Leave the Cache Hierarchy Operation as It Is:
A New Persistent Memory Accelerating Approach-

Chun-Hao Lai¥ Jishen Zhaot Chia-Lin Yang"
TNational Taiwan University, fUniversity of California, Santa Cruz, fAcademia Sinica
{r03922024, yangc}@csie.ntu.edu.tw, jishen.zhao@ucsc.edu

ABSTRACT

Persistent memory places NVRAM on the memory bus, offering fast
access to persistent data. Yet maintaining NVRAM data persistence
raises a host of challenges. Most proposed schemes either incur
much performance overhead or require substantial modifications to
existing architectures.

We propose a persistent memory accelerator design, which guar-
antees NVRAM data persistence by hardware yet leaving cache hi-
erarchy and memory controller operations unaltered. A nonvolatile
transaction cache keeps an alternative version of data updates side-
by-side with the cache hierarchy and paves a new persistent path
without affecting original processor execution path. As a result, our
design achieves the performance close to the one without persistence
guarantee.

Keywords

Persistent memory; Nonvolatile memory; Data consistency; Atom-
icity; Durability; Persistence

1. INTRODUCTION

Emerging nonvolatile memory (NVRAM) technologies such as
phase-change memory (PCM), spin-transfer torque RAM (STTRAM),
resistive RAM (RRAM), and Intel and Micron’s 3D XPoint [7] tech-
nology promise to revolutionize I/O performance. NVRAMs can
be integrated into computer systems in various manners. One of
the most exciting proposals deploys NVRAMs on the processor-
memory bus, producing a hybrid of main memory and storage sys-
tems — namely persistent memory — which offers fast memory access
and data persistence in a single device [5, 23].

Supporting persistence in memory-bus-attached NVRAM presents
a host of opportunities and challenges for computer and system ar-
chitects. System failures (crashes and inopportune power failures)
can interrupt data updates across the memory bus, leaving NVRAM
data structures in an partially updated, inconsistent state mixed with

*This work is supported in part by research grants from the Ministry of Science and
Technology of Taiwan (MOST- 105-2221-E-002-156-MY2, MOST-105-2622-8-002-
002),and sponsored by Macronix Inc., Hsin-chu, Taiwan (105-S-C05). Zhao was sup-
ported by NSF 1652328.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

DAC ’17, June 18-22, 2017, Austin, TX, USA
© 2017 ACM. ISBN 978-1-4503-4927-7/17/06. .. 15.00
DOI: http://dx.doi.org/10.1145/3061639.3062272

old and new values. Moreover, modern CPU caches and memory
controllers can reorder stores to memory to improve performance,
which further intricates the persistence support. Taking an example
where a program inserts a node in a linked list, software can issue the
node value update followed by the corresponding pointers updates.
However, after being reordered, stores to the pointer can arrive at
the NVRAM before those to the nodes. If system crashes in the
middle, the linked list will be corrupted with dangling pointers [23].
As such, persistent memory systems need to place careful control of
NVRAM data versions and ensure that the order of writes arriving
at NVRAM.

A large body of recent studies focus on ensuring persistence in
memory. But most works either incur substantial performance over-
head to the memory system or require substantial modifications to
existing processor hardware. For example, most software-based
persistence mechanisms — e.g., NVRAM file systems and libraries
— explicitly maintain multiple versions of data by logging or copy-
on-write [2, 3, 20]. In addition, these schemes typically enforce
write ordering by cache flushes and memory barriers (e.g., using
clflush, clwb, and mfence instructions available in Intel x86
ISA) [8, 20]. As NVRAMs offer vastly improved bandwidth and
latency, over disks and flash, such software-based schemes add sig-
nificant performance overhead to memory systems and squander the
improved performance that NVRAM offers [5, 20]. Most hardware-
based mechanisms require non-trivial modifications to the processor,
e.g., the cache hierarchy and memory controllers [11, 4, 9, 15, 23].
These modifications can reduce the flexibility of modern processor
design and substantially increase the hardware implementation cost.

