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Abstract—Frequency control rebalances supply and demand
while maintaining the network state within operational margins.
It is implemented using fast ramping reserves that are expensive
and wasteful, and which are expected to become increasingly
necessary with the current acceleration of renewable penetration.
The most promising solution to this problem is the use of demand
response, i.e. load participation in frequency control. Yet it is still
unclear how to efficiently integrate load participation without
introducing instabilities and violating operational constraints.

In this paper we present a comprehensive load-side frequency
control mechanism that can maintain the grid within operational
constraints. In particular, our controllers can rebalance supply
and demand after disturbances, restore the frequency to its
nominal value and preserve inter-area power flows. Furthermore,
our controllers are distributed (unlike the currently implemented
frequency control), can allocate load updates optimally, and can
maintain line flows within thermal limits. We prove that such a
distributed load-side control is globally asymptotically stable and
robust to unknown load parameters, We illustrate its effectiveness
through simulations.

I. INTRODUCTION

Frequency control maintains the frequency of a power net-
work at its nominal value when demand or supply fluctuates.
It is traditionally implemented on the generation side and
consists of three mechanisms that work in concert [1]-[3].
The primary frequency control, called the droop control and
completely decentralized, operates on a timescale up to low
tens of seconds and uses a governor to adjust, around a set-
point, the mechanical power input to a generator based on the
local frequency deviation. The primary control can rebalance
power and stabilize the frequency but does not restore the
nominal frequency. The secondary frequency control (called
automatic generation control or AGC) operates on a timescale
up to a minute or so and adjusts the setpoints of governors in
a control area in a centralized fashion to drive the frequency
back to its nominal value and the inter-area power flows to
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their scheduled values. Finally, economic dispatch operates on
a timescale of several minutes or up and schedules the output
levels of generators that are online and the inter-area power
flows. See [4], [5] for a recent hierarchical model of power
systems and their stability analysis.

Load-side participation in frequency control offers many
advantages, including faster response, lower fuel consumption
and emission, and better localization of disturbances. The
idea of using frequency adaptive loads dates back to [6]
that advocates their large scale deployment to “assist or even
replace turbine-governed systems and spinning reserve.” They
also proposed to use spot prices to incentivize the users to
adapt their consumption to the true cost of generation at the
time of consumption. Remarkably it was emphasized back then
that such frequency adaptive loads will “allow the system to
accept more readily a stochastically fluctuating energy source,
such as wind or solar generation” [6].

This is echoed recently in, e.g., [7]-[15] that argue for “grid-
friendly” appliances, such as refrigerators, water or space
heaters, ventilation systems, and air conditioners, as well as
plug-in electric vehicles to help manage energy imbalance.
Simulations in all these studies have consistently shown sig-
nificant improvement in performance and reduction in the
need for spinning reserves. A small scale project by the
Pacific Northwest National Lab in 2006-2007 demonstrated
the use of 200 residential appliances in primary frequency
control that automatically reduce their consumption when
the frequency of the household dropped below a threshold
(59.95Hz) [16]. Although these simulation studies and field
trials are insightful, they fall short in predicting the (potential)
behavior of a large-scale deployment of frequency control.

This has motivated the recent development of new an-
alytic studies assessing the effect of distributed frequency
control in power systems [17]-[23], and microgrids [24]-[26],
which can be grouped into three main approaches. The first
approach builds on consensus algeorithms to provide effi-
ciency guarantees to classical PI controllers [17], [25], [26].
It achieves efficiency but does not manage congestion, i.e.,
it does not enforce constraints such as thermal limits. The
second approach reverse engineers the network dynamics
as a primal-dual algorithm of an underlying optimization
problem, and then add constraints and modifies the objective
function while preserving the primal-dual interpretation of the
network dynamics [20]-[23], [27]. Tt successfully achieves
efficiency but it limits the type of operational constraints that
can be satisfied. The third approach directly formulates an
optimization problem that encodes all eperational constraints
and then designs a hyvbrid algorithm that combines the network

0018-9236 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOT10.1109/TAC.2017.2713529, IEEE

Transactions on Automatic Control

dvnamics with a subset of the primal-dual algorithm [19]. It is
able to satisfy operational constraints, but the stability depends
on the network parameters.

Contributions of this work: In this paper we develop a
method to jointly achieve primary + secondary frequency
control, and congestion management (bringing line flows to
within their limits), in a distributed manner using controllable
loads. To contrast with the generation-side AGC frequency
control, we refer to our solution as load-side control. To
our knowledge, this method produces the firs¢ distributed
controllers for demand response that are scalable and enforce
required operational constraints for frequency regulation, such
as restoring nominal frequency and preserving inter-area flows,
while respecting line limits.

Our work builds on previous optimization-based ap-
proaches [19]-[23], [27]. The crux of our solution is the
introduction of virtual (line) flows that can be used to im-
plicitly constrain real flows without altering the primal-dual
interpretation of the network dynamics. A virtual flow is a
cyber quantity on each line that a controller computes based
on information from its neighbors. In steady state, its value
equals the actual line flows incident on that controller. This
device allows us to impose arbitrary constraints on the (actual)
line flows for congestion management and restoring inter-area
flows, while retaining the ability to exploit network dynamics
to help carry out the primal-dual algorithm.

Our confribution with respect to the existing literature is
manifold. Unlike [18], [19], our global asymptotic stability
result (Theorem 11 in Section V) is independent of the
controller gains, which is highly desirable for fully distributed
deployments. Our results hold for arbitrary topologies and
can impose inter-area constraints, thermal limits or any linear
equality or inequality constraint in the line flows. Moreover,
we provide a convergence analysis in the presence of unknown
parameters (Section V) that is novel in the primal-dual liter-
ature and provides the necessary robustness for large scale
distributed deployments. Finally, our framework can further
extend to include intermediate buses without generators or
loads — quite common in transmission networks [2, Chapter
9.3]- which are not considered by the existing literature, and
to fully distribute non-local constraints like those imposed on
inter-area flows (Section VI).

A preliminary version of this work has been presented
in [28]. This paper extends [28] in several ways. First, the
robustness study of our controllers with respect to uncertain
load parameter (Section V) as well as the framework exten-
sions (Section VI are new. Second, we include detailed proofs
that were omitted in [28] due to space constraints. Finally, we
extend our simulations in Section VII to further illustrate the
conservativeness of the uncertainty bounds of Theorem 15.

II. PRELIMINARIES

Let R be the set of real numbers and IN the set of natural
numbers. Given a finite set § C IN we use | 5| to denote its
cardinality. For a set of scalar numbers o; € R, ¢ € 5, we
denote ag to its column vector, i.e. ag := (a;)ics € RISl we
usually drop the subscript S when the set is known from the

2

context. For two vectors a € RI®l and b « RI¥'l we define
the column vector z = (a,b) € RISITIS']. Given a matrix A,
we denote its transpose as A7 and use A; to denote the ith
row of 4. We will also use Ag to denote the sub matrix of A
composed only of the rows 4; with ¢ £ 5. The diagonal matrix
of a sequence {a;, ¢ £ S} is represented by diag{a;)ics.
Similarly, for a sequence of matrices {Ap, h € S} we let
blockdiag(Ap,),ecs denote the block diagonal matrix. Finally,
we use either 1, and 1,.,, (0, and 0, .., ) to dencte the
vector and matrix of all ones (zeros), or 1 (0) when its
dimension is understood from the context.

For a function f : R™ — R"™ we use f'(z) := 2 f(z)
to denote the Jacobian and ! to denote its inverse. When
n =1, f“{x) denotes the second derivative 8%25 F(z).

For given vectors v € R™ and o € R", and set § C

{1,...,n}, the operator [a]f_ is defined element-wise by
1+ if 4
(ot = J o TieS (0
8 i, if ¢ Q/ S,

where [adj{i is equal to a; if either a; > 0 or u; > 0, and 0
otherwise. Whenever u} == 0, the following relation holds:

(ug — ug) [asli, < (us —u) as 2)
since for any pair (uga;), with ¢ € 5, that makes the
projection active ([a;] = 0) we must have u; < 0 and a; < 0,
and therefore (us — uf)a; > 0= (u; — u}) ¥ [ag] .

A. Network Model

We consider a power network described by a directed graph
G(N, €Y where N = {1,...,|A/|} is the set of buses, denoted
by either ¢ or 4, and £ C A x N is the set of transmission
lines denoted by either e or ¢j such that if ij € &, then ji & £.

We partition the buses ' = G U L and use G and £
to denote the set of generator and load buses respectively.
A generator bus may also have loads attached to it, but
not otherwise. We assume the graph G(A, &) is connected,
and make the following assumptions which are standard and
well-justified for transmission networks [29]: (i) bus voltage
magnitudes |V;| are constant for all ¢ € A, (ii) lines ij € £ are
lossless and characterized by their reactance z;; > 0, and (iii)
reactive power flows do not affect bus voltage phase angles
and frequencies.

