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Distributed Optimization Decomposition for Joint
Economic Dispatch and Frequency Regulation

Desmond Cai

Abstract—FEconomic dispatch and frequency regulation are typi-
cally viewed as fundamentally different problems in power systems
and, hence, are typically studied separately. In this paper, we frame
and study a joint problem that co-optimizes both slow timescale
economic dispatch resources and fast timeseale frequency regula-
tion resources. We show how the joint problem can be decomposed
without loss of optimality into slow and fast timescale subprob-
lems that have appealing interpretations as the economic dispatch
and frequency regulation problems, respectively. We solve the fast
timescale subproblem using a distributed frequency control algo-
rithm that preserves network stability during transients. We solve
the slow timescale subproblem using an efficient market mech-
anism that coordinates with the fast timescale subproblem. We
investigate the performance of our appreach on the IEEE 24-bus
reliability test system.

Index Terms—Economic dispatch, frequency regulation, mar-
kets, optimization decomposition.

I INTRODUCTION

NE of the major objectives of every Independent Sys-
O tem Operator (ISO) is to schedule generation to meet
demand at every time instant [2]-[4]. This is a challenging
task—it involves responding rapidly to supply-demand imbal-
ances, minimizing generation costs, and respecting operating
limitations (such as ramp constraints, capacity constraints, and
line constraints). Due to the complexity of this global system
operation problem, it is typically divided into two separate prob-
lems: economic dispatch, which focuses on control of slower
timescale resources and is solved using market mechanisms,
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and frequency regulafion, which focuses on control of faster
timescale resources and is solved using engineered controllers.
Economic dispatch and frequency regulation are typically stud-
ied independently of each other.

Economic dispatch operates at the timescale of 3 minutes or
longer and focuses on cost efficiency. In particular, the eco-
nomic dispatch problem seeks to optimally schedule generators
to minimize total generation costs. Economic dispatch has a long
history [2], [5]-[9]. It is currently implemented using a market
mechanism known as supply function bidding. In this mecha-
nismn, generators submit supply functions to the ISO which spec-
ify (as a function of price) the quantity a generator is willing
to produce. The ISO solves a centralized optimization problem
{over single or multiple time periods) to schedule generators
to minimize system costs while satisfying demand and slow
timescale operating constraints (such as line constraints, capac-
ity constraints, ramping constraints, security constraints, etc.).
Each generator is compensated at the locational marginal price
(LMP) which reflect the system cost of serving an incremental
unit of demand at its node.

Frequency regulafion operates at a faster timescale (from a
few minutes to 30 seconds) and focuses on stability rather than
efficiency. In particular, the ISO seeks to restore the nominal
frequency in the system by rescheduling fast ramping gener-
ators, Frequency regulation has a long history [3], [10], [11].
It is currently implemented by a mechanism known as Auto-
matic Generation Control (AGC). In this mechanism, the ISO
computes the aggregate generation that would rebalance power
within each independent control area (and hence restore nominal
frequency) and allocates the imbalance generation among gen-
erators based on the solution of the previous economic dispatch
run[2]. These allocations determine the setpoints in a distributed
control algorithm that drives the power system to a stable op-
erating point using local information on frequency deviations.
Similar to dispatch resources, regulation resources are com-
pensated at the applicable LMP. Note that, since the economic
dispatch mechanism runs every 5 minutes, the applicable LMPs
would be those from the most recent economic dispatch run.

A. Contributions of This Paper

While economic dispatch and frequency regulation each have
large and active literatures, these literatures are typically dis-
parate, with the exception of studies on the design of hier-
archical control in power systems [12]-[17]. The latter stud-
ies typically propose solutions to efficiently integrate primary,
secondary (frequency regulation), and tertiary (economic dis-
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patch) control. Another related stream of literature involves the
analysis and design of frequency regulation controllers (includ-
ing AGC) that converge to the solution of a cost minimization
problem [18], [19]. However, these studies do not explain how
to integrate the controllers with slower timescale dispatch mech-
anisms. To date, we are not aware of any analysis of whether the
existing combination of economic dispatch and frequency reg-
ulation solves the global system operator’s goal of dispatching
generation resources efficiently across both timescales. The goal
of this paper is to study this as well as present one framework
for a principled top-down approach for the design of economic
dispatch and frequency regulation.

Our main result provides an initial answer. In the context of
a DC power flow model and two classes of generators (dispatch
and regulation), we show that the global system operator’s prob-
lemn can be decomposed into two sub-problems that correspond
to the economic dispatch and frequency regulation timescales,
without loss of optimality, as long as the ISO is able to esti-
mate the difference between the average LMP in the frequency
regulation periods and the LMP in the economic dispatch pe-
riod (Theorem 1), This result can be viewed as a first-principles
justification for the existing separation of power systems con-
trol into economic dispatch and frequency regulation problems.
Moreover, this result provides a guide to modify the existing ar-
chitecture to opfimally control power systems across timescales.
In particular, using this result, we design an optimal control pol-
icy for frequency regulation and an optimal market mechanism
for economic dispatch, in a way such that the control and market
mechanisms jointly solve the global system operator’s problem.
Our mechanims differ from existing economic dispatch and fre-
quency regulation mechanisms in important ways.

In the case of frequency regulation (Section IV), our mecha-
nism has a key advantage over the AGC mechanism in that our
mechanism is efficient. The frequency regulation controller pro-
posed in this paper is built on the distributed controller in [20],
[21] and controls generation based on information about gener-
ators’ costs in a way such that the power system converges to an
operating point that minimizes system costs. On the other hand,
AGC allocates generation based on participation factors, which
might not reflect actual costs, and hence the resulting allocation
might not be efficient. In [18], the authors proposed a modifi-
cation of the participation factors so that the AGC mechanism
is cost efficient. However, unlike our mechanism, the mecha-
nism in [18] does not respect line constraints. Another related
work is [19], in which the authors showed that droop controllers
can be designed to converge asymptotically to the solution of
a cost minimization problem. However, their mechanism does
not respect line constraints or capacity constraints.

In the case of economic dispatch (Section V), our mechanism
has a key advantage over the existing economic dispatch oper-
ations in that it coordinates efficiently with the frequency regu-
lation timescale. This coordination does not require additional
communication in the market beyond the existing mechanism
used in practice. This coordination involves two main compo-
nents. First, our economic dispatch mechanism communicates
the supply function bids from the generators to the frequency
regulation mechanism, which uses them in the distributed con-
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Fig.1. Example ofascenariotree with 5 = 16 outcomes over XK' = 5 periods.
The outcomes are numbered 1,..., 5.

trollers to allocate frequency regulation resources efficiently. In
contrast, the AGC mechanism allocates frequency regulation
resources without regard to generation costs. Second, our eco-
nomic dispatch mechanism accounts for the value that economic
dispatch resources provide to frequency regulation. It does so
by adjusting the resource costs in the economic dispatch objec-
tive based on the difference between the LMP in the frequency
regulation periods and that in the economic dispatch period.
In contrast, the existing economic dispatch objective does not
perform this adjustment and hence might allocate economic
dispatch resources inefficiently.

In practice, the ISO is unlikely to be able to estimate ex-
actly the adjustment it should make to the economic dispatch
objective. In Section VI, we investigate numerically the poten-
tial benefits of our proposed mechanism on the IEEE 24-bus
reliability test system.

II. SYsTEM MODEL

Our aim is to understand how the combination of economic
dispatch and frequency regulation can dispatch generation re-
sources efficiently across both timescales. To this end, we for-
mulate a model of the global objective that includes balancing
supply and demand at both timescales. We use a DC power
flow model and consider two generation types—dispatch and
regulation—which differ in responsiveness.

Consider a connected network consisting of a set of nodes N
and a set of links £.. We focus on a single economic dispatch
interval of the real-time market which is typically 3 minutes in
existing markets. We partition this time interval into & discrete
periods mumbered 1, ..., K. In general, the length of each pe-
riod may range from as little as seconds to as long as minutes.
However, in this work, we focus on the case where each period
is on the order tens of seconds.