Our goal in this paper is to provide persistence guarantee in
NVRAM, while minimizing the modification to the existing pro-
cessor hardware implementation. To achieve our goal, we propose
a persistent memory accelerator design, where the major compo-
nent is a nonvolatile transaction cache that buffers the stores of
in-flight transactions issued by CPU cores. The transaction cache
also maintains the order of these stores to be written into NVRAM.
By maintaining data persistence in the transaction cache, we create
a side path in the processor to maintain data persistence. As such,
we eliminate the persistence functions in software (e.g., logging and
copy-on-write) and leave the cache hierarchy and memory controller
operation as they are. Furthermore, we implement the persistent
memory accelerator as a stand-alone module in the processor, en-
abling flexible physical implementation of the processor. As a result,
our design achieves 98.5% the performance of the optimal case that
does not provide persistence support.

2. CHALLENGES OF MAINTAINING PER-
SISTENCE IN MEMORY

Figure 1 shows an example of a system configuration integrated
with persistent memory. Adding a persistent memory in the system

Source code
p_int a[128] = {0};
intb[128] = {0};

Virtual address space per process
Stack

A
int main() { Lv Heap
int *x; ’

2 A

p_int *y; N
x = malloc(sizeof(int) * 256); %

> Persistent Heap
y = p_malloc(sizeof(int) * 256); = \

N Persistent Data Section

} N
n Data Section
Software Text Section
“Hardware T TTTTTTTTmTmUmTTOTATOTTTTTOTONT
Cache hierarchy
DRAM NVRAM
Controller Controller

|:| Persistent

Figure 1: Overview of memory systems integrated with persis-
tent memory.

may seem as simple as implementing another memory region, but
several challenges can prevent the immediate wide-spread adoption
of this emerging technique.

Current memory systems have no knowledge about data persis-
tence; they assume that the data stored in memory is lost — and
therefore unusable — across system reboots. Therefore, conventional
systems only maintain memory consistency that guarantees a consis-
tent view of data stored across the cache hierarchy and main memory
during application execution.

Rather, persistent memory systems need to guarantee the consis-
tency of data stored in NVRAM alone across system reboots. To
this end, system software, hardware or their combination needs to
maintain versioning of critical data updates by logging [20] or copy-
on-write [3], along with write-order control (e.g., cache flushes and
memory barriers) that prevents caches and memory controllers to
reorder the stores issued by applications [23]. As a result, providing
persistence guarantee in memory can impose substantial inefficien-
cies in current memory systems, in terms of performance overhead,
implementation cost and flexibility as we discuss below. To the
best of our knowledge, our design is the first that tackles all of the
challenges.

2.1 Performance Overhead of Persistence
Support

One key challenge of persistent memory design is the perfor-
mance overhead of persistence support introduced to existing mem-
ory systems. Many persistent memory systems maintain a log of
NVRAM updates in addition to the stores to the original data. For
example, differently from traditional program without persistence
guarantee (Figure 2(a)), to ensure persistence of data structures
A and B, persistent memory systems need to execute the logging
instructions 1og (address, new value), generating extra in-
structions that read and write the addresses and values of A and B
(Figure 2(b)). As such, even if system failures leave the original data
or the log partially updated, the data structures can be recovered by
the other. Furthermore, write-order control mechanisms (e.g., cache
flushes and memory barriers) need to enforce that the log updates
arrive at NVRAM before corresponding original data updates. Oth-
erwise, upon system failures, the original data in NVRAM can be
partially updated while the corresponding log updates remaining in
caches is lost (Figure 2(c)) — the NVRAM data structures will be
unrecoverable after system reboots. Copy-on-write-based persistent
memory systems maintains multi-versioning and write-order control
in a similar manner [3]

Multi-versioning and write-order control are major sources of the

Software A=B=10 A=B=10 A=B=10
Transaction: Transaction: Transaction:
A=A-10 log(&A, 0) log(&A, 0)
B=B+10 log(&8, 20) log(&B, 20)
A=A-10 A=A-10
B=B+10 B=B+10
CPU Caches Tag Data Tag _Data Tag Data
(Data is lost Alo] Write-order LOGA | (&A, 0) LOGA | (&A,0)
B control: LOG B [(&B, 20) L0G B [(&B, 20
across reboots.) [20| cacotions O 2 (&8, 20)
[] memory barrier A 0
. s [s [
NVRAM Address_Data ¥ Address _Data Address _Data
o | LOGA | (&A,0) LOGA | (&A,0)
New value Log Area \
Old value [.10] 2 10GB [(&B,20) tog area.
A 0 A 0
Data Area
\ B 10 Data Area B 10

Inconsistent A and B updates, the transaction is Data area is inconsistent, Both data and log areas are inconsistent,
unrecoverable after system reboots. but can be recovered by the log. ynrecoverable transaction after reboots.

