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Abstract—We consider a two-level profit-maximizing strategy,
including planning and control, for battery energy storage system
(BESS) owners that participate in the primary frequency control
(PEC) market. Specifically, the optimal BESS control minimizes
the operating cost by keeping the state of charge (SoC) in an
optimal range. Through rigorous analysis, we prove that the
optimal BESS control is a “state-invariant® strategy in the sense
that the optimal SoC range does not vary with the state of the
system. As such, the optimal control strategy can be computed
offline once and for all with very low complexity. Regarding the
BESS planning, we prove that the the minimum operating cost
is a decreasing convex function of the BESS energy capacity.
This leads to the optimal BESS sizing that strikes a balance
between the capital investment and operating cost. Our work
here provides a useful theoretical framework for understanding
the planning and control strategies that maximize the economic
benefits of BESSs in ancillary service markets.

Index Terms—Primary frequency control, Frequency regula-
tion, Battery energy storage systems, Dynamic programming

NOMENCLATURE
G electricity purchasing and selling price
Cp penalty rate for PFC regulation failure
7 interval index
I length of the n*® T interval
Iy length of the n*® J interval
s start time of the n®* I interval
i end time of the n** I interval
Gn indicator variable of n®® excursion event
Pppo,, PRC power requested in the »n*® J interval
(1) battery charging/discharging power at time ¢
Daelt) power exchanged with the AC bus at time ¢

7 battery charging and discharging efficiency

Esas battery capacity

Pz maximum charging power of battery

Sy SoC at the beginning of the n*® I interval
52 SoC at the end of the n**® I interval
cost,,, charging cost incurred in the nt® I interval
cost,, penalty assessed in the n®® J interval
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I. INTRODUCTION

The instantaneous supply of electricity in a power system
must match the time-varying demand as closely as possible.
Or else, the system frequency would rise or decline, compro-
mising the power quality and security. To ensure a stable fre-
quency at its nominal value, the Transmission System Operator
(TSO) must keep control reserves compensate for unforeseen
mismatches between generation and load. Frequency control
is performed in three levels, namely primary, secondary, and
tertiary controls [1]. The first level, primary frequency con-
trol (PFEC), reacts within the first few seconds when system
frequency falls outside a dead band, and restores quickly the
balance between the active power generation and consumption.
Due to its stringent requirement on the response time, PFC
is the most expensive control reserve. This is because PFC
is traditionally performed by thermal generators, which are
designed to deliver bulk energy, but not for the provision of
fast-acting reserves. To complement the generation-side PHC,
load-side PFC has been considered as a fast-responding and
cost-effective alternative [2]-[6]. Nonetheless, the provision of
load-side PFC is constrained by end-use disutility caused by
load curtailment.

Battery energy storage systems (BESSs) have recently been
advocated as excellent candidates for PFC due to their ex-
tremely fast ramp rate [7], [8]. Indeed, the supply of PFC
reserve has been identified as the highest-value application
of BESSs [9]. According to a 2010 NREL report [10], the
annual profit of energy storage devices that provide PEC
reserve is as high as US$236-US$439 per KW in the U.S,
electricity market. The use of BESS as a frequency control
reserve in island power systems dates back to about 20 years
ago [11]. Due to the fast penetration of renewable energy
sources, the topic recently regained research interests in both
interconnected power systems [8], [12] and microgrids [13],
[14].

In view of the emerging load-side PFC markets instituted
worldwide [15], [16], we are interested in deriving profit-
maximizing planning and control strategies for BESSs that
participate in the PFC market. In particular, the optimal BESS
control aims to minimize the operating cost by scheduling
the charging and discharging of the BESS to keep its state
of charge (SoC) in a proper range. Here, the operating cost
includes both the battery charging/discharging cost and the
penalty cost when the BESS fails to provide the PEC service
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according to the contract with the TSO. We also determine the
optimal BESS energy capacity that balances the capital cost
and the operating cost. Previously, [8], [13] investigated the
problem of BESS dimensioning and control, with the aim of
maximizing the profit of BESS owners. There, the BESS is
charged or discharged even when system frequency is within
the dead band to adjust the state of charge (SoC). This is
to make sure that the BESS has enough capacity to absorb or
supply power when the system frequency falls outside the dead
band. A different approach to correct the SoC was proposed
in [12], where the set point is adjusted to force the frequency
control signal to be zero-mean.

To complement most of the previous work based on simula-
tions or experiments, we develop a theoretical framework for
analyzing the optimal BESS planning and control strategy in
PHEC markets. In particular, the optimal BESS control problem
is formulated as a stochastic dynamic program with continuous
state space and action space. Moreover, the optimal BESS
planning problem is derived by analyzing the optimal value of
the dynamic programming, which is a function of the BESS
energy capacity. A key challenge here is that the complexity
of solving a dynamic programming problem with continuous
state and action spaces is generally very high. Moreover,
standard numerical methods to solve the problem do not reveal
the underlying relationship between the operating cost and
the energy capacity of the BESS. Our main contributions in
addressing this challenge are summarized as follows.

+« We prove that with slow-varying electricity price, the
optimal BESS control problem reduces to finding an
optimal target SoC every time the system frequency falls
inside the dead band. In other words, the optimal decision
can be described by a scalar, and hence the dimension of
the action space is greatly reduced.

+ We show that the optimal target SoC is a range that
is invarignf with respect to the system state at each
stage of the dynamic programming. Moreover, the range
reduces to a fixed point either when the battery charg-
ing/discharging efficiency approaches 1 or when the
electricity price is much lower than the penalty rate for
regulation failure. This result is extremely appealing, for
the optimal target SoC can be caleculated offline once and
for all with very low complexity.