A. Stochastic Demand

We use a stochastic demand model motivated by the frame-
works in [22]-[24]. Assume that there is a set of possible de-
mand outcomes S that can be described by a scenario tree
{an example is given in Fig. 1). For each outcome s € S, let
dsn € R dencte the real power demand at node n € N and
d, = (ds,n,ne N) € R denote the vector of demands at all
nodes. In addition, let x(s) € {1,..., K} denote the period of
this ocutcome and p, denote the probability of this outcome
conditioned on the information that the period is x(s). Hence,
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2 qs|a(si=iyPs = Lfor each ke {1,..., K'}. Without loss of
generality, we assume that (1) = 1 and p; = 1. That is, there
exists an outcome labeled 1 € & associated with period 1 and
the demand in that period is deterministic.

B. Generation

We assume that each node 2 € /N has two generators—a dis-
patch generator and aregulation generator—where the regulation
generator is more responsive than the dispatch generator.! To
model the differing responsiveness, we assume that the dispatch
generator produces at a constant level over the entire economic
dispatch interval while the regulation generator may change its
production level every period after uncertain demand is real-
ized [25]. Our results extend to the setting where the dispatch
generator has ramp constraints; the latter can be modelled by
linearly prorating its allocation over the entire economic dis-
patch interval. Since this feature does not provide new insights,
and yet introduces significant complexity to the notations, we
assume in this work that the dispatch generator is only sub-
ject to instantaneous capacity constraints. Formally, we assume
that the dispatch generator produces ¢¢ € R in all outcomes,
and the regulation generator produces ¢/, € R in period 1 and
4, + 7%, € R in each subsequent outcome s € S\ {1}. Hence,
g, and r , can be interpreted as the regulation generator’s set-
point and recourse respectively. To simplify notations, we define
adummy variable ry , := 0 sothat we may write the regulation
generator’s production in period 1 as g, + 77 ,,. We assume that
the regulation and dispatch generators have capacity constraints
[’ ,a] and [¢° , 73] respectively, and incur costs ¢/, (4], + 77 ,)
and < (g¢) respectively in period s{s), where the functions
g,y — Ry and & [gi @] — R, arestrictly convex and
continuously differentiable.

Define vectors " := (g}, n € N),v0:=(r] ,,n e N), g% :=
(g¢,n € N), q’ ::(g;,n e N}, gd:: (gi,n e N, q':=
(@,neN), q:=(G,ne N). Then the generation con-
straints in outcome s = & are given by:

g’ <q’ < g, (1)

9 <q +r;<q. (2

We also let the vector r” := (r},s € &).

C. Network Constraints

Note that q“’ +q" + rf — d; is the vector of nodal injections
for & € 5. Thus, the supply-demand balance constraint is:

1 (g +q +1} —d,) =0, 3)

where 1 € RY denotes the vector of all ones.

1Our results may be extended to settings where a node has more than one of
each type of generator, or there is only one type of generator at a node, or there
are no generators at a node. The assumption that each node has exactly one of
both types of generators is made to simplify the notations and derivations. In our
case study, we will validate our approach via simulations on the IEEE 24-bus
reliability test system, in which certain nodes have only one type of generator
or have no generator.
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We adopt the DC power flow model for line flows. Let 8, ,,
denote the phase angle of node n. Without loss of generality,
assign each link { an arbitrary orientation and let () and j{{)
denote the tail and head of the link respectively. Let B; denote
the sensitivity of the flow with respect to changes in the phase
difference &, ;i — 0 ;03 and let v, ; denote its power flow. De-
fine the vectors @, 1= (f; ,,n € N)and v, := (v, ;,{ € L) and
the matrix B := diag(B;,{ € L). Then, the line flows are given
by v, = BCTE, where C = RY*L is the incidence matrix of
the directed graph. And the injections are:

o +q +1°—d, = Cv, =L8,, @)

where L := CBCT,

Note that (3) and (4) are equivalent. For any set of injec-
tions that satisfy (3), we can always find @, that satisfies (4).
Conversely, since 17C = 0, any injections that satisfy (4) also
satisfy (3). Hence, the line flows can be written in terms of the
power injections:

v: = BCTLI(g® + q" + 1 —d.),
where L! denotes the pseudo-inverse of L. Let H := BCT L1,

Let f; denote the capacity of line { and define the vector £ :=
(fi,{ € L). Then the line flow constraints are:

—f<H({d’+q +r,-d) <F. 5

To simplify notations, we define the set £2{d,) of feasible gen-
eration for a given demand vector d, as:

0ds) = {(a',a',13) : (1), (2),(3), (5) holds}.

D. System Operator’s Objective

The global system operator’s objective is to allocate the dis-
patch and regulation generations (g, q’,r") to minimize the
expected cost of satisfying demand and operating constraints.
This is formalized as follows.

Sope Y (e a) + e (@) +rL)
sef nel
st. (g, q",r]) € Q(dy),

r‘"_
r; =0

SYSTEM :

min
oyt

Vs € 8,

This optimization is solved at the beginning of the economic
dispatch interval. We assume that this optimization is feasible.
Note that SY STEM differs from the existing economic dis-
patch mechanism, which minimizes the costs of satisfying the
forecasted demand at the end of the economic dispatch interval.
Observe that SY ST EM is a stochastic optimization problem.
Although it is in general computationally challenging to solve,
the design of algorithms for such problems is an active research
area in the power systems and optimization communities [26],
[27]. The goals of this work, however, are to formulate a global
system operation problem and decompose it into subproblems
in a way that provide insights into optimal design of economic
dispatch and frequency regulation mechanisns.

Let &; and (g , ft,) be the Lagrange multipliers associated
with constraints (3) and (5) respectively in SY ST EM. Then,
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the function 7 : B x R%> — R¥, defined by:

Tr()"sal_‘l’sap’s)::)"31+HT(E37:‘]’5)3 (6)

gives the nodal prices in outcome s € S.

ITI. ARCHITECTURAL DECOMPOSITION

Our main result is a decomposition of SY STEM into set-
point and recourse sub-problems. Importantly, our decompo-
sition identifies a rigorous comnnection between the setpoint
and recourse sub-problems that ensures that the combination
solves SY STEM. In particular, our decomposition divides
SY ST EM into sub-problems F I and F'R defined by:

min Y (Kel(gl) + K<, (ql) — .q7)
T neN

st. (o, q",0) € Q(dy),

FR(®,d',ds) : min Y (g +7%,)
onel

st (o, q", 1) € Qd,),

where & € R is a constant. £D)(d, ) is implemented in time
period 1 and FR(qd, ", d;) is implemented in subsequent time
petiods s(s) > 1.

We denote the first optimization problem by E D, since it
optimizes only generation setpoints (qd, ") assuming constant
demand d; over the K time periods, and hence it is on the
same timescale as the existing economic dispatch mechanism.
We denote the second optimization problem by 'R, since it
optimizes regulation generators’ recourse production rf; in sub-
sequent time periods, and hence it is on the same timescale as
the existing frequency regulation mechanism.

Definition 1: We say that SY STEM can be optimally de-
composed into K D-FRif (¢, ,17) is an optimal solution to
SYSTEM ifandonlyifr] = 0, (g, g ) is an optimal solution
to £0)(d; ), and r} is an optimal solution to ' R(q®,¢f", d; ) for
alls e &,

Theorem 1 (Decomposition): Letd; and (g, f1,) be any La-
grange multipliers associated with constraints (3) and (5) respec-
tively in SYSTEM.

1) If 8 is the average, over all time periods, of the difference

between the expected nodal prices in each period and that
in period 1, that is, for each n ¢ N,

On = Zps (Wﬂ ()Ls;ﬁs,ﬂs) - Wﬂ()"laﬂlna'l)) » ()
sef
then SYSTEM can be optimally decomposed into
ED-FR.
2) If SYSTEM can be optimally decomposed into ED-
FR, then for all n such that g% < g} <7 and ¢/ <
97 < 4y, (7) holds.

