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Real-Time Optimal Power Flow
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Abstract—Future power nelworks are expecled to incorporaie
a large number of distribuied energy resources, which introduce
randomness and flucltuations as well as fast conlrol capabilities,
But {raditional optimal power flow methods are only appropriate
for applications that operate on a slow timescale. In this paper, we
build on recent work to develop a real-time algorithm for AC opti-
mal power flow, based on quasi-Newton methods. The algorithm
uses second-order information lo provide suboptimal sclutions
on a fast timescale, and can be shown to {rack the optimal
power flow solution when the esiimated second-order information
is sufficiently accurate. We also give a specific implementation
based on L-BFGS-B method, and show by simulation that the
proposed algorithim has good performance and is computationally
eflicient.

Index Terms—Optimal power flow, time-varying optimization,
guasi-Newton method.

I. INTRODUCTION

PTIMAL power flow (OPF) is fundamental in power
O system operations, and there has been extensive research
onn OPF algorithms. Buf for most algorithms in the liter-
ature, one must wait until the iteration has converged to
oblamn a solution that can be applied to the network hecause
the intermediate iterates typically do not satisfy power flow
equations and are not implementable. This is appropriate for
fraditional power systemn applications that typically operate
on a slow timescale. However, future power grids will incor-
porate a large number of distributed energy resources, such
as distributed wind and solar generations, electric vehicles,
storage devices, smart inverlers and other power electron-
ics. They introduce randomness and fluctoations, as well
as fast conirol capabilities to the network. Traditional OPF
approaches that work on a slow timescale will be inade-
quate for this sitnation, and we need real-time OPF algorithms
that can respond quickly to network changes and maintain
{sub)optimality.

Theie are a number of recent works that focus on OPF algo-
rithims that work on a faster fimescale. Reference [1] proposed
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a continuous-time approach based on gradient dynamics for
loss minimization; [2] proposed a distributed feedback algo-
rithm for optimal reactive power fow that exploits real-time
measurements, based on dual ascent method,; [3] developed a
fast VAR controller and analyzed iis stability; [4] proposed
an online OPF algorithm for disiribution networks based on
projected gradient descent and showed its convergence to
the global optimum under certain conditions; [5] designed
a composable framework for real-time control of distribu-
tiori networks based on projected gradient descent, and [6]
comsidered resource agents with bounded disobedience and
studied the convergence of projected gradient control under
resfricted conditions; [7] studied projected gradient descent
method on Riemann manifolds in continmous time domain and
applied it to the online OPF problem; [8] proposed a real-
time feedback controller seeking OPF solations using SDP
relaxation and dual ascent method; [9] employed a linearized
power flow model and the double-smoothing technigue for the
real-time control of distribution networks with time-varying
loads and generation Timils, and gave theoretical guarantees
on the controller’s capability of tracking time-varying OPF
targets; [10] developed a model-free algorithm based on the
exlreme-seeking approach; [11]-[13] proposed real-time con-
trol schemes that combine frequency confrol with economic
dispatch.

In this paper, we propose a real-time algorithim for time-
varying OPF problems based on quasi-Newton methods. For
each lime step, we measure the valoes and constraints of the
decision variables, use them as the initial point and compute
a small correction to track the optimal sclution. The com-
patation of the correction 1s based on a single iteration of a
quasi-Newton algorithm, where we estimate the Hessian of
the cost function and solve a simple optimization problem
with a quadratic objective. Compared to existing literature, the
proposed method assumes a single phase nonlinear AC power
flow model with arbifrary topology, and utilizes second-order
information which is expected to better handle the nonlin-
earity of the OPF problem. We also prove that the proposed
algorithm will have good tracking performance if the second-
order information can be estimated with good accuracy. We
give an implementation based on the L-BFGS-B method, and
show by simulation that the proposed algorithm is computa-
tionally efficient and can track the oplimal operations with
eood performance.

1. MODEL AND FORMULATION
A. Network Model

We consider a power network with a topology represeited
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N=11,2...,nand ECNT «NT. Bus 0 will be the slack
bus, and the phase angle of its voltage will be the reference and
taken as zero. In this paper we consider the sifuation where
the network has time-varying loads and generations. The set
of time instanis is assumed to be a discrete set and is denoted
by 7.

Let £ ¢ T be an arbitrary time instant. For each bus
i = NT, let V() be the complex voltage phasor, and p;(£), g;(f)
be the net real and reactive power injections {generation
minus load) at bus 7 at time {. The complex cwrent phasor
through line (i, /) = £ will be denoted by I;(r). The relation
between (Vill)ient, Pl e+, (@i iep+ and (D) pek
is described by physical laws and usually can be written
as a set of algebraic equations (when the network is in a
steady state) or ordinary differential equations (when dynam-
ics needs to be accounted for). For steady states, the power
flow equations

2 vievior;,
jent
Iy = =Yy(Vi(t) = V;() (1)

i) +jgi (0 =

are salisfied, where Yj's are the enfries of the admitiance
matrix Y of the network.,

For each bus, there are physical consiraints on how much
power can be injected by the connected devices. We assume
that they can be modeled by time-varying consfraints

@i, i) e X5y, ieNT,
where each X;(f) is a compact convex subset of B? for every
t ¢ 7. For the slack bus, we assume that Xo(f) admits a box
consfraint given by

Xolf) = [&(f)\ﬁg(ﬁ)] « [go(n,@o(n]

Information about the capabilities of controllable devices, as
well as the changes in loads and renewable generations, can
be encoded in these time-dependent regions.