+ We prove that the minimum operating cost is a decreasing
convex function of the BESS energy capacity. Based on
the result, we discuss the optimal BESS planning strategy
that strikes a balance between the capital cost and the
operating cost.

The rest of the paper is organized as follows. In Section II,
we describe the system model. The BESS operation problem
is formulated as a stochastic dynamic programming problem
in Section III. In Section IV, we derive the optimal BESS
operation strategy, which is a range of target SoC independent
of the system state. The optimal BESS planning is discussed
in Section V. Numerical results are presented in Section VI
Finally, the paper is concluded in Section VII.
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Fig. 1. System time line.

II. SYSTEM MODEL

We consider a profit-seeking BESS selling PEC service in
the ancillary service market. The BESS receives remuneration
from the TSO for providing PFC regulation, and is liable to
a penalty whenever the BESS fails to deliver the service as
specified in the contract with the TSO. We endeavour to find
the optimal planning and control of the BESS to maximize its
profit in the PFC market.

A, System Timeline

Most of the time, the system frequency stays inside a dead
band (typically 0.04%) centred around the nominal frequency.
Once the system frequency falls outside the dead band, the
TSO sends regulation signals to regulating units, including the
BESS. The BESS needs to supply power (i.e., be discharged)
in a frequency under-excursion event and absorb power (i.e.,
be charged) in a frequency over-excursion event.

The system time can be divided into two tvpes of intervals
as illustrated in Fig. 1. The I intervals are the ones during
which PFC is not needed, i.e., when the system frequency
stays inside the dead band or when the frequency is regulated
by secondary or terliary reserves. An [ interval ends and a
J interval starts, when a frequency excursion event occurs.
The lengths of the .J intervals are the PFC deployment times
requested by the TSO.

The lengths of the »*® I and J intervals are denoted as I,
and J,,, respectively. Suppose that f,,’s are independently and
identically distributed (i.i.d.) with probability density function
(PDF) fr(z) and complimentary cumulative distribution func-
tion (CCDF) Fr{z). Likewise, J,.’s are i.id. with PDF f;(z)
and CCDF F(z). Note that fr(z) = — %1% and f;(z) =
—%x(m). Moareover, define indicator variables g, such that
gn = 1 and —1 when the n*® frequency excursion event is an
over-excursion event and under-excursion event, respectively.
Let py =Pr{g, =1} and p_1 =1 —p; = Pr{g, = -1}

B. BESS Operation

Suppose that the BESS has an energy capacity Fo.,. (kWh)
and maximum charging and discharging power limits B,
(kW). The charging and discharging efficiency is 0 < n < 1.
Moreover, let e(?) denote the amount of energy stored in the
battery at time ¢, and p(¢) denote the battery charging {p(¢) >
0y or discharging {p(t) < 0) power at time ¢. Due to the
charging and discharging efficiency 7, the power exchanged

with the AC bus, denoted by (), is
plt if p(¢) >0
plt) = { W)/n i ot

if p(t) <0 w

p(t)n
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In the n*® frequency excursion event, the BESS is obliged
to supply or absorb Pprc, kW regulation power for the
entire period of J,,. Here, Pp Fc,@’s are i.i.d. random variables
with pdf fp...(z) and CCDF Fp, .. (z). Typically, Pprc .
takes value in [0, ], where R is the standby reserve capacity
specified in the contract with the TSO. In return, the BESS
is paid for the availability of the standby reserve. That is, the
remuneration is proportional to £ and the tendering period,
but independent of the actual amount of PFC energy supplied
or consumed.

Let s, and s denote the SoC (normalized the energy
capacity Foq.) ! of the BESS at the beginning and end of I,
respectively. Obviously, when s7, is too low or too high, the
BESS may fail to supply or absorb the amount PFC energy
requested by the TSO in the subsequent .J,, interval, resulting
in a regulation failure. In this case, the BESS is assessed a
penalty that is proportional to the shortage of PFC energy. Let
¢p be the penalty rate per kWh PFC energy shortage. Then,
the penalty assessed in the n®”® frequency excursion event is

B
costy(s) = | (Bprom = 2=} if g =1
SRR 2
Cp (EPFC,n = WEmGG:S;)+ if On = -1
(2)

where ()1 = max(z,0) and Eppe n = Pprondy is an aux-
iliary variable indicating the PFC energy supplied or absorbed
during J,. Since Pprcy’s and J,’s are iid., respectively,
Eppoy are also iid. variables with PDF fg,...(z) and
CCDF Fg,..(z). Due to the battery charging/discharging
efficiency, nEpre,, and Peroie gre the energy charged to or
discharged from the BESS during the PFC deployment time.

To avoid penalty, the BESS must be charged or discharged
during T intervals to maintain a proper level of SoC. Suppose
that the electricity purchasing and selling price, denoted by
Ce, varies at a much slower time scale (i.e., hours) than that
at which the PRC operates (i.e., seconds to minutes), and thus
can be regarded as a constant during the period of interest.
Then, the battery charging cost incurred in I, is calculated as

-y
€oste = ce/ Pac(t)dt, (3)
2=
where pe. is given in (1). cost. , > 0 corresponds to a cost
due to power purchasing, and cost., < O corresponds to
a revenue due to power selling. Notice that the BESS SoC
is bounded between 0 and 1. Thus, p(t) is subject to the

following constraint

p(t)dt < By Y7 e [85,85], @)

n*'n

0 < spFmaz +/

{34
where ¢ and ¢ are the starting and end times of I,
respectively. As a result, s, and s¢ are related as

SnEmam + fatle t)dt
5= " 770 , ()

n
Emacc

subject to the constraint in (4). Likewise, the SoC at the

1SoC at time ¢ is defined as s(t) = ) . Obviously, s(¢) < [0, 1].

begirming of the next [ interval, s,.1, is related to s¢ as

1
S Emaw + (1q 17— qufl )EPFC’

%
Emaw )

©)

Snt41 =
where [z]} = min(1,max(0,z)) and 14 is an indicator
function that equals 1 when A is true and 0 otherwise.