The proof of Theorem 1 is given in the Appendix. The result
follows from analyzing the Karush-Kuhn-Tucker (KKT) con-
ditions of the system operator’s problem and those of E ) and
FR As SYSTEM, ED, and 'R are all convex, the KKT
conditions are necessary and sufficient for optimality. Upon

ED{d,):
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substituting (7) into the KKT conditions, one can show that
any solution to the KKT conditions of SYSTFEM is also a
solution to the KKT ceonditions of £ D-F R, and vice versa. As
mentioned, we denote the two sub-problems by ED and FR
because they focus on the economic dispatch and frequency reg-
ulation timescales respectively. Hence, these sub-problems can
serve as guides for the optimal design of economic dispatch and
frequency regulation mechanisms. The insights are immediate
in the case of economic dispatch and we show how E D leads to
an improved market mechanism in Section V. However, the in-
sights may not be as clear in the case of frequency regulation. We
show in Section IV that F'R can in fact be solved via distributed
frequency control algorithms, although these algorithms deviate
from current practice that do not optimize generation costs.

The most important feature of Theorem 1 is that, one way to
choose generation setpoints optimally at the economic dispatch
timescale, is to include, in the optimization objective, an offset of
the dispatch generators’ marginal costs by the expected changes
in nodal prices during the frequency regulation timescale. The
latter can be interpreted as the expected changes in the marginal
value of dispatch generation. Hence, if the latter is zero, then
generation setpoints can be chosen optimally at the economic
dispatch timescale without regard to the behavior of the system
in the frequency regulation timescale [1].

A byproduct of our decomposition is the insight that the
stochastic optimization problem SY ST E M may be solved by
solving a sequence of deterministic subproblems ED(d; ) and
FR(¢®,q ,d,) if the system operator is able to predict the RIS
of (7). Note that £ I (d; ) has the same complexity as the existing
economic dispatch mechanism; and we will show in the next
section that F"R(q,q",d,) can be solved using a distributed
frequency control algorithm. Therefore, the computations of the
subproblems have the same complexity as existing operations.

Animportant extension of this work is to design algorithms to
iteratively estimate the RHS of (7) online. Such approaches re-
semble value function iterations in dynamic programming. Also
important is to understand the suboptimality of the solutions
under estimation errors in the RHS of (7). Note that negative
estimation errors cause F£1({d;) to use less than optimal dis-
patch resources (and more than optimal regulation resources)
and vice versa. In such situations, the dispatch generation ¢
might not be optimal, and therefore FR(q”, ", d,) might not
be feasible. To ensure that F'R(q", o, d*) is feasible, we may
maodify £D(d;) inte a robust optimization problem by adding
constraints (q?,q", r}) € Q(d,) forall s € §Y {1}. The size of
such a problem is exponential in 5 but can be reduced using the
technique in [28]. Note that this should not be viewed as a draw-
back of our decomposition, as the current practice based on AGC
might also not be feasible. In practice, the risks of infeasibility
are mitigated using reserves. Moreover, our decomposition has
the advantage that it coordinates the economic dispatch and fre-
guency regulation resources efficiently, and hence, may reduce
reserve requirements.

Theorem 1 provides a rigorous way fo think about architec-
tural design of power nefworks. Theorem 1 is close in spirit to
work in communication networks that use optimization decom-
position to justify and optimize protocel layering [29]-[31]. In
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the latter, different protocol layers coordinate by communicating
primal and dual variables between sub-optimization problems. It
is an interesting open direction as to whether these mechanisms
can be applied to coordinate between ED and FR, since the sub-
optimizations in protocol layering use instantaneous primal and
dual variables while ED uses expected prices.

IV. DISTRIBUTED FREQUENCY REGULATION

This section illustrates how to implement the solution to
IR using distributed frequency regulation controllers. Besides
achieving optimality, a practical implementation should pre-
serve network stability, be robust to unexpected system events,
aggregate network information in a distributed manner, and
satisfy constraints (2), (3) and (5). The distributed algorithm
that we provide in this section satisfies all the above charac-
teristics. It can be interpreted as performing distributed fre-
quency regulation by sending different regulation signals to each
bus.

A. Dynamic Model

Before introducing our algorithm we add dynamics to our
systemn model to describe the system behavior within a single
time period. Let ¢ denote the time evolution within the time
period of outcome s, and assume without loss of generality that
t e (k,k+1] where k = s(s). Let r{(t) := (v ,(¢),n € N)
denote the recourse quantities generated by the regulation gen-
erators at time ¢. For the purpose of the analysis, we assume that
dispatch generation and demand do not change within the time
period. And we will use simulations to study the performance of
the proposed mechanism in a setting where demand is changing
continuously.

Then, the system changes within the time period are governed
by the swing equations which we assume to be:

8.(1) = w,(t); (8a)
M, () = ¢ + " +17() — d, — Dw, () — Lo, (), (8b)

where w;(t) 1= (w, o (t),n € N) are the frequency deviations
from the nominal value at time ¢, 8,(t) 1= (d; »(¢),n € N)
are the phase angles attime ¢, M := diag(M,, ..., My ) where
M,, is the aggregate inertia of the generators at node n, and
D = diag(D:,..., Dy) where I, is the aggregate damping
of the generators at node n. The notation & denotes the time
derivalive, i.e. £ = dz/dt. Bquation (8) is a linearized version
of thenonlinear network dynamics [3], [32], and has been widely
used in the design of frequency regulation controllers. See, e.g.,
[11], [33].

B. Distributed Frequency Regulafion

We now introduce a distributed, continuous-time algorithm
that provably solves F'R while preserving system stability. Our
solution is based on a novel reverse and forward engineering
approach for distributed control design in power systems [18],
[21], [34]-[37]. The algorithm operates as follows. Each regu-
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lation generator n updates its power generation using
ron(®) = [ (wsn @ — . ONFE,  ©

where ¢!/ (_55) = %c; (x) and ¢/~! denotes its inverse. The pro-
T~y
& -
alently ' < r g, <g,)and [, (t) is a control signal gen-
erated using:

jection [r] ensuresthat ¢/ — g}, <7 < g, — g, (or equiv-

DFR: #3(t)=¢" (a'+a’ +1](t) —d, — L, (1)) ; (108)
fu(t) = ¢* BCTo, (1) — £]7 (10b)
(1) = ¢4 [~ £ -BC o, ()] ; (10¢)

$.(t) = x* (Lt () — CB(m, (1) — (), (100)

where ¢ 1= diag(¢T, ... ,¢E ), ¢7 = diag(¢F, ..., ¢H), ¢ =
diag(glﬁ,. ety Q%), x? = diag(Xf, s oy Xﬁ,) denote the respec-
tive control gains. The element-wise projection [y|7 :=
([ynls ,n € N) ensures that the dynamics x = [y|} have a
solution x(#) that remains in the positive orthant, that is,
lya)7 =0ifz, =0andy, < 0, and [g,]] = y, otherwise.

The proposed solution (9)-(10) can be interpreted as a fre-
quency regulation algorithm in which each regulation generator
receives a different regulation signal (9) depending on its lo-
cation in the network. The key step in the design of DF R is
reformulating I'H into the following equivalent optimization
problem:

FRI(qd: q'r’ dS) :

min
T, Ve, P,

> (chlah +75 ) + Dae 1 /2)
nelf

st. o +q + rl —d, — Dw, = Cv,; (lla)

a’ +q +1} —d, = Lo, (11b)
—f<BCT¢, <f; (11c)
o S < § (11d)

Recall from Section I1-C that v, denote line flows. Constraint
{11a) is reformulated from the per node supply-demand balance
constraint (4), and makes explicit the fact that, whenever supply
and demand do not match, the mismatch is compensated by a
change in the frequency. Constraint (11b) ensures that w, =0
at the optimal solution so that supply and demand are balanced.
Constraint (11c¢) imposes line flow limits. However, instead of
using actual line flows v, these limits are imposed on virfual
flows BC' ¢, which are identical to line flows at the optimal
solution [21].

It can be shown that F'R’ has a primal-dual algorithm that
contains the component (8) resembling power network dynam-
ics and the components (9)-(10) that can be implemented via
distributed communication and computation. This new problem
PR also makes explicit the role of frequency in maintaining
supply-demand balance.