(a) No

(b) Persis e by () Logging without write-order control.
logging with write-order control.

Figure 2: The performance overhead of log-based persistent
memory.

performance overhead. Multi-versioning requires duplication of data
and therefore can significantly increase NVRAM write traffic [23].
Write-order control will cancel out the performance optimization
provided by the reordering of caches and memory controllers. As
a result, the performance of persistent memory systems can be
much lower than optimal memory systems that does not support
persistence.

2.2 Implementation Cost and Flexibility of Per-
sistence Support

The performance overhead of maintaining persistence in memory
has been noted by other researchers. Common approaches for avoid-
ing this overhead is to modify the processor and memory hardware
to exploit hardware’s support for data persistence [4, 23]. However,
this approach can impose substantial implementation overhead on
top of existing designs. Without careful consideration, the processor
and memory modifications can significantly increase the cost and re-
duce the flexibility of hardware implementation. For instance, most
prior works require to modify cache hierarchy (e.g., replacing the
last-level cache with NVRAM technologies, interfering cache con-
trol flows, the tag arrays, and cache coherence mechanisms) [3, 10,
12, 23] and memory controllers (e.g., modifying memory scheduling
policy) [4, 6, 15]. Such hardware reimplementation requires new
processor architecture or memory controller design and increases
manufacturing hardware cost. Furthermore, mingling persistence
support with processor or memory operation can increase hardware
implementation complexity. For example, doing so can increase
the number of states in the cache operation state machine [23] and
need additional function supports in memory controller for persis-
tence ordering requirement [4], intricating the caching and memory
scheduling schemes.

3. PERSISTENT MEMORY ACCELERATOR

Architecture Design Overview. The goal of our design is to pro-
vide a high-performance, easy to implement, and easy to use per-
sistent memory design'. Yet instead of mingling the persistence
support with caching or memory controller operations, we provide a
side data path for accelerating persistent memory updates. Figure 3
shows an overview of our architecture design. The key component
of our persistent memory accelerator is a nonvolatile transaction
cache (TC), which is deployed side-by-side with the cache hierarchy.
The TC serves as a FIFO of writes in transactions; whenever a trans-
action commits, the TC will issue the corresponding stores to the
NVRAM. CPU caches can operate as it is without maintaining data
persistence; in order to prevent the reordered CPU cache blocks to
contaminate the persistent data in NVRAM, we drop the last-level

IMemory systems may consist of DRAM and NVRAM regions, where the NVRAM
stores critical data structures and the DRAM stores temporary data that does not re-
quire persistence [23]. Our work focuses on efficiently accelerating data persistence
in NVRAM rather than the DRAM access.

Software-based designs

Transaction CPU . . :
LOG A:{Io (&A, 0) Using our persistent Write/commit Persistent
- BI&A, memory accelerator request Memory
LOG_B=log(&B, 1) - Accelerator
clwb &LOG_A T'ansacf'°’/l{0 [u | e
- write A= Traditional
clwb &LOG_B — write B=1 NVRAM TC Processor
sfence . } Dropped ACK TC-controlled Designs
pcommit writes | write ordering &
sfence LLC miss
write A=0 ‘ NVRAM controller ‘
write B=1 I
} | NVRAM | (c) Physical design of processors integrated
(a) Example code. (b) Architecture design. with persistent memory accelerator.

Figure 3: Transaction cache overview.

cache write-backs — these blocks are simply discarded after being
evicted out of the last-level cache. By maintaining persistence in
the TC, we also allow the NVRAM controller to operate as it is; the
NVRAM controller only needs to send an acknowledgment message
back to the TC, after the persistent writes are written into NVRAM.

Benefits. Our design offers several promising benefits. First, per-
formance benefits — we allow CPU caches and memory controllers
to operate as it is, without being interfered by persistence sup-
port. Doing so can maximize system performance, while reducing
hardware implementation complexity. Second, flexible hardware
implementation — by providing persistence support at the side data
path, our design allows flexible and low-cost processor implemen-
tation. For example, the capacity of the transaction cache can be
flexibly configured based on the transaction sizes of the processor’s
target applications. Third, enabling modular hardware design and
implementation — the transaction cache and the rest of the processor
can be manufactured on two separate dies and later integrated on a
silicon interposer [18]. As such, new processors with persistence
support can adopt legacy processor designs. As interposer-based
integration is adopted by increasingly large population of processor
designs, such modular hardware implementation can be an attractive
solution for persistent memory systems. Finally, ease of use — our
software interface only involves transaction definitions similar to
commodity ISAs [8].