III. PROBLEM FORMULATION

As mentioned in the previous section, the remuneration
the BESS receives from the TSO is proportional to the
standby reserve capacity R and the tendering period, but
independent of the actual amount of PFC energy supplied
or absorbed. With fixed remuneration, the problem of profit
maximization is equivalent to the one that minimizes the
capital and operating costs. In this section, we formulate the
optimal BESS control problem that minimizes the operating
cost >, (cost. n -+ costy, ) for a given BESS capacity Ep.qz.
The optimal BESS planning problem that finds the optimal
E o will be discussed later in Section V.

At the beginning of each interval [,,, the optimal p{#) during
this { interval is determined based on the observation of s,,.
When making the decision, the BESS has no prior knowledge
of the realizations of f, Eprog, and g for b = n,n+
1,.--. As such, the problem is formulated as the following
stochastic dynamic programming, where s,, is regarded as the
system state at the n*” stage, and the state transition from s, to
8,11 is determined by the decision p(¢) as well the exogenous
variables I, Eprcoy, and gp.

At stage n, solve

Hi{s,) =
alen) = plt), tG[ts el
o aEIn;EPFCf,n;Qn [Hn+1(g(sn:p(t)>InaEPFc,n: gn))]
s.t. (1),(4),and
- P’mcm: Sp(t) S P’mcm: v‘t = [t;,ti],

EIn EPEcnsin [COStE,ﬂ + Cos‘t}’)m (Si)]

(7)
where cost,, ., cost, , and s, are defined in (2), (3), and (5),
respectively. H}(s,) is the optimal value at the n? stage of
the multi-stage problem, o € {0,1) is a discounting factor,
and g(s,,p(t). In, Eprom, gn) = spq1 describes the state
transition given by (5) and (6).

In practice, the tendering period of the service contract
signed with the TSO (in the order of months) is much longer
than the duration of one stage in the above formulation (in
the order of seconds or minutes). Moreover, the distributions
of In, Eprrop, and ¢, are iid. Thus, Problem (7) can be
regarded as an infinite-horizon dynamic programming problem
with stationary policy. In other words, the subscripts n and
7+ 1 in (7) can be removed.

Problem (7) requires the optimization of a continuous time
function (¢). When the electricity price ¢, remains constant
within an T period, there always exists an optimal solution
where battery is always charged or discharged at the full
rate Pp.q. until a prescribed SoC target has been reached
or the [ interval has ended. Then, finding the optimal charg-
ing/discharging policy is equivalent to finding an optimal target
SoC & & [0,1]. This is because charging/discharging cost
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during an I period is only related to the total energy charged
or discharged, regardless of when and how fast the charging
or discharging is.

Under the full-rate policy, the battery charges/discharges at
a rate Ppa. until the target SoC has been reached or the [
interval has ended. Thus, the charging cost (3) during I, is
equal to the following, where w is the target SoC.

coste(Sp, ) = (8)
%5 min(Prozln, (T — $0) Frnas) if 8, <
—cenymin{ Prgpdn, (8 — T Emay) if 8 > 7.

0 ifsp,=m

Likewise, (5) can be written as a function of s,, and
PmawI

7
7|7T8?’1|> ?

Emam

85 (8, 7) = 8, +sgnl(m — 5,) min (

where sgn(-) is the sign function.

We are now ready to rewrite Problem (7) into the following
Bellman's equation, where subscript n is omitted because the
problem is an infinite-horizon problem with stationary policy.

H*(S) = Inin?TE[O,l] h(saﬂ) + aELEPFcH;‘ [H*(Q(S,W,I, EPFO)Q))] 5

(10)
where

his,m) = By [coste (s, 7)] + E1 Bpro g [costy (8°(s, 7))
(11)
is the expected one stage cost. With a slight abuse of notation,
define

g(S,?T,I,Eppc,g) =

1 SEmam + Sg‘ﬂ(ﬂ - 5) min (Pmo,m[, |7T - S|Emax) 1
Braw 8 H{1gm1 — 1q=—1%)EPF0 0

as the state transition. More specifically, in (11)

Ej [cost.(s,m)]

1
== (1ﬂ>s_ - 1?T<ST|'> Ce X
i

(12)

Q1 2
(%; Pmawsz(-r)dz A= |7T = 8|EmawFI (Ql)) )

where
|m — 8| Eman

) =
! Pmacc
is the minimum time to charge or discharge the battery from
s, the initial SOC at this stage, to =, the target SOC. Likewise,

Er1,Brrc.q [costy (s°)] = Er [costy(s®)] (14)
{fOQi cost, Es + %% frizide + costy(MIFr (Q1) s<n

(13)

Lrnantt

fOQi costy === fr(z)de + cosly (M Fr (Q1) s> n ’

B

where

(15)

cost,(s°) = Bpppe g [cost, (8%)]

Emaw 1—s® g

+epp_1Bro,. {(EPFC — ??Emamse)ﬂ

is the expected regulation failure penalty in the case that the
SOC is s when the frequency excursion occurs.