The voltages and currents also need to be bounded for
operational reasons. We assume that they are given by
ieNT,

G2 = -
iLj'\I)‘ = 'gija (i, ) e E

For each bus i, we assumne that a cost Ci(py, gi5 1) will be
incurred if some power (p;, ¢;) 18 injected into the network.
The cost functions can be potentially time dependent. We also
assume that they are all convex fonctions of (p;, g;) and are
twice continuously differentiable.

Table T gives a list of the main notations used throughout
the paper.

B. Problem Formulation

Our goal is to minimize the total cost Zz Ci(pi, gis B under
the physical and operational constraints for each time § by
properly operating the controllable devices in the network.
As we have mentioned before, traditional OPF algorithms
can be used to find the optimal control strategy on a slow
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timescale (say every tens of minutes), but will not be suit-
able for real-ime applications on future smart grids. For
real-time operations, we need an algorithm that can frack
the time-varying loads and renewable generations on a faster
fimescale. We reguire that the real-time operation at time f
should be close to an optimal solation provided by a tradi-
tional OPF algorithin with the current feasible region given
by X:(6). i « NT; we refer to them as suboptimal strategies.

Although loads and generations change with time, if the
time intervals between each real-titne updates are sufficiently
small, the regions A;(#) will not change too much as we pro-
ceed from time f to £+ 1. As a result, in many sitnafions the
optimal control at time 7 is expected to be close to the opti-
mal control at the previous time instant. The objective of the
real-timie algorithm is then to find a suboptimal strategy for
each r €71 for the time-varying OPF

min Cilpi(D) . qi D) 1) {2a)
PO, Z re
Vi feNT

st piD + gt = Y VilhVi (DY (26)
jeNt

(Pi, qi) € Xi(n, i=NT (2}

v 2 Vi =7, ieNT )

a2 = .. ~

YV~ Vi) = 8y, G e B (2

given the current state of the network and the previous real-
time operation.

II1. A REAL-TIME OPF ALGORITHM
A. Algorithm

It can be seen that (2) is a typical OPF problem, where the
nonconvex power flow equality constraint (2b) contributes a
large portion of the difficulty in finding a solution. We note
that the power flow equation is solved automatically by the
power network itself, i.e., whenever a particular control is
applied, the network itsell will implicilly compute the state
that satisfies (2b). Mathematically, this is to say that, the vari-
ables in (2b) can be partitioned into two sets, one consisting
of controllable variables (such as power injections) and the
other consisting of dependent variables (such as vollages), and
there is a function mapping controllable variables to dependent
variables such that they satisfy (2b). This is a consequence
of the implicit function theorem. Now we assume that the
confrollable variables are given by

x(5) = (Vold), praa(. g (5)

where p1.,(f) denotes py{(f), ..., pp(D) and Vy(o) is real and
positive becanse /Vo(f) = 0, and that the dependent variables
are given by

(Vi (0, poln), go(n)).

Then by assuming that the conditions of the implicit {function
theorem hold, we obtain a function F : U — C" x B2 where
I4 is an open subset of B, » B such that whenever

Vi), po@), o)) = F(Volfh, prafh), quon (6}
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TABIE I
L13T OF SOME NOTATIONS

N¥ ={0,...,n} | The set of buses of the network

N =NT\{0} The set of buses excluding the slack bus
T The set of time instants
Vi(t) The complex voltage phasor at bus ¢ at time ¢
The real and reactive power injection at bus {
pi(2), i (6) at fimma £ power :
Tt The complex current phasor from bus 4 to bus
i5(t) J at time ¢
The (2, 7)"th entry of the network’s admittance
Yis matrix
¥t The feasible region of the real and reactive
i(1) power injection at bus { at time ¢
= The lower and upper bound on the sguared
L voltage magnitude |Vi(t)[2
7. The upper bound on the squared current mag-
* nitude |I,'J'|2
The cost incurred by injecting (p;, g:) at by
Ci(ps, @i 8) The cost & y injecting (i, g:) at bus
(&) The vector of controllable variables

(Volt),p1(t); - - -, Pnlt), @1(2), - - -, Gn(2))
The power flow function that maps control-
F lable variables to dependent variables satisfy-
ing power flow equations
The sum of the cost function and the penalty
fr functions

04 The values of the controllable variables mea-
x(t) sured at the beginning of period ¢
g The gradient V f;(x"(¢))
A positive definite matrix that serves as an