The Persistence Support provided by Our Design. Without com-
promising performance, our persistent memory accelerator provides
multi-versioning of data and write-order control to ensure data per-
sistence.

e Multiversioning. We make copies of all persistent writes of each
transaction in the TC. Only after buffering all the persistent writes
of a transaction, the TC will issue these writes to the NVRAM. In
addition, only after updating the NVRAM, the buffered writes in
the TC can be dropped. If system failures happen before all the
writes of a committed transaction are written into NVRAM, we
can recover the data using the buffered writes in the TC; If system
failures happen before the TC even issues any buffered writes
to the NVRAM or after all the buffered writes of a committed
transaction are written into the NVRAM, data in the NVRAM is
intact and consistent. Note that after completing all the writes, the
NVRAM controller needs to send an acknowledgment message
back to the TC to indicate that the TC can drop the buffered data.
Write-order Control. Write-order control is naturally supported
by the TC. Different from the writes that go through CPU caches,
those go through the TC — which is a FIFO — will not be reordered.
The persistent writes from CPU are inserted into and evicted
from the TC in FIFO order, which simply conforms to the write
ordering requirement.

Persistent Memory Accelerator Working Flow. With our per-
sistent memory accelerator, persistent writes will go through the

following flow. CPU sends the data and commit information of
each transaction to the TC in a non-blocking manner (without stalls).
Instead of explicitly performing logging or copy-on-write, the data
temporarily buffered in TC serves as an alternative version of the
original data; this buffered data can be used to recover the origi-
nal data when system failures happen. Instead of employing cache
flushes and memory barriers, the write ordering requirement of per-
sistent memory is also met by the TC. Corresponding persistent data
to be evicted from the last-level cache will not written back to the
NVRAM. Instead, they will be dropped to ensure that the persistent
memory only contain the consistent data sent by the TC. After the
discarding, if there are miss requests on the discarded cache lines,
last level cache will grab the old version data from the NVRAM but
the new one in the transaction cache and results to inconsistency
execution results. Therefore, to serve a miss request, last level cache
will issue miss requests toward not only the NVRAM but also the
transaction cache to get the newest value. The TC will also ensure
that different write requests of conflicted addresses (the same cache
line address and the same row in a NVRAM bank) are issued to the
NVRAM in program order.

4. PERSISTENT MEMORY ACCELERATOR
IMPLEMENTATION

In this section, we present our implementation details on transac-
tion cache architecture and its associated logic, software interface,
other modifications in the processor, and a summary of our hardware
cost.

4.1 Transaction Cache Implementation

In-order to maintain the transaction information of each cached en-
try, we implement the TC as a content-addressable, first-in/first-out
(CAM FIFO) [14, 19]. The FIFO architecture is to match program
ordering and the CAM architecture is to serve the miss requests or
acknowledgment messages fast to get matched cache line entry in
a single operation. Figure 4 shows the detailed hardware design of
the transaction cache. The transaction cache consists of transac-
tion cache queue, transaction cache controller and transaction
cache data array. Transaction cache queue buffer requests from
the other controllers (CPU, LLC and NVRAM). There are four types
of requests:

e Write requests of a transaction from CPU: contain the trans-
action ID (TxID), data addresses and data value.

Commit request of a transaction from CPU: contain only the
transaction ID (TxID).

Miss requests from LLC: contain the data address of the missed
cache line.

Acknowledgment messages from NVRAM: contain the address
of the corresponding written back backup in TC.