IV. OpTIMAL BESS CONTROL

In general, the optimal decision at each stage of a dynamic
programming is a function of the system state observed at
that stage. That is, we need to calculate the optimal charging
target 7*(s) as a function of the BESS SoC s observed at the
beginning of each [ interval. Interestingly, this is not necessary
in our problem. The following theorem states that the optimal
target SoC is a range that is invariant with respect to the
BESS SoC s at each stage. Furthermore, the range converges
to a single point «* that is independent of s when n — 1
or ¢, <€ ¢p,. This result is extremely appealing: we can pre-

(9) calculate 7* for all stages offline. This greatly simplifies the

system operation.

Theorem 1. The optimal targer SoC thar minimizes the cost
H*(s) in (10) is a range [7},,,, Th;.5), where 7}, and 7},
are fixed in all stages regardless of the system stare 5. During
each T inrerval, the BESS is charged or discharged when its
SoC falls outside the range, and remains idle when its SoC is
in the range. In other words, at each stage, the optimal target
SoC w* is set as

W‘FOT_U l:fs < Wfaw
¥ 1= w{s) Thigh o 8> Thion {16)
= lfs € [Wl*ow7ﬁft,igh}

Moreover, w}, . and Thigh COMVErge to a single point T when
n—1o0rc —0.

To prove Theorem 1, let us first characterise the sufficient
and necessary conditions for optimal «*. For convenience,
rewrite (10) into

H*(s) = min H(s,m),

T€[0,1]

where

H(s,m) =his,m)+ aBr gppe,q [H (g(s, 7,1, Eprc,q)] -
(a7

{57)  we obtain the fol-

Taking the first order derivative M{T
lowing after some manipulations.

aH (s,7) _ dh(s,T)

on on (&)
- UomBmas grpe(g)
+ apmBr (Ql) fo ! s fEPFC(e)de
s=rt gt
= NT B 0 OH"(3)
+ ap_ 1 Fr (Ql) fo -7 fEPF‘C(e)de'
T
Specifically,
Sh(s, ) 4 a .
— BTrEI [cost. (s, 7)] + g E; [costp (s°(s, W))] Z
(19)
where
l et .
EE_r [cost.(s,7)] = nceEmaaz{"—‘I (@) ?f T {(20)
loxs N B Fr (1) fm<s
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as a result of differentiating (12), and

a Aeost ~
§E1 costy, (5%)] = %p(w)ﬂ* (Q1) 20
E . _
(o py, (=)
n n

_Cpp—l"?EmamFEppg (nEmaazW)) FI (Ql)

as a result of differentiating (14)(15). Note that Ej[cost. (s, )]
is not differentiable at 7 = s unless %ce = nc, (or equivalently
when =1 or ¢, =0).

Substituting (20) and (21) to (18), we have

AH (s, )

ar (T(Svﬁ)Emaos =+ U(W))F'I (@Q1),
where r({s, ) is defined in (22) and

(=) Ergy * e
q dH (ﬂ' o Emm) fE (e)de
’ ar PFC

N EBmas OH* (’ﬂ -
+ 05?—1/
0

u(m) =am

25
NEor o

fEerc(e)de.  (23)

ar

To avoid trivial solutions, we assume that the CCDF
Fy (1) > 0 for all s,m. Thus, the sign of %H(s,w) is
determined by that of r(s,7)Fmes + w(m). As a result, the
necessary condition for optimal 7~ is

r9(0) Emas + u(0) > 0 ifm*=0

= 7q(T*) Bppge +u(m*) = 0 if m* € (0, 5)
=1 (T B + w{m*) = 0 if 7% € (5,1) ]
=71(1)Emaw +u(l) <0 ifr*r=1
(24)

{8, ") Fnge +ul*)

when 7* £ s. On the other hand, when 7* = s,

r1(8) g +u(s™) > 0 and ro(s ) E e T uls™) < 0. (25)

Now we proceed to show that the necessary conditions (24)
and (25) are also sufficient conditions for optimal =*. To this
end, let us first prove the convexity of H*(s) in the following
proposition.

Propoesition 1. H*(s) is convex in s In other words,
2 *
OHAS) > 0 for all s.

B

2 rr*
A key step to prove Proposition 1 is to show that %ﬁ is

the fixed point of equation f(s) = T'f(s), where operator 1’
is a contraction mapping. The details of the proof are deferred
to Appendix A.

Proposition 1 implies the following Lemma 1, which further
leads to Proposition 2.

Lemma 1. Both ri(7) Ergs + uwlm) and ro(m) Eppe + ulr)
are increasing functions of w. Moreover, r(s, ) Epae + u(m)
is an inecreasing function of .

The proof of the lemma is deferred to Appendix B.

Proposition 2. H (s, 7) is a guasi-convex function of ©. In
other words, one of the following three conditions holds.

(@) ZH(s,7) > 0 forall 7.

(b) #-H(s,m) <0 forallm

(c) There exists a =’ such that %H(Sa 7)< 0 when m < 7'
and 2 H(s,7) > 0 when 7 > ',

The quasi-convexity of H(s,w) is straightforward from
Lemma 1. It ensures that the necessary condition (24) and
(25) is also sufficient. We are now ready to prove our main
result Theorem 1.

Proof of Theorem 1: We calculate the optimal =* as
follows. Let nf ., € [0,1] be the root of the equation

r1(m) Eppn + ulm) = 0.

In case the root does not exist®, set 77, = 0if r1(0) Eppon +
w(0) >0, and 7%, = 1if 71 (1) Epnae + u(1) < 0. Similarly,
define 7}, ., € [0,1] as the root of the equation

ro(m) Epe + ulm) = 0.

In case the root does not exist, set 77, T 0if r2(0) Fros +
u(0) > 0, and Thigh = 1 if ro(1) Fmae +u(1) < O.

From the definition, r(7)Eumar + wi{m) > ro(m)Fpmas +
u(mr) for any given . Thus, it always holds that 7}, , < 7}, ..

