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ABSTRACT

Persistent memory places NVRAM on the memory bus, offering fast

access to persistent data. Yet maintaining NVRAM data persistence

raises a host of challenges. Most proposed schemes either incur

much performance overhead or require substantial modifications to

existing architectures.

We propose a persistent memory accelerator design, which guar-

antees NVRAM data persistence by hardware yet leaving cache hi-

erarchy and memory controller operations unaltered. A nonvolatile

transaction cache keeps an alternative version of data updates side-

by-side with the cache hierarchy and paves a new persistent path

without affecting original processor execution path. As a result, our

design achieves the performance close to the one without persistence

guarantee.
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1. INTRODUCTION
Emerging nonvolatile memory (NVRAM) technologies such as

phase-change memory (PCM), spin-transfer torque RAM (STTRAM),

resistive RAM (RRAM), and Intel and Micron’s 3D XPoint [7] tech-

nology promise to revolutionize I/O performance. NVRAMs can

be integrated into computer systems in various manners. One of

the most exciting proposals deploys NVRAMs on the processor-

memory bus, producing a hybrid of main memory and storage sys-

tems – namely persistent memory – which offers fast memory access

and data persistence in a single device [5, 23].

Supporting persistence in memory-bus-attached NVRAM presents

a host of opportunities and challenges for computer and system ar-

chitects. System failures (crashes and inopportune power failures)

can interrupt data updates across the memory bus, leaving NVRAM

data structures in an partially updated, inconsistent state mixed with
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old and new values. Moreover, modern CPU caches and memory

controllers can reorder stores to memory to improve performance,

which further intricates the persistence support. Taking an example

where a program inserts a node in a linked list, software can issue the

node value update followed by the corresponding pointers updates.

However, after being reordered, stores to the pointer can arrive at

the NVRAM before those to the nodes. If system crashes in the

middle, the linked list will be corrupted with dangling pointers [23].

As such, persistent memory systems need to place careful control of

NVRAM data versions and ensure that the order of writes arriving

at NVRAM.

A large body of recent studies focus on ensuring persistence in

memory. But most works either incur substantial performance over-

head to the memory system or require substantial modifications to

existing processor hardware. For example, most software-based

persistence mechanisms – e.g., NVRAM file systems and libraries

– explicitly maintain multiple versions of data by logging or copy-

on-write [2, 3, 20]. In addition, these schemes typically enforce

write ordering by cache flushes and memory barriers (e.g., using

clflush, clwb, and mfence instructions available in Intel x86

ISA) [8, 20]. As NVRAMs offer vastly improved bandwidth and

latency, over disks and flash, such software-based schemes add sig-

nificant performance overhead to memory systems and squander the

improved performance that NVRAM offers [5, 20]. Most hardware-

based mechanisms require non-trivial modifications to the processor,

e.g., the cache hierarchy and memory controllers [11, 4, 9, 15, 23].

These modifications can reduce the flexibility of modern processor

design and substantially increase the hardware implementation cost.

Our goal in this paper is to provide persistence guarantee in

NVRAM, while minimizing the modification to the existing pro-

cessor hardware implementation. To achieve our goal, we propose

a persistent memory accelerator design, where the major compo-

nent is a nonvolatile transaction cache that buffers the stores of

in-flight transactions issued by CPU cores. The transaction cache

also maintains the order of these stores to be written into NVRAM.

By maintaining data persistence in the transaction cache, we create

a side path in the processor to maintain data persistence. As such,

we eliminate the persistence functions in software (e.g., logging and

copy-on-write) and leave the cache hierarchy and memory controller

operation as they are. Furthermore, we implement the persistent

memory accelerator as a stand-alone module in the processor, en-

abling flexible physical implementation of the processor. As a result,

our design achieves 98.5% the performance of the optimal case that

does not provide persistence support.

2. CHALLENGES OF MAINTAINING PER-

SISTENCE IN MEMORY
Figure 1 shows an example of a system configuration integrated

with persistent memory. Adding a persistent memory in the system
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Figure 1: Overview of memory systems integrated with persis-

tent memory.

may seem as simple as implementing another memory region, but

several challenges can prevent the immediate wide-spread adoption

of this emerging technique.

Current memory systems have no knowledge about data persis-

tence; they assume that the data stored in memory is lost – and

therefore unusable – across system reboots. Therefore, conventional

systems only maintain memory consistency that guarantees a consis-

tent view of data stored across the cache hierarchy and main memory

during application execution.