In Figure 4, besides of the tag and data value, each cache line
among the TC data array also records the transaction information
to ensure transaction atomicity, the transaction ID (TxID) and the

requests/messages from CPU, LLC and NVRAM
Y4

Transaction Cache Request Queue

["write [write [commit| ack | write | miss | write [commit] .. |

IN: CPU write/commit IN: LLC miss requests/
requests NVRAM ack messages
M tag bits from
| { request address

Transaction Cache|

Controller Jurieorcomm\y® [tag register

commit TxID

TxID register

TxID State Tag Data

1 N/A | available N/A N/A
TC head — 2 N/A | available N/A N/A

3 24 active 0x4444 | 654
24 active OxEE23 178
23 |committed| 0x2222 | 234
23 |committed| OxCCFF | 576

set matched cache line
nearest tail to availat ate|

matched cache line

nearest head

—

OUT: data requests
toward LLC

o u s

WVYAN 410 0T

N-1| 1 |committed| OxBBBB 20
TC tail — N 1 [committed| OxAAAA | 0

Tx Cache Data Array |
S
OUT: write requests
toward NVRAM

Figure 4: Transaction Cache architecture.
transaction state of corresponding transaction (State). Each cache
line entry among the TC data array transitions in three state: avail-
able, active and committed. Write requests from CPU are inserted
from the TC head and evicted at the TC tail. To serve a write request,
first we check if the cache line entry pointed by the TC head is in
the available state. If it is in the available state, we copy the tag
information from the data addresses, data value and transaction ID
of the write request into the cache line pointed by the TC head and
set it in the active state. After that, the TC head points to the next
entry. If it is not in the available state, then the transaction cache is
full and we have to wait for data being written back into NVRAM
and then we can insert new cache lines.

And to serve a commit request, the content-addressable TC data
array are compared with the transaction ID of the commit request.
All the matched cache lines with the same transaction ID of the
commit request are set from the available state into the committed
state. Committed cache lines are written back and issued toward the
NVRAM in FIFO order (also program order).

After issuing the committed cache lines toward the NVRAM, the
TC tail will not move or point to the next entry. Only after receiving
the acknowledgment messages from the NVRAM, the committed
cache line can be changed into the available state. And because
different cache line entries may complete out of order from the
NVRAM, at each time receiving the acknowledgment message, we
will check if the cache line entry pointed by the TC tail is changed
into the available state. If it is in the available state, the TC tail
will continuously change its position until it points to the first entry
that is not in the available state, which makes room for future write
requests.

To serve acknowledgment messages from the NVRAM, because
cache lines are issued to the NVRAM in FIFO order and different
write requests of the same address are handled in the same issue
order by the NVRAM controller, thus the content-addressable TC
data array are compared with the address of the acknowledgment
message and the matched one nearest to the TC tail is set into
available state, which is issued toward and handled in the NVRAM
first. On the other hand, to serve the miss requests from LLC, the
content-addressable TC data array are compared with the address of
the miss request and the matched one nearest the TC head is returned
toward the LL.C, which is the newest because data is inserted from
the TC head in FIFO order.

Transaction Cache Overflow. The TC can overflow, if a trans-
action exceeds the TC capacity, i.e., the TC is filled up by active

head
or tail

CPU Core

TxID/Mode Next TxID

Write/Commit request

Tx Cache Controller Tx Cache Data Array

|Tx Request Queuel < |TxID|State|Tag Data

L1 Cache Data Array 4 L1 Cache Controller

Request Queue

L2 Cache Data Array L2 Cache Controller
Data
[BA] Tog [ata] Leof [Request Queue Te<controlled

I 'y .
LLC Cache Data Array| [LLC Cache Controller write ordering

P/V| Tag | Data | fs| | Request Queue NVRAM

ACK
LLC Miss request | request

Dropped writes | NVRAM Controller]
[NVRAM]

Figure 5: Hardware architecture modification.

updates before the transaction is completed. This can lead to CPU
stalls and deadlocks. To address the issue, we adopt a fall-back
path similar to prior studies [23, 21], i.e., allowing the overflowed
transaction updates to be written back to the NVRAM with hardware-
controlled copy-on-write. However, compared to prior studies [23],
the buffering nature of the TC allows us to adopt a much simpler
overflow detection mechanism. Instead of considering the possibil-
ity of overflows across various transaction states, we simply trigger
the fall-back path once the TC is almost filled (e.g., 90% full). Fur-
thermore, the TC is not susceptible for cache associativity overflows
as prior studies do [23].