From the sufficient and necessary conditions in (24) and (25),
we can conclude that

Thw A8 <7l
* * i *
M= R if 8> Thigh (26)
H * *
5 ifse [ﬂ'iow’ Wh,igh,]

In other words, the optimal target SoC is a range [7],,,, Th05].
Since r1(7)Emae + ulr) and ro(m)Fpes + u(r) are not
functions of s, m,, and 7y, , are independent of s. Thus,
the range [77,,,, 7}, ) is fixed for all stages regardless of the
system state s.

Furthermore, when n =1 or ¢, = 0, r1(7) = ra(m) for all
7. In this case, 7}, = W}tﬂ-gh. Thus, the optimal 7 becomes a
single point that remains constant for all system states s. This
completes the proof. [ |

Remark 1. Usually, infinite-horizon dynamic programming
problems are solved by value iteration or policy iteration
methods [17]. Therein, an N-dimensicnal decision vector is
optimized in each iteration, with each entry of the vector being
the optimal decision corresponding to a system state. In our
problem, the system state s is continuous in [0, 1]. Discretizing
it can lead to a large N. Fortunately, the results in this section
show that the optimal decision is characterized by two scalars
Moy A0 T3, o, that remain constant for all system states. Thus,
the caleunlation of the optimal decision is greatly simplified. A
brief discussion on the algorithm to obtain 77, and 77, ;, can
be found in Appendix D.

V. OPTIMAL BESS PLANNING

Obviously, the minimum operating cost H*(s) is a function
of the BESS energy capacily Fhug.. On the other hand, the
capital cost of acquiring and setting up the BESS increases
with Fypn. Let the capital cost be denoted as Q (4. ), which
is an increasing function of F,.,.. In this section, we are

2This happens when r1{0) Ey e +u(0) > 0,ie, v1(n)Enes +ul{r) > 0
for all o, or when r1 (1) Erae +u{l) < 0, ie., ri{m)EBpae +ulr) <0
for all .
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interested in investigating the optimal F,,,, that minimizes
the total expected cost AQ(Emas) + Es [H*(s)], where A
is a weighting factor that depends on the BESS life time,
BESS degradation, and the tendering period. E,[H*(s)] is
the expected value of H*(s) over all initial SoC s under the
optimal charging operation.

The main result of this section is given in Theorem 2 below,
which states that H*(s) is a decreasing convex function of
B for all s. As a result, E, [H*(s)] is also a decreas-
ing convex function of F,,,. In other words, the marginal
decrease of the E, [H*(s)] diminishes when E,.,, becomes
large. This implies the existence of a unique optimal E,qz,
at which the marginal increase of Q(Fuay) 18 equal to the
marginal decrease of E, [H*(s)], i.e.,

\0Q(Bunaz) _ O [H*(5)
BETHCLCE aEmam .

Theorem 2. The minimum operating cost H* (s) given in (10)
is a decreasing convex function of Froe.

The proof of Theorem 2 is deferred to Appendix C

VI. NUMERICAL RESULTS

In this section, we validate our analysis and investigate how
different system parameters affect the optimal BESS operation
and planning. The simulations are conducted using the real-
time frequency measurement data collectd in Sacramanto,
CA, as shown in Fig. 2. The sample rate is 10 Hz (i.e,,
1 measurement per 0.1 seconds). The data set, provided by
ENET/GridEye [18], includes a total of 2,555,377 samples,
accounting for about 71 hours of frequency measurement.
Suppose that a frequency excursion event occurs when the
system frequency deviates outside a dead band of 10mHz
around the normative frequency. The empirical distributions
of I, J, and g derived from the measurement data are plotted
in Fig. 3.

An underlying assumption of our analysis is that I, J,
and g, are i.i.d. for different », respectively, and that they are
mutvally independent. To validate this assumption, we plot
the auto-correlations and cross-correlations of the variables
in Figs. 4 and 5, respectively. As we can see from Fig. 4,
the auto-correlations of the variables reach the peak when the
time lag is 0 and are close to zero at non-zero time lags,
implying that they are approximately independent for different
n. Likewise, Fig. 5 shows that the cross-correlations of the
variables are all close to zero, implying that I, J, and g are
mutually independent.

Before proceeding, let us verify Proposition 1, the convexity
of H*(s) with respect to s, which is a key step in the
proof of our main result. Unless otherwise stated, we assume
that Frppe = 0.1IMWh, P, = IMW, Pppe is uniformly
distributed in [0.5, 1MW, and the discount factor o = 0.9 in
the rest of the section. In Fig. 6, we plot H*{s) against s

Eoax(1—m)

P FEPF‘G (W) - cpp—lnﬁ‘EPFG (WEmGG:W) ifr<s .

5 ) = cpp,lnﬁ'EPFG (MBpgem) if 7> s

(22)
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Fig. 2. System frequency measured at Sacramanto, CA
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Fig. 3.

Empirical distributions of I, J, and ¢

when ¢, = $0.1/kWh and ¢, = $10/kWh. The figure verifies
that H*{s) is indeed a convex function of s, as proved in
Proposition 1.

A. Optimal Target SeC

In this subsection, we investigate the effect of wvarious
system parameters on the optimal target SoC 7, and mp; ..
The settings of system parameters are the same as that in Fig. 6
unless otherwise stated. In Fig. 7, =}, and mp, , are plotted
against . It can be seen that when the battery efficiency
is low, [7],,, T4 is a relatively wide interval. The interval
narrows when 7 becomes large, and converges to a single point
when n — 1. This is consistent with Theorem 1. Recall that
there is no need to charge or discharge the battery during an
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Fig. 6. Convexity of H*(s) with respect to s when ¢. = $0.1/kWh and

cp = $10/KWh.
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I interval if the SoC at the beginning of the [ interval is
already within [}, 7};.,]. The result in Fig. 7 is intuitive
in the sense that when the battery efficiency is low, adjusting
SoC during the T intervals is more costly due to power losses.
Thus, the interval [r},,,,7};,,] is wider so that the battery
SoC does not need to be adjusted too often.

