and the 2017
SIAM Control and Systems Theory Prize. He is an Associate Editor of the
IEEE TRANSACTIONS ON SMART GRID and the IEEE CONTROL SYSTEMS
LETTERS, and serves on the conference editorial boards of the IEEE Control
Systems Society and European Control Association.



	80 - 07990560_Page_01
	80 - 07990560_Page_02
	80 - 07990560_Page_03
	80 - 07990560_Page_04
	80 - 07990560_Page_05
	80 - 07990560_Page_06
	80 - 07990560_Page_07
	80 - 07990560_Page_08
	80 - 07990560_Page_09
	80 - 07990560_Page_10
	80 - 07990560_Page_11
	80 - 07990560_Page_12
	80 - 07990560_Page_13
	80 - 07990560_Page_14
	80 - 07990560_Page_15
	80 - 07990560_Page_16
	80 - 07990560_Page_17
	80 - 07990560_Page_18
	80 - 07990560_Page_19
	80 - 07990560_Page_20
	80 - 07990560_Page_21
	80 - 07990560_Page_22