B, estimate of the Hessian of f;
The real-time operation computed by the real-
®(t) time OPF algorithm; an approximate solution
to (5)
x(t) The exact solution to (5)
x*(t) A local optimal solution to (4}
The weighted Eunclidean norm with respect
(|- lw to the positive definite matrix W, [|%]lw =
(xTWx)Uz
Pg The projection operator onto the convex set S
for some (Vo(D), pia(D.g1..®) = 4, the variables

Ponlt), gon D), Vo () will satisfy (2b). We denote the entries
of the vector-valued function F by

Vi) = Vi(VolDh, pra(D). gua®). i€ N
Polt) = potVoll), prau (B, gra (D)),
g6} = qo(Voil), prnif), graid). (3

The squared magnitude of voltages and currents are then
given by

Vi) |* = |Vix(D)]* = vi(x(D),
7,07 = | Ta{(Vix@) — Vi)

P2
I
I
I

The idea of partitioning variables into dependent and indepen-
dent ones was proposed in the reduced gradient method [14]
and has been used for solving optimal power flow prob-
lems [15]. In practice, it has been empirically observed that,
given a “reasonable” set of injections, there is a unigue
solution that satisfies the operational constraints in most sit-
uations. While counterexamples do exist [16], [17], recent
work [18]-{20] has identified conditions under which there
is a unique power flow solution within a certain domain.
This means that we can apply our control to the network
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Algorithm 1 The Real-Time OPF Alporithm
For each time I,

1) Measure the current controllable and dependent vari-
ables, as well as regions A;(1) that encode information of
loads and generations at time 7. Denote the controllable
variables at the beginning of period £ by x°(1).

2) Based on the measurement data, compute f;(x°(f)) and

g = Vi (x"0)).
3) Solve the following problem (approximately)

B - X7
min. g (Xt) x ())

+ %(XU) - XO(I))TBz(X(f) - XG@) (3a)

st (i, gi(i € X, ieN {5b)
T = Vol) = v/ (5¢)

Here the matrix B, is a positive definite matrix which
serves as an estimate of the Hessian of f;(x(1)). Denote
the solution by %(1).

4) Apply the operation given by X(f) to the network in
period £

5) Update the Hessian estimate to get By,

6) Wait antil the next time step and go to Step 1.

and use it 0 solve the power flow eguations for the depen-
dent variables. These dependent variables are then measured to
compute the next control. Such an approach will become feasi-
ble as utilities arcund the world are deploying more and maore
nstrumentation thal can provide real-lime measurements.

By using (3), we avoid the explicit power flow equality
constraint, For the nonlinear constraints on voltages V;(x(f)),
i e N, carrents {;(x{1)), and slack bus injections po(x(f)) and
gofx(rY), we employ penalty functions to move them to the
objective. Let

&Y= G0, i) 1+ Copolx(Dl, gotx@));

ielV

37 i) T+ By - vix)))
ielV

Y b (G x() — Ty)
ek

+ g (#{Po&D) = Fo®) + ¢(py(0) — polx(e) })
+ st (20 — T ) + ¢(g, 0 — ox))),

and we consider the following problem

min_ fi(x() (da)

x{(tjeld
st @i, i) ¢ X, ieN (4b}
VP = Vot < /T (4c)

The function ¢ (x) is assumed to be continnously differentiable
for x ¢ B and equal to zero when x < 0. A typical choice is

The real-time OPF algorithm we propose is given in
Algorithm 1. This real-time OPF algonthm is inspired
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Fig. 1. Illustration of the hierarchical OPF strategy.

by various quasi-Newton methods for numerical optimiza-
tion [21]. If the loads, generations and the cost functions do not
change with time, then the procedure for a single time instant
is very similar to a single iteration of a quasi-Newton algo-
rithm that solves the nonlinear program (4). In our situation,
the loads, generations and cost functions are changing slowly
compared with the time granularity of real-time updates. Then
the solution provided by a single iteration of a quasi-Newton
algorithmn is expected to be a good approximation of the true
optimal solution.

We employ the more complicated quasi-Newton methods
rather than the projected gradient method because the cost
functions C;(p;, g;; 1) and the penalty functions can have quite
different curvatures (second-order derivatives). On the other
hand, we do not restrict the methods of estimating the Hessian
as long as B; is positive definite, and the projected gradi-
ent method can be viewed as a special case of this general
algorithm if we let B; = I for some n; > 0.

The proposed real-time OPF algorithm relies on the assump-
tion that small changes in loads and generations will result
in small changes in the optimal operation. However, OPF
problems can have multiple local minima. As time changes,
these multiple local minima form multiple trajectories, and the
global minimum can jump from one frajectory to another. It
is also possible that at some time a new (rajectory appears
or an existing trajectory disappears. In view of these possi-
bilities, we assume that traditional OPF is solved iteratively
until convergence in the background on a slower timescale.
This “resets” our real-time OPF process periodically with a
possibly new initial point. In other words,

« use traditional OPF to solve for the optimal operation on

a slow timescale;

« between traditional OPF updates, use the real-time OPF
algorithm that can track the time-varying loads and
renewable generations on a faster timescale.