In Fig. 8, 7y, and mp, ., are plotted against ¢, when
ce = $0.1/kWh and BESS efficiency n = 0.8. The figure
shows that [7f,,,, i, is a relatively large interval when ¢,
is comparable with c.. When ¢, becomes large compared with
Coy Ty and 77, converges o a single point, as proved in
Theorem 1. Indeed, mj,, and m;, . overlap when c, is larger
than $35/kWh. In practice, the regulation failure penalty ¢, is
usually much larger the regular eleciricity price .. Thus, we
can safely regard the optimal target SoC as a single point in
practical system designs.

Fig. 9 investigates the effect of battery energy capacity
Eywae on the optimal target SoC «;,,, and W}tﬂ-gh. It can be
seen that both 7, and 7}, ., become low when Ey, g is very
large. This can be intuitively explained as follows. Recall that
5% is to denote the BESS SoC at the end of an I interval (or the
beginning of a J interval). If 5 Ehon and (1 — %) Bpas are
both larger than the maximum possible £ pge, then regulation
failures are completely avoided, and the operating cost would
be dominated by the charging cost during [ intervals. When
Firnae 18 large, there is a wide range of s° that can completely
prevent regulation failures. Out of this range, smaller s®'s
are preferred, so that the charging cost during T intervals is
lower. This, the optimal target SoCs must be low when F,,,,
becomes large.

B. Time Response Comparison

To illustrate the advantage of the proposed BESS control
scheme, we compare the operating cost of our scheme with the
following three benchmark algorithms proposed in previous
work, e.g., in [19].
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» No additional charging during T intervals. Referred to
“No recharging” in the figures.

« Recharge up to 100% during [ intervals. Referred to as
“Aggressive recharging” in the figures.

+ Recharge with upper and lower target SoCs. This scheme
is similar to our proposed scheme, except that the target
SoCs are set heuristically (instead of optimized in our
algorithm). In upper and lower target SoCs are set to
be 0.92 and 0.73, respectively in [19]. This scheme is
referred to as “Heuristic recharging” in the figures.

In particular, we run a time-response simulation using the real-
time frequency measurement data in Fig. 2. The probability
of encountering regulation failures is plotted in Fig. 10. More-
over, the time-aggregate operating costs (without discounting)
are plotted in Figs. 11 and 12 when K., = 0.1MWh and
Eonae = 1.5MWh, respectively. It can be seen from Figs. 11
and 12 that both "No recharging” and " Aggressive recharging”
algorithms vield much higher cost than the optimal algorithm
proposed in the paper. This is because the battery SoC is

Probability of regulation failure

=—a— ()ptimal algorithm

—— No recharging :

—p— Aggressive recharging

—&— Heuristic recharging
1

0 05 1 1.5
E__ (MWh)

max

Fig. 10. Comparison of regulation failure probability when ¢. = $0.1/kWh,
cp = $10/kWh and n=0.8
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25

[T - RVRSUNER FURTRNSY PR BRI -0 (ci00.cor SR RS RSN
=
%
o
S SRR DURURRR RN 3" - ool SRR PSPPI ARUDURROU SOUPR
0.5
T i i i i ; ; ;
0 10 20 30 40 50 50 70 80
Time (hour)
Fig. 11. Comparison of time-aggregate costs when F.p, = 0.1MWh,

ce = $0.1/kWh, ep = $10/kWh and n=0.8

often too low (with "No recharging™) or too high (with "Ag-
gressive charging”), vielding much higher regulation failure
probabilities, as shown in Fig. 10. On the other hand, with
optimal target SoC, the proposed algorithm reduces both the
operating cost and regulation failure probability compared with
“"Heuristic recharging”.

C. Optimal BESS Planning

In Fig. 13, we verify Theorem 2 and investigate the effect
of BESS energy capacity F,,,. on the operating cost H*.
Here, . = $0.1/kWh, ¢, = $10/kWh, = 0.8, and Fn0s
varies from 0.05MWh to to 10MWh. It can be see that H*(s)
is a decreasing convex function of E.,,,. for all initial SoC
s. This implies that there exists an optimal BESS energy
capacity Fi.q. that hits the optimal balance between the
capital investment and operating cost.
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VII. CONCLUSIONS

We studied the optimal planning and control for BESSs
participating in the PFC regulation market. We show that the
optimal BESS conitrol is to charge or discharge the BESS
during [ intervals until its SoC reaches a target value. We
have proved that the optimal target SoC is a range that is
invariant with respect to the BESS SoC s at the beginning of
the T intervals. This implies that the optimal target SoC can be
calculated offline and remain unchanged over the entire system
time. Hence, the operation complexity can be kept very low.
Moreover, the target SoC range reduces to a point in practical
systems, where the penalty rate for regulation failure is much
larger than the regular electricity price. It was also shown that
the optimal operating cost is a decreasing convex function
of the BESS energy capacity, implying the existence of an
optimal energy capacity that balances the capital investment
of BESS and the operating cost.

Other than PFC, BESSs can serve multiple purposes, such as
demand response, energy arbitrage, and peak shaving. Differ-

ent services require different energy and power capacities. For
example, PFC reserves do not require high energy capacity,
but are sensitive to regulation failures. On the other hand,
high energy capacity is needed for demand response, energy
arbitrage, and peak shaving. It is an interesting future research
topic to study the optimal combining of these services in a
single BESS.