4.2 Software Interface

Software only needs to provide the transaction boundary informa-
tion as following:

Transaction {...}

This function will be compiled into CPU primitives TX_BEGIN
and TX_END. Encountering these primitives, CPU can execute in
normal mode (without persistence guarantee) or transaction mode
(with persistence guarantee). If CPU is executing the codes enclosed
by TX_BEGIN and TX_END, then it is in the transaction mode.
Otherwise, it is in the normal mode. As illustrated in Figure 5, CPU
maintains a mode register that indicates whether it is in the normal
mode or transaction mode. CPU also maintains a next transaction
register that differentiates the execution of different transactions
in programs. If the value of the mode register is non-zero, CPU
is in the transaction mode. If the value of the mode register is
zero, then the CPU is in normal mode. In the normal mode, CPU
will only issue writes to L1 caches. In the transaction mode, CPU
will issue write requests to both the L1 caches and the TC. Write
requests issued to the L1 cache is tagged with persistent flag to let
existing cache hierarchy differentiate persistent and volatile cache
lines. Write requests issued to the TC contains the transaction ID.
At encountering TX_BEGIN, CPU will copy the transaction ID
from the next transaction ID into the mode register and enter the
transaction mode. The next transaction register will automatically
increase by one for the next transaction to be executed. And at
encountering TX_END, CPU will issue commit request to the TC
to let the TC know that a transaction commits, set the mode register
as zero and enter the normal mode.

4.3 Other Modifications in the Processor

In Figure 5, each cache line in the existing cache hierarchy is
modified to record if it is persistent cache line with one additional
persistent or volatile flag (P/V). Persistent or volatile information is
provided from the write requests issued from CPU. The LLC cache
controller is modified to drop persistent eviction and have to issue
miss requests toward both the transaction cache and the NVRAM
controller and use the newer data from the transaction cache first.
After handling a persistent write request, the NVRAM controller is
modified to send an acknowledgment message with the same data

Table 1: Summary of major hardware overhead.

[Component | Type | Size |
CPU TxID/Mode register | flip-flops 6 bits
CPU Next TxID register | flip-flops 6 bits
Cache P/V flag SRAM 1 bit
TxID in TC data array |STTRAM 6 bits
State in TC data array STTRAM 1 bit

TC head/tail pointer
Other TC components
(Multiplexer, tag register)
TC data array

flip-flops |depends on TC data array

flip-flops |depends on TC data array
STTRAM flexible

address back toward the transaction cache to let the TC know that
a backup is written back into the NVRAM. The acknowledgment
message can utilize the address bus the same as the read request to
transfer the address information of the written back cache line.

4.4 Hardware Overhead

For the storage overhead showed in Table 1. For a core with a
4KB transaction cache size, if one cache line per transaction, there
will be at most 64 executed transactions (4 * 1024 / 64) on a core,
so all the CPU TxID/Mode register, next TxID register and TxID in
TC data array needs 6 bits. And both P/V and state flag needs 1 bits.
The total additional bits for a cache line in the TC data array are 7
bits (TxID + state) and the total additional bits for the existing cache
hierarchy is 1 bit (P/V), which is much small compared to a cache
line with 64 bytes and tag data. And with a multi-core system of
4 processors, the additional TCs size 16KB (4*4KB) are not much
compared to the LLC size 64MB. Besides, the size of the transaction
cache can be flexibly configured based on the transaction sizes of
the processor’s target applications.

For the logic modification overhead, the logic modification of
the existing cache hierarchy is not much, which is to drop eviction
requests, send finish signals and issue miss requests toward the TC.
And the NVRAM controller only have to sent back the acknowledg-
ment messages. All can be completed with simple logic. Besides,
the transaction cache logic can simply adopt the logic of the CAM
FIFO hardware structure to serve miss request from LLC or ac-
knowledgment message from NVRAM with content-addressable
data array and write or evict the cache line in FIFO order.

5. EXPERIMENTAL RESULTS
5.1 Experimental Setup

To evaluate the proposed transaction cache design, we conduct ex-
periments with MARSSx86 [13] and DRAMsim2 [16]. MARSSx86
is a cycle-accurate full-system simulator that uses PTLsim [22] for
CPU simulation on top of the QEMU [1] emulator. DRAMSim2 is
a cycle-accurate simulator of main-memory systems. The DRAM-
Sim?2 is modified to model hybrid persistent memory system with
DRAM and NVRAM through memory-bus. The cache model of
MARSSx86 and NVRAM model of DRAMSim?2 is modified to
simulate related works and the transaction cache design of this work.
We set up a multi-cores system with four cores (Intel Core i7 like).
The memory system has two memory controller for NVRAM and
DRAM respectively. Both the transaction cache and NVRAM apply
STTRAM technology [17, 23]. The default transaction cache has
4KB size and 10.5ns latency. Table 2 describes the core and memory
configurations.