Figure 1 gives an illustration of this hierarchical strategy. This
paper focuses only on the real-time OPF between “resets”.

B. Tracking Performance

In this part we give a preliminary theoretical analysis of the
real-time OPE.

Before proceeding, we should first clarify the relationship
between X(f — 1), the real-time operation at time # — 1, and
x'(f), the measurement taken at the beginning of period .
In general, these two quantities can be different due to, for
example, the following reasons:

1) For a controllable device, there might be some discrep-
ancy between the control command it receives and its
actual power injection. The cause of this discrepancy
could be, for example, that the settling time of the device
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is larger than the interval between real-time updates,
or that A;(f) is only an approximation of the actual
operating region. See [6], [8] for related discussions.
2) Since the feasible set of controllable variables is time-
varying, the operation at time { — 1, which satisfies the
constraints specified by A;(f — 1), may not lie in the
feasible set specified by X;(1). As time goes from £ — 1
to f, the controllable devices must adjust their power
injections so that the hard physical constraints will not
be violated.
The details of how the controllable devices implement the
received control commands and how they adjust their power
imjections due to changes in physical conditions are out of the
scope of this paper. Here we employ the following simplified
model:

—etoAD) <2t —-D - <e+oAD, (©)

where ¢ Ri”“ is a given vector, o > 0 is a given constant,
and

Ao(D) =10,
Ai(h) = Apn (D)

= o @0 - Pro@.ol.
Basically, (6) says that the difference between x(1—1) and x°(¢)
is bounded by two terms. The vector e gives an upper bound
on the discrepancies between the received control commands
and the actual power injections. The vector A(f) characterizes
how much the feasible regions of injections A;(f) change from
P —1 to f, and o A(f) gives an upper bound on how much
the controllable devices adjust their power injections due to
changes in X;(f).

Now, suppose we run the real-time OPF algorithm from
time O to time 7. Let x*(0), x*(1),....x*(T) be an arbi-
trary sequence of local optimal solutions to (4), and denote
the sequence produced by the real-time OPF algorithm by
(), x(1y, ..., XTI, We assume that the traditional OPF
resets the real-time OPF at time O so that X(0) = x*(0).
We also assume that %(f) and x°(f) are always inside .
The sequence of approximate Hessians will be denoted by
B;.....Br.

We are inferested in the following measure of tracking
performarnce

ieN. D)

1 T
= D @ — x| 5 (8)
=1

where the norm || - ||w is defined by ||x||w := (I Wx)'/? and
W is an arbitrary positive definite matrix. The quantity (8)
is the average distance between the real-time operations X(f)
and the optimal solutions x*(f). We introduce W to allow more
freedom in how the entries of the vector are weighted when we
calculate the norm. Since the first entry of x(f) represents the
voltage of the slack bus, while other entries are real and reac-
tive power injections, different weights should be employed to
produce a sensible norm.

The core step of the real-time OPF algorithm is to solve the
problem (3) approximately, and it is expected that the accuracy
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of the solution will affect the tracking performance. Denote the
exact solution to (5) by £(). We assumne that the difference
between the approximate sclution () and the exact solution
x(7) is bounded in the following way

X0 — XD = 1 (9)

for some r > O for each 1.
Theorem I: Define

ew = Vel [Wie, Awi) = AOT|WIAD,

where |W| denotes the matrix obtained by taking the absolute
values of W. Let

Ay = max inf{A ¢ R : AW = By},
==r

Am = min sup{i = B AW =« B,
t<tsT

If for every € {1,..., T}, we have

B (VA () — VA W)) — (1) — X)) s,

=0 -0,
T
| S o
ey 10
Y Aas (10)
for some € > 0, then
1y )
— \iflﬂ—xixi\i < :
T %1‘ ‘ ( K ( )‘V\ N _)\_; ;;'}LM .
1 T
3 D0 X Dl + 0 A(D) + )
=1
v, (an

A }um /”;\.‘M — £

The prool will be postponed to the Appendix.

The condition (10) roughly means that the approximate
Hessian B, approximates the triue Hessian V2f, along the direc-
tion X°(f) — x°(7) with precision given by <. Indeed, when ¢
is small, we have

B (VA ) - VA D)) e xr  0,
or

VI 0) - VA(X0) = B (x' 0 - x°0),

showing that B; gives a good approximation of the curvature
information of £ along x*(£)— x5, Under such conditions, if
we temporarily assume that (5) is solved exactly so that n == O,
then Theorein 1 shows that, the average distance between ¥(I)
and x*(f) can be bounded by three terms (multiplied by a
factor):
1) The average rate of change of the optimal solutions
given by T 37, Ix*(5) — x*(f — Dlw;
2) The average of o Aw(l), which characterizes how wuch
the feasible injection regions change from time 7 — 1 to
time f;
3) The term ew that describes the discrepancy between
the received control commands and the actnal power
injections for controliable devices,
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The first two terms together characterize how fast the OPF
problems drift over time, while the third term character-
izes the inherent system errors. The multiplicative factor,
€/ (\/Am/ia — €), decreases as € decreases, which means that
the more accurately B; approximates the curvature of f, the
smaller the factor is,

When (5) is solved approximately but (9) is satisfied, there
is an additional term on the right-hand side of (11) that
characterizes the effect of inaccurate solutions.