Rather, persistent memory systems need to guarantee the consis-

tency of data stored in NVRAM alone across system reboots. To

this end, system software, hardware or their combination needs to

maintain versioning of critical data updates by logging [20] or copy-

on-write [3], along with write-order control (e.g., cache flushes and

memory barriers) that prevents caches and memory controllers to

reorder the stores issued by applications [23]. As a result, providing

persistence guarantee in memory can impose substantial inefficien-

cies in current memory systems, in terms of performance overhead,

implementation cost and flexibility as we discuss below. To the

best of our knowledge, our design is the first that tackles all of the

challenges.

2.1 Performance Overhead of Persistence
Support

One key challenge of persistent memory design is the perfor-

mance overhead of persistence support introduced to existing mem-

ory systems. Many persistent memory systems maintain a log of

NVRAM updates in addition to the stores to the original data. For

example, differently from traditional program without persistence

guarantee (Figure 2(a)), to ensure persistence of data structures

A and B, persistent memory systems need to execute the logging

instructions log(address, new value), generating extra in-

structions that read and write the addresses and values of A and B

(Figure 2(b)). As such, even if system failures leave the original data

or the log partially updated, the data structures can be recovered by

the other. Furthermore, write-order control mechanisms (e.g., cache

flushes and memory barriers) need to enforce that the log updates

arrive at NVRAM before corresponding original data updates. Oth-

erwise, upon system failures, the original data in NVRAM can be

partially updated while the corresponding log updates remaining in

caches is lost (Figure 2(c)) – the NVRAM data structures will be

unrecoverable after system reboots. Copy-on-write-based persistent

memory systems maintains multi-versioning and write-order control

in a similar manner [3]

Multi-versioning and write-order control are major sources of the
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Figure 2: The performance overhead of log-based persistent

memory.
performance overhead. Multi-versioning requires duplication of data

and therefore can significantly increase NVRAM write traffic [23].

Write-order control will cancel out the performance optimization

provided by the reordering of caches and memory controllers. As

a result, the performance of persistent memory systems can be

much lower than optimal memory systems that does not support

persistence.

2.2 Implementation Cost and Flexibility of Per-
sistence Support

The performance overhead of maintaining persistence in memory

has been noted by other researchers. Common approaches for avoid-

ing this overhead is to modify the processor and memory hardware

to exploit hardware’s support for data persistence [4, 23]. However,

this approach can impose substantial implementation overhead on

top of existing designs. Without careful consideration, the processor

and memory modifications can significantly increase the cost and re-

duce the flexibility of hardware implementation. For instance, most

prior works require to modify cache hierarchy (e.g., replacing the

last-level cache with NVRAM technologies, interfering cache con-

trol flows, the tag arrays, and cache coherence mechanisms) [3, 10,

12, 23] and memory controllers (e.g., modifying memory scheduling

policy) [4, 6, 15]. Such hardware reimplementation requires new

processor architecture or memory controller design and increases

manufacturing hardware cost. Furthermore, mingling persistence

support with processor or memory operation can increase hardware

implementation complexity. For example, doing so can increase

the number of states in the cache operation state machine [23] and

need additional function supports in memory controller for persis-

tence ordering requirement [4], intricating the caching and memory

scheduling schemes.

3. PERSISTENT MEMORY ACCELERATOR
Architecture Design Overview. The goal of our design is to pro-

vide a high-performance, easy to implement, and easy to use per-

sistent memory design1. Yet instead of mingling the persistence

support with caching or memory controller operations, we provide a

side data path for accelerating persistent memory updates. Figure 3

shows an overview of our architecture design. The key component

of our persistent memory accelerator is a nonvolatile transaction

cache (TC), which is deployed side-by-side with the cache hierarchy.

The TC serves as a FIFO of writes in transactions; whenever a trans-

action commits, the TC will issue the corresponding stores to the

NVRAM. CPU caches can operate as it is without maintaining data

persistence; in order to prevent the reordered CPU cache blocks to

contaminate the persistent data in NVRAM, we drop the last-level

1
Memory systems may consist of DRAM and NVRAM regions, where the NVRAM

stores critical data structures and the DRAM stores temporary data that does not re-

quire persistence [23]. Our work focuses on efficiently accelerating data persistence

in NVRAM rather than the DRAM access.
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cache write-backs – these blocks are simply discarded after being

evicted out of the last-level cache. By maintaining persistence in

the TC, we also allow the NVRAM controller to operate as it is; the

NVRAM controller only needs to send an acknowledgment message

back to the TC, after the persistent writes are written into NVRAM.