The evolution of the transmission network is therefore
described by

0= Piin— (dz—Q—tht) _ZjEJ\fi B',gj (9z —Bj) i L (3¢)

where w; denotes the bus frequency, 8; denotes the phase,
d; denotes an aggregate controllable load, D;w; denotes the
aggregale power consumption consumption due to uncontrol-
lable frequency-sensitive loads and/or generators’ damping.
M; denotes the generator’s inertia, and P}" is the (constant)
difference between mechanical power injected by a generator
and the constant aggregate power consumed by loads. Notice
that for load buses (¢ € £) P < 0. Finally, the line parameter
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B = 3% cos(0) — 67) represents the sensitivity of the
power flow to phase variations. All variables 8;, w; and d; as
well as the parameter P are deviations from nominal values
09, w°, d?, and P{™°.

By letting the line power flows F. = Py := By;(0; — 0;)
for e = ij € £, we can equivalently rewrite (3) as

Mzwz :P,:‘n — (dz + Dzwz) — ZSEE Ci,epe = Q (43.)
0=PI — (di + Dywi) — Soece CicPe i€ L (4b)
Py =Bij(wi — wy) ije & (4o

where (. are the elements of the incidence matrix ¢ <
RWIXIEl of the graph G(A/,€) such that C;, = —1 if
jieE,C’i,ezlife:éje(fandC’i,e:O
otherwise, and the line flows initial condition must satisfy

Py;(0) = By; (8:;(0) — 6;(0)).

Remark 1. Equation (3) and (4) represent a linearized version
of the nonlinear swing equations [2]. The dynamics are similar
to the DC approximation but the assumptions do not require
small nominal phase angle difference across each line; see
[30, Section VII] for a first principles derivation of (4). This
model has been standard in the design of frequency conirollers
(see, e.g., [31] and [2, Chapter 11]) as it is able to capmure the
behavior of small frequency fluctuations due to supply demand
imbalance. Extending the results of this work for nonlinear
power flow models is subject of current research. We refer
the reader to [32] for recent preliminary extensions on this
direction.

e =

Remark 2. Our model assumes that every bus has both D; >0
and controllable load d;. While this is reasonable for load and
generator buses (for i € G the generator can implement —d;),
it is unreasonable for inrermediate buses that have neither
generators nor loads. This is addressed in Section VI Our
framework can also handle the case where d; is present only
Jorie S C N. This case is omitied due io space consirainis.

B. Operational Constraints

We denote each control area using %k and let X :=
{1,...,|K|} be the set of all areas in the network. Let
Nt € A be set of buses in area k& and B, C £ the set of
boundary edges of area k, i.e. ij By iff either i € A or
j = Ny, but not both.

Within each area, the AGC scheme seeks to restore the
frequency to its nominal value and preserve a constant power
transfer outside the area, i.e.

S yes CriiPy = B (3)

where ék” is equal to 1, if i € A, —1, if § € N, and B
is the net scheduled power injection of area k.!

By defining CA’;“J. to be 0 whenever ¢j & B we can also
relate ' € RICI<IEN with ¢ ¢ RWVI¥IE] using

N

C=EC (©)

IThe division of the power network into control areas is an artifact of the
current control architecture. Our solution can achieve all the control objectives
of primary and secondary frequency control without enforcing this constraint.
Thus, we only include (5) to fit our solution within the existing architecture.

3

where Ex := [e1 ... e]f and e RWI ke K, is a
vector with elements (eg); = 1 if ¢ € A and (ex); = 0
otherwise.

Finally, the thermal limit constraints are usually given by

P<P<P 7

where P = (P)ece, P i= (Polece and P = (P )ece
represent the line flow limits.

III. OPTIMAL LOAD-SIDE CONTROL

Suppose the system (4) is in equilibrium, ie. w; = 0
for all ¢ and P” = 0 for all ¢4, and at time O, there is
a disturbance, represented by a step change in the vector
P o= (Pf™);cp, that produces a power imbalance. Then,
we are interested in designing a distributed control mecha-
nism that rebalances the system, restores the frequency to its
nominal value while maintaining the operational constraints of
Section II-B. Furthermore, we would like this mechanism to
produce an efficient allocation among all the users (or loads)
that are willing to adapt.

We use ¢; (d;) to denote the cost or disutility of changing the
load consumption by d;. This allows us to formally describe
our notion of efficiency in terms of the loads’ power share.
More precisely, we shall say that a load control is efficient if in
equilibrium solves the Optimal L.oad Control (OLC) problem:

Problem 1 (OLC).

minimize Z ei(di) (8a)
o iEN

subject to P —{d+ Dw) = Lgt {8b)

w =10 (8¢)

¢BCTo = P (8)

P< BCT9< P (8e)

where d = (di)ien, w = (Widsen, @ = (Bi)ien, D =
diag(Dz’)ieNa b= diag(Bij)ijE& (BOTe)ij = Bij (92' - 9j)
and Lg := CBC? is the B;;-weighted Laplacian matrix.

Problem 1 embeds in a sole convex optimization problem
the operational constraints of the three hierarchical layers
of generation-side frequency control. Supply-demand balance
(8b), which belongs to primary frequency control; frequency
restoration (8c¢) and inter-area flow constraints (8d), which
conform secondary frequency control; and thermal limits (8e)
and efficient scheduling (8a), which are part of economic
dispatch.

This sophisticated hierarchical approach evidences the in-
cremental complexity required to enforce each additional con-
straint. Supply-demand balance (8b) is intfrinsically enforced
by the power system dynamics. This property was leveraged
in [20] to develop a load-side primary frequency control. Fre-
quency restoration (8c¢) and inter-area flow preservation (8d)
require some notion of integral control to cancel their com-
bined error (also known as area control error or ACE), and
communication to send this (unique within each area) signal
to each participating unit. However, the most challenging
constraints are the thermal limits (8e) since they require a
highly non-trivial coordination of resources —as illustrated in
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Section VII (Figure 7)— which is currently implemented by
solving an opfimization problem.

Unfortunately, the existing architecture is not suitable to
solving our optimal load-side control problem since each
layer is required to operate at a different timescale. One
possible alternative could be to use a standard optimization
algorithm to solve Problem 1 — since Problem 1 is convex,
in principle it could be efficiently solved using one of the
maty optimization algorithms available [33]. However, unlike
standard optimization problems where one usually has access
to all the problem variables, here we can only modify the load
demand d;, while #; and w; react to these changes according
to (3). This is a fundamental constraint that further requires
that fast changes in 4; do not render the system unstable.

We overcome these restrictions in this paper by formu-
lating an equivalent optimization problem whose primal-dual
optimization algorithm embeds the line flow version of the
swing equations (4). By doing so, instead of looking at the
power network dynamics and their stability as a limitation
to load control design, our controllers cooperate with the
network in order to collectively solve Problem 1. Since our
work cuts across several architectural layers, our solution
can be interpreted as a wunified load-side control architecture
for efficient primary and secondary frequency control with
congestion management.

Throughout this paper we make the following assumptions:

Assumption 1 (Cost function). The cost function c;{d;) is a-
strongly convex and second order continuously differentiable
(c; € C% with & (d;) > a > ) in the interior of its domain
Dy = [d;,di] € R, such that ¢;(d;) — +oo whenever d; —
aD;.

Assumption 2 (Strict feasibility in D). The OLC problem (8)
is feasible and theve is at least one feasible (d,w, @) such that
dentD =TVt Dy,

Assumptions 1 and 2 are sufficient for the optimality and
convergence analysis of our controllers to hold. Assumption 1
ensures that the derived controllers are Lipschitz, continuously
differentiable, and that the demand response never exceeds its
capacity. Assumption 2 guarantees that, even in the presence
of Assumption 1, the optimal solution of OLC is finite, and
therefore allows us to use the KKT conditions [33, Ch. 5.2.3]
to characterize it.

The next assumption will be used in Section V in order to
guarantee convergence in the presence of uncertain parameters.

Assumption 3 (Lipschitz continuity of <[). The functions <i(-)
are Lipschirz confinuous with Lipschitz constant L > 0.

As we will show in Section V, Assumption 3 ensures
enough responsiveness on the demand to guarantee conver-
gerce in the presence of uncertainty on I);. This is critical
for our robustness result (Theorem 15). Notice also that As-
sumption 3 implies that the domain of 7; = R in Assumption
1. However, if the systems is designed with enough capacity
such that df & [d; +=,d; — €] Vi, then one can always modify
a cost function ¢;(-) that satisfies Assumptions 1 and 2 for
finite domains D; = [d;,d;] and define a new cost function

4

;(+) that satisfies Assumption 3 without modifying the optimal
allocation d}. More precisely, given ¢;(-), define &(-) to be
equal to ¢;(-) inside [d; + =,d; — ] and modify &:(-) outside
the subset so that Assumption 3 holds. It is easy to show then
that the optimal solution will still be d} and therefore we still

get d; < d}f < d.