To analyze the mechanisms, we implement five benchmarks simi-
lar to the benchmark suite used by NV-heaps [2]. These benchmarks
have similar behaviors to the programs used in databases and file sys-
tems. The size of all manipulated key-value pairs in the benchmarks
is 64 bits. We simulate each benchmark for 1.7 billion instructions.
Table 3 lists the descriptions of the benchmarks.

Table 2: Machine Configuration

| Device | Description |
CPU 4 cores, 2GHz, 4 issue, out of order
L11I/D Private, 32KB/core, 1.5ns, 4-way
L2 Private, 256KB/core, 4.5ns, 8-way
L3 (LLC) Shared, 64MB, 10ns, 16-way

Transaction Cache|Private, 4KB/core, Fully-Associative
(STTRAM) CAM FIFO [14, 19], 10.5ns [17]
8/64-entry read/write queue,
read-first or write drain when
the write queue is 80% full
8GB, 4 ranks, 8 banks/rank,
(STTRAM) 65-ns read, 76-ns write [23]
DRAM Memory | DDR3 8GB, 4 ranks, 8 banks/rank
Table 3: Workloads
Description |

2 Memory
Controllers

NVRAM Memory

| Name |

graph Insert in an adjacency list graph.
rbtree Search/Insert nodes in a red-black tree.
sps Randomly swap elements in an array.
btree Search/Insert nodes in a B+tree.
hashtable |Search/Insert a key-value pair in a hashtable.

We compare four mechanisms:

o SP (Software-supported Persistence):The software mechanism
that supports write-ahead logging and ensures the write ordering
through software instructions.

e TC:The transaction cache mechanism proposed in this work.

e Kiln [23]:A prior work that adopts a non-volatile last level cache
and maintains writing orderings at the hardware level.

e Optimal:It represents the native execution without persistence
overhead.

SP runs the transactions with logging operations and other three
mechanisms run the transactions without logging operations. Both
TC and Kiln applies hardware to ensure atomicity without logging
operations.

5.2 Performance Evaluation

Figure 6 and Figure 7 show the IPC (instructions per cycle) and
throughput (transactions per cycle) of various schemes normalized
to the optimal. Software-supported persistence (SP) does impose
significant overheads for maintaining persistence, achieving only
47.7% and 31.6% performance of the optimal case for both IPC and
throughput metrics. The proposed transaction cache (TC) mech-
anism performs comparable to the optimal case for both IPC and
throughput metrics (98.49% and 98.5%). In this experiment, we use
a 4K transaction cache per core, and find that the CPU hardly stalls
due to a full transaction cache. Only sps, the benchmark with the
highest write intensity among the benchmarks, stalls for 0.67% of
execution time. Kiln achieves 87.8% performance of the optimal
case for both IPC and throughput. The reason is that when commit-
ting each transaction, the cache controllers of Kiln need to flush the
writes of that transaction into the nonvolatile LLC; corresponding
LLC blocks cannot be written back to NVRAM main memory be-
fore the cache flushes complete. Doing so blocks subsequent cache

-

008
= asp
T06

N @aTc

<

£ 04 mKiln

o

Z02 W optimal

o

graph rbtree sps btree hashtable geomean

Figure 6: Performance improvements (IPC).

-

o
3
a
-§D 0.8
o asp
£06
[@TC
To4
N B Kiln
©
€02 M optimal
2 []

0 T T

graph rbtree sps btree hashtable

Figure 7: Performance improvements (Throughput).

geomean

mTC
HEKiln
204 M ooptimal

graph rbtree sps btree hashtable

Figure 8: LLC miss rate.

geomean

and memory requests during transaction commits and results in
bursts of traffic in the cache hierarchy. Figure 8 shows the miss rate
of different schemes normalized to the optimal case. On average,
Kiln incurs 16% higher LLC miss rate compared to TC and the
optimal case. The reason is that Kiln needs to keep all uncommitted
cache blocks in the LLC, which can prevent other reusable data
being stored in the LLC. Our design does not incur such constraints
in the LLC and therefore leading to much lower LLC miss rate.