The next proposition formally relates the optimal solutions of
FRand FR' and guarantees the optimality of (9)—(10).
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Proposition 1 (Optimality): Let v% and (r7, o', v\, &) be
optimal solutions of FR and FR respectively. Then, the
following statements are true: (i) Frequency restoration: w’, = 0;
(i) Generation equivalence: r’ = r'’; (iii) Line flow equiva-
lence: H{q® 4+ o 417 — d,) = BC' ¢.. Moreover, there ex-
ists 0, ¢ RY and y!, € RY, satisfying Cy,, =0, such that

=BC'E, +y, and BCT¢, = BC'E,. And (r/, ", 8.,
&, wg’, ,u' &) is an equilibrium point of (8)-(10) if and only
if (0, V., ¢, w0 ,,u ,us) is a primal-dual optimal solu-
tion of FR’ where w, w/, and (¢, f}) are the Lagrange
multipliers associated w1th constramts (11a), (11b), and (11c),
respectively.

The proof of Proposition 1 is given in the Appendix. What
remains is to guarantee the convergence of the distributed fre-
quency regulation algorithm.

Proposition 2 (Convergence): 1f ¢, is twice continuous dif-
ferentiable with " > e > 0 (ie., a-strictly convex) and
S (gh +14n)—+oo as g +15, —{g),3;}. then ri(t) in
(8)—(10) converge globally to an optimal solution of F'R.

The proof of Proposition 2 follows from [21] and uses the ma-
chinery developed in [38] to handle projections (10b)—(10c). By
substituting the line flows v, (t) = BCT 8, () into (8) and elim-
inating 8,(¢), we can show that the entire system (8)—{(10) is a
primal-dual algerithm of £/’ (see [21, Theorem 5]). Therefore,
Theorem 10 in [21] guarantees global asymptotic convergence
to an equilibrium point which by Proposition 1 is an optimal
solution of both F R’ and FR. Our setup is simpler than the
controllers in [21], which had additional states, but the same
proof technique applies. Although Proposition 2 requires costs
to blow up as regulation generations approach minimum and
maximum capacities, this assumption is not restrictive, as it can
be achieved by adding a barrier function to the actual cost before
implementing in the controllers. Moreover, as our mechanism
is distributed, it can be implemented on large scale systems
with minimal computational requirements and guaranteed con-
vergence. However, further studies have to be performed on the
convergence properties of the algorithm as the system size in-
creases, and how the speed of convergence is affected by the
cost functions of the generators and the design of the control
gains.

V. MARKET MECHANISM FOR ECONOMIC DISPATCH

This section illustrates how to implement the solution to £12
through a market mechanismn for economic dispatch. The mech-
anism works in the following manner. In the first time period,
the ISO collects supply function bids from generators (both dis-
patch and regulation) and uses those bids to solve E D). Then,
in subsequent time periods, the ISO uses the regulation gener-
ators’ supply function bids to implement the controller in (9).
This mechanism is efficient if SY ST EM can be decomposed
into ED-F'R and does not require any more communication
than the existing market mechanisms used in practice.

A. Market Model

We assume that generators are price-takers. Let 7% denote the
price paid to dispatch generator n in each period and 7, ,, denote
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the price paid to regulation generator n in outcome s. Then, the
expected profit of the dispatch and regulation generators at node
n are:

PR (g%, nl) =K (nigh —i(dl)),
PF,, ((g), + 7% 1175 n)s8 € 5)

= Zps (Wz,n (q; Jrrg,n) o

sed

& (dh +8n)) -

Note that the regulation generator’s profit is a function of its
total production g}, + r; , in each outcome s € 5. The supply
function bids indicate the quantities the generators are willing
to produce at every price.” We assume that these bids are chosen
from a parameterized family of functions. In particular, for node
n, we represent the dispatch and regulation generators’ sup-
ply functions by parameters a? > 0 and o > 0 respectively,

and these bids indicate that the dispatch generator is willing to
o
supply the quantity ¢¢ = [af s? (wg)]g’g in the first time period

and the regulation generator is willin_g to supply the quantity

q, + ’rg v = e sn (7l )] g’;‘ in outcome s, for some fixed func-
tions 2 [q gn] — Ry and s}, @ [¢7,d;] — Ry We also as-

sumethat s2(nd) #£ 0 forall 7¢ € R and 55 (e, ) # O for all

. eR? The generators choose their bids to maximize their
proﬁts subject to their capacity constraints, Note that the regula-
tion generator submits only one supply function for all possible
outcomes. Hence, its bid in the economic dispatch timescale is
also used as its bid in the frequency regulation timescale.

The system operator interprets bids af and af, as signals
that the dispatch and regulation generators at node n have
marginal costs Wﬁ and 7y , respectively when supplying quanti-
ties od 52 (74 ) and of, s], (x|, ) respectively. Hence, it associates
with the generators the following bid cost functions:

%[ (s2)
"Tq‘n)—f {sp,)

Let a ;= (a%,ne N) and o’ := (a/,,n € N) denote the
vectors of bids. Given bids (ad, a’ ), the system operator solves
ED to minimize expected bid costs. The prices for the regu-
lation generator in the first time period are the nodal prices in
ED while the prices for the dispatch generator are the nodal

“w/al) dw, (12)

~w/al) dw. (13)

“In practice, supply function bids are, in fact, functions from quantity to
minimum acceptable price. This is not captured by our model because it would
involved multi-valued maps instead of functions. Nevertheless, in line with
previous work [7], [39]-[42], we will use supply functions that map price to
quantities in this paper.

*Numerous studies have explored different functional forms of the supply
functions and their impact on market efficiency, e.g., see [7], [39]-[42]. The
focus of this work is on illustrating that £ 1? can be implemented using a sim-
ple market mechanism. Hence, we restrict ourselves to linearly parameterized
supply functions and leave the analyses of other more sophisticated supply func-
tions to future work. We refer the reader to [41] for some appealing properties
of linearly parameterized supply functions.

“This assumption is a technical condition to avoid the degenerate situation
where a generator’s supply quantity is not sensitive to its bid parameter which
would oceurif 87 (w2) = 0 or 57, (L) =0
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prices offset by &. Then, in each subsequent outcome s € 5,
the system operator implements the controller in (9) using
regulation generators’ bid costs. The prices are the nodal prices
in F'R (which are computed by DF R).

B. Market Equilibrium

Our focus is on understanding the efficiency of the mecha-
nism. Formally, we consider the following notion of a competi-
tive equilibrium.

Definition 2: We say that bids (a®,x”) are a competitive
equilibrium if there exists prices 7% € RY and n" = (7,5 €
§) € RS such that:

1) For all n, ad is an optimal solution to:

s 15 ([adsd (Wfi)}g%mi) -

2) For all n, o, is an optimal solution to:
max PR, (6%, (n0,)F  7d,0),s € 5.

3) mf = (1/K)(w(h, p ;) + ) and ] = (1/K)m (A,
f, s f) where &, and (g . j1;) are the Lagrange multi-
pliers associated with constramts (3) and (5) respectively
in:

ED(d1 mln Z K (@) + K& (gh) —

9 nelV
(a®,q,0) € Q(dy).

4) Foralls ¢ 8,7y =7 (%s, pu_, ft,) where s and (., f2,)
are the Lagrange multipliers associated with constraints
(3) and (3) respectively in:

Hlll’l Z

}fR(qd,qv,ds) ;
& neh

sl ot at e tids,

qn—"_Tsn

where o = ([af

(w7 N m e ),
At eachnode n € N, the dispatch and regulation generators

53 (rd )] ’; d el s (7] n)]g? respec-
tively in period 1, and the regulatlon generator produces an ad-
ditional quantity [, n(%,nﬂg? — a8 (7] n)} ® in outcome
s 8. -

The following is our main result for this section. It highlights
that, as a consequence of Theorem 1, any competitive equilib-
rium is efficient.

Proposition 3 (Efficiency): Suppose that, for each ne N,
the fumetions £ (.) = & (/% and s7,(.) = &)/ for
some constants %, 47, > 0.LetAs and (g , ft, ) be the Lagrange
multipliers associated with constraints (3) and (5) respectively
in SY ST EM. Suppose that (7) holds. Then:

1) Any competitive equilibrium has a production schedule

that solves SY STEM.