A. Virtual Flows Reformulation

We now proceed to describe the optimization problem that
will be used to derive the distributed controllers that achieve
our goals. The crux of our solution comes from implicitly im-
posing the constraints (8¢)-(8e) by using virfual flows instead
of explicitly using w; and 8;. This, together with an additional
quadratic objective on w; and substituting B;;(#; — ;) with
F, in (8b), allows us to embed the network dynamics as part
of the primal-dual algorithm while preserving all the desired
constraints.

Problem 2 (VE-OLC).

minimize Z (d)+M (9a)
dyia,d, P iech ‘ 2

subject to P" _(d+ Dw)y=CP (9b)

P _d=Lgp¢ (9¢)

CBCT¢ =P (9d)

P<BCT$<P (9e)

where ¢ = (¢ilicp represents the virtual phases and

(BCT¢)ij = Bij(é: — &) is the corresponding virtual flow
through line é5 € £.

Although not clear at first sight, the constraint (9¢) —together
with (9b)— implicitly enforces that any optimal solution of VF-
OLC (d*,w*, ¢*, P*) will restore the frequency to its nominal
value, i.e. w; = 0. Similarly, constraint (%d) will impose {8d)
and (9e) will impose (8e). As a result, the optimal solution of
VF-OLC is not affected by the additional term >, D;w?/2 in
the objective and therefore the two problems (OLC and VE-
OLC) are equivalent. This is formalized in Lemma 4 below.

We also highlight that VF-OLC uses P to represent line
flows instead of the phase representation BC7T 6 used in OLC.
This selection is not arbitrary and it will be critical for
embedding the network dynamics (4) —not (3)- as part of the
primal-dual algorithm that solves VE-OLC (Theorem 6). A
simple exercise shows that, if P is substituted with BCT8 in
(9), then the primal-dual algorithm no longer embeds (4), i.e.,
Theorem 6 no longer holds.

We use 14, A; and 7y to denote the Lagrange multipliers of
constraints (9b), (9¢) and (9d), and p;;. and Py a8 multipliers
of the right and left constraints of (9e), respectively. In order
to make the presentation more compact sometimes we will
use z = (6, P) € RV and o = (A pym,p7,07) €
REWIHIEIF2IE] a5 well as p:= (pT, 7).

Using this notation we can write the Lagrangian of VE-OLC
as

L{d,w,2,0) = Tsep (ealds) + 222) 4 0T (P — d — Du
— P+ A TP —d— Lpd)+ =T (CBCT4 — P)
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+p T (BCTg—P)+p T(P - BCT¢)
= Z ei(di)— i+ viddi+ Dyws (wi /2 — vi)+ (v + M) PP
CN
—PTCTy - ¢T(Lgh— CBCTn —CB(p™ — p7))
R R el R (10)
The next lemmas characterize the optimality conditions of
VE-OLC and its equivalence with OLC. Their proofs can be
found in the Appendix.

Lemma 3 (Optimality). Ler G{N,E) be a connected
graph. Then (d*,w*, ¢*, P* on=(A" v, 7%, 0% 7)) is
a primal-dual opfimal solution to VF-OLC if and only if
(d* ,w*, &%, P*) is primal feasible, pT*,p=" > 0,

ie N,

* /-1 * * * ok
di =c; (] + X)), wi=v

(1L

where <71 is the inverse of the derivative of c;, ¥ is some
scalar,

=0,

e, B (A — A7) + CGB(CTr* 4 pT — p=) = 0 (12)
with C; being the ith row of C, and

.O;S'* (Bij (¢f - ¢;) - ?ij)

pi; (Pyy — By (¢ — ¢3))

*

ij e £, (13a)

= 07
=0, (13b)

el

Moreover, d*, w*, v* and \* are unigque with i = Q.

Lemma 4 (OLC and VF-OLC Equivalence). Given any set
of vectors (d*,w*, 0%, ¢*, P*) satisfying CT0* = CT¢* and
Lt = CP*. Then (d",w®, 0%} is an optimal solution of
OLC if and only {d*,w*,¢*, P*) is an optimal soluiion to
VF-OLC.

B. Distributed Optimal Load-side Control

We now show how to leverage the power network dynamics
to solve the OLC problem in a distributed way. Our solution is
based on the classical primal dual optimization algorithm that
has been of great use to design congestion control mechanisms
in communication networks [34]-[37].

Since by Lemma 4, VF-OLC provides the same optimal
load schedule as OLC, we can solve VHE-OLC instead. This
will allow us to incorporate the network dynamics as part of
an optimization algorithm that indirectly solves OLC.

To achieve this goal we first minimize (10) over d and w
which is achieved by setting w; = 14 and d; = c;*I(yi + )
in (10). Thus, by letting d;{-) := c;*1(~) we get

Lz, o) = mindimize L (d,w, z:={(¢, P),c:=(Av,m,p", p_))

= PN v) - PTCTY — TPt TPy TP
— T (LA — CDpCTr — CDp(pt — p7)) (14)
where ®g(Ag,vs) = > ;s Pi(As1s) and

G (A1) =0 (di(A 4 1)) — (N F ) di (A + 1)
2
— Diﬁ + (i + )P

5 (15)

5

The strict convexity of L{d,w, z,) in (d,w) and the fact that
d and w only appear in (9b) and (9¢) gives rise to the following
lemma whose proof is also in the Appendix.

Lemma 5 (Strict concavity of Lz, o) in (A, v)). The funcrion
& (Mg, vq) in (15) is stricily concave. As a result, L(x, o) is
strictly concave in (A, v).

Next we reduce the Lagrangian L{zr,s) by maximizing it
for any 1 with ¢ € £. We let y = (A, g, 7,07, 07 ) and
consider the Lagrangian

L{z,y) = maximize L(z,o). {16)
(2RI

Since L(z,o) is strictly concave in r by Lemma 5, the
minimizer of (16) is unigque. Moreover, this also implies that
Lz, y) is strictly concave in (A, vg).

Finally, the optimal load controllers can be then obtained
by considering the primal-dual gradient law of L{z,y) which
is given by

'—Y[aL( )Tr and & — X0 Liz,)T (AT
p=Y gLl &= -Xo Lz,y

where X and Y are positive-definite diagonal matrices given
by X = diag((x?)ece, (0 )ien) and Y := diag((¢f)ieo,
(CD)ienrs (CF)rexc, (8 )ece, (€87 Jece), and the projection
[]} is defined as in (1) for u = y and wg = p. This projection
ensures that the vector p(¢) = (pT(¢), p~(¢)) remains within
the positive orthant, that is g (z) > 0 and p~ () > 0 V.

Notice that although the frequency w is no longer present
in (17), the minimization in (14) requires w; = 4. As a result
the Lagrange multipliers 14 in (17) will play the role of the
frequency w; in (4). The following theorem shows that this
procedure indeed embeds the network dynamics as part of the
primal-dual law (17).

Theorem 6 (Optimal Load-side Control). By sefting (¥ =
M[l, Xf; = By and v; = wy, the primal-dual gradient law
(17) is equivalenr to the power network dynamics (4) together
with

A= ¢ (Pz'm —ds — Yjen, Bijldi — qu)) (18a)
7 = G Nlyjen, CrpBuy (9 — ¢) — By (185)
fiy = gf; [Bij (s — ) — Ej]j: (18c)
pij = ¢ [Py — By (¢hs — @5;;')]:,2—3 (18d)

4555 - Xf ( Zjej\fz Bij(Ai—A5) _Zk({}c,eel’z’k Cz’,eBeék,eWk
— See CoeBelpf = p7)) (18¢)
di = ¢ (s + wi) (180)

where (18a), (18e) and (18f) are for i = N, (18b)is for k < K,
and (18c) and (18d) are for ij € &.

Proof: By Lemma 5 and (14}, L{x, o} is strictly concave
in (A, 1). Therefore, it follows that there exists a unique

vi(z,y) = argmax Lz, 7). {19)

L
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Fig. 1: Control architectare derived from OLC.

By stationarity, v} (z, y} must satisfy

3 T .
g;, (2,4, v}z, y\) rrrrr o {/\ , VR, y)}j C- P (20a)
= :” = Dotz y)—de (A;, (e, y)) - O P =0 (20h)

which is equivalent to (4b), i.e. v (x,y) mplicitly satisfies
by Moreover, since d;{) is sirictly increasing, there s a
unique w; that satisfies (4b) with d; = o; (A; + w;) for fixed
A; and P, which implies that wp = v} (z, y).

We now ileratively apply the i_n‘,/d()p!; theorerm {381 on
L{x,y) defined in (16) to compute = L{x, y) and Q”Lu" ).
For example, to compute = L{z,y) We use

£

Tz, y) = - Ilx,o {(212)
dx (#9) 8z ) v =t {2y} -

. (21b)

vo=v e, W}

""" ( L{dwvba)

He oy (o= (w0 /

where ¢/ ~HA + 2 i= (7 (A 4+ 14 sea, Which leads to

a VT ~7T e, P
VérrﬁL{:z, ) = —(Chwg + Clvk(z,y)) (224a)
-------- L(z, N = o LpA — OB r 4 gt - 7)) (22
An cma}ogous computation for = L{x,y) gives
dﬁ(; )T = P o (dg (Mg + wg) + Dug) — CP (233)
@F/{j ) ’
a T pin , j
,—L(g:.g}l = P = A+ sy — Lpd (23D)
—L;L Jj opoT -;—f\ {23c¢)
L{r ' =BCT P (23d)
Lu,y)‘f =P —DpCT4 (23e)
3p ’
where, for a set 9, dg(Ag + vg) = (dilh + 1vy))ies and
d(}\ -+ E’} = d_,-\[()ij\u_f +- L’;V’).

Finally, by setting vv — wy and ¢ = M, Tin (17,
follows that (23a) with (17) is equivalent to {4&). Since we
have alrcady shown that w; must be equal o v} (T %), then,
since by assumption XF; — By for 45 £ &, an analogous
argnment shows that (225-(23y with (17) is eguivalent to (4)
angd (18, B

Hig. 2: Power network example (left) and the corresponding
commuication requiremeint to implement the distributed load
control {18} {right).

Equations (4) and (18) show how the network dynamics
can be complemented with dvnamic load control such that the
whole system amounfs fo a distributed primal-dual algorithio
that tries to find a saddle point on L{z, v} We will show in
the next section thal this system does achieve oplimalily as
intended.

We now illustrate the operation of our OLC algorithm using
figures 1 and 2. Figure 1 shows the control architecture derived
from our OLC problem. The cyber layer (lower block) is in
charge of the distributed real-time computation of the cyber
quantities \;, ¢;, p, and 7, . The the power network (upper
block) evolves in parallel as a result of applyving the load
control &;{A; + w;) and determines the frequency w; and line
flows ;. Both w; and A; are reguired by the load at bus < to
iplement d;(Ay + wy).

Figure 2 illostrales the different agenis and communica-
tion links required to implement the cvber layer. There are
three types of agents: Bus agents (in charge of computing
(s, )y, link agents (to compute (o i P;)) and area agents
(o compute w3 If the net constant power injection FP°
is available, the cyber laver only requires d; as input to
the bus agent to compute (A, 7, gl g, #). All the additional
nformation required can be obtained from adjacent agents in
the communicalion graph (right diagram in Figure 2). Figure
2 also illustrales how the only semi-ceniralized feature of
our controller is the computation of wy. This also affects the
compulation of ¢; ab each bus 7 in the ares boundary us they
require to know the wy of both corresponding adjacent areas
(blue links in Figare 2). As mentioned before, this issue is
solved in Section VI-H.

Remark 7 (Hstimation of P). One of the limitations of (18)
is the need io know FI™ for the bus agent to compuie Ay If D;
is known, then PP can be estimared from measurements of
the net real-time bus injection Fi* — Dyju; — d;. However,
esimaring D can also be challenging., This problem will
be addressed in Section V where we propose a modified
control scheme thai can achieve the same equilibrium even
with approximare estimares of Dy

Remark 8. The procedure described in this section is indepen-
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dent of the constrainis (8d)-(8e). Therefore, such constraints
can be generalized to arbirrary linear equality and inegualiry
constraints on the line flows BCTH. This property will be
exploited in Section VI to further exiend our framework.

IV. OPTIMALITY AND CONVERGENCE

In this section we will show that the system (4) and (18) can
efficiently rebalance supply and demand, restore the nominal
frequency, and preserve inter-area flow schedules and thermal
limits.

We will achieve this objective in two steps. Firstly, we
will show that every equilibrium point of (4) and (18) is an
optimal solution of (9), or equialently (8). This guarantees that
a stationary point of the system efficiently balances supply and
demand and achieves zero frequency deviation.

Secondly, we will show that every trajectory (d(t),w(?),
A(t), P(), AL, 7(1), pT (1), p~ (1)) converges to an equilib-
rium point of (4) and (18). Moreover, we will show that since
P(0) = BCTH(0) (as shown in Section II-A), the line flows
will converge to a point that satisfies (5) and (7).

Theorem 9 (Optimality). A point p* 1= {d*,w*, ¢*, P* A%,
' ot p7") s an equilibrium point of 4) and (18) if
and only if (d*,w*,0%) is an optimal solution of OLC and
(df,w*, ", PY X" v n® pT% p~ %) is a primal-dual optimal
solution to the VF-OLC problem, with

w* =v', OP* = Lp#* and CT6* = CT 4. (24)

Proof: The proof of this theorem is a direct application
of lemmas 3 and 4. Let p* be an equilibrium of (4) and (18).
Then, by definition of the projection Hj and (18c¢)-(18d),
pt* > 0and p~* > 0 and thus dual feasible.

Similarly, since w; = 0, )\1 =0, 7. =0, p$ = 0 and
,0;7 = 0, then (4a)-(4b) and (18a)-(18d) are equivalent to
primal feasibility, i.e. {d*,w*, ¢*, P*) is a feasible point of
(9). Finally, by definition of (4) and (18), conditions (11),
(12) and (13) are always satisfied by any equilibrinm point.
Thus we are under the conditions of L.emma 3 and therefore
(df ,w*, ", PY A" v o pT% p~*) is primal-dual optimal
of VFE-OLC satisfying (24). Lemma 4 shows the remaining
statement of the theorem. [ ]

The rest of this section is devoted to showing that in
fact for every initial condition (w {0}, #(0), P(0), A(0}, (0},
ot (0),p(0)), the system (4) and (18) converges to one
such optimal solution. Furthermore, we will show that P(¥)
converges to a P* that satisfies (5) and (7).

Since we showed in Theorem 6 that (4) and (18) is
equivalent to (17), we will provide our convergence result for
(17). Our global convergence proof builds on recent results
of [39] on global convergence of primal-dual algorithms for
network flow control. Our proof extends [39] in the following
aspects. Firstly, the Lagrangian L(x, v) is not strictly concave
in all of its variables. Secondly, the projection (1) introduces
discontinuities in the vector field that prevents the use of the
standard LaSalle’s Invariance Principle [40].

We solve the latter issue using an invariance principle for
Caratheodory systems [41]. We refer the reader to [42] for

7

a detailed treatment that formalizes its application for primal-
dual systems. The former issue is solved in Theorem 11 which
makes use of the following additional lemma whose proof can
be found in the Appendix.

Lemma 10 (Differentiability of v} (z, v)) Given any (z,v),
the maximizer of (16), vE(x,y), is continuously differentiable
provided c;(-) is strongly convex. Furthermore, the derivaiive
is given by

8 P
Fyﬁ(z y 0 |7(D£+d") 10[;} v (25)
P Az Ag wg T op

@yf:(a:,y) [ (De+d) ", |0]0]0]0] ». (26)

where Dg 1= diag(D,)cs, dy = diag(d]), and dj = d[(X; +
v;) for t € G and d = dj(A\; + v (z, ))forzeﬁ

We now present our main convergence result. Let ' be the
set of equilibrium points of (17)

Ei={(e,9): @9 =0, (%, yﬂ =0},

which by theorems 6 and 9 characterizes the set of optimal
solutions of the OLC problem.

Theorem 11 (Global Convergence). The set B of equilibrium
points of the primal-dual algorithm (17) is globally asympiori-
cally stable. Furthermore, each individual trajectory converges
to a point within F that is optimal with respect to the OLC
problem.

Proof: Following [39] we consider the candidate Lya-
punov function

Uir,y) = (a: e X~ YHa— 55*)+ (y — y"Y L {y—y*)

27)

where (z*=(¢% P*),y*=(A\jvf, 75 ot p %)) is any equilib-
rium point of {17).

We divide the proof of this theorem in four steps:

Step 1: We first use the invariance principle for
Caratheodory systems [41] to show that (x(%), y(¢)) converges
to the largest invariance set that satisfies U(a:, y) = 0 between
transitions of the projection [T, ie.

(2(8),9(8) = M C {(z,9):U(e(t),5(8)) =0,t € RF\ {tx}}

(28)

where {¢5, k € IN} are the time instants when the projection
changes between on and off.

Step 2: We show that any invariant trajectory (x(),y(%)) €
M must have A() = A and v(¢) = ¢ for some constant vectors
A and & A

Step 3: We show that whenever A(¥) = A and v(¥) = 7,
then the whole trajectory (z(¢), y(¢)) must be an equilibrium
point, i.e. M C E.

Step 4: Finally, we show that even though the invariance
principle guarantees only convergence to the set If. The con-
vergence is always to some point within £, ie. (z(¢), y(t)) —
(z*,y*) e E.
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Proof of step 1: Differentiating I/ over time gives

(0= S e+ [ S| 6-v) @

< %(m,y)(z* Sa) s e ) (30)
< Lz, y) — L{z,y) + Liz,y) — L(z,y") (3
<0 <0

where (29) follows from (17) and (30) from (2). Step (31)
follows from convexity (resp. concavity) of L(z,y) in z (resp.
). Finally, equation (32) follows from the saddle property of
the equilibrium point (z*, y*).