Although ifs conditions cannot be conveniently checked,
Theorem 1 can serve as a guide to algorithm design. One
implication of Theorem 1 is that, in order for the real-time
operations X(r) to track the optimal solutions x* (£}, the method
of producing B; should be carefully chosen. Thecrem 1 also
suggests that approaches based on second-order methods in
general have better tracking performance than approaches that
only use first-order information, which gives an amalytical
motivation for the proposed algorithm. In addition, since B; is
calculated at time 1 — 1, the cost functions C;(p;, ¢4, ) should
not change too fast so that By remains a good estimate of the
Hessian V2 at time ¢,

IV, AN IMPLEMENTATION OF THE REAL-TTME
OPF ALGORITHM
Iin Section III we propose a general real-time OPF algorithm
mspired by quasi-Newton methods. Tmplementing it requires
solving the following problems:

2) 'The method for computing and updating B,.

3) How to ensure the solution of (5) is in 4.
Now we discuss these problems and give a defailed unple-
mentation of the real-time OPF based on the L-BFGS-B
method.

A, Computation of the Gradient

In order to compute the gradient of f, we need to find
guantities such as dv;/dxy, 80;/9x, 8pe/dxy and g0/ Fxp L
by applying the implicit function theoremn on the AC power
flow equations. This leads to inverting the Jacobian of the
power flow eguations. Although the Jacobian is in most cases
sparse, its inverse is not and the computation will in general be
very time consuming as the number of buses becomes large.
Existing literature has proposed different methods lor this pur-
pose. Reference [22] employed rectangular representations of
the power flow equations and reported improvement in effi-
ciency over ftraditional methods; {2], [3], and [9] employed
particular approximations or linearizations; [4] exploited the
radial topology and proposed an iferative approach; [10]
used a model-free method bhased on extreme seeking
control.

On the other hand, we note that in practical situations, there
will only be a small number of buses or lines whose voltages
or currenis violate their constrainis at each time instant. Since
the derivative of ¢ (x) is exactly zero when x < 0, we only need
o find dvi/dxy and 345/ 0x that correspond 1o voltages and

Yin this subsection, we omit the time indices of variables teraporarily.
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curients that have violated their constraints. They will involve
only a small fraction of the inverted Jacobian matrix, which
could make the computation much faster.

To be more specific, we use the bus injection model as the
AC power flow mode]l and use the exponential form V; =
\Vileéi® to represent the complex voltages.” The power flow
equations can be written i the form

Po —FP(VQ, mw Bin)s Go —E*’ao Vil 810,
= FI(Vo, [Vial, 61:), i N

The partial derivatives of the {unctions ng Fg, F‘? and F? can
he obtained once we know the values of the involved voli-
age phasors and their formula can be found, for example, in
Newton-Raphson method for solving power flow. By viewing
Ppo,go and {Vil, 8, 1 € N as functions of Vo, p14 and g1, and
taking the derivatives of the above squations, we get

i 3};1?:}1 d"mfn_ ‘a‘vl:ni aivl:n‘
agﬁ‘lq:n‘ E?}O-EC_;EH ‘;ig?n ggi n = by, (12)
i "1 e ik J
La[Vi,l 801, AL 01 1y
i 3F€:n ()Ffu 18 Vial _ a}jl?:n.
éiivl_:n‘ ’}91:1': 6}1[”0 — QV(} (]3)
({)F?:n aﬁ?:ﬂ éf;,:n J L an J '
L 9| Vil 0y 4 L 0 ¥
" dpo dpo W, IF Vsl 8 Vial
dPia 8@1:’: _ alvln‘ 591;1 pia 10
90 20, d0m |7
L Pt afian I_EP Vil df}an l_ P1n a1 _I
(14)
~9p0 aFt aEr IFE T r AV
{ 1] 0 i
(‘)Vﬁ _ 17(‘”/9—[ L {QV]HE !'}91 ;L‘Iir é)g\fo —I (15}
on art | | ot aFe I
1]
J I‘(”/L)J I‘G‘Vl;;ﬁ 36y JL

where [l 18 the Za < 2n identity matrix, and we use the notation

3?1;;1 - _C?ai_ - qu,
b LD Jimt, o
dua - __ﬁ_a_ = Rixn
dbyy _ag}_j__;fl,...,n
dain - _%_ =
351:;1 _abj_itl,...,n
i=1,.., ¥
First we note from (12) that
MVial  3Vial [ 9, OF,
dp1n 10 3”"1 " 361y = I
391;;«1 38}:;” EiFfm o
l_ P1:n ag1n _I Ld 1/1,1\ 591;,1_]

“The foll owing method can alse be tailored when we use the rectangular
repressntation for voltage phasors as in [22]. Whether one representation is
advantageous over the other depends on the specific power network,
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Now let

: IJE > {’z, for somc;ef\”}
i< N :iis aneighbor of the slack bus|,
=g qu SNV =T or |V <L}

Then we have

{agvzg vzl [ aF, 1

P dgin a6 _ I,’I 0

(EE ord" | = [ﬂ N
D1

GMJDVM\ vl I

where I7 is the submatrix formed by the rows of I, correspond-
ing to 7, and similarly for /7. It can be seen that this is a set
of 7] + 17| linear systems with s common sparse coefficient
matrix, and can be solved efficiently when [T] + | 7| <« ».