Benefits. Our design offers several promising benefits. First, per-

formance benefits – we allow CPU caches and memory controllers

to operate as it is, without being interfered by persistence sup-

port. Doing so can maximize system performance, while reducing

hardware implementation complexity. Second, flexible hardware

implementation – by providing persistence support at the side data

path, our design allows flexible and low-cost processor implemen-

tation. For example, the capacity of the transaction cache can be

flexibly configured based on the transaction sizes of the processor’s

target applications. Third, enabling modular hardware design and

implementation – the transaction cache and the rest of the processor

can be manufactured on two separate dies and later integrated on a

silicon interposer [18]. As such, new processors with persistence

support can adopt legacy processor designs. As interposer-based

integration is adopted by increasingly large population of processor

designs, such modular hardware implementation can be an attractive

solution for persistent memory systems. Finally, ease of use – our

software interface only involves transaction definitions similar to

commodity ISAs [8].

The Persistence Support provided by Our Design. Without com-

promising performance, our persistent memory accelerator provides

multi-versioning of data and write-order control to ensure data per-

sistence.

• Multiversioning. We make copies of all persistent writes of each

transaction in the TC. Only after buffering all the persistent writes

of a transaction, the TC will issue these writes to the NVRAM. In

addition, only after updating the NVRAM, the buffered writes in

the TC can be dropped. If system failures happen before all the

writes of a committed transaction are written into NVRAM, we

can recover the data using the buffered writes in the TC; If system

failures happen before the TC even issues any buffered writes

to the NVRAM or after all the buffered writes of a committed

transaction are written into the NVRAM, data in the NVRAM is

intact and consistent. Note that after completing all the writes, the

NVRAM controller needs to send an acknowledgment message

back to the TC to indicate that the TC can drop the buffered data.

• Write-order Control. Write-order control is naturally supported

by the TC. Different from the writes that go through CPU caches,

those go through the TC – which is a FIFO – will not be reordered.

The persistent writes from CPU are inserted into and evicted

from the TC in FIFO order, which simply conforms to the write

ordering requirement.

Persistent Memory Accelerator Working Flow. With our per-

sistent memory accelerator, persistent writes will go through the

following flow. CPU sends the data and commit information of

each transaction to the TC in a non-blocking manner (without stalls).

Instead of explicitly performing logging or copy-on-write, the data

temporarily buffered in TC serves as an alternative version of the

original data; this buffered data can be used to recover the origi-

nal data when system failures happen. Instead of employing cache

flushes and memory barriers, the write ordering requirement of per-

sistent memory is also met by the TC. Corresponding persistent data

to be evicted from the last-level cache will not written back to the

NVRAM. Instead, they will be dropped to ensure that the persistent

memory only contain the consistent data sent by the TC. After the

discarding, if there are miss requests on the discarded cache lines,

last level cache will grab the old version data from the NVRAM but

the new one in the transaction cache and results to inconsistency

execution results. Therefore, to serve a miss request, last level cache

will issue miss requests toward not only the NVRAM but also the

transaction cache to get the newest value. The TC will also ensure

that different write requests of conflicted addresses (the same cache

line address and the same row in a NVRAM bank) are issued to the

NVRAM in program order.

4. PERSISTENT MEMORY ACCELERATOR

IMPLEMENTATION
In this section, we present our implementation details on transac-

tion cache architecture and its associated logic, software interface,

other modifications in the processor, and a summary of our hardware

cost.

4.1 Transaction Cache Implementation
In-order to maintain the transaction information of each cached en-

try, we implement the TC as a content-addressable, first-in/first-out

(CAM FIFO) [14, 19]. The FIFO architecture is to match program

ordering and the CAM architecture is to serve the miss requests or

acknowledgment messages fast to get matched cache line entry in

a single operation. Figure 4 shows the detailed hardware design of

the transaction cache. The transaction cache consists of transac-

tion cache queue, transaction cache controller and transaction

cache data array. Transaction cache queue buffer requests from

the other controllers (CPU, LLC and NVRAM). There are four types

of requests:

• Write requests of a transaction from CPU: contain the trans-

action ID (TxID), data addresses and data value.

• Commit request of a transaction from CPU: contain only the

transaction ID (TxID).

• Miss requests from LLC: contain the data address of the missed

cache line.