APPENDIX A
PROOF OF PROPOSITION 1

Proof: First, calculate
dH*(s)  Oh(s,7*)
ds ds

QT Q3 T
oo [0 [T (0 fi0deds

QT QI * ()%
+ C“p-l](; /[; Lg@prFc(e)fl(i)dedi

27)

I3}
where

. 1 — s)Eige — sgnln® — 3) Phast

Qs = ( ) ( ) ; (28)

n

. SEoae +egn(n® — ) Praai+ ne

Q3= i =
Qz = W(SEma:c -+ Sgl’l(ﬂ'* = S)Pmaxi)a (30)
v SEnar +sgn(nt — 8)Ppast —e

o ( —5) m a

5 2
Ema:c

and Q1 is the same as ¢y in (13) except that = is replaced by
m* in the definition. After some manipulations, we have

H* @) (5) = a(s)

Qr Q3
+ apl/ f H*(Q) (8!)
4] 4]
QY ,Q1
+ apflf f H*(Q) (SI)
0 0

where H*2)(s) := &gﬁ and

(32)

sz Errc (e) fr(é)ded:

=0} fEPFc (e) fI (z)dEdZ,

—sgn(n* — 8)Eas t #® #
als) = gn( 7 ) (fr(s, ") Ermas + ulw ))f] @Qn
Q1 §2cost (s
p . s
-0—/0 7 . Zf](z)dz. {(33)
=S

We claim that a(s) is non-negative for all 5. To see this, note
that

—sgn(r" — ) (r(s,’ﬂ*)Emm + u(w*)) >0
for all s due to the necessary condition of optimal 7% in
(24) and (25). Thus, the first term of a(s) is non-negative.
Moreover, the integrand in the second term of a(s) is always
non-negative as:
Bcost ,(s)
s

P
- CPEjmm (niéfEPFG’ (Emaﬂﬂ(l - 5)) er_l??szPFG’ (Em@x5)>

(34)
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where the equality is obtained by taking the second-order
derivative of (15) over s* at s = s, and the inequality is
due to the fact that PDF functions are non-negative. Thus,
a(s) = 0.

Define two operators [ and T such that

Qf ra3

Dfis) = apl/[; /0 F{sh
Qt Qi

+ MLaé )

Tf(s) =als)+ Df(s).

It will be shown in Lemma 2 that the operator T is a
contraction mapping. Thus, H*® (s) is the fixed point of
equation f(s) = T f(s), and the fixed point can be achieved

by iteration
f (k+1) (s)

Letting (% (s) = 0 for all s, we can calculate the fixed point

ZK (s),

where Kq(s) = a(s) and K;(s) = DK;_(s). Note that D is
a summation of two integrals, and therefore is non-negative
when the integrand is non-negative. Thus, all K;(s) = 0,
because Kg(s) = a{s) > 0. As a result, H*®)(s) > 0 for
all s. This completes the proof. [ ]

Y JEppole) f1{i)dedi

and
(35)

=T1®)(s).

H*(Q)

Lemma 2. The operator T defined in (35) is a contraction
mapping.

To prove the lemma, we can show that T satisfies following
Blackwell Sufficient Conditions for contraction mapping.

« {(Monotonicity) For any pairs of functions f(s) and g(s)
such that f(s) < g(s) for all s, T'f(s) < Tg(s).
« (Discounting) 38 « (0,1) : T(f + b)(s) < Tf(s) +
BbYf,b >0 s
Proof: Obviously, D f(s) < Dg(s) for any pairs of func-
tions f(s) < g(s), because the operators is a summation of two
integrals with non-negative integrands. Thus, T'f(s) < T'g(s),
and the Monotonicity condition holds.
To prove the discounting property, notice that

T(f+b)(s) = als)+D(f+b)(s) =als)+Df(s)+ Db
— T(s)+ Db, (36)
because integrals are linear operations. Moreover,
QT pR%
Db = ab (plf frppo(e) fr(d)dedi
0 0
R ,Q
+p-1 f fEPF‘G (e) I (Z)dedz)
0 0
Q7 Q7
< ob(m [ m@diven [ H@
0 0
< ab(p +p)
= ab (37

#=Qt frp s (e) f1(i)deds,

10

Here, the inequalities are due to the fact that the integrals of
PDF functions are no larger than 1. Since @ is a discounting
factor that is smaller than 1, the Discounting condition holds.

|
APPENDIX B
PROOF OF LEMMA 1
Progf:
()
o
(=T Bamas
= ap1/ H*(Q) (5) |s:ﬂ+ ne fEPF‘G (e)de
0 Liag
N B an
+ap_y / H® (s) ‘s:wf% fEeno(e)de
0 nEmax

> 0, (38)

where the equality is obtained by differentiating (23) over
7, and the inequality is due to the fact that H*®) (s) > 0
for all s, as proved in Proposition 1. Thus, w(n) increases
with 7. Meanwhile, both 71(7) and rs(7) are increasing
functions of r, because Fy rro () 18 a decreasing function of
x. Hence, both r1 (7) Eyas +u(m) and ro{m) By +ulr) are
increasing functions of w. Moreover, when 7 increases from
57 to s, r(s,7) Eyae + u(m) increases by (%
r2(87 ) Emae +u(s7) to r1(sT) Epyar +u(sT). This completes
the proof. [ |

— n) ¢ from

APPENDIX C
PrROOF OF THEOREM 2
Proof: The proof of convexity of H*(s) with respect to

Fian 18 similar to that for Proposition 1, and thus is shortened
here. We first calculate