After we find 3{V7[/dp1y, 2|VZl/3q1m, 387 /0p1y and
80.7/2q10, we use {(13) to get

OF

; | ~ o g &£ o] £
3 Vil o, OF 8}(1 n
Ve | _ | Vel 981 Vo
| ‘%}ij oFf, O, INE Yy i |
Vo MWVinl 0 Vo
_d“’fi:n‘ [}!V1Zii| aFf;n
77777 IP1a g1 aVy
801 001 J L_ aFf:n‘l '
L. P11 g1 aVy
and so
[a vl (d Vil v o,
dVy —l | ePim dg1 Vo
a7 | 28 adq aFL I a7

| 75 EvrlE e

Then by (14) and (153, and noting that 81%, 4V =
81”3 Ja8 — 8F’q Ja1Vi| = qu /86; = 3 if i is not a neighbor of
the slack bus, we getl

pe Ipo oFy  OFplralve  avyl
[m mAI_ 8 Vzl 38&" [apl:n 3[11:.%‘|
d0 a0 | T | omg arg || 87 207 |
l_apl:n 3‘?1::1_] olVgl  28g l_apl:n 3@1:nJ

(18)
and

apo arh ary  ar \revrl
Vo Vo 3 VL\ aeJ ave )
- I . 19)
8qo oFt
L3, ) LavJ Lam P Lavo

By the definition of 7 and 7, we can see that (16), (17}, (18)
and (19} give all the partial derivatives for calculating dv;/dx;
and 84,/ dx; that correspond to violated constraints as well as
dpo/dxy and dgofdxg.
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B. The L-BFGS-B Method

The approach of producing the approximate Hessian By
is central in the real-time OPF algorithm we proposed. As
Theorem 1 points out, the tracking performance is directly
related to how well B, approximates the true curvature.
However, the Hessian of f; is in general a dense (2n + 1) x
(2n + 1) matrix, making (5) not very scalable as # increases.
Another issue is that (5) involves constraints and we cannot
directly use methods for unconstrained optimization.

One way to deal with scalability and constraints is to employ
the L-BFGS-B method [23]. Each iteration of the L-BFGS-B
method approximately solves a quadratic program of the form

) 1
min gl (x — xg—1) + E(X — X 1) Br(X — X3—1)

sit. 1 <x<u,

and stores the approximate Hessian By and does related cal-
culations by limited-memory BFGS method; the matrix By
produced by limited-memory BFGS method is guaranteed to
be positive definite. Each L-BFGS-B iteration has very low
computational cost as shown in [23] because of the compact
representations of limited-memory matrices. If each Aj(f) can
be represented or approximated by a rectangle in R? as

%0 = p,0.7:0] x [4,0.7.0].

then we can almost directly apply this method to our real-time
OPF.

We will not describe the L-BFGS-B iteration for real-time
OPF in detail here, but only give its outline:

For each time f,

1) Measure the current controllable and dependent vari-
ables, as well as bounds 1_7i(t), D: (D), gi(t), g;(t) that
encode information of loads and generations at time
t. Denote the controllable variables at the beginning of
period ¢ by x°(¢).

2) Based on the measurement data, compute f;(x’(¢)) and

g = Vf; (xo (t)>.

3) Estimate the free variables of the box constraints
(5b)-(5¢). Let X(r) denote the feasible region given
by (5b)-(5¢). We introduce the piecewise linear path

vlsl =Py (X’ = s), 520,
and consider

rgi(t)l my (y[s])

where
my(x) == gtT <x -x° (t)>

1 0\ 7 0
T §<x _x (z)) Bt<x _x (z)).
Here my(y[s]) is a univariate piecewise quadratic func-
tion in §, and its minimum can be found by enumerating
over each linear piece of y[s]. Let the smallest local min-
imizer be s°, and let x° = y[s] (called the generalized
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Fig. 2. Curves of p(z) + dp;(¢) for all the load buses. Darker line color
indicates larger load consumption level in the original IEEE 300 bus test
case.

Cauchy point). The free variables will be estimated as
those entries of x° that strictly satisfy the box constraint.
4) Find

= arg min m; (x° + u),
u

where u is restricted to the subspace spanned by the esti-
mated free variables. This is an unconstrained quadratic
problem and can be solved explicitly. Let

d =Py (x° +1) —x".