• Acknowledgment messages from NVRAM: contain the address

of the corresponding written back backup in TC.

In Figure 4, besides of the tag and data value, each cache line

among the TC data array also records the transaction information

to ensure transaction atomicity, the transaction ID (TxID) and the
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transaction state of corresponding transaction (State). Each cache

line entry among the TC data array transitions in three state: avail-

able, active and committed. Write requests from CPU are inserted

from the TC head and evicted at the TC tail. To serve a write request,

first we check if the cache line entry pointed by the TC head is in

the available state. If it is in the available state, we copy the tag

information from the data addresses, data value and transaction ID

of the write request into the cache line pointed by the TC head and

set it in the active state. After that, the TC head points to the next

entry. If it is not in the available state, then the transaction cache is

full and we have to wait for data being written back into NVRAM

and then we can insert new cache lines.

And to serve a commit request, the content-addressable TC data

array are compared with the transaction ID of the commit request.

All the matched cache lines with the same transaction ID of the

commit request are set from the available state into the committed

state. Committed cache lines are written back and issued toward the

NVRAM in FIFO order (also program order).

After issuing the committed cache lines toward the NVRAM, the

TC tail will not move or point to the next entry. Only after receiving

the acknowledgment messages from the NVRAM, the committed

cache line can be changed into the available state. And because

different cache line entries may complete out of order from the

NVRAM, at each time receiving the acknowledgment message, we

will check if the cache line entry pointed by the TC tail is changed

into the available state. If it is in the available state, the TC tail

will continuously change its position until it points to the first entry

that is not in the available state, which makes room for future write

requests.

To serve acknowledgment messages from the NVRAM, because

cache lines are issued to the NVRAM in FIFO order and different

write requests of the same address are handled in the same issue

order by the NVRAM controller, thus the content-addressable TC

data array are compared with the address of the acknowledgment

message and the matched one nearest to the TC tail is set into

available state, which is issued toward and handled in the NVRAM

first. On the other hand, to serve the miss requests from LLC, the

content-addressable TC data array are compared with the address of

the miss request and the matched one nearest the TC head is returned

toward the LLC, which is the newest because data is inserted from

the TC head in FIFO order.

Transaction Cache Overflow. The TC can overflow, if a trans-

action exceeds the TC capacity, i.e., the TC is filled up by active
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updates before the transaction is completed. This can lead to CPU

stalls and deadlocks. To address the issue, we adopt a fall-back

path similar to prior studies [23, 21], i.e., allowing the overflowed

transaction updates to be written back to the NVRAM with hardware-

controlled copy-on-write. However, compared to prior studies [23],

the buffering nature of the TC allows us to adopt a much simpler

overflow detection mechanism. Instead of considering the possibil-

ity of overflows across various transaction states, we simply trigger

the fall-back path once the TC is almost filled (e.g., 90% full). Fur-

thermore, the TC is not susceptible for cache associativity overflows

as prior studies do [23].

4.2 Software Interface
Software only needs to provide the transaction boundary informa-

tion as following:

Transaction {...}

This function will be compiled into CPU primitives TX_BEGIN

and TX_END. Encountering these primitives, CPU can execute in

normal mode (without persistence guarantee) or transaction mode

(with persistence guarantee). If CPU is executing the codes enclosed

by TX_BEGIN and TX_END, then it is in the transaction mode.

Otherwise, it is in the normal mode. As illustrated in Figure 5, CPU

maintains a mode register that indicates whether it is in the normal

mode or transaction mode. CPU also maintains a next transaction

register that differentiates the execution of different transactions

in programs. If the value of the mode register is non-zero, CPU

is in the transaction mode. If the value of the mode register is

zero, then the CPU is in normal mode. In the normal mode, CPU

will only issue writes to L1 caches. In the transaction mode, CPU

will issue write requests to both the L1 caches and the TC. Write

requests issued to the L1 cache is tagged with persistent flag to let

existing cache hierarchy differentiate persistent and volatile cache

lines. Write requests issued to the TC contains the transaction ID.

At encountering TX_BEGIN, CPU will copy the transaction ID

from the next transaction ID into the mode register and enter the

transaction mode. The next transaction register will automatically

increase by one for the next transaction to be executed. And at

encountering TX_END, CPU will issue commit request to the TC

to let the TC know that a transaction commits, set the mode register

as zero and enter the normal mode.