Figure 9 shows write traffic to the NVRAM memory of various
schemes normalized to the optimal case. We can see that SP has
close to 20 times more write traffics than the native execution (Opti-
mal) due to logging overheads and cache flushes. Both TC and Kiln
reduces the write traffics significantly, but still have more writes
toward NVRAM than the optimal. The reason is that to ensure data
persistence, TC and Kiln have to write back persistent data after a
transaction commits or for a nonvolatile LLC replacement, but for
the optimal case, these persistent data is just cached and coalesced
in upper volatile cache layer. Even though TC has higher write
traffics than the naive execution, it can still achieve comparable
performance to the optimal case as shown above. This is because
these writes are from the TC data path that are decoupled from the
program execution. TC has more write traffic than Kiln because
after a transaction commits, TC directly update the transaction data
to NVRAM but Kiln only flush the data into the nonvolatile LLC.

Figure 10 shows the CPU persistent load latency of various
schemes normalized toward Kiln. Because of cache flushes and
the changes to the LLC replacement due to maintaining transaction
ordering, Kiln has 2.41 times and 2.3 times load latency compared
to the optimal case and TC, in average. Our mechanism TC achieves
load latency close to the the optimal case.

6. CONCLUSION

In this work, we identify the key challenges to adopt the emerging
persistent memory technique, which includes performance overhead
of enabling persistence support in memory, implementation over-
head of persistence support, and ease of use due to compatibility
and flexibility issues. Based on the identification, we propose and
implement an efficient hardware-based persistent memory accelera-
tor design, which creates a side new persistent path and allows CPU
caches and the NVRAM controller to operate as it is. The proposed
design enables flexible modular processor implementation that is
compatible with legacy designs, and releases software’s burden on
maintaining persistence. With comprehensively comparison of the
performance of our proposed persistent memory accelerator to prior
hardware-based persistent memory designs and the optimal case
that does not provide persistence support, our results show that our

4]
£ 40
£ 35
30 asP
£25 1
@Tc
E 20
S5 | Kiln
5 5
Z0 T T T T
graph rbtree sps btree hashtable geomean
Figure 9: Write traffic.
- 1
@
2 o8
=
<
a>: go_s M optimal
Z g
2 @TC
g © 04 |
= W Kiln
E 02
o
=z 0
graph rbtree sps btree hashtable geomean

Figure 10: Load latency.

design performs the best and achieves 98.5% the performance of the
optimal case.

7. REFERENCES

[1] F. Bellard. QEMU, a fast and portable dynamic translator. ATEC ’05, pages
41-41, Berkeley, CA, USA, 2005. USENIX Association.

[2] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta, R. Jhala, and
S. Swanson. NV-heaps: making persistent objects fast and safe with
next-generation, non-volatile memories. ASPLOS’ 11, pages 105-118.

[3] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and
D. Coetzee. Better I/O through byte-addressable, persistent memory. SOSP ’09,
pages 133-146, New York, NY, USA, 2009. ACM.

[4] K. Doshi, E. Giles, and P. Varman. Atomic persistence for SCM with a

non-intrusive backend controller. HPCA 16, pages 77-89.

S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy, R. Sankaran,

and J. Jackson. System software for persistent memory. EuroSys 14, pages

15:1-15:15, 2014.

[6] E.Giles, K. Doshi, and P. Varman. Bridging the programming gap between

persistent and volatile memory using wrap. CF *13, pages 30:1-30:10, 2013.

[7] Intel. Revolutionizing the storage media pyramid with 3D XPoint technology.

http://www.intel.com/content/www/us/en/architecture-and-technology/non-

volatile-memory.html.

Intel. Intel architecture instruction set extensions programming reference, 2015.

https://software.intel.com/sites/default/files/managed/07/b7/319433-023.pdf.

[9] A. K. Joseph Izraelevitz, Terence Kelly. Failure-atomic persistent memory
updates via justdo logging. ASPLOS ’16, pages 427442, 2016.

[10] A.Joshi, V. Nagarajan, M. Cintra, and S. Viglas. Efficient persist barriers for
multicores. MICRO-48, pages 660-671, 2015.

[11] A.Kolli, J. Rosen, S. Diestelhorst, A. Saidi, and S. Pelley. Delegated persist
ordering. MICRO-49, pages 1-13, 2016.

[12] Y. Lu,J. Shu, L. Sun, and O. Mutlu. Loose-ordering consistency for persistent
memory. In /CCD, 2014.

[13] A.Patel, F. Afram, S. