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ABSTRACT

The growth of the sharing economy is driven by the emer-
gence of sharing platforms, e.g., Uber and Lyft, that match
owners looking to share their resources with customers look-
ing to rent them. The design of such platforms is a complex
mixture of economics and engineering, and how to “opti-
mally” design such platforms is still an open problem. In this
paper, we focus on the design of prices and subsidies in shar-
ing platforms. Qur resulis provide insights into the tradeoff
between revenue maximizing prices and social welfare max-
imizing prices. Specifically, we introduce a novel model of
sharing platforma and characterize the profit and social wel-
fars maximizing prices in this model. Further, we bound the
efficiency loss under profit maximizing prices, showing that
there is a strong alignment between profit and efficiency in
practical settings. Our results highlight that the revenue of
platformas may be limited in practice due to supply short-
ages; thus platforms bhave a strong incentive to encourage
sharing via subsidies. We provide an analytic characteriza-
tion of when such zubsidies are valuable and show how to
optimize the gize of the subsidy provided. Finally, we val-
idate the insights from our analysis using data from Didi
Chuxing, the largest ridesharing pletform in China.
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1. INTRODUCTION

The growth of the sharing economy is driven by the emer-
gence of sharing platforms that facilitate exchange, e.g.,
Uber, Lyft, and Didi Chuxing. While initially limited to
a few industries, e.g., ridesharing, sharing platforms have
now emerged in diverse areas including household tasks, e.g.,
TaskRabbit, rental housing, e.g., Airbnb, HomeAway; food
delivery, e.g., UberEATS, and more.

The sharing economies governed by these platforms are
inherently two-sided markets: owners on one side look to
rent access to sorme product and renters/customers on the
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other side look to use that product for a limited time period.
The role of sharing platforms in this two-sided market is
to facilitate matches between those looking to share and
those looking to rent, a process that would be very difficult
without a central exchange.

Since sharing platforms de not own their own products,
their goal is mainly to act as an intermediary that ensures
the availability of supply (shared resources), while maintain-
ing high satisfaction in transactions that happen through
the platform. The determination of prices and matches by
& sharing platform is the key mechanism for sccomplishing
this goal — and it is a difficult, complex task that has sig-
nificent impact on profit of the platform and satisfaction of
the users, both owners and renters.

Sharing platforms today are diverse, both in how matches
are aasigned and in how prices are determined. Even within
a single industry, e.g., ridesharing, platforms use contrast-
ing approaches for pricing and matching. For example, Uber
alashed the fares in US in Janmary 2016 and began fo subsi-
dize drivers heavily, while Lyft remained a relatively higher
price option [3]. These varied approaches to pricing highlight
the limited understanding currently available about the im-
pact of different approaches on profit and user satisfaction
— companies do not agree on an “optimal” approach.

This lack of understanding exista despite a large literature
in economics studying two-sided markets, e.g., [28, 31, 26].
This gap stems from the fact that, while shering platforms
are examples of two-sided markets, the traditional research
on two-sided markets often does not apply to sharing plat-
forms due to assumptions made about the form of utilities
and interactions across the markets. Sharing platforms are
faced with asymmetries between renters and owners, as well
a8 non-traditional utility functions as a result of trading off
the benefite of shering with the benefits of personal usage.

This paper seeks to provide new insight into two related,
important design choices in sharing platforms: the design of
prices and subsidies.

How a sharing platform sets prices has o crucial impact
on both the availability of shared resources and the demand
from customers for the shared resources. A platform must
provide incentives for sharing that ensure enough supply,
while also keeping prices low enough that customers are will-
ing to pay for the service.

This tradeoff is often difficult for sharing platforms to sat-
isfy, especially in their early stages, and sharing platforms
typically find themselves fighting to avoid supply shortages
by giving subsidies for sharing. In fact, according to [13],
Didi spends up to $4 billion on subsidies per year.



Not surprisingly, sharing platforms carefully optimize prices
and subsidies, often keeping the details of their approaches
secret. However, it is safe to assume that sharing plat-
forms typically approach the design question with an eye
on optimizing revenue obtained by the platform (via trans-
action fees). In contrast, a driving motivation for the shar-
ing economy is to encourage efficient resource pooling and
thus achieving social welfare improvements through better
utilization of resources. Thus, a natural question is “Do
revenue mazimizing sharing platforms (negrly) optimize the
social welfare achievable through resource pooling?” Said dif-
ferently, “Do sharing platforms achieve market efficiency or
is there inefficiency created by revenue-secking platforms?”

Contributions of this paper. This paper adapts classical
model of two-sided markets to the case of sharing platforms
and uses this new model {o guide the design of prices and
subsidies in sharing platforms. The paper makes four main
contributions to the literatures on two-sided markets and
sharing platforms.

First, this paper introduces a novel model of a two-sided
market within the sharing economy. Our model consists of a
sharing platform, a set of product owners who are interested
in sharing the product, and a set of product users (renters).
In classic two sided markets, users on both sides benefit from
the increasing size of the other side, e.g., their benefits are
linear to the size of the cthers. Maximizing the size of the
market is the key problem for the platform. Our model is
different from the classic two-sided model in that we consider
asymmetric market, i.e., product owners can benefit from
either renting their resource or using it themselves.

Second, within our novel two-sided market model of a
sharing platform, we prove existence and uniqueness of a
Nash equilibrium and derive structural properties of mar-
ket behavior as a function of the pricing strategy used by
the sharing platform. These results allow the characteriza-
tion and comparison of pricing strategies that (i) maximize
revenue and (ii) maximize social welfare. Our results high-
light that revenue maximizing prices are always at least as
large as social welfare maximizing prices {Thecrem 3) and,
further, that the welfare loss from revenue maximization is
small (Theorem 4). Thus, revenue-maximizing sharing plat-
forms achieve nearly all of the gaing possible from resource
pooling through the sharing economy. Interestingly, our re-
sults also highlight that revenue maximizing prices lead to
more sharing (higher supply) compared to welfare maximiz-
ing pricing. Finally, perhaps counter-intuitively, our results
show that revenue maximizing prices and social welfare max-
imizing prices aligh in situations where the market is “con-
gested”, i.e., where the sharing supply is low. This is the
operating regime of many sharing platforms, and so our re-
sults suggest that sharing platforms are likely operating in
a regime where business and societal goals are aligned.

Thard, we provide results characterizing the impact of sub-
sidies for sharing, and derive the optimal subsidies for max-
imizing reverme. The fact that many sharing platforms are
operating in “congested” regimes means that it i8 crucial for
them to find ways to encourage sharing, and the most com-
mon approach is to subsidize sharing. Theorem 7 character-
izes the market equilibrium as a function of the subsidy pro-
vided by the platform. These results thus allow the platform
to choose a subsidy that optimizes revenue (or some other
objectives), including the costs of the subsidies themselves.
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Importantly, the regults highlight that small subsidies can
have a dramatic impact on the available supply.

Finally, the fourth contribution of the paper is an empiri-
cal exploration of a sharing platform in order to ground the
theoretical work in the paper {Section 5). In particular, we
use data from Didi Chuxing, the largest ridesharing platform
in China, to fit and validate our model, and also to explore
the insights from our theorems in practical settings. Our re-
sults highlight that, in practical settings, revenue maximiz-
ing pricing shows close alignment with welfare maximizing
pricing. Further, we explore the impact of supply-side regu-
lation {e.g., gas taxes) as a method for curbing over-supply
in sharing platforms. Our results show that such approaches
can have an impact, and that the reduction is felt entirely
by the product owners (not the sharing platform).

Related literature, Our paper is related to two distinct
literatures: {i) empirical work studying the sharing economy,
and (ii) analytical work studying two-sided markets.

Empirical studies of the sharing economy. There is
a growing literature studying the operation of the sharing
economy. Much of this work is empirical, focused on quanti-
fying the benefits and drawbacks of the sharing economy |8,
11, 23], the operation of existing sharing platforms [7, 33],
and the social consequences of current designs [24, 32].

An important insight from these literature relevant to the
model in the current paper is that the expected economic
benefits of owners due to sharing significantly influence the
level of participation in sharing platforms [15, 21]. Thus,
prices and subsidies do impact the degree to which own-
ers participate in the sharing economy. Similarly, studies
have shown that prices have a dramatic impact on demand
in sharing platforms, e.g., [6] conducts experiments in San
Francisco and Manhattan to show that Uber’s surge pricing
dramatically decreases demand.

Analytical studies of two-sided markets. There is a
large literature on two-sided markets in the economics com-
munity, e.g., see [28, 31, 26] and the references therein for an
overview. These papers typically focus on situations where
users on cone side of the market benefit from participation
on the other side of the market. Hence, the goal of the
platform is to increase the population on both sides. How-
ever, the models considered in this literature do not apply
to sharing platforms, as we discuss in detail in Section 2.

That said, there ig & small, but growing, set of papers that
attempts to adapt models of two-sided markets in order to
gtudy sharing platforms. These papers tend to focus on a
specific feature of a specific sharing platform, e.g., dynamic
pricing for ridesharing. Most related to the current paper
are [2] and [18], which study platform strategies and social
welfare assuming users have fixed usage value. Another re-
lated paper is [9], which compares the utility of dedicated
and flexible sellers, showing that cost is the key factor that
influences participation of sellers. Finally, [4] analyzes com-
petition among providers, and shows that the commonly
adopted commission contract, i.e., platform extracts com-
mission fee at a fixed ratio from transaction value, is nearly
optimal.

Our work differs significantly from each of the above men-
tioned papers. In particular, we consider heterogeneous
users with general concave utility functions, while prior works
often consider only linear utilities or adopt a specific form
of utility functions among homogeneous users. Additionally,



in our model, each user’s private information is not revealed
1o others or the platform, while many results in prior work
is based on known knowledge of user utilities. Further, un-
like the agents in traditional models of two-sided markets,
product providers in sharing platform can benefit from ei-
ther self-usage of the products or sharing. This asymmetry
significantly impacts the analysis and results. Finally, our
work is unique among the analytic studies of sharing plat-
forms in that we use data from Didi Chuxing to fit our model
and validate the insights.

2. MODELING A SHARING PLATFORM

This paper seeks to provide insight into the design of
prices and subsidies in a sharing platform. To that end,
we begin by presenting a novel analytic model for the in-
teraction of apents within a sharing platform. The model
ig a variation of traditional models for two-sided markets,
e.g., [26, 31], that includes important adjustments to capture
the asymmetries created by interactions hetween owners and
renters in a sharing platform. To ground our modeling, we
discuss the model in terms of ride-sharing and use data from
Didi Chuxing [30] to guide our modeling choices.

2.1 Model preliminaries

We consider a marketplace consisting of a sharing plat-
form and two groups of users: (i) owners, denoted by the
set ¢, and (ii) renters, denoted by R. For example, in a
ridesharing platform, owners are those that sometimes use
their car themselves and other times rent their car through
the platform, e.g., Uber or Didi Chuxing, and renters are
those that use the platform to get rides.

We use Ng = |O| and Ngr = |R| to denote the number of
owners and renters, respectively, and assume that No > 2.!
For each uger in @ UR, we normalize the maximum usage
to be 1. This should be thought of as the product usage
frequency. For product owner {, let 2; € [0,1] denote the
self-usage level, e.g., the fraction of time the owner uses the
product personally. Further, let s; € [0,1] denote the level
at which the owner shares the product on the platform, e.g.,
drives his or her car in a ridesharing service. Note that we
always have z;+3; < 1. Forarenter k € R, we use g € [0,1]
to denote the usage level of the product, e.g., the fraction of
time when using s ridesharing service.

Sharing takes place over the platform. In our model, the
sharing platform first sets a (homogeneous) market price
p.2 Think of this price as a price per time for renting a
product through the platform. For example, prices in the
Didi data set we describe in Section 5 are approximately
affine in length.®

LThe case when No = 1 is the monopoly case. It is not the
main focus of this paper and can be analyzed in a straight-
forward manner (though the argument is different from the
one used for the case discussed in this paper).

*We consider homogeneous prices for simplicity of exposi-
tion. One could also consider heterogeneous prices by intro-
ducing different types of owners and renters and parameter-
izing their utility functions appropriately. The structure of
the model and results remain in such an extension.

3Note that ridesharing platforms typically use dynamic pric-
ing. Dynamic pricing iz not the focus of our paper. Our
focus is on determining optimal prices and subsidies for a
given time. Thus, our model considers only a static point
in time and is not appropriate for a study of dynamic pric-
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Renters pay the market price for renting a product from
owners. Depending on the seli-usage preferences and the
market price, owners choose their own z; and s; values {yx
for product renters), which together result in different de-
mand and supply conditions in the system. We describe the
models that govern these choices in the subsections below.

The aggregate choices are summarized by the following
notation: S(p) is the total sharing supply and D(p) the total
demand {renting demand) in the market under price p, ie.,

Stp)=)_silp), D)= )_ w(p) @)

€0 kER

With the notation and terminology set, we now focus on
the detailed models of the strategic interactions between
owners, renters, and the platform.

2.2 Modeling renters

For each user k € R, we denote the usage benefit obtained
from using the product, e.g., convenience or personal satis-
faction, by gr(yz). We assume that gx is only known to the
renter and is not public knowledge.

The utility a renter k obtains from product usage y,
Uk(yr), is given by the benefit gx minus the cost to rent
the product, p, times the usage y:.. Hence,

(2)
Naturally, each renter & chooses demand yx to maximize
utility, i.e.,

3)

n;a:c Url(ye) st 0<y <1,

k

For analytic reasons, we assume that gi(y) is continucus
and strictly concave with g.(0) = 0. Moreover, we assume
that 8 g,(0) < B for some B > 0, where 8. gx{0) is the right
derivative of gx(y) at y = 0. Note that concavity, continuity,
and bounded derivatives are standard assumptions in the
utility analysis literature, e.g., [27, 25].

The key assumption in the model above is that we are
modeling the choice of renters as being primarily a function
of price. This choice is motivated by data from ridesharing
services such as Uber and Didi. In particular, one may won-
der if the impact of price I8 modulated by other factors, e.g.,
estimated time of arrival (ETA). However, data indicates
that these other factors play a much smaller role. This is
because, in most cases, the ETA is small, and hence differ-
ences in ETA are less salient than differences in price. For
instance, Figure 1 shows the real ETA statistics of UberX
in the Washington D.C. area for 6.97 million requests (from
dataset [29]). Notice that the average waiting time is 5.5
minutes and 96% of requests have an ETA less than 10 min-
utes. Within that scale, wait times do not have a major
impact on user behavior [22].

In contrast, price fluctuations have a significant inpact on
user behavior. To highlight this, consider Figure 6, which
shows data we have obtained from 395,938 transactions in
Didi. {We introduce and explore this data set in detail in
Section 5.) This data set highlights that price fluctuations
have a significant impact on user behavior. Further, it can
be used to reverse engineer a reslistic model of what renter

Ui{yx) = 9x(yx) — PYx-

ing. Interested readers should refer to [1] for a complemen-
tary, recent work specifically focused on dynamic pricing in
ridesharing platforms. Interestingly, [1] shows that dynamic
pricing does not yield higher efficiency than static pricing,
though it does provide improved robustness.
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Figure 1: Waiting time is typically short: average
ETA of UberX in Washington D.C. is 5.5min and
96% requests has ETA less than 10min, which is much
better than taxi [29].

utility functions may look like in practice. In particular, the
following concave form fits the data well {see Section 5 for
more details):

1 (]
Ge(ye) = E(ﬂk + yx IOE(N—R) — e logyx).

Beyond ridesharing, price can also be seen to play the pri-
mary role in renter decision making in other sharing econ-
omy platforms as well. For example, in Airbnb, since des-
tination cities and dates are usually subject to travelers’
schedule, price becomes a main concern for renters.

2.3 Modeling owners

The key distinction between owners and renters is that
owners have two ways to derive benefits from the product —
using it themselves or renting it through the platform.

‘When owners use the product themselves, they experience
benefit from the usage, like renters. But, unlike renters, they
do not have to pay the platform for their usage, though their
usage does incur wear-and-tear and thus leads to mainte-
nance costs. We denote the benefit from self-usage by fi(z:)
and the maintenance costs incurred by cz;, where ¢ > 0 is
a constant representing the usage cost per unit, e.g., gaso-
line, house keeping, or government tax. As in the case of
renters, we assume that, for all owners, fi(-) is continuous
and strictly concave with f;(0) = 0 and 9, £;(0) < B.

When the owners share their product through the plat-
form, they receive income; however they also incur costs.
Crucially, the income they receive from sharing depends on
how many renters are present and how many other owners
are sharing, and thus competing for renters.

‘We model the competition between owners via the follow-
ing simple equation for the income received while sharing:

D(p)
5(p)’

Here min{%(%l, 1} denotes the probability that an owner is
matched to a renter. This models a “fair” platform that is
equally likely to assign a renter to any owner in the system.
Note that fairness among owners is crucial for encouraging
participation in platforms. In a “fair” platform min{%(@%l, 1}
is the fraction of time owner i makes money from sharing,
e.g., the fraction of time a driver in Uber has a rider. Thus,

pmjn{%(’;,),l} can be viewed as the revenue stream that

1}s:. (4)

pmin{
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an owner sees while sharing.* Finally, an owner also incurs
maintenance costs as a result of sharing. We denote these
costs by cs; as in the case of self-usage.

Combining the three components of an owner’s cost and
reward yields an overall utility for owmer i of

. D
Ui(mi, 8:) = fi(®:) +pmm{—((;), 1}s; —ex: —esi.  (5)
Naturally, each owner i determines sharing and self-use
levels s; and z; by optimizing (5), i.e., choosing z}(p) and
s} (p) by solving the following optimization problem:

max U;(:L',', 81'), a.t.

®i,94

i 20, 5,20, se+x <1 (6)
Crucially, the utility function above couples every owner’s
utility and thug the model yields a game once the sharing
price p is set by the platform.

It is important to emphasize the asymmetry of the owner
and renter models. This asymmetry captures the fact that
product owners often stay for longer time in the sharing
platform. Hence, they choose their self-usage and sharing
levels based on the long term overall payoff (represented by
price times the long term fraction of time they are matched
to requests, ie., pm.in{%(%)l, 1}). In contrast, renters can
be seen as “short term” participants who care mainly about
whether they can get access to the product with reason-
able price each time they need. The contrast between short
term price-sensitive consumers and long term providers is
common in the literature, especially in the context of online
sharing [4, 1]. There is empirical support for this distinction
in both academia [6] and industry (Uber) [14].

Finally, it is also important to highlight that the owner
and renter models are very distinct from typical models
in the literature on two-sided markets, e.g., [31] [26], since
providers can benefit either from self-usage or sharing, and
owners and renters determine their actions asymmetrically.

2.4 Modeling the platform

The owners and renters discussed above interact through
a sharing platform. The platform matches the owners and
the renters and sets a price for exchange of services. Our
focus in this paper is not on algorithms for matching, but
rather on the pricing decision.

Note that, given a market price charged by the platform,
the owners and renters play a game. Thus, to begin, we need
to define the equilibrium concept we consider. Specifically,
denote X* = (zf,i € O) and §" = (s{,i € ). Then, a
state (X”, 5*) is called a Nash equilibrium, if (z},s}) is an
optimal sclution to problem (6) for all i € O,

Importantly, every price chosen by the platform yields a
different game and, therefore, a (potentially) different set of
Nash equilibria. Thus, the goal of the platform is to choose a
price such that (i) there exists a Nash eguilibrium (ideally o
unique Nash equilibrium) and (i) the Nash egquilibria mazi-
mize o desired objective. Our focus in this paper is on two
common objectives: revenue maximization and social
welfare maximization.

Revenue maximization and social welfare maximization
represent the two dominsnt regimes under which gharing
economy platforms aim to operate. A platform focused on

4Qimilar utility functions have been adopted for studying
resources allocation problems with symmetric users in other
contexts, e.g., [10] and [20].



maximizing short term profits may seek to optimize the rev-
enue obtained at equilibrium, while a platform focused on
long-term growth may seek to optimize the social welfare
obtained by owners and renters.

More formally, when aiming to maximize social welfare,
the platform’s objective is to maximize the following aggre-
gate welfare

Wip) &) Uslal,s1) + ) Un(wi),

ice0 kER

™

where x{, 37, and ¥; are the optimal actions by users under
the price p. Notice that the welfare is defined over all possi-
ble uniform price policies. An optimal social welfare policy
maximizes W{p) by choosing the optimal p.

In contrast, when aiming to maximize revenue, the plat-
form tries to maximize

R(p) & pmin{ D(p), S(p)}- (8

The adoption of this objective is motivated by the fact that
in many sharing systems, the platform obtaing a commis-
gion from each successful transaction, e.g., Uber charges its
drivers 20% commission fee [17]. Thus, maximizing the to-
tal transaction volume is equivalent to maximizing the plat-
form's revenue.

In both cases, to ensure non-trivial marketplace governed
by the platform, we make the following assumptions.

ASSUMPTION 1
ists at least one price p such that pD(p) > c.

This assumption is not restrictive and is used only to ensure
that there are owners interested in sharing. Specifically, if no
such price exists, it means that the term pmjn{%(ﬁ)l, 1}s: —
esi < 0in (5).

ASSUMPTION 2
ouner i € O, 8_ f;(1) < po, where 8_ f;(1) is the left deriva-
tive of fi{z:) at i = 1 and D{p,) = 1.

It is not immediately clear from the statement, but this
assumption ensures that, when S(p) > 0, at least two owners
will be sharing in the platform. More specifically, Assump-
tion 2 essentially requires that product owners’ per-unit self-
use utilities are upper bounded by some p,, such that they
will at least start to share their products when price is high
enough that only 1 demand is left in the market. A formal
connection between the technical statement and the lack of
a monopoly owner is given in [12].

3. PLATFORM PRICING

The first contribution of this paper is a set of analytic
results describing how a sharing platform can design prices
that maximize revenue and social welfare. To obtain these
results we first characterize the equilibria smong owners and
renters for any fixed market price set by the platform (Sec-
tion 3.1). These results are the building block that allow
the characterization of the prices that maximize social wel-
fare and revenue of the platform (Section 3.2). Then, using
these characterizations, we contrast the prices and the re-
sulting efficiency of the two approaches for platform pricing.

Throughout, the key technical challenge is the coupling
created by the inclusion of S(p) in the utility functions. This
coupling adds complexity to the arguments and so all de-
tailed proofs are deferred to the appendices in the extended
technical report [12].

(THE MARKET 1S PROFITABLE). There ez-

{NO OWNER HAS A MONOPOLY). For any
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3.1 Characterization of equilibria

In order to study optimal pricing, we must first char-
acterize the equilibria among owners and renters given a
fixed market price. In this subsection we establish structural
properties of the sharing behavior, including the existence of
an equilibrium and the monotonicity of supply and demand.

To begin, define a quantity pypper, which will be shown to
be an upper bound on market prices, as follows:

Pupper S sup{p|pD(p) = c}. 9

Note that pupper always exdists due to Assumption 1. Fur-
ther, pDX{p) is continuous {see the extended version [12]).

Using pupper, we can characterize the market as operating
in one of four regimes, depending on the market price.

THEOREM 1. For any given market price p, there exisis o
Nash equilibrium. Moreover, equilibrium is unigue if fi(-) is
differentiable. In addition, equilibrium behavior of the mar-
ket falls into one of the following four regimes:

(i) p € [0,p:): S(p) < D(p) and S(p) is non-decreasing
(%) p=pc: 8(p) = D(p)
{ii) p € (pe; Pupper|: S(p) > D(p)
(i) p > pupper: S(p) =0

Some important remarks about Theorem 1 follow. First,
existence and uniqueness of market equilibrium under any
fixed sharing price is critical for analysis of the market.

Second, the price p. is the lowest market clearing price,
ie., p. = min{p| D(p) = S{p)}. Establishing this result is
not straightforward due to the discontinuity of the derivative
of the coupling term m.in{%(f)l,l}, which can potentially
generate discontinucus points in the S(p) function as owners
may find sharing more valuable if there is a slight change in
price. Thus, the proposition is proven by carefully analyzing
the S(p) function around p..

Third, as p increases, supply will continue to increase as
long as it is less than demand. However, once supply exceeds
demand, it remains larger than demand until, when the price
is higher than some threshold price pypper, supply drops to
0 since the market is not profitable.

Finally, note that regimes (ii) and {iii) in Theorem 1 are
the most practically relevant regimes since sharing demand
can all be fulfilled. In this regime, we can additionally prove
the desirable property that the platform’s goal of revenue
maximization is aligned with boosting sharing supply, i.e.,
a price for higher revenue leads to higher supply.

THEOREM 2. For all p > p. such thot S(p) > D{p), sup-
ply is higher when revenue is higher, i.e, p1 D{p1) > p2D{pz)
implies S(p1) > S{pz).

An important observation about Theorem 2 is that rev-
enue maximization oriented sharing actually encourages more
sharing from owners. This is a result that is consistent with
what has been observed in the sharing economy litersture,
e.g., [5]. The intuition behind this result is that the pur-
suit of actual trading volume pD{p) is in owners’ interests,
and this objective increases their enthusiasm for sharing. To

be specific, the “effective price” %5’—;1 seen by an owner has

pD(p), the transaction volume, as the numerator. There-
fore, a higher trading velume magnifies the “effective price,”
which in turn stimulates supply.



3.2 Social welfare and revenue maximization

Given the characterization of equilibria outcomes in the
previous subsection, we can now investigate how a shar-
ing platform can design prices to maximize social welfare
or revenue. Recall that maximizing revenue corresponds
to & short-term approach aimed at maximizing immediate
profit; whereas maximizing social welfare corresponds to a
long-term view that focuses on growing participation in the
platform rather than on immediate revenue.

Our first result characterizes the platform prices that max-
imize social welfare and revenue, respectively.

THEOREM 3. The sacial welfere mazimizing price, Psw,
and the revenue marimizing price, p,, satisfy the following:

{i) The lowest market clearing price p. achieves mazimal
social welfare.

(ii) The revenue-maximizing price is no less than the social
welfare maximizing price, i.e., pr 2 pe. Thus, S(pr) 2

D(p.).

(i) Revenue mazimization leads to better qualily of service
then sociel welfare mazimization, i.e., %(1%} > %(}f—:)l.
There are a number of important remarks to make about
the theorem. First, note that both ps, and p, ensure that
supply exceeds demand at equilibria. This is important for
the health of the platform.

Second, note that Part (i) implies that more sharing from
owners does not necessarily imply a higher social welfare.
This is perhaps counterintuitive, however, it is due to the
fact that a higher supply at a higher price can lead to more
“idle” sharing, which leads to lower utility for everyone.

Third, in Part (iii) we use %(f)l a8 a measure of “quality
of service” since the experience of renters improves if there
is proportionally more aggregate supply provided by owners
via sharing. It is perhaps surprising that revenue maximiza~
tion leads to better quality of service, but it is a consequence
of the fact that revenue maximization is aligned with incen-
tives for sharing {see Thecrem 2).

To investigate the relationship between the social welfare
and revenue maximizing prices in more detail, we show nu-
merical results in Figure 2. In particular, Figure 2 shows the
relationship of p» and psw under different costs and different
scarcity levels for the products. The results are shown for
quadratic f and g.°

Figure 2(a) highlights that ps.w and p, remain unchanged
when costs c are low, but that p.., increases quickly towards
pr (eventually matching p,) as ¢ increases.

Additionally, Figure 2(b) highlights that product scarcity
also influences p,,, and p, significantly. When resources be-
come SC8rce, Ps rapidly increases towards p,.. The intu-
ition for this is that when supply is insufficient, a maximum
social welfare policy also needs to guarantee the usage of
renters with high utilities, which is the same as what a max-
imum revemue policy aims to accomplish. Therefore, when
supply is abundant (Figure 2(c)), psw is much lower than
pr: 8 maximum social welfare policy wants to fulfill more

5In this simulation, we used quadratic benefit functions of
the form fi(z:) = —aix? + biz: (same with gi(yx)) with
ai,b; > 0 for each owner, and a;,b; are unifermly chosen
from (0.1, 1.2) and (0, 1). The numbers of cwners and renters
vary in different cases.
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demand while a maximum revenue policy focuses on high
value clients.

This distinction motivates an important question about
revenue maximizing pricing: how much welfare loss does
revenue marimizing pricing incur? Our next theorem
addresses this question by providing & “price of anarchy”
bound. Recall that W(p) is defined in (7) as the aggregate
social welfare under price p. Further, we use s] to denote
the supply of owner i at p,.

THEOREM 4. The social welfare gap between the mazi-
mum social welfare policy and a meximum revenue policy

is bounded by:
0 < W{psw) — W(pr)

D ¥
< Pr(D(pa‘w) - D(p")) +pr S((;—)) ieoz

. W
8y >af

(10)

(st — si™).

In particuler, if si > s{% for all i € O, the bounds above
become:

0 < W(pra) = Wi(pr) < pe[Dlows) — D) g0 (1)

Moreover, the above bounds are tight.

One important feature of the efficiency loss of revenue
maximizing pricing is that it can be evaluated by third-party
organizations since it only depends on the total demand and
supply under prices p, and psy, not on private utility func-
tions of the owners and renters.

However, the form of the bound in Theorem 4 does not
lend itself to easy interpretation. A more interpretable form
can be obtained as follows:

W (pru) — Wpr)
< rlD(pes) = Dlpe)] + e 2 1S(5r) — Sto)

The first item on the right-hand-side of (12) is an upper
bound for the utility loss of renters, since D{psw) — D{pr)
is the demand decrement from renters at p., while p, ig the
upper bound of these renters’ usage benefit. Similarly, the
second item is the upper bound of the utility loss of owners
since S(pr) — S(psw) can been seen as supply from some
new owners starting to share at p,, under risk of meeting no
renters, and p, %(};L:)l is the upper bound of their utility loss.

To obtain more insight about the bound, Figure 3 shows
numeric results for the case of quadratic f, g and No = 100.
Figure 3 illustrates that, as the number of reniers increases,
resource becomes scarce and the bound on the social welfare
gap decreases to zero. Thus, the revenue maximizing price
can be expected to achieve nearly maximal social welfare in
platforms where usage is high.

Another important point about the bound on the welfare
loss of revenue maximizing pricing is that the bound is tight.

In fact, we show with an example in [12] that the upper
bound is tight for linear f,g.

(12)

4, SUBSIDIZING SHARING

One may expect that many practical sharing platforms
operate in a “underprovisioned” or “congested” regime where
more people will be interested in using the platform to rent
than to share. This is especially true when sharing platforms
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are getting started. To handle such situations, most sharing
platforms provide subsidies to encourage owners to share,
thus increasing supply [16]. These subsidies are crucial to
growing supply in order to match demand and our goal in
this section is to investigate how a sharing platform can
optimize such subsidies.

To begin, recall an important observation from the pre-
vious section contrasting social welfare maximization and
revenue maximization: the two pricing strategies align in
gituations where the platform is “underprovisioned” or “con-
gested”, i.e., situations where the number of renters is large
compared to the number of owners, e.g., see Figure 2(h).
This observation provides a motivation for the use of sub-
sidies: they align because they both use the minimal pos-
sible market clearing price, ps.w = pr = Pc, Which ensures
S(pe) = D(p.). In such situations, larger supply would al-
low the price to be lower and more demand to be served —
yielding (potentially) higher revenue and/or social welfare.