4.3 Other Modifications in the Processor
In Figure 5, each cache line in the existing cache hierarchy is

modified to record if it is persistent cache line with one additional

persistent or volatile flag (P/V). Persistent or volatile information is

provided from the write requests issued from CPU. The LLC cache

controller is modified to drop persistent eviction and have to issue

miss requests toward both the transaction cache and the NVRAM

controller and use the newer data from the transaction cache first.

After handling a persistent write request, the NVRAM controller is

modified to send an acknowledgment message with the same data



Table 1: Summary of major hardware overhead.
Component Type Size

CPU TxID/Mode register flip-flops 6 bits

CPU Next TxID register flip-flops 6 bits

Cache P/V flag SRAM 1 bit

TxID in TC data array STTRAM 6 bits

State in TC data array STTRAM 1 bit

TC head/tail pointer flip-flops depends on TC data array

Other TC components

(Multiplexer, tag register)
flip-flops depends on TC data array

TC data array STTRAM flexible

address back toward the transaction cache to let the TC know that

a backup is written back into the NVRAM. The acknowledgment

message can utilize the address bus the same as the read request to

transfer the address information of the written back cache line.

4.4 Hardware Overhead
For the storage overhead showed in Table 1. For a core with a

4KB transaction cache size, if one cache line per transaction, there

will be at most 64 executed transactions (4 * 1024 / 64) on a core,

so all the CPU TxID/Mode register, next TxID register and TxID in

TC data array needs 6 bits. And both P/V and state flag needs 1 bits.

The total additional bits for a cache line in the TC data array are 7

bits (TxID + state) and the total additional bits for the existing cache

hierarchy is 1 bit (P/V), which is much small compared to a cache

line with 64 bytes and tag data. And with a multi-core system of

4 processors, the additional TCs size 16KB (4*4KB) are not much

compared to the LLC size 64MB. Besides, the size of the transaction

cache can be flexibly configured based on the transaction sizes of

the processor’s target applications.

For the logic modification overhead, the logic modification of

the existing cache hierarchy is not much, which is to drop eviction

requests, send finish signals and issue miss requests toward the TC.

And the NVRAM controller only have to sent back the acknowledg-

ment messages. All can be completed with simple logic. Besides,

the transaction cache logic can simply adopt the logic of the CAM

FIFO hardware structure to serve miss request from LLC or ac-

knowledgment message from NVRAM with content-addressable

data array and write or evict the cache line in FIFO order.

5. EXPERIMENTAL RESULTS
5.1 Experimental Setup

To evaluate the proposed transaction cache design, we conduct ex-

periments with MARSSx86 [13] and DRAMsim2 [16]. MARSSx86

is a cycle-accurate full-system simulator that uses PTLsim [22] for

CPU simulation on top of the QEMU [1] emulator. DRAMSim2 is

a cycle-accurate simulator of main-memory systems. The DRAM-

Sim2 is modified to model hybrid persistent memory system with

DRAM and NVRAM through memory-bus. The cache model of

MARSSx86 and NVRAM model of DRAMSim2 is modified to

simulate related works and the transaction cache design of this work.

We set up a multi-cores system with four cores (Intel Core i7 like).

The memory system has two memory controller for NVRAM and

DRAM respectively. Both the transaction cache and NVRAM apply

STTRAM technology [17, 23]. The default transaction cache has

4KB size and 10.5ns latency. Table 2 describes the core and memory

configurations.

To analyze the mechanisms, we implement five benchmarks simi-

lar to the benchmark suite used by NV-heaps [2]. These benchmarks

have similar behaviors to the programs used in databases and file sys-

tems. The size of all manipulated key-value pairs in the benchmarks

is 64 bits. We simulate each benchmark for 1.7 billion instructions.

Table 3 lists the descriptions of the benchmarks.

Table 2: Machine Configuration
Device Description

CPU 4 cores, 2GHz, 4 issue, out of order

L1 I/D Private, 32KB/core, 1.5ns, 4-way

L2 Private, 256KB/core, 4.5ns, 8-way

L3 (LLC) Shared, 64MB, 10ns, 16-way

Transaction Cache

(STTRAM)

Private, 4KB/core, Fully-Associative

CAM FIFO [14, 19], 10.5ns [17]

2 Memory

Controllers

8/64-entry read/write queue,

read-first or write drain when

the write queue is 80% full

NVRAM Memory

(STTRAM)

8GB, 4 ranks, 8 banks/rank,

65-ns read, 76-ns write [23]

DRAM Memory DDR3 8GB, 4 ranks, 8 banks/rank

Table 3: Workloads
Name Description

graph Insert in an adjacency list graph.

rbtree Search/Insert nodes in a red-black tree.

sps Randomly swap elements in an array.

btree Search/Insert nodes in a B+tree.

hashtable Search/Insert a key-value pair in a hashtable.