Therefore, since U/ (z, y) is radially unbounded, the trajecto-
ries are bounded, and it follows from the invariance principle
for Caratheodory systems [41] that (z(¢), y(¢)) — M, i.e. (28)
holds. The steps 2 and 3 below basically characterize M.

Proof of step 2: Notice that in order to have I’ =0, both
terms in (32) must be zero. In particular, we must have

L{z(t),y") = L(z*

Now, differentiating with respect to time gives

0= L@(t),v) = 2 La),y)é = || L L), 4%

which implies that 2 L{z(¢),y*) = 0

Therefore, the fact that 1} = 0, FFL(x(t),v*) = 0, and
{22a) holds, implies that z(#) must satisfy CTw} (z(t),y*) =
0, which implies that either v/} (z(2),y*) =0 (When Cr is full
row rank) or v} (z(t),y*) = lna(t) {when £ = N} where
a(t) is a time-varying scalar.

We now show that when £ = A we get v} (z(t),v") = ¢
for some constant vector p. Differentiating 4 (x(¢), v*) =
1nex(t) with respect to time and using (25) we obtain

(De+d ) LCLP((1) = 1,6(8)

%)

which after left multiplying by 1I (D + d/.) gives
15D, +d1,6() =0 — &) =0.
Thus, in either case we obtain
vi(e(),y*) = vE(CoP (1), AL) = i

for some constant vector i, which implies that CeP(t) =
CEP for some constant vector .
Therefore, it follows that v} (x(t), y(¢)) must satisfy

ve(@(t),y(t) = ve(d, y()

for some constant vector Z.
Now, using (20) with (34) we get

PP — Devi (8, u(t) — de(Ae(t) + v (3, u(t) — Co P

(33)

(34)

= 0. (35)
A similar argument using the fact that L(z*, v) = L{z*,v*)
gives
ﬂL(x* ) {QL(I* )Tr =0 (36)
By Y By 2 Y =Y.

P

8

Since the projection [-]; only acts on the p positions (36)

implies ;7 L(z*,y) =0, 5 L{z*,y) =0and J L{z*,y) =
0.
Now %L(r*, y) = 0 together with equation (23a) implies
that
Fg' = Dgyg(t) — dg(Ag(t) +vg(t) — CoP* =0, (37)
and 2 L(z*,y) = 0 with (23b) implies
Pt —dg(Ag(t) +vg(t) — CgP* =0 (38)
PR —de(Ae@) + i (2", y(@)) —Ce PP =0 (39)

Using (37) and (38) together with the fact that d;() is
strictly increasing, we get vg(t) = fg and Ag(t) = Ag, for
constant vectors g and S\Q. Moreover, since P* is primal
optimal, Lemma 6 and Theorem 9 imply that vg{(¢) = 0
and Ag(t) = AL Finally, now using (35) together with
(39), the same argumentation gives vf(z(f),y(¢)) = v, and
Ac(®) = 3\,5 for constant vectors £, and 3\5. This finishes step
2, ie A(t) = A and v(t) = 0.

Proof of step 3: Now, since A= 0, it follows from (18a} that
CT(ty = C’Tqﬁ for some constant vector qS or equivalently
@) = ¢+ )1, leferentlatmg in time 17 (x?) " 1¢(t)
gives 0= 11(x?) ¢ = (3yen 1/x¢)A which implies that
B = ﬁ’ for constant scalar A.

Suppose now that either P#0or# #0. Since CTg(2) =
CTé and v(t) = &, P and # are constant. Thus, since the
trajectories are bounded, we must have P=0and 7 =0;
otherwise U/ (x, y) will grow unbounded (contradiction).

It remains to show that p = 0, ie. ot = p~ = 0. Since
#(t) = ¢, then the argument inside (18¢) and {18d) is constant.

Now consider any of,e=13 € £ Then we have three
cases: (i) B, (qzﬁz— i) — P >0, (i) Be (qﬁz—qﬁj)—P < 0
and (iii) B, (ng1 qzﬁj.) P, = 0. Case (i) implies gf (¢t} — +co
which cannot happen since the trajectories are bounded. Case
(iiy implies that o (¢} = O which implies that 47 = 0, and
case (iii) also implies g = 0. An analogous argument gives

— = 0. Thus, we have shown that AM{ € F.

Proof of step 4: We now use structure of U (z, y) to achieve
convergence 1o a single equilibrium. First, since (x(t}, y(t)) —
M and (z(t), y(¢)) is bounded, then there exists an infinite
sequence {iz+ such that (z(iz),v(te)) — (2%, 4%) € M. We
choose this specific (z*,4*) in the definition of /. Now, it
follows from (32) that &/ {z (¢}, y(¢)) is non-increasing in ¢ and
therefore, since {/(z,¥) is quadratic, it is lower bounded and
thus U{¢) — U* = 0 (by the choice of (z*,4*) = (&*,7*)).
Finally, by continuity of U7 {z, v}, (x{),v(®)) — (3*, 4 )

Thus, it follows that (x(t),y(t)) converges to only one
optimal solution within A C F. [ ]

Finally, the following theorem shows that the system is able
to restore the inter-area flows (5) and maintain the line flows
within the thermal limits (7).

Theorem 12 (Inter-area Constraints and Thermal Limits).
Given any primal-dual opfimal solution (z*,0*) € F, the
optimal line flow vector P* saiisfies (5). Furthermore, if
P(0) = BCT6 for some 6° = RWI, then P} = Biz (¢ — 1)
and therefore (7) holds.
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Proof: By optimality, P* and ¢* must satisfy

P™ g = CP* = Lpg* = CBCT¢* (40)

Therefore using primal feasibility, (6) and (40} we have
P=CBCT¢* = ExCBCT ¢ =ExCP*=CP"

which is exactly (5).
Finally, to show that P}, = By, (¢} — ¢}) we will use (4c).
Integrating (4¢) over time gives

P(t) — P(0) = [y BCTu(s)ds.

Therefore, since P(¢) — F*, we have P* = P(0) +
BCTH* where 6* is any finite vector satisfying CT0* —
fooo CTy(s)ds.

Again by primal feasibility CBCT¢* = Lp¢* = CP* =
C(P(0) 4+ BCT#*) = CBCT(6° + 6*). Thus, we must have
¢* = (8°4+0")+al, and it follows then that P* = BCT (8°4
6*) = BCT (¢* —al,) = BOT¢*. Therefore, since by primal
feasibility P < BCT¢* < P, then P < P* < P. ]

V. CONVERGENCE UNDER UNCERTAINTY

In this section we discuss an important aspect of the
implementation of the control law (18). We provide a modified
control law that solves the problem raised in Remark 7, ie.
that does not require knowledge of ;. We show that the new
control law still converges to the same equilibrium provided
the estimation error of IJ; is small enough (c.f. (48)).

We propose an alternative mechanism to compute A;. In-
stead of (18a), we consider the following control law:

A= (Mz‘dJmLain-ZCi,ePe— ZBij(¢i—¢5j)) (41a)
ecE FENG

where M; := 0 for i € £ and a; = R is a positive controller
parameter that can be arbitrarily chosen. Notice that, while
before 1); was an unknown quantity, M; is usually known and
a; is a design parameter. Furthermore, while equation (41a)
requires the knowledge of w;, this is only needed on generator
buses and can therefore be measured from the generator’s shaft
angular acceleration using one of several existing mechanisms,
see e.g. [43].

The parameter e; plays the role of Dj. In fact, whenever
a; = D); then one can use (4a)-(4b) to show that {41a) is the
same as (18a). More precisely, if we let a; = D; + day, then
using (4a)-(4b), (41a) becomes

A :Cf‘ (Pz-m— di+dam; =3 e n, Bij (& —¢j)) )

which is equal to {18a) when da; = 0. A simple equilibrium

analysis shows that a; does not affect the steady state behavior

provided that a; = 0 for some ¢ € A. Thus, we focus in this

section on studying the stability of our modified control law.
Using (42), we can express the new system using

(42)

Ly 0 T
= X%L(a:,y) (43a)

+
g=Y (%L(z, 0T + gz, y) (43b)
)

9

Az Ag (v, 7, )
where  g(z,y):=[(§A:v2)T (4gvg)T O

with v/} = v} (z,y) and d Ag 1= diag(da;)ics.

1T, @4

?

The system (43} is no longer a primal-dual algorithm. The
main result of this section shows, that provided that «; does
not depart significantly from D; (see (48)), convergence to the
optimal solution is preserved.

To show this result, we provide a novel convergence proof
that makes use of the following lemmas whose proofs can be
found in the Appendix.

Lemma 13 (Second order derivatives of L{x,vy)). Whenever
Lemma 10 holds, then we have

&b P
o° 0 0 @
—L(x,y) = d {45
el A e T T A ) and  (43)
Az Ag vg (m, 0)
Dg(Dg + d2)71d£ 0 0 0 7az
8* 0 d, d 0 |a
——L{x,y)=— g g g
dy? (@ 9) 0 dy (Dg +d) 0 |og
0 0 0 0 (m, p)
(46)

with 2 L(z,4) = 0 and 25 L{z,y) < 0.