2) Any production schedule that solves SY ST EM can be

sustained by a competitive equilibrivin.

st ne N)

produce at setpoints [a?
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TABLEI
(GENERATORS ON TEST SYSTEM
Unit Group | Unit Type | Number Production Marginal Cost Asgsignment
Range (MW) | Range ($/MWh)
Ul2 Oil/Steam 5 [2.4,12] [58.14, 64.446] Dispatch
U20 OivCT 4 [18, 20] See Fig. 2 Regulation
uso Hydro 6 [10, 50] See Fig. 2 Regulation
uis Coal/Steam 4 [15.2, 76] [16.511, 18.231] Dispatch
U100 Oil/Steam 3 [25, 100] [46.295, 54.196] Dispatch
U155 Coal/Steam 4 [54.3, 155] [ [13.294, 14.974] Dispatch
U197 Oil/Steam 3 [69, 197] [49.57, 51.405] Dispatch
U350 Coal/Steam 1 [140, 350] [13.22, 15276] Dispatch
U400 Nuclear b [100, 400] [4.466, 4.594] Dispatch

Proposition 3 resembles classical welfare theorems, e.g., [41],
[43]-[45]. However, it differs from typical competitive equilib-
ria frameworks because each regulation generator is restricted
to hidding a single supply function over the entire economic
dispatch interval even though there are multiple fast timescale
instances. The latter creates challenges in guaranteeing exis-
tence and efficiency of equilibria that do not arise in typi-
cal competitive equilibria frameworks. In particular, the space
of bid functions needs to be sufficiently expressive for gen-
erators to convey their costs over multiple fast timescale in-
stances via a single bid function. Proposition 3 circumvented
this challenge by restricting supply functions to be in the lin-
ear space of regulation generators’ true cost functions. An im-
portant extension is to understand the existence and efficiency
of equilibria under less restrictive bid spaces. Proposition 3
also highlights that nodal pricing is not always efficient and
that the pricing mechanism needs to be jointly designed and
analyzed with decomposition principles in order to achieve
efficiency.

V1. CASE STUDY

In this section, we compare the proposed mechanism to the
current practice using a case study on the IEEE 24-bus reliability
test systemn [46]. For each demand node, we use the values from
the data as the demand at time ¢ = 0, and we generate 100
samples of a zero-mean random process to obtain the demands
over the 5-minute interval. Fig. 3 shows how the total system
demand evolves for the 100 samples. Therefore, system demand
increases/decreases by up to 20 MW over the 3-minute interval
which is consistent with practice. We construct the scenario tree
for the economic dispatch problem in the following manner.
We assume that the 3-minute interval is partitioned into K =
20 time periods; therefore, each time period lasts 15 seconds.
We subsample the demand trajectories at 15-second intervals
and assign equal probabilities to all subsampled trajectories.
Therefore, the scenario tree is a tall tree, where the root node
has 100 children, and all other nodes either have one child or is
a leaf node.

Table I summarizes the properties of the generators on the
system. We assume that hydro and combustion turbine (CT)
generators are regulation resources while all other generators
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Fig. 2. Regulation cost and control functions. (a) Hydro cost. (b) Hydro control. {c) CT cost. (d) CT control.
2865 will reveal that the current practice is suboptimal. To simulate
2860 the current practice, we run ED(d; ) with &, = 0, and assume
2855 | A all regulation resources run the standard automatic generation
_ 2850 control (AGC)[3]: ;
= 4 T
= 2845 ACE,(t) = ﬁl w, (1), (15a)
2840 | %
4¢"°(t) = —ACE(®), (15b)
2835
imb
! ) q P
2830, 100 200 300 = iT_cE?') . (15¢)
t{s)

Fig. 3. Demand Processes.

are dispatch resources.” There are 6 hydro units that each
generate between 10 to 50 MW and 4 CT units that each gener-
ate between 16 to 20 MW. To satisfy the convergence conditions
in Proposition 2, we assume that the distributed controllers for
the hydro and CT resources are operated with cost functions as
shown in Fig. 2. These are obtained by adding barrier functions
to the original linear cost functions in the test system data. We
assuire a damping of 2.0 p.u. for all generators.

Recall that the demand evolation has zero mean. Therefore,
in the current practice, the economic dispatch mechanism will
be cleared based on the demand at time £ = 0. Our simulations

*Notice that certain nodes have only one type of generater or no gensrator,
It is straightforward to extend Theorem 1 and Proposition 3 to such a setting,
However, to extend Propositions 1 and 2 to such a setting requires the following
modificationtothe DF R algorithm:

#(1) = ¢ (a +a" + 15t - ds - L, (1)) (14a)
+ _AF T 5]t

Bt =¢ [BCTo, (1) 1] | (14b)
i (1) = ¢E[-1-BCT g, (t)]; (140)

ﬁ:'b.s (t) = Xé (Lﬁg(t) - CB (la.s (t) _Es (t) + BCTQI).S (t) -5 (t))) 1
(14d)

o5 (t) =x* (B CTQI).S (t) — s (t)) E

whete g . i3 a new state variable associated with each line. The new algorithm
(14} iz equivalent to modifying FR' by adding %Hp— BCT|[ in the cb-
jective and adding p, as a new optimization variable. While this change dees
not modify the optimal solution, it provides additional convexity that ensures
convergence of the primal-dual algorithm when generators are nct present at
every bus.

(14e)

Therefore, we assume that the entire network is one area
and there is Zero net inter-area flow. In practice, AGC signals
are sent to the generators every few seconds. However, in our
simulations, we assume that these signals are sent continuously
as it is not our focus to study the impact of control delays.
We assume that each regulation resource reserves 10% of its
capacity for regulation service. Therefore, the hydro dispatch
ranges from 12.5 to 47.5 MW and the CT dispatch ranges from
17 to 19 MW. This provides atotal regulation capacity of 19 MW
in both directions (up and down). Since the maximum change
in demand over the 5-minute interval is about 20 MW, in the
worst case scenario, all regulation capacity will be used.

To focus the simulation on the gainsdue to efficient use of reg-
ulation resources, we assume that at time ¢ = 0, the generators
are operating at the solution of the economic dispatch problem
(this is implemented by starting the simulation at a large nega-
tive time ¢’ < 0, but using the demand at time ¢ = 0, where ¢/
is sufficiently negative such that the dynamics have converged
by time ¢ = 0.Fig. 4 and 5 show, for one demand trajectory, the
evolution of the frequency at the bus where the hydro resources
are located, using the AGC and DFR mechanisms proposed in
Section IV, respectively. Observe that both mechanisms are able
to rebalance power and maintain the nominal frequency. In fact,
for this example, AGC regulates frequency more successfully
than DFR.

Fig. 6 shows the evolution of the prices in DFR. Unlike AGC,
which compensates frequency regulation based on the LMP
in the most recent economic dispatch run, the prices in DFR
adjusts dynamically to reflect real-time and local conditions in
the power systemn. Figs. 7 and 8 show an example of hydro and
CT production. These figures illustrate the inefficiency of AGC-
itis constrained to the usage of static participation factors that do
not take into account generators’ capacity constraints and line
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Fig.5. Frequencyevolition: DFR. 1688y
16.5 |
congestion. Therefore, AGC is unable to utilize the regulation = 1645
reserves efficiently. Although hydro is significantly cheaper than C S5l
CT, the systemunder AGC is unable to substite hydro for CT ¢
due to the static participation factors. On the other hand, under =93¢
DFR, the system substitutes hydro for CT dynamically to reduce ol
Costs.
Next, we illustrate the potential monetary savings that can G
be obtained under DFR compared to AGC. Fig. 9 shows a his- 162} ]
togram of the percentage reduction in the costs of hydro and CT _ | Agt]
i 50 100 150 200 250 300

generation under DFR ; Fig. 10 shows a histogram of the percent-
age reduction in the costs of non-hydro and non-CT generation
under DFR; and Fig. 11 shows a histogram of the percentage Fig. 8. Anexample of CT production.
reduction in total generation costs under DFR. Observe that
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Fig.11. Histogram of reduction intotal costs under DFR.