We compare four mechanisms:

• SP (Software-supported Persistence):The software mechanism

that supports write-ahead logging and ensures the write ordering

through software instructions.

• TC:The transaction cache mechanism proposed in this work.

• Kiln [23]:A prior work that adopts a non-volatile last level cache

and maintains writing orderings at the hardware level.

• Optimal:It represents the native execution without persistence

overhead.

SP runs the transactions with logging operations and other three

mechanisms run the transactions without logging operations. Both

TC and Kiln applies hardware to ensure atomicity without logging

operations.

5.2 Performance Evaluation
Figure 6 and Figure 7 show the IPC (instructions per cycle) and

throughput (transactions per cycle) of various schemes normalized

to the optimal. Software-supported persistence (SP) does impose

significant overheads for maintaining persistence, achieving only

47.7% and 31.6% performance of the optimal case for both IPC and

throughput metrics. The proposed transaction cache (TC) mech-

anism performs comparable to the optimal case for both IPC and

throughput metrics (98.49% and 98.5%). In this experiment, we use

a 4K transaction cache per core, and find that the CPU hardly stalls

due to a full transaction cache. Only sps, the benchmark with the

highest write intensity among the benchmarks, stalls for 0.67% of

execution time. Kiln achieves 87.8% performance of the optimal

case for both IPC and throughput. The reason is that when commit-

ting each transaction, the cache controllers of Kiln need to flush the

writes of that transaction into the nonvolatile LLC; corresponding

LLC blocks cannot be written back to NVRAM main memory be-

fore the cache flushes complete. Doing so blocks subsequent cache
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Figure 6: Performance improvements (IPC).
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Figure 7: Performance improvements (Throughput).
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Figure 8: LLC miss rate.

and memory requests during transaction commits and results in

bursts of traffic in the cache hierarchy. Figure 8 shows the miss rate

of different schemes normalized to the optimal case. On average,

Kiln incurs 16% higher LLC miss rate compared to TC and the

optimal case. The reason is that Kiln needs to keep all uncommitted

cache blocks in the LLC, which can prevent other reusable data

being stored in the LLC. Our design does not incur such constraints

in the LLC and therefore leading to much lower LLC miss rate.

Figure 9 shows write traffic to the NVRAM memory of various

schemes normalized to the optimal case. We can see that SP has

close to 20 times more write traffics than the native execution (Opti-

mal) due to logging overheads and cache flushes. Both TC and Kiln

reduces the write traffics significantly, but still have more writes

toward NVRAM than the optimal. The reason is that to ensure data

persistence, TC and Kiln have to write back persistent data after a

transaction commits or for a nonvolatile LLC replacement, but for

the optimal case, these persistent data is just cached and coalesced

in upper volatile cache layer. Even though TC has higher write

traffics than the naive execution, it can still achieve comparable

performance to the optimal case as shown above. This is because

these writes are from the TC data path that are decoupled from the

program execution. TC has more write traffic than Kiln because

after a transaction commits, TC directly update the transaction data

to NVRAM but Kiln only flush the data into the nonvolatile LLC.

Figure 10 shows the CPU persistent load latency of various

schemes normalized toward Kiln. Because of cache flushes and

the changes to the LLC replacement due to maintaining transaction

ordering, Kiln has 2.41 times and 2.3 times load latency compared

to the optimal case and TC, in average. Our mechanism TC achieves

load latency close to the the optimal case.

6. CONCLUSION
In this work, we identify the key challenges to adopt the emerging

persistent memory technique, which includes performance overhead

of enabling persistence support in memory, implementation over-

head of persistence support, and ease of use due to compatibility

and flexibility issues. Based on the identification, we propose and

implement an efficient hardware-based persistent memory accelera-

tor design, which creates a side new persistent path and allows CPU

caches and the NVRAM controller to operate as it is. The proposed

design enables flexible modular processor implementation that is

compatible with legacy designs, and releases software’s burden on

maintaining persistence. With comprehensively comparison of the

performance of our proposed persistent memory accelerator to prior

hardware-based persistent memory designs and the optimal case

that does not provide persistence support, our results show that our
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design performs the best and achieves 98.5% the performance of the

optimal case.
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