Lemma 14 (Partial derivatives of g(x, v)). Whenever Lemma
10 holds, then

& P
i _ 0 —(SA,Q(DQ + d"ﬁ)flcg } Ar
6$g($’ y) |: 0 O (}\g,lz‘g,ﬂ', ,O)
Ar A vg (W, p)
g —(SA,Q(D,Q + d2)71d2 0 0 0 Az
a_yg(“” y) = 0 0d4g 0O | xg
0 0 0 0 (ve,m, o)

Unfortunately, the conditions of Theorem 11 will not suffice
to guarantee convergence of the perturbed system. The main
difficulty is that d5(A; + r4) > 0 can become arbitrarily close
to zero. Therefore the sub-matrix of (46) corresponding to the
states A and v can become arbitrarily close to singular which
makes the system non-robust to perturbations of the form of
44).

This problem is solved by using Assumption 3 of Section
T which ensures that & (A; + v4) is uniformly bounded away
from zero. More precisely, using Assumptions 1 and 3 we can
show that @ < ¢/ < I which implies

d:=1/L < di=1/c] < d:=1/a. 47

Theorem 15 (Global convergence of perturbed system).
Whenever assumptions 1, 2 and 3 hold. The sysiem (43)
converges to a point in the opfimal set F for every initial
condition whenever

da; € 2(d — \/d” + d' Dugin, d + V' + d' Diin ). (48)
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where Dmin = minge s Dy

Proof: We prove this theorem in three steps:

Step 1: We first show that under the dynamics (43), the
time derivative of (27) is upper-bounded by

U(e) < / (e 2")T[H (s(s))] (+— 2*)ds

= (z*,y*), z(s) = z* +s(z—2*), and

(49)

where z = (z,y), #*
H(z) is given by (57).

Step 2: We then show that under the assumption (48)
H(z) = 0, and that for any 3 = (&, P, g, %,5) €
R2|N|+3|5|+|g‘+|7€|’ we have

sTH(2)5=0,Y2 <= 5 { e RZ : A=0,00=0,C, P=0}
(50)
where 7 = 2|N| + 3|+ |G| + | K]

Step 3: We finally use (50) and the invariance principle
for Caratheodory systems [41] to show that »(¢) = 0 and
Alt) = A
The rest of the proof follows from steps 3 and 4 of Theorem

11.
We use z = (z,y) and compaclly express (43) using

=Z[f (=)l (51)
where Z = blockdiag(X,Y) and
_[ . ELewt
F&= 1 2Ly 1 o(e.)
Similarly, (27) becomes U(z) = (2 — 2" )T Z71(z — 2*).

Proof of step 1: We now recompute U/ (z) differenlty, i.e.

U(z) = Lz =) T F N+ (2—27) (52)
(=) F () @)z —2") = (5—2) T f(z) (53)
= [y 12 F(()] (5 —2")ds+ (z—2")T £(z*)  (54)
<L =) T [ 2 F(a(s)T+2 F(a(s)] (z—2")ds  (55)
= Joa—2")T[H (2(s))] (z—2" )ds (56)

where (52) follows from {(51), (53) from ¢2), and (54) form
the fact that f(z) — f(z*) = fo 2 f(z(8))(z — z*)ds, where

‘ZL( Y) aiay (z,y) }
axayL(I y) WL(I y)

2 (=) = {
n { . 0 . 0 } ‘
=9(,y)  welz,y)
Finally, {535) follows from the fact that either f;(z*) =0, or
(z: — 2]) = z > 0 and fi(z*) < 0, which implies (= —

2T f(2*) < 0.
Therefore, H{z) in (49) can be expressed as

2 = 5 [ 2"+ L)
_ { ~elay) O }
0 oz L@, w)
+ { 0 saeale, )T }
ang(:.s ¥) %(% (@, )" + @Q(Iay))

10

which using lemmas 13 and 14 becomes

¢ (P Ag) (Ag.,vg) (m,p)
0 0] 0] 0 @
H(Z) _ 0 HP,)\,: (Z) 0 0 (P, 2e) (57)
0 0 Hy ..(z) O (g, vg)
0 0 0 0 (m, o)
where
Hpj, () =

Cﬁ(D,Q«I»d ) 10,5 1C£(D£+d ) 15}11; }
——JA;;(D,C—Q—d ) 105 —(Dg—}—dA;;)(D;;—l—d’) ldi:

,d/g

1 15Ag —d-, }
164g—

and n —(d; + Dg)

H)\g ,Vg (Z) ==

It will prove useful in the next step to rewrite Hp, (%)
using

Hpy, (z) = CT D3 () H(z)D? () C (58)

where

C =blockdiag(Cr, I, D(2) = blockdiag(Do+d, Ds+d) ™t
I 154,

i) —
(2) —164; —(DrF8ALd,

and

Notice that since D(z) = 0, D3 (z) in (58) always exists.

Proof of step 2: To show that H () < 0 and (50) holds, it
is enough to show that

H(z) <0 and Hi,, () <0, Ve (59)

To see this, assume for now that (59) holds. Then, using
(58) it follows that Hp . (2) = 0, which implies by (57) and
Hy, () < O that H(z) < 0. Moreover, 3/ [ (z)Z = 0 ¥z
if and only if

[PT AL | Hpp, () PT AT = (60)
and
(AL 5 1 Hyg e (2)[AZ 93 1T = 0. (61)

Therefore using (58) it follows that (60) and H(z) <0z
implies that C» P = 0 and Ay = 0. Similarly, Hy o (2) =0

Yz and (61) implies )\g = U = 0. This finishes the proof of
(50). Tt remains to show that (59) holds whenever {(48) holds.

Proof of H{(z) < 0: By definition of negative definite matrices,
H(z) < 0 if and only if all the roots of the characteristic
polynomials

(e + Dt + (D + dag)dy) —

6&?/4
4—6a$/4

i) =

= i+ (14 (Ds + das)dy) s +

are negative for every ¢ € £ and ¥z (recall d} depends on z).
Thus, applying Ruth-Hurwitz stability criterion we get the
following necessary and sufficient condition:

2 (624)

(62b)
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for every i € L.
Now, equation (62a) can be equivalently rewritten as:

2(d; — v/ di(dl + Dy)) < da; < 2(d; + /d}(d; + D;)). (63)

Since d} < [d,d], Di > Dmin and the function x —
v/z{z 4+ y) is decreasing in both x and y for z,y > 0, then

2(d; — /dild; + D)) < 2(d" — \/d'(d' + Droin)).-
Similarly, since z + +/z(z + y) is increasing for x,y > 0,

2(d} + /di(d + Dy)) > 2(d + /d'(d" + Diin)).-

Therefore, (62a) holds whenever da; satisifes (48).
Finally, (62b) holds whenever da; > —;—, — D¢ which in
particular holds if da; > — Dy, The follc?wing calculation

shows that 2(d’ — \/d'(d’ + Dmin)) > —Dmin which implies

that (62b) holds under condition (48):

Z(QJ - éj(dl + Dmin)) > _Dmin ~—
D2, D2,
&' (d + Diin) < 4’2+$ +d' Dot <= 0< 0,

Therefore (62) holds whenever (48) holds.

Proof of H,; »(2z) < O: Similarly, we can show that all the
eigenvalues of H,,_ »_(z) are the roots of the polynomials

S
pips) = (s + Dy + ) (s + ) — (5 — )
da
= pi 4 (Di+ 2d) s + (Ds + bas)d — 1
which, since D; + 2d, > 0, are negative if and only if
{62a) is satisfied Vi € G. Therefore, (48) also guarantees that
Ho.». <0

Proof of step 3: Since by Step 2 H (2) < 0 ¥z, (49) implies
that I/ < 0 whenever (48) holds. Thus, we are left to apply
again the invariance principle for Caratheodory systems [41]
and characterize its invariant set A (28).

Letdz = (2(¢t)—2z*) and similarly define 6 P = (P(t)— P*),
dAr =dp () =A%, dhg = Ag(t) — AL and g = 1g ) — Vi
Then since U = 0 iff 627 H(2)dz = 0, then it follows from
{50y that z{(¢) € M if and only if C 6P =0, X = 0 and
drg = 0.

This implies that Cr P(3) = Ce P*, Alt) = A and 10 (8) =
v} = 0, which in particular also implies that »/2 (z{#), (1)) =
viE(CpP(1),A(t)) = vi(Cc P*,A%) = 0. Therefore we have
shown that z(¢) € M if and only if A(#) = A* and v(2) =0
which finalizes Step 3.

2
i

As mentioned before, the rest of the proof follows from steps
2 and 3 of Theorem 11. ]

VI. FRAMEWORK EXTENSIONS

In this section we extend the proposed framework to derive
controllers that enhance the solution described before. More
precisely, we will show how we can modify our controllers
in order to account for buses that have zero power injection
(Section VI-A) and how to fully distribute the implementation
of the inter-area flow constraints (Section VI-B). Although in
principle both extensions could be combined, we present them
separately to simplify presentation.

11

A. Zero Power Injection Buses

We now show how our design framework can be extended
to include buses with zero power injection. Let Z be the set of
buses that have neither generators nor loads. Thus, we consider
a power network whose dynamics are described by

douc =wour (64a)
Mgirg = PE*—(dg+Dgwg)—Lp (g a0 (64b)
O:Pf:n—(dﬁ—‘,—Dgwg)—LB’(ﬁ’N)e {64c)
0=—Lp 2.0 (64d)

where Lp (5 g/ is the sub-matrix of L consisting of the rows
in S and columns in 5’.

We will use Kron reduction to eliminate (64d). Equation
(64d) implies that the {8;, i € Z) is uniquely determined by
the buses adjacent to Z, i.e. 8z = Lél(z,Z)LB’(Z’guﬁ)Bguﬁ.
Thus we can rewrite (64) using only 8¢, which gives

four =waur {65a)
Mgirg =Py~ (dg+Dowg)—Lip ¢ pupyfouc  (65b)
0=PF—(de+Dewe) =LYy o gupboue (65¢0)

where L, = LB,(guL,guﬁ)—LB,(guﬁ,Z)Lg,l(g,g)LB,(z,guﬁ)
is the Schur complement of Lp after removing the rows
and columns corresponding to Z. The matrix L', is also a
Laplacian of areduced graph G(G U £, £%) and therefore it can
be expressed as LY, — C#T BYFCHT where O is the incidence
matrix of G(G U £, &%) and BY = diag(ng)ijegﬂ are the line
susceptances of the reduced network.

This reduction allows to use (63) (which is equivalent to (3))
to also model networks that contain buses with zero power
injection. The only caveat is that some of line flows of the
vector BCT# are no longer present in B*C*T0g,, — when a
bus is eliminated using Kron reduction, its adjacent lines B.,
e € £, are substituted by an equivalent clique with new line
impedances Bg,, e et Asa result, some of the constraints
(8d)-(8e) would no longer have a physical meaning if we
directly substitute BCT# with B*FC* 8z, - in (3).

We overcome this issue by showing that each original
By;(0; — 6;) in G(N,&) can be replaced by a linear com-
bination of line flows B, (i — ;) of the reduced network
GG UL, EM.

For any @ satisfying (64d) we have

- (%]
0z

qour

Lo = {
? 0jz]

Thus it follows that
Ty _ Trt | 96Ul
BC*8 = BC LB{ 0z
CRBACYT 0 = APBECH B, (66)

} - BCTLIB,(N,QUL)QQU‘C

_ Tyt
=BC LB,(N,QUL)
where LTB is the pseudo-inverse of Lp.

Therefore, by substituting BCT8 with A'B*C 0, in
(8) and repeating the procedure of Section IIT we obtained a
modified version of {18) in which (18a)-{18e) becomes

No = MNP —di = T B (81— 69)) (67a)
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(¢ — &5) — P} (67b)

e PR A Al

Tk — 4k (Eeem,fg‘efﬁ (’:Lc,efie,z‘j /
r i
I

=8 | > oijest 4;;Bﬁ3{@e - ({67c)
o =L [P s Dggees AL Blybs - ) ép_ (67d)
. b/ - . T BT P
i = X | L ij(/\i"" Ag) Z‘ Crebie Z‘ A G,
ent e el 8, keI

,,,,, DCEREN AR L (oF - 03 ) (67¢c)
i & el '

where (07a) and ©7e) are forec G L, (670 is for k < K,
and (67c) and (67d} are for the original lines e € £.

It can be shown that the analysis deseribed in Sections [V
and V ostill holds under this exlension.

Remark 16, The only additional overhead incurved by the
proposed extension is the need for commupicanion berween
Inses thar are adjocent on the graph G(G L) L)%Y and were
not adjacent in G(N | E) (see Figure 3 for an illusiration).

Arenl

Fig. 3: Communication requirements for the power network
m Fig. 2. Lelt side for the case when bus 3 has no imjection
{(Section VI-A), and right side for the distributed inter-area
flow constraint formulation (Section VI-B).

B. Distributed Inter-areq Flow Constrainis

We now show how we can fully distribute the implemen-
tation of the inter-area flow constraints. The procedure is
analogous to Section VI-A and therefore we will only limit
to deseribe what are the modifications that need to he done
to (8) in order to obtain controllers that are fully distributed.

We define for each area k an additional graph G(f3;, %)
where we associate each boundary edge e € B, with a node
and define undirected edges {e,e’}  £F that deseribe the
communication links between e and ¢, Using this formulation,
we decompose equation (5) for each & into |58, equations

. .
C,!;pﬂpe ec By, kel (68)

where v, is a new primal variable that aims to guarantee
ndirectly (3). In fact, it is casy o sce by summing (68) over
[ B;c that

S Gt - f‘) =2 > bi-w=e

JrA—
ey, aByg efi{e,e’ OBy

which is equal o (3).

Therefore, since whenever (5) holds, one can find a set of
Ve salislying (68), then we can substitute (8d) with (68). I we
let 7% be the Lagrange multiplier associated with (68), then
by reéi acing (18b) and (18e) with

LY -t Ay &
p (»'i,e BH g e,

FEN ECX,ecHy
- CoeBulpf - 57)) (69c)
e & '

we cun disiribute the implementation of the inler-area flow
constraint. Figure 3 shows how the communication require-
ments are modified by this change. In particular, since n¥
andd qwi‘: can be co-located and compuied together with A; and
¢, where ¢ denctes the bus of area & adjacent to the tie-line
e, many of the communication links used for A; and ¢; can
be reused. 1L can be shown thal the addidonal communication
links required to implement the distributed version of the inter-
area flow constraints is er most |5| — 1 per area, while for
the centralized solution this number is always 2|Bs] per area.
Finally, il each houndary bus has only one mcident boundary
edge, ie. if 3 pex cepn,CreBe (ﬂ?;,;,e?rff has at most one term,
the convergence results of sections IV and V extend to this
case.

VI NUMERICAL ILLUSTRATIONS

We now illustrate the behavior of our control scheme. We
consider the widely used IEEE 39 bus system, shown in Figure
4, to fest our scheme. We assurmne that the system has two
independent control areas that are connected through lines
(1,2), (2,3) and (26,27} The network paramelers as well
as the inilial stationary point (pre fault state) were oblained
from the Power System Toolbox [44] data set. Each bus is
assumed 1o have a controllable load with T; = diax, Duax)s
with dpax = 1pu. on a 100MVA base with ci(-) and the
corresponding d;(-) =¢; 1() as shown in Figure 5.

Throughout the simulations we assume that the aggregate
generator damping and EOjid frequency sensitivity parameter
D; = 02Vie N and x& = ¢} o ¢ = ¢pb w1,
forall ¢ ¢ N, bk &« X and e £ £ These parameter values
do not affect convergence, but in general they will affect
the convergence rate. The values of [’ are corrected so
that they mitially add ap to zero by evenly disiribuling the
mismatch among the load buses. P’ is obtained from the
starting stationarv condition. We initially set F and £ so that
they are not binding.
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Fig. & Areas Freguencies and Aggregale Infer-area Flow

We simulate the OLC-system as well as the swing dynam-
ics (4) without load control (4; = 0), afler introducing =
perturbation at bus 29 of /5§ —~ —2pu.. In some scenarios
we disable a few of the OLC constraints. This is achieved by
fixing the corresponding Lagrange multiplier to be zero.

13

LMPs nter area line flows

i
13 £

inter area line flows

o [F] ar at W ] st v i = ) W % ]
i i

Fig. 7: LMPs and inter area line flows: without thermal limits
(lop), with thermal Hmite (bottom)

Figure 6 shows the evolulion of the bus frequencies and
the inter-area flow for the vncontrolled swing dynamics {a),
the OLC system without inter-area constraints (b), and the
OLC with area constraints (). It can be seen that while the
swing dvnaniics alone fail to recover the nominal frequency
(a), the OLC controllers can jointly rebalance the power as
well as recovering the nominal frequency (b and ¢). The
frequency stabilization when using OLC seems to be similar
or even better than the swing dynamics. Figure 6 shows
that, interestingly, even in the case where the inter-area flow
consfraint is nol aclive () the infer-urea Now takes longer Lo
settle to the new value. This has a smoothing effect that makes
the transition of the power flows to the new steady-state less
sudden.

Now, we illustrate the action of the thermal constraints by
adding a constraint of P, = 2.6pu. and P, = ~2.6p.u. o
the tie lines between areas. Figure 7 (top) shows the values of
the multipliers A;, that correspond to the Locational Marginal
Prices (LAMPs), and the line flows of the tie lines for the same
scenario displaved in Figure 6 (¢}, i.e. without thermal limits.
It can be seen that neither the inifial condition, nor the new
steady state satisfy the thermal limit (shown by a dashed line;.
However, once we add thermal limits to our OLC scheme
(hottom of Figure 7), we can see that the system converges (o
a new operating point that satisfies cur constraints.