DFR reduces hydro and CT costs by an average of 2.5% due to
more efficient usage of regulation resources in real-time. More-
over, DFR also reduces dispatch costs of non-hydro and non-CT
resources by 0.7% due to more efficient dispatch of those re-
sources and avoiding the need to reserve capacity for regulation.
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Since hydro and CT costs comprise on average 17.5% of total
costs, the net savings on all generation costs is an average of
1%. There are also further savings in capacity costs that may
be estimated at about 0.35% (based on the fact that CAISO’s
ancillary costs in 2015 is 0.7% of energy costs and about half of
ancillary costs is attributable to regulation service [47]). Further
studies should be performed on other systems with different
mix of generation resources. In addition, recall that DFR has
the added benefit of converging to operating points that respect
line limits, while AGC does not guarantee this.

VII. CoNCLUSION

This paper proposes an optimization decomposition approach
for co-optimizing economic dispatch and frequency regulation
resources. It demonstrates that optimization decomposition pro-
vides a rigorous way to design power system operations to al-
locate resources efficiently across timescales. Our main result,
in Theorem 1, shows one way to choose generation setpoints
optimally at the economic dispatch timescale, and provides a
guide on how to design a principled architecture for power sys-
tem operations. In particular, using this result, we design an
optimal frequency control scheme and an optimal economic
dispatch mechanism, both of which differ from existing ap-
proaches in crucial ways and reveal potential inefficiencies in
the latter. Hence, this paper underscores the need to jointly an-
alyze economic dispatch and frequency regulation mechanisms
when investigating the efficiency of the overall system.

NOMENCLATURE
A. Sets and Indices

Set of outcomes (s € 5).

Set of nodes in the network (n € V).

Set of links in the network (I € L).

Number of discrete time periods in one eco-
nomic dispatch inteval (5 =1, ..., K).

m

B. Parameters

w(s) Period associated with outcome s.
s Probability of outcome s given that period is
w(s).
T Real power demand at node » in outcome s.
ct Cost function of dispatch generator ».
et Cost function of regulation generator n.
B Sensitivity of flow on line ! with respect to
phase difference between its buses.
C Incidence matrix of network.
H Matrix of shift factors.
Fi Capacity of line [.
g%, gt Minimum and maximum generation limits of
—
dispatch generator .
g q Minimum and maximum generation limits of
—
regulation generator n.
M, Aggregate inertia of generators at node n.
Dy, Aggregate damping of generators at node n.
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e f, Ciﬁ, x?  Control gains in distributed frequency regula-
tion algorithm.
i Basis supply function of dispatch generator n.
Specifies quantity as a function of price.
87 Basis supply function of regulation generator

n. Specifies quantity as a function of price.
C. Variables

qg Setpoint of dispatch generator 7.

ar, Setpoint of regulation generator 7.

T 5 Recourse of regulation generator = in
outcome s.

8, 5 Phase at bus ¢ in cutcome s.

Jrg Lagrange multiplier associated with demand-

supply constraint in outcome s.

P Bt Lagrange multipliers associated with line- flow
’ constraint in outcome s.

We Frequency deviations from nominal.

Tan Locational marginal price at node = in
outcome s.

al Bid of dispatch generator . Indicates generator
is willing to supply [af s¢ (72)]* 3 at price 7,

o, Bid of dispatch generator . Indlcates generator

st (ml)] g” at price w’..

i
—r

is willing to supply [o,

APPENDIX A

Proof of Theorem 1: The result follows from analyzing the
Karush-Kuhn-Tucker (KKT) conditions of SYSTEM, ED,
and F'R. However, we first reformulate the problems as the nota-
tions are simpler with the reformulations. Define f} := " 4 r}.
Note that, due to the constraint that r] = 0, there is a bijection
between the set of feasible (g, q”, r") and the set of feasible
(qf,qf,. .., qu) Hence, SY ST EM can be reformulated as:

PO R CACS R A Ay

’qi‘ ,qs sed nelN

st. (g, af,q) —a]) €Q(d,), Vses.  (16)

Also, ED){d;) can be reformulated as:

min (KCﬁ (qi) + K (ng) 0

d
ad,q} nqn)

nelN
st. (a’,df,0) € Q(dy).
And, FR(q%, o, d,) can be reformulated as:

Il'llll Z S, (qs n

9 nely

(17)

st. (o, qf,q} —a)) € 2(d,). (18)

Hence, SY ST E M can be optimally decomposed into K D-I'R
if (q?,qf,...,q%) is an optimal solution to (16) if and only if
(g%, q}) is an optimal solution to (17) and ¢ is an optimal
solution to (18) forall s € 5.

Next, we prove (a). It is easy to see that (16) has compact
sub-level sets. Moreover, its objective function is strictly con-
vex. Hence, (16) has a unique optimal solution. By similar
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arguments, we conclude that (17) has a unique optimal so-
lution, and that (18) has a unique optimal solution if the set
{a; e RY : (¢°, 4, o} — q)) € ©(d,) } is non-empty. Hence,
to prove (a), it suffices to show the forward implication, that is,
if (7) holds, then (g%, qf ..., q%) is an optimal solution to (16)
implies that (g, q}) is an optimal solution to (17) and ¢, is
an optimal selution to (18) for all s € §. The reverse implica-
tion follows from the existence and uniqueness of the optimal
solutions.
Let the Lagrangian of (16) be denoted by:

L(qd:qqu o 'qu‘:gﬂgjéJZJ D:E: p,,l)
= Zps Z (Ci(Q’i) + C;(qz,n)) + Ld(qdaﬁaé)
se8 nelN
+Y L (v ) + Y p L (L )
s=8 sed
= Zps)\.slT (qd o — ds) 3
sed
where:
Ld(qdaéaé) = £T (qd - Cld) +é (qd _C_ld

I, 0) =p, (d —) +P]

B el o ig) ¢

Note that we scaled the constraints by their probabilities,
andﬁERN,éERi\_f,z:(&,SES)ERNs,ﬂ:(PS,SE
S eRY , p=(u,se8) cRY, p=(f,,s€ 8) R,
A= (s € 8) ¢ R are appropriate Lagrange multipliers.

Since (16) has a convex objective and linear constraints, from
the KKT conditions, we infer that (¢, qf, ..., 5 ) is an opti-
mal solution to (16) if and only if (g, ql,qs ql) e (d,)
for all s € 5 and there exists &, £c R+,V VER ’E"E =
R2%, % € R? such that:

(K (g)yne N)+&— €= pm(hs, b, ;) = 0; (192)

se8
L (g*,€,€) = 0; (19b)
(e (@l p)n e N) 4 By — g — (g, 1) = 0 (19¢)
L' (g, v, 75) = 0; (19d)
L o, ) = 0, (19¢)

foralls € &.
Similarly, (%, ¢f}) is an optimal solution to (17) if and only
if (g, qf,0) € (d;) and there exists £,€ € RY ,p,,p, €
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Rf,&l,ﬂl = RE_,M € R such that:

(K (gl)neN)+E—&—m(h, 1, ty) -6 =0; (20)
LF(g*,€,6) = 0; (20b)

(Kd/(] )yneN)+py —py — w0, p, ) =0; (200)
L' (qf,v,,p1) =0; (20d)

LT (o of, 1) = 0. (20€)

And ¢ is an optimal solution te (18) if and only
it (of,df,dq) —q}) € Qd,) and there exists v b c
Rf,ﬁs,ﬁs € Rﬂ:ﬂks € R such that:

(g n)neN)+ s — v, — 70,4, B5,) =0; (21)
Lp(qZ:Zs:ps)ZOE (21b)
L, p,, 1) = 0. (2lo)

Suppose (¢, ... ,qj) is an optimal solution to (16) with
associated Lagrange multipliers (£, E,v, D, H, j&, }). Note that
(a®,qf, 0) € Q(dy). From the fact that the variables (g%, ¢,
£, 1, 1, A) satisfy (19a) and (7) and the fact that » 0 ¢ ps = K,
we infer that the variables (q,¢,¢€, K,ul,Kﬁl,KAl) sat-
isfy (20a). From the fact that (g, ¢, & &Py Vo Bgs by s)
satisfy (19b)-(19e), we infer that the variables (q ql,ﬁ &,
Koy Ky, Kp, Kp, ,Kiy) satisfy (200)-(20e). Hence,
(q?,q]) is an optimal solution to (17). Note also that
(i, of, —qf) € Q(d,) for all s € S. From the fact that the
variables (¢, ofL , v, Ps, B, o, 2s) satisfy (19¢)—(19€), we in-
fer that those variables satisfy (21). Hence, ¢ is an optimal
solutionto {(18) forall s € 5.