The results in this section characterize the potential im-
provements from subsidization and identify when subsidies
can be valuable.

To begin, define function V(p) £ p- D(p) and let Ppotentiat
denote the price which maximizes V(p) over p € [0, Pupper].
Thus, V(ppotentiat) is the potential maximum revenue that
the platform can obtain if supply is sufficient. However,
it may not possible to achieve this 88 S(Ppotentiaz) can be
smaller than D(ppotentiat)-

Qur first theorem highlights that it is not possible to
achieve the maximal potential revenue without subsidiza~
tion if protentiat 18 lower than the welfare maximizing price.
In this case, the revenue maximizing price aligns with the
social welfare maximizing price because dropping below that
point would lead to a supply shortage and revenue reduction.

59

—=— Demand
—— Supply,o

Revenue

Price
Figure 4: Without subsidy, the platform achieves
maximum revenue at p,. = 13 (green line), due to the
fact that at ppotentiai = 12, there is not enough supply.
With subsidy ¢ = 0.5, platform can now use ppoieniial
to extract maximum potential revenue (red line).

THEOREM 5. When ppotentiat = pc, the platform can ex-
tract mazimum potential revenue by setting pr = Dpotential-
Otherwise, pr = Psw = Pe-

The behavior described by Theorem 5 can be observed in
Figure 4, where the red dotted line shows that ppotentiat = 12
maximizes function V = pD(p). Without subsidy, plat-
form’s revenue maximization policy is to set p, = p. =
13 (the green dotted line), since supply is not sufficient at
Ppotential. However, if the platform subsidizes owners to
boost supply such that supply is higher than demand at
Dpotential, then platform can obtain maximum V (ppotentiat)-

Figure 4 highlights the potential gains from subsidization,
but the key question when determining subsidies is if the
benefit from subsidization exceeds the cost of the subsidies
themselves. To understand this, we quantify how much ad-
ditional supply can be obtained by subsidies below.

Specifically, we assume that sharing platform provides an
additional subsidy for sharing of pe, ¢ > 0 per unit sharing,.
Thus, the effective price seen by an owner becomes P'(%@%*‘

€).% Therefore, an owner’'s utility function becomes:

D

S((;J)) J1} 4+ €)ss — exp — e8s.
$Note that this model also applies to the case of enthusiastic
users who have an optimistic perception about the fraction
of time they will receive customers.

Ui (zi,8:) = fi{zi) + p(min{




Qur next theorems characterize the supply S5°(p) under
subsidy factor ¢ > 0, compared to the original S(p) (e =
0). The first result highlights that subsidization necessarily
increases aggregate supply.

THEOREM 6. For any €2 > e1 > 0, we have S*(p) >
8% (p). In particular, S*(p) > S°(p), where S°(p) is the
original supply with e = Q.

The second result highlights that there are three regimes
for subsidization, of which the first is the most relevant for
practical situations.

THEOREM 7. The émpact of subsidization can be catego-
rized into three regimes:

1. Small subsidies: Fore such thate < s“(p) D) (1 s“(p)) Vi €
O, we have

5°(p) < F() = DA VL IDIRE

251 - w55 —
where M = D{p)(1 — ﬁ%)- Also, F{0) = S°(p).
2. Medium subsidies: For e such that %&%(1 - ?;E(F)) <

€< %(34_]«,.(0)_% » we have that =3 (p) +si(p) =

landsi<1 forallicO.

8. Large subsidies: For ¢ such that ¢ > %(3+f.f(0) —
%), for all i € O, we have that s§f = 1, ie,
5°(p) =

The above theorems together highlight that subsidies nec-
essarily increase the sharing supply from product owners.
Without subsidy, when there is a supply shortage at ppotential,
the platform’s maximum revenue policy is to set price to p..
However, if the platform chooses a proper subsidy ¢ and a
price p* then it can achieve improved revenue. The following
theorem characterizes when this is possible.

THEOREM 8. There exists a subsidy € that increases rev-
enue whenever

V(p) = p* min{ D(p%), §*(p°)} — €5°(p°) = pe D(pc).

Note that Theorem 8 also shows that an appropriate sub-
sidy ¢ can be found by optimizing V*{p). Concretely, Figure
4 shows that by introducing ¢ = (.5, the platform can close
the supply gap at Ppotentiat = 12 by shifting the market
clearing price from pe = 13 t0 Ppotentiat = 12.

Beyond the example in Figure 4, we also derive the im-
pact of subsidies analytically under quadratic usage benefits,
showing substantial increase in revenue {Example 2 in [12]).

5. CASE STUDY: DIDI CHUXING

‘We consider the case of ridesharing in this section in order
to ground the anslytic work described above. We have ob-
tained a dataset from Didi Chuxing, the largest ride-sharing
platform in China — Didi Chuxing sees 10 million daily rides
[19]. The dataset we have obtained includes transaction
records for the first three weeks of January 2016, in a Chi-
nese city. Each record consists of driver ID, passenger ID,
starting district ID, destination district ID, and fee for a
ride. For the experiments described below we use data from
Jan 8th, which includes 395, 938 transaction records, though
results are consistent for other days.
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5.1 Experimental setup

In order to fit our model to the data, we use the number of
transactions at different prices to represent renters’ demands
under different prices. This allows us to fit an aggregate
demand curve. We use an exponential function of the form
D(p) = ae™"?, where o = 19190, § = 0.0832. This achieves
an 72 value of 0.9991, The fit is illustrated in Figure 6.

The exponential form for the aggregate demand curve cor-
responds to each renter’s gx{y:) having following form:

(14

We also assume that product owners have the same form
for their usage benefit. Finally, since DiDi has a minimum
charge on each ride (at 10 RMB), we reset the zero price
point to the minimum charge fee.

5.2 Experimental results

Using the dataset from Didi, we study the distinction be-
tween social welfare and revenue maximizing prices, the im-
pact of cost, and the role of subsidies in practical settings.

Welfare loss. The first question we ask is “how do social
welfare maximizing prices and revenue maximizing prices
differ in practical situations? To ansawer this question, we
examine settings when supply is less than demand, i.e., from
Ng = 100 to 1100 while Ng = 1919. These “congested”
acenarios align with the load experienced by Didi.

The results are summarized in Figure 7, which highlights
that, when supply is not abundant, the platform actually
achieves maximum social welfare and maximum revenue si-
multaneously when it sets the price to maximize revenue.
Note that, given the parameterized model of demand, we
can calculate the price that produces the maximum poten-
tial revenue: ppotential = ATMAax . pD(p) =12.

The alignment of revenue and welfare in Figure 7 is con-
sistent with the results in Theorem 5: since P = Paw >
Ppotenticl due to insufficient supply, the revenue maximizing
price will be pr = Psw.

The role of cost. Next, we investigate how costs impact
platform prices and outcomes. Recall that the cost ¢ cor-
responds to the maintenance costs for the product. Impor-
tantly, it also captures any supply-side regulation through
taxation on usage, e.g., a gas tax. The results are summa-
rized in Figure 5(a) {No = 100, Ng = 191), which shows the
demand and supply under different costs, and Figure 5(b)
{(No = 100, Np = 300), which shows the results based on
quadratic usage benefit function for comparison.

In these two figures, we observe that the cost ¢ is an impor-
tant factor in determining the lowest price to enable sharing,
i.e., there will be no sharing at p < ¢. More importantly,
the figures highlight that higher costs significantly suppress
sharing. This is intuitive, as drivers choose their sharing
level more conservatively if they have to pay more mainte-
nance costs during the times when they are sharing. This
highlights that a properly chosen cost ¢ con help reduce re-
dundant supply while meintaining an acceploble QQoS. This
is crucial to many social issues such as greenhouse gas emis-
sion, road congestion, and it is implementable through, e.g.,
gas taxes.

Another result that is highlighted in Figure 5({b) is that,
when c is not high enough, the market clearing price p. re-
mains the same. This implies that the platform’s revenue
does not change with costs when cost is at low-to-moderate

gr{yx) = —(yk + gx 108( ) — yx log yx).
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levels. That is to say, if usage taxes are used to regulate a
platform, product cwners will incur this cost and the plat-
form’s revenue is likely to not be impacted.

The Role of Subsidies. Finally, we investigate the im-
pact of subsidies in practical settings. Figure 7 highlights
that p, differs from the price that optimizes the potential
TEVENUE Ppotential- This is because the platform does not at-
tract enough sharing. Hence, the platform can not extract
the maximum potential revenue since pr = pc > Ppotential L
this case. As illustrated in Section 4, subsidizing owners for
sharing is beneficial in such situations. Figure 5(c) shows
the impact of subsidizing owners in the Didi data set, with
Np = 1919, No = 1100. In this case, only a small subgidy
(e = 0.1) is needed to steer the price toward ppotentiar = 12.
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6. CONCLUDING REMARKS

In this paper we study the design of prices and subsidies
within sharing platforms. We extend traditional models of
two-sided markets to include the opportunity for a tradeoff
between using a resource directly or sharing it through a
platform. This extension adds considerable technical com-
plexity. However, we are able to prove that a unique equi-
librium exists regardless of the prices imposed by the shar-
ing platform. Further, we provide results characterizing the
revenue maximizing price and the social welfare maximizing
price. These results allow us to bound the efficiency loss
under revenue maximizing pricing. Additionally, these re-
sults highlight that the revenue maximizing price may be
constrained due to supply shortages, and so subsidies for
sharing are crucial in. order to reach the maximal potential
revenue. Finally, we provide results that allow optimization
of the size of the subsidy to maximize the tradeofl between
incressed revenue and the cost of the subsidies themselves.
Our results are grounded by an exploration of data from
Didi, the largest ridesharing platform in China.

The results in this paper provide interesting insights about
prices and subsidies in sharing platforms, but they also leave
many questions unanswered. For example, we have consid-
ered a static pricing setting, and dynamic pricing is common
in sharing platforms. Recent work has made some progress
in understanding dynamic pricing in the context of rideshar-
ing, but looking at dynamic pricing more generally in two-
sided sharing platforms remains a difficult open problem.
Additionally, our work separates pricing from matching in
the sharing platforrn. We do not model how matches are per-
formed, we only assume that they are “fair” in the long-run.
Incorporating constraints on matching, and understanding
how these impact prices, is a challenging and important di-
rection for fuiture work.
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