5) Use backtracking to find « € (0, 1] such that <) +
ad € U and f; has sufficient decrease. Let x(¢) = () +
ad,

6) Lvaluate the gradient Vf;(x(¢)) and update the correction
pairs to obtain Byt.

7) Wait until the next time step and go back to Step 1.

The details of computing x¢, & and By by limited-memory

techniques can be found in [23] and [24]. It should be noted
that, we add a backtracking step to ensure that x(r) € U.

V. NUMERICAL SIMULATION

We apply the real-time OPF based on L-BFGS-B algo-
rithm to a modified version of the IEEE 300 bus test case
with time-varying load profiles. We adopt the network topol-
ogy, impedance, and generator data of IEEE 300 bus test case
which are taken from MatPower [25]. The load profile is based
on the total load data of Bonneville Power Administration on
02/08/2016 from 06:00am to 12:00pm [26]. The raw load data
is on a 5-minute basis, and we interpolate the data to change
the time granularity to 6 seconds and normalize it to have max-
imum value 1. We denote this base profile by p(f). Then for
each load bus i, we first add random noise 8p;(f) to the base
profile p(#) to simulate fluctuations in the load consumptions;
the amplitude of 8p;(¢) is proportional to the inverse square
root of the original load of bus i in the IEEE 300 bus test case.
We then multiply p(¢) 4+ 8p;(¢) by the original load of bus i
in the IEEE 300 bus test case. The curves of p(t) + 8p;(t)
for the load buses are shown in Figure 2. We also let each
load bus be connected with an inverter-like device that can
inject controllable reactive power, whose capacity is 10% of
the background real power consumption.
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Fig. 4. Voltage profiles of the 43 buses whose voltages have ever violated the constraints y; < |V; (t)l2 = ¥; for some £. The vertical axis represents voltage

magnitude |V;(£)| in p.u.

The traditional OPF updates take place every 30 minutes
starting from 06:00 am. Between each traditional OPF updates,
the real-time OPF operates every 6 seconds. We choose ¢ (x) =
max {0, x}27, and the coefficients of the penalty functions are
mi =5 % 10° for voltage violations and gy, = g, = 10° for
constraints on pg(f) and go(f). For the L-BFGS-B method, the
number of correction pairs for estimating the Hessian is 12.
For simplicity, we let x°(f) and &(r — 1) be related by x%(r) =
Pxpx(t — 1), which assumes that each controllable device
will implement accurately the control command it receives,
and changes its power injection to the closest feasible point
as Xj(f) changes. The simulation is run in MATLAB on a
Macbook Pro with 2.9GHz Intel i5 CPU and 16GB memory.

Figure 3 shows the absolute and relative gap between the
objective values of the real-time operation %(f) and the local
optimal solution x*(#) to (4), i.e.,

SH(EO) - A
fixr@y

It can be seen that, the relative gap is less than 0.12% for
the whole time horizon. In addition, the average relative gap

FE®) —fi(x"(®) and

is 0.0133%, while the average absolute gap is 81.38. By fur-
ther investigating the simulation data, we find that most of the
peaks in the gaps are due to penalties from newly violated
voltage or slack bus generation constraints, and we can see
that the violations can be quickly detected and managed by
the algorithm.

Figure 4 shows the voltage profiles of the buses whose volt-
ages have ever violated the constraints y; < Vi (6]* < 7 for
some {. Here y; = 0.94% and ¥; = 1.06%. It can be seen that
there are 43 such buses and violations of voltage constraints
are not rare, which is inevitable as we employ penalty func-
tions to handle voltage constraints. On the other hand, most of
the violations are small. The largest and smallest |V;(1)| over
the whole time horizon are 1.069 and 0.934; moreover,

average |Vi(H| = 1.0607,
Lt Vil 1.06

average |Vi(5)| = 0.9384,
L Vi()|<0.94

This suggests that, in practice, we can use slightly tighter or
more conservative constraints for the dependent variables, so
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Fig. 5. Histogram of computation times of each real-time update.

that it is unlikely for the original constraints to be violated by
the real-time operations %(f).

We also measure the computation time of each real-time
OPF update. Figure 5 shows the histogram of the computa-
tion times, with the average computation time being 0.062 sec
and the maximum being 0.376 sec. We can see that the
proposed implementation of the real-time OPF algorithm is
guite computationally efficient.

VI. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we proposed a real-time OPF algorithm based
on quasi-Newton methods. This algorithm utilizes real-time
measurement data and performs suboptimal updates on a
faster timescale than traditional OPF. We studied its track-
ing performance, and also proposed a specific implementation
based on the L-BFGS-B algorithm. Simulations showed that
the proposed algorithm can track the optimal operations well
and is computationally efficient.

There still remain a number of issues in designing real-time
OPF algorithms. Currently in the simulation, the updates are
carried out every 6 seconds, and if we use a larger update
interval, it is possible for the proposed implementation to lose
track of the optimal setpoints for the test case. However, for
a large transmission network, 6 second could be too short for
handling the communication delays and the dynamics of power
devices with large inertia. To extend the time between each
updates, we need to improve the algorithm so that it will still
work when larger changes in loads and generations occur,

One possible direction is to find more accurate methods of
estimating the Hessian. In the proposed implementation, we
use the L-BFGS-B method which turns out to work well in the
simulation settings, but more accurate estimate of the Hessian
may be needed to further improve the tracking performance.

Another possible direction is to introduce dual variables
instead of penalty functions. It is possible that by introduc-
ing dual variables, one can achieve better convergence and
smaller constraint violations, and potentially avoid numerical
issues. We are especially interested in combining primal-dual
methods with quasi-Newton methods.

Besides improving the tracking performance of the algo-
rithm, we are also interested in developing a distributed
algorithim for real-time OPE. As the network scales up, the
communication between controllable devices and the control
center will become a bottleneck, and distributed algorithms
will be much favored. In addition, the feasible set of (5) can
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be decomposed as the Cartesian product of some low dimen-
sional convex sets, each of which is associated with a bus in
the network. It is expected that a distributed implementation
can be developed by utilizing this particular structure.

APPENDIX
PROOF OF THEOREM 1

We write the constraints (5b)-(5¢) as x(f) < X (f), where
X(f) is a compact convex subset of R>**1. First we note that,
by the definition of Aps and Ay, we have

Ix[I, =% Bx < Ayx" Wx = Ay [Ix] 3y,
IxIIE, = x"Bix > Apx Wx = An x|,
for any vector x and any f< {1,..., T}
At the beginning of time , the initial point is x°(#). Let
1 T
m(X) = g?(x g (I)) + E(X — XO(J,‘)) B; (X —x’ (t)).
Then

(20)

X(f) = arg min #y;(x),
() gx Yo +(X)
which implies that

=0
h=0

%m; (X0 + h{x" (1) — (D))

T
_— (Bt (i(t) - XO(I)) + g,) (x*(6) — %(D) = 0,
and by the first-order optimality condition of x*(¢), we have
d
Efr(x*(l‘) + h(x@® —x* (1)) =0
=0

— VA0 (&0 —x* D) = 0

Therefore

(Vﬁ (x* () — Vf; (XO (r)) ) T(fz(z) 0)

> g (&) —x* (1))
T
= (30— x"0) By(x() — ¥ (1)
T
= |&0 - x|, + (x*(;) _ XO(I)) BA(2() — x* (D),
and so

[z~ x*®5,
= (&0 —x'0) (VA ©) - VA(x"1)
— B (x* 0 — x° (;)))
= (&) — x* 1)) B (B;l (Vﬁ(x* ) — Vf; (XO(J,‘)))

- (x* 0 —x° (;)))
< &) — x*® |4,

. HB;l (Vﬁ(x*(a‘)) _ v (XO(J,‘))) . (x* W — XO(I)) H

ORI

B

< e|®@® —x* @ ||Bt
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or

5

X0 _X*U)HBf < ex"(r) —Xo(ﬂi

i
)l
I8,

where we have used the assumption (10). Then we have

1% — x* (D ||,
< %) — £(Dllp, + (K0 — X" (),
< elx* (1) — X0, + 1K) — £()|Is,
< eIl () — Xt — D, + X — 1) — £ — D),
T %0 — 1 =0, ) + X0 — XD,
= e/ (X" @ — 5" = Dllw + R0 = D =X 0)]lw)

+ VAR — XD lw + ey rar

By (6},
ﬁ@—ly—ﬁg%
¢ 1.
=max(fufw: - (et oAU) Zuzet oAD)
Since
max{fjujlw: — e+ oA “u<e+ A}
=max{ju + wfly: ~e=w =e
""" oA <u; < oA
<max{{uflw: —e<un=<el
+ max{flullw: —cA@ <u=< oAl
and

max{HuH%v: —e<u=< e}

< max Z‘Wﬁii”i‘iuji C—e<u<e
i
_ of o — po
=¢ |Wle = ey,
and similarly
ma,x:{\;ug\%v L cAh =u= m&(x)} < (g Aw%
we have
(1) — x* (DI, < ey (X () — X" (¢ — Dllw + ew
+ o Aw(®) + v
eV aulRa - 1) -

By summing over f, and noting that
(D —x*(Dlp, = AnlXEO — X0 lw
and x(0) = x*(0), we have
I
Vi ) IRD =X Ol

t=1

T
< eour Y (1K — X = Dllw + ew + 0 Aw()
=1
-1
+VAuTn + e/ ¥ IR0 — X Dlw,
=1

X' =1 —x0¢ = Dllw
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which leads to

T

- 1 . o
(ViwTh — €) 7 ; IR0 — < Ol
3 !
= T Z(HX*(E) =X = Dllw + ew + Uz’—'—\w(g}'} +n
t=1

or equivalently, the bound (11).

{1

i

(8]

1

(10}

[13]

[14]

[i5]

f16]
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[18]
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