Next, we prove (b). Let (g, qf,. .., o) be a solution to (16)
such that (q“’, ) is a solution to (17). If q < ¢ <@ and
4, < 4,n < q,, then the complementary slackness conditions
1mplythat$ =£, =0and v , = » = 0. From the KKT
conditions of (16), which are given by (19), we infer that:

K&/ (gs) = pomalha, pp, ) = G 22)
sc8
C:zl(g;,n) s ()"1 v p’l) =0, (23)

where (ﬁs , [t, L) are the associated Lagrange multipliers. From
the KKT conditions of (17), which are given by (20), we infer
that:

Ke(g8) — ma (M, ), 1) — 80 = 05 (24)

Kei/(dl ) —ma (b, 1y, 1) =G, (25)
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where (@, i, 1) are the associated Lagrange multipliers. Tt
follows that:

671 = Zpsﬁn()‘-s;ﬁs,ﬂs) - ﬂ'ﬂ()'gu&gup’ll)

sed

= Zpsﬂ'n()"saﬁsﬁﬁs) - Kﬂ'n()"l:ﬂlaﬁ’l)
sed

= Zps (ﬂ'n(}\'s:ﬁs:ﬁs) - Wn()"lﬁﬁlﬁﬁ’l)) .
sed

The first equality follows from comparing (22) and (24). The
second equality follows from comparing (23) and (25). The last
equality follows from the fact that > _.p, = K. ]

Proof of Proposition 1: We provide a proof sketch of this
result. The skipped details can be found in [21]. (i) follows from
the KKT conditions of F'R’ (q“’,qT, d;) and is shown in [21,
Lemma 2]. Since w’, = 0, it follows from constraints (11a) and
(11b) of FR (., q,d,) that L&, = L¢¥,, which, since the
null space of L is span{1}, implies that &, = ¢} + a1 for
some o € R. This implies that BC' ¢, = BC' @,. Therefore,
without loss of generality, we can substifute constraint (11a)
in FR (q%,q",d,) by the constraint w, = 0. Then, using the
definition of H and the equivalence between (3) and (4), we infer
that the feasible sets of F'R{q?, q",d,)Yand F R (o ,¢f", d,) are
equivalent. Finally, since d, (-} is strictly convex, by uniqueness
of the optimal solutions, we get (ii). Lastly, (iii) follows from
the definition of H and BCT ¢!, = BCT&’,. The final statement
of the proposition follows directly from [21, Theorem 8. 1

Proof of Proposition 3. Our proof proceeds in 6 steps: (1)
Characterizing regulation generators’ optimal bids «” given
their prices w7 ; (2) Characterizing dispatch generators’ optimal
bids a? giventheir prices w%; (3) Characterizing prices (7%, 7"
given bids (a?, ") using KKT conditions; (4) Showing that,
at an equilibrium, the production schedule is the unique optimal
solution to £ D-FR; (5) Showing that any production schedule
(¢, ", r") that solves SY ST'EM can be obtained using bids
(7¢,~+") and the latter satisfy the equilibrinm characterizations
in steps 1 to 3; and (6) Showing that any bids (a?, ") that
satisfy the equilibrium characterizations in steps 1 to 3 give the
same production schedule as that under bids (v%,~") (which
also solves SY ST FE M ). Note that part (a) follows from step 6
and part (b) follows from step 5.

Step 1: Characterizing regulation generators’ optimal bids
o' given their prices w". Since ¢, is sirictly convex and
c(dh,) = tocasq, , —1g .4, ), & isinvertible. Leto: S —
& be any permutation function that satisfies:

B T y0) < T (W) S ST (53,0)s
and letintegers 7,7 € {0, 1,..., 5} be such that:
alt (Tos),0) 4 Ve=1,...,1 (264)
4 < T ) <@ Ys=itlog (26D)

<
7y < & 1( G s) n) (26¢)
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We now show that , € R, maximizes PF], if and only if:

Vs = Lgporagd (27a)

CE':;S:?, (ﬂ'f;(s),n) < 2:2
o (Thayn) =0 (mhyn) Ys=i+1,...,5 (27b)
Ve=4j+1,...,8 @7

57, (g (sy,0) 2

For notational brevity, in the rest of this step, we abuse nota-
tion and let:

4 n(0h) = lofsy (m7 (0 2)1E -

To prove our characterization, it suffices to show that, given any
al < R, . thatsatisfies (27), the vector of per-outcome profits

(7 (oo (0] = € (10 (03)) 15 € 8)

2 (W00 ten (@) — i (d0(680)) 5 € 5)

for any &f that does not satisfy (27). Since p, (5 > 0 for all
s € 5, it then follows that:

ar =D Pols) (Ws(s),nqz,n(al) —c (q;n(a;)))

(28)

PF?

>3 bots) (Togsynthn (@) — 6 (€5 (82)))

= PF]

ke

&r "

Suppese s € {1,...,i}. From (26a) and the fact that <, is
strictly convex, we infer that 77, | < ¢, (g} ). From (27a), we
infer that ¢; , (ay, ) = g . Then:

(65, (55)) 2 €(8) + (@) (a1 60) — )
> (&) + T 0 (45,0 (65) — 21

= (@0 (ORHT5 (), (85,0 (87) — L n (o))

where the first inequality follows from the fact that ¢, is
strictly convex, the second inequality follows from W;( ) <
&y (q)) and g, (&7,) > ¢!, and the last equality follows from
45, (0}) = ¢ . Furthermore, if g; . (a;,) > ¢’ , then the first
inequality is strict, and hence:

AN (R A (L O (g (T () R
Suppese s € {i+1,...,4}+ From (26b) and (27b), we in-
fer that gf . (o) = ¢/~ ()0 and g < g, (ef) < ..

ois)hn

From ¢ < % (o) < @,, and the fact that s;(wg(s) )
and &, # of,, we infer that g} (a],) # 4} , (o], ). Then:

(s 0 (B))
> & (dh o (00)) + 67 (gl o (o)) (45,5 (81) — 46 2 (0h)
= CZL (q:,n (057:)) + ﬂ.cTr(s),n (qg,n(@;) - q:,n(a:z)) 7

where the first inequality follows from the fact that ¢, is strictly
convex and g7 , (&,) # 4. , (o},) and the equality follows from

qg,n (Oz%) = C;’71 (ﬂ.;(s),n)'
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Suppose s € {i+1,..., 5} From (26¢) and the fact that ¢,
is strictly convex, we infer that 77, . > ¢/}, )- From (27¢),
we infer that gf . (e,) = ;. Then:

an (gt n (@) 2 &, (an) + ¢ (3 4z, (6) — &4)
> e (@) T Thpay 0 (dha(E) —T5)
— CZL (q:,n (&7:)) + ﬂ.cTr(s),n (qg,n (55:1) - qg,n(a;)) ¥

where the first inequality follows from the fact that < is
strictly convex, the second inequality follows from wg( iy =
gy and ¢f (al) < g7, and the last equality follows from
dinlof) = 4. Furthermore, if e (&) < @, then the first
inequality is strict, and hence:

(25,0 (BR)) > (L n ()5 (s 0 (20 (B) — 2 (o)) -

Hence, forall s € §:

CZL (q:,n (@7:)) Z CZL (q:,n (a:z))+7r;(s),n (qg,n(@; - q:,n(a;))‘
(29)

Moreover, this inequality is strict for some s € 5. If 7 < 4, the
inequality is strict for s € {i+1,...,7} If ¢ = 4, then, since
&l does not satisfy (27), there exists some s € {1,...,¢} such
that o, 87, (wg(s))n) > g’ orsomes € {i+1,...,5} such that
ol 87 (77 ) ») < g5, andhence thereexistssome s € {1,..., 4}
such that g; , (a7,) > ¢’ orsome s € {¢+1,...,57} such that
4t (@) < gy, and the inequality in (29) is strict for that .
Hence, we conclude that:

(d,(d} . (@})),s € 5)
2 (@ @0 + 7y (@0 (00) = dnlel)) s € 8)

for any &;, that does not satisfy (27). By rearranging terms, we
obtain (28).

Step 2: Characterizing dispatch generators’ optimal bids o
given their prices w°. Note that the profit maximization problem
for a dispatch generator is a special case of that for a regulation
generator with & = 1. By applying the characterization instep 1,
we infer that o € R, maximizes PF?’1 if and only if:

afsp(ra) <gl, if  &TMmi)<gt;  (30)
af =,  ifg < (ml)< g (30b)
ateni) 20l HE €8l (30¢)

Step 3: Characterizing prices (7, w") given bids (a®,a’)
using KKT condifions. First, we take the same approach as in
the proof of Theorem 1 and reformulate ED and FR before
applying the KKT conditions. Relabeling the variable " to of

in ED gives:

> (Kelad) + K& (4 ) — dudl)
nely

min
q¢,qf

st (a,qf,0) € Q(dy). (31)
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And substituting g’ =q" 417 in FR gives:

= nely
—q) € (ds).

7L /7 into the

AR (o My (32)

Substituting s% = ¢&~1(.)/ and s7, =

definition of ¢¢ and & implies that:
d

i
) = [ edfadin) du
qd

q7
m@:fcmmmm@m.
q,

Hence, (31) has a continuous and strictly convex objective and
linear constraints. Thus, from the KKT conditions, (g7, qF) is
an optimal solution to (31) if and only if (¢%,q], 0) € ©(d;)
and there exists £, £ Rﬂ\f,gl,ﬁl < Rf,ﬁl,ﬂl < Rf_,ll <
R such that:

(Ko ((va/os)dh)ne N) + € — ¢ — Kn' =0; (33a)
(g’ €,€) = 0; (33b)
(K ((vi/er)dl . ),mne N) + 7, —p — Ka] =0; (33¢)
L'{d}, vy, 1) =0; (33d)
Lo, af, i, , 1) = 0, (33€)

where:
— (1K) (7 () +6) (331)
mp = (L/K)m(h, g, ). (33g)

Similarly, from the KK'T conditions, ¢f, is an optimal solution
to (32)ifand only if (q?, g}, ) — qf ) € Q(d,) and there exists
v,vs RY, p 1, € R, A € R such that:

(e (/o) din)ine N) 475 —ps -7y =0 (34a)
L7 (o, VS,VS) 0;  (34b)
Liaaf, g, ) =0, (340)
where:
Ty = (s, f_, ). (34d)

Step 4. Showing that, at an equilibrium, the production sched-
ule is the unique optimal solution to ED-FR. Let (o ,q") be
an optimal solution to EAD(dl) and r} be an optimal solution
to FR(q%,q", d,). We will show that:

o = (jols!
o = ([o}s

B}
) = (lohsh (n] ) —

=d
(DlE neN);
(M neN);

Z

ol (n] I m e N).
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It suffices to show that, if (¢, ¢ff ) is an optimal solution to (31)
and ¢ is an optimal solution to (32), then:

~d
o = (fafsl(rd))% e N); (35)
o = (onsh nl NG e N). (36)

By rewriting (33a) for dispatch generator n, we infer that:
¢ =alsl (ﬂ'g + &K — En/K) P

If ¢ < g3 < g3, then from (33b), we infer that £, = ¢ =0,
whichimpliesthat¢¢ = afs? (7). If ¢¢ = qd then from (33b)
we mfer that &, = Oand 5 > 0, which 1mphes thatg = Q‘n =

si(mi+£ JK) > ad sd (w2}, where the last mequahty fol-
lows from the fact that £ is strictly convex. If ¢ = g2, then
from (33b) we inferthat § = Oand £, > 0, which implies that
g =gt =alst(n? - &,/K) < af sl (n?), where the last in-
equality follows from the fact that c?’l is strictly convex. Hence,
we conclude that ¢ is given by (35). By making similar argu-
ments, we conclude that ¢ is given by (36).

Step 5: Showing that any production schedule (¢, ,x7)
that solves SY STEM can be obtained using bids (v*,~")
and the latter satisfy the characterizations in steps 1 fo 3. By
Theorem 1, (q,q") is the unique solution to £D{d; ) and r”, is
the unique selutionto FR(q”, ", ds). Under bids (7, ) the
problems F D (d; ) and ED (d1 ) are equivalent. Hence, (q?, g )
isthe unique solution to ED, and by step 4, the production inthe
first time period is (q ). Under bids (v?, "), the problems
FR(¢,q",d,) and FR(q q’,d,) are equivalent. Hence, 1’
is the unique solution to FR(q q’,d,), and by step 4, the
recourse production is rf. Hence, the preduction schedule is
(o, q",r").

It suffices to show that bids (v%,4") constitute an equilib-
rium. It is easy to check that a” =" and a? =7 satisfy
conditions (27) and (30) respectively for any prices (7%, 7").
Hence, simply choose (7, m") based on equations (33) and
(34). This proves part (a) of the proposition.

Step 6: Showing that any bids (o, ") that satisfy the char-
acterizations in steps 1 fo 3 give the same dispatch as that under
bids (~*,+"). Suppose that (a®,a”) satisfy the characteriza-
tions in step 4 with productions (g?,qf,...,q%), Lagrange
multipliers (€,&,2, 2, i, 4, &), and prices (74, 7"). We will
construct &',&' € RY and v/, 7| € RY such that:

(K (¢2),ne N)+€ —¢ - Kn'=0;, (372
L', ¢,&)=0, (3T
(K@l ) me N)+ 7, — v —Kn] =0;  (37¢)
Lo, p,71) =0,  (37d)

and ¢, 7, € RY foralls € §\ {1} such that:
(/g ) me N)+ 0, — ¥, -7, =0 (38a)
L' (d}, v, 7,) =0, (38b)
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which are the KKT conditions for (31) and (32) under bids
{(v*,47). Then, step 5 allows us to infer that the production
schedule is an optimal solution to SY ST E M. Our construction
is given hy:

drgd d e d d.
E/ _ K (Cn’(ﬁn) - Wn) 3 if 4, = 4.5
- 0, else,
o [KE-a),  wd-d
" 0, clse,
L E(@@)-w). fe. =g
Zln —
0, else,
17, - I (WT)H - c:z!(q:z)) E if g;,n — Cj:u
o =
3 0, else,
and:
3 C:;(g;) - ﬂ'g,n: if Q‘Z,n = 2;:
1’ —=
= 0, else,
L_/ o Wz,n - Cgf(q:l): if qg,n = g:zﬂ
ot 0, else,

forall s € 8\ {1}.
First, we show that §',El,g’s,17; > 0. Suppose q° :Qi'
Then, from (30a), we infer that &~ (r2) < gi, and since

4

2 is strictly convex, we infer that 74 < & (gi), and hence

gn > 0. Suppose g2 = g&. Then, from (30c), we infer that
A=Hrdy > ¢, and since ¢ is strictly convex, we infer that
7l > (), and hence £, > 0. By similar arguments, we in-
fer that i, , > Oand 7, , = 0.

Second, we show that this construction satisfies (37) and
(38). Tt is easy to check that the complementary slackness
conditions (37b), (37d), (38b) are satisfied. Suppose gi <
@ 1(xby < . From (30b), we infer that o = 2. From the

fact that ¢¢ = [af 2 (wg)]gé = &7 (x}), we infer that ¢ <

g% < g%. From (33b), we infer that £ =&, = 0. Substituting
into (33a), we infer that our construction satisfies (37a). Sup-
pose i~ (r3) < g% . From (30a), we infer that gf} = g% . Hence,
our construction satisfies (37a). Suppose 2 < ¥/~!

< =1 (nd). From
(30c), we infer that g¢ = 4. Hence, our construction satis-
fies (37a). Using similar arguments, we can infer that our con-
struction satisfies (37¢) and (38a). This proves part (b) of the
proposition. |
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