GEH*( s)
8E72ﬂ'a33
=8, Bmoa)
ay rQs azH
vom [ f £ (€) Fr{i)dedi
BE%QZ S,'_Q+ PR
1—m* Emaz
N 8% H(s
+ ap Fr(QF )/ W() Bt eprFc(e)de

Emax

Qi Q1 aQH
vor [0 [T £ (e) fr(i)dedi
'ma:c sf—Q*

» Tt B aQH( )
J”O:plef(QT)/O aEQ

kgt il

Fotor (e)de?
(39)

e

si=qt —
HEmaz

where

Ei(s, Emcm)
 —sgni{r* — s)|r* — s

. Fr@D) (r(8,7*) B + u(n*))
w2 o )
+ e (l ;W ) f8enc (%) Q)
+ e AT F R s (7 Fnaw) Fr(@Q1)

8 1-—s ? * 2 * AW
~[Te (;m (0] Frorc(@) + st fgm(@@) Fr(oydi
(40)
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We claim that a(s, Frg.) = 0 for all s and Epe,. To see
this, note that the first term is always non-negative, because

—sgn(n” — ) (75, 7) Funaz + u(n")) 2 0

due to (24) and (25). Moreover, the remaining terms are non-
negative due to the non-negativeness of PDFs and CCDFs.

Same as the proof in Proposition 1, we can show that the
right hand side of (39) is a contraction mapping. Thus, we can
caleulate Wﬁ as a fixed point and get

PH* (s) ST
— E Ki(s, B
5E72n35‘: i=0 ""(S’ mam)’
where all & (8, Bmae) = 0. This implies that zﬁg;(s) >0,

M

and thus H*(s) is convex with respect to £,,,,.

Now we proceed to prove that H*(s) is a decreasing
function of E.q.. We first show that the optimal single-
stage cost h*(s) = min, A(s,7) decreases with £,,,,. Then,
the decreasing monotonicity of H*(s) with respect to Frge
can be proved by the monotonicity property of contraction
mapping, which is stated in Lemma 2.

Recall that % = 7(8,7) ErmanF1(Q1), where r(s,7) is
defined in (22). Thus, the optimal = that minimizes A(s,w)
satisfies

r(s,m) =0. 41

Furthermore, we can calculate that

Oh(s,w) 1 -
m = (17r>sn - 17T<s7?> Ce‘ﬂ' - S‘FI (Ql)

1-— Emam 1-— R
MFEPFC ((W)> Fr @y
. J

= CppfanFEch (nEm&EW) 4 (Ql) 42)
Substituting (41) to (42), we have

dh* (s 1
aEﬂEai = (17Tlst>3 = 17T15f<377> CeSFI (Ql)

= Cp;;jl FEPFC (Emal‘(ln Wlﬁ)) FI (Ql)

= 0 (43)

where 1, is the minimizer of A(s, 7). (43) implies that £* (s)
decreases with E,,,., for all s.

Next, note that the Bellman equation of infinite-horizon
dynamic programming is a contraction mapping [17]. Let

TH(s)= min h(s,m)+abErz .00l
T€e(0,1]
(44)
be the contraction operator corresponding to the Bellman
equation in (10). Then,

H*(s) = Jim (T*Ho)(s)
for all s.
Starting with Ho{s) = 0, we have
Hi(s) =THy(s) =h"(s).
Let £*"(s) (or H (s)) and h*~(s) (or H_( )) denote k* (s)
{or Hy(s)) with BESS energy capacity EF . and F_ .

H(g(s,x,I, Eprc,q))]

11

respectively. We have proved that h*+(s) < A*(s), or
equivalently H,"(s) < H, (s), if B, > E,. ... Due to the
monotonicity property of contraction mapping,

H(s) < Hg (s)

as long as H; | (s) < H_,(s) for all k. Taking & to infinity,
we have H*V(s) < H* (s) when El, . > E__.. This
completes the proof.

|

APPENDIX D
*® *®
ALGORITHM TO OBTAIN 7, AND 7j; 0

The traditional algorithms to solve infinite-horizon dynamic
programming problems, e.g., value iteration and policy itera-
tion algorithms, involve iterative steps, where in each iteration,
the policy m{7) is updated for each system state (ie., BESS
SoC) 7. In our problem, the state space is continuous in [0, 1].
If it is discretized into N levels, ie., i € {0,8,25,---,1}
where 4 = ﬁ, then /V optimization problems, one for each
7(i), need to be solved in each iteration.

Based on the state-invariant property of mj,, and 77, ;. the
complexity of solving the dynamic programming problem can
be greatly reduced. Define p;;(7) = Pr{s 11 = j[sn = ¢, 7},
which can be calculated from the distributions of I, J, g, and
Eppc. For any given pair of d = (7igw, Thigh), We have

pz’j (ﬂ'iow) T < T low
p5 = i (@) = { 0y (Thign) 1> Tiow @)
Dij (Z) Tiow < U < Thigh

Let P be the matrix of pf, and Hd be the vector of H9(4).
Likewise, define vector h9, whose it entry is h(i, Tiow) wWhen
< Tiows AT, Thigh) When ¢ > Thsgh, and A(i, ¢) when mye,, <
1 < Thigh. 1hen, HY can be obtained as the solution of

(I-oP9)HY =h?. (46)

The optimal =7, and 7, , can then be obtained by solving

. —1
min he, (47)
Miow ,Thigh

BT (1-aP?)

where 3 is an arbilrary vector’. In contrast to the traditional
value iteration and policy iteration approaches, no iteration is
required here. 77, and 7}, ., can be obtained by solving one
optimization problem (47) with two scalar variables only.
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