Finally, we show the conservativeness of the bound obtained
in Theorem 15. We simulate the perturbed system 4), (41a)
and (18b)-(18f) under the same conditions as in Figure 7 (top),
ie., without enforcing thermal limits. We set the scalars a;s
such that the corresponding da;s are homogeneous for every
bus 7. We also do not enforee Assumption 3 and use the same
d; as deseribed in Figare 5. This implies that (48) in Theorem

Figure & shows the evoluiion of the frequency w;
and LMPs A; for different valves of da; belonging to
{~04, -0.21, 0.2, -0.19,0.0}. Since 1); = 0.2 at all the
buses, then da; — —0.2 is the threshold that makes a; go from
positive to negative as duy decreases. Even though condition
(4% i not satisfied for amy day, our simulations show that
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Fig. 8: Frequency and Location Marginal Prices evolution for
homogeneous perturbation da; € {—0.4,—0.21,—0.2,—0.19, 0}

the system converges whenever a; > 0 (da; > —0.2). The
case when da; = —0.2 is of special interest. Here, the system
converges, vet the nominal frequency is not restored. This is
because the ferms dauw; (42) are equal to the terms Dy
in (4a)-(4b). Thus «; and A; can be made simultaneously
zero with nonzero w. Fortunately, this can only happen when
a; = 0 Vi which can be avoided since a; is a designed
parameter.

VIII. CONCLUDING REMARKS

This paper studies the problem of restoring the power
balance and operational constraints of a power network after
a disturbance by dynamically adapting the loads. We show
that provided communication is allowed among neighboring
buses, it is possible to rebalance the power mismatch, restore
the nominal frequency, and maintain inter-area flows and
thermal limits. OQur distributed solution converges for every
initial condition and is robust to parameter uncertainty. Several
numerical simulations verify our findings and provide new
insight on the conservativeness of the theoretical sufficient
condition.

APPENDIX
A. Pioof of Lemma 3

Proof: Assumptions 1 and 2 guarantee that the solution
to the primal (OLC) is finite. Moreover, since by Assumption
2 there is a feasible d = Int?, then the Slater condition is
satisfied [33] and there is zero duality gap.

Thus, since OLC only has linear equality constraints, we can
use Karush-Kuhn-Tucker (KKT) conditions [33] to character-
ize the primal dual optimal solution. Thus (d*,w*, P*, ¢*, %)
is primal dual optimal if and only if we have:

(i) Primal and dual feasibility: (9b)-(9e) and o7,
(i) Stationarity:

—L(d* whx® ety =0,

%L(d* wh z*, %) =0
(iii) Complementary slackness:

p =0

i 8 B N
BwL(d Jw o™y =0 and

14
i (B z‘j(@ﬁ* $;)— Py) =0, ijeé;
10::7 (f?.] "3.3‘ (QB* *)) = 0 3-7 =

KKT conditions (i} and (iii) are already implicit by assump-

tions of the lemma.
The stationarity condition (ii) is given by

ad OL (4, P ¢, 0"y = ddl) — (W + A1) =0 (T00)
aw,(d*,w*,P*,qﬁ*,a*) = Di{wf —v{) =0 (70b)
oL * * * * AN % *

ﬁ(d S W 7P7¢ 70')*1'/371/?‘*0 (70C)
O (@', P, 4,0%) = Sgen, Bl — M)

+ Fess Ci,eBe (Eke]c ék,eWI: +plt =) =0 (70d)

Since [); > 0 equation (70b) implies »f = w}. Thus, (70b)
and (70a) amount to the first and second conditions of (11).
Furthermore, since the graph & is connected then (70c¢) is
equivalent to v} = & Vi € A which is the third condition of
(11).

Since ¢;(d;) and w* are strictly convex functions, it is
easy to show that 17 and Af are unique. To show & =0 we
use (i). Adding (9b) overi « N gives

0= sen (P — (@} + Dwf) = Y eee Ci P
= YEn (Pz'm —(df + Diwf)) — > emijes (Cae e + Che )
= Yiew (B — (d} + Die})) (71)
and similarly (9¢) gives
0 =Fiene Blr — a2)
Thus, subtracting (71) from (72) gives
0=>3 ien Diw! =3 e Divf =03 e Ds
and since D; > 0 %i € A, it follows that & = 0. ]
B. Proof of Lemma 4
Proof: Let (d*w* = 0,8*) be an optimal solution of

OLC. Then, by letting ¢* = #* and P* = BCT§*, it follows
that (d*,w* = 0,4*, P*) is a feasible solution of VE-OLC.
Suppose that (d*,w”,¢*, P*) is not optimal with respect to
VE-OLC, then the solution ( d* A*,qb* P*) of VE-OLC has
strictly lower cost 5 ;- ci(di) = D: ;’ < Y en ildl). By
Iremma? we have that w* = 0. Then, it follows that by setting
& = ¢*, (d*,0*, 8%) is a feasible solution of OLC with
strlctly lower cost than the supposedly optimal (d*,w*,6%).
Contradiction. Therefore (d* AL P*) is an optimal solu-
tion of VHE-OLC. The converse is shown analogously. [ |

C. Proof of Lemma 5

Proof: A straightforward differentiation shows that the
Hessian of $; (14, A;) is given by

; X
@ sy | @D —di ] ow
a(w,}\i)z(ﬁz(yz: )\z) = 70;; 761].; A (73)
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where d} is short for di{A; + 1) and denotes de derivative of
di(-) = cgfl(') with respect to its argument.

Since ¢; is strictly convex d} > 0. Thus, since D; > 0, (73)
is negative definite which implies that ®;(;, A;) is strictly
concave. Finally, it follows from (14) that L(x,o) is strictly
concave in (i, AJ. [ |

D. Proof of Lemma 10

Proof: We first notice that v/ (z,v), ¢ € £, depends
only on A; and CyP = >, g ;. F.. Which means that
55¢VT:(55 yv) = 0, afgyz(xa y) 0, Zvi(@y) = 0,

5oV (@, y) = 0and 57 yz (x,y) is diagonal.
Now by deﬁmtlon of v}i(x,y), for any ¢ € £ we have

= %L(Iryvyf:('rr y)) :P:ﬂ*DIV:(Iry)
—di(di + ] (2,0)) = Feen Cie Fe

Therefore, if we fix P and take the total derivative of
%L(m,y, vf(x,y)) with respect to A; we obtain

(74)

d 7] #
0= 4 (5Ll vi(ey) 75)
~(Ds i+ ) gyl — s ) (6)

where here we used ¢} for short of v} (z, ).
Now since by assumption c;(-) is strongly convex, ie.

f() = o di() = gy < 5 < oo Thus, (D +df) is
finite and strictly positive, which implies that
d; )\:', : 2
O ey G

ax (Ditdi v (2w)
Similarly, we obtain

a 1

= (T,y) = — Ciy ie Ll

0P Y = D O+ i)

where C; is the ¢th row of (.
Finally, notice that whenever dj(A; + 1)) exists, then 21}

5
and g v also exists.

E. Proof of Lemma 13
Proof: Using the Envelope Theorem [38] in (16) we have

aL aL .
%(az,y) - %(:ﬂ:, yayﬁ('T’ y))
which implies that
oL a [8L
@(5’3’9):% (%(5’3 y,vr(x,y))
8L 8L a
= Ly w) = e @i y) v y)
8L a
- Bzdvr (l‘,y,VE(l‘,y))%I/E(IL‘, y) (77)

where the last step follows from L(x, o) being linear in .
Now, by definition of v} (x,y) it follows that

&L X
87(1‘7 U, Vﬁ(‘r:y)) =0. (78)
-
Differentiating (78) with respect to x gives
8L N 8L . a
- m(ma y’V£($= y)) + @(‘I’y’ Vﬁ(‘r’ y))%”’ﬁ(‘r’y)
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and therefore
0°L 8L ) ’
axa (‘T y,Vﬁ(l‘ y)) m(rryvyﬁ(‘rry))
* T 62[/ *
*%V,::(l‘a y) @(1‘7 Y, V,::(l‘: y)) {79)
Substituting (79) into (77) gives
T &*L
( ) = —g-vh(m )T o 0z YL, y)) vi(z,y).
{80)
It follows from (20) and (15) that
9L 9°P
G (=t (@ ) = (39), M) =~ (Do),
(81)
Therefore, substituting (25) and (81) into (80) gives {(45).
A similar calculation using (26) gives (46). [ |

F Proof of Lemma 14
Proof: By definition of g{x,y) we have

a Ae Ag {vg, ™, 0)
5,9y = [(6AcZv)T (64 Zve)T 20 T
Thus, using Lemma 10 we obtain 2 g(z,y). A similar

computation gives 5%9 (z,y). [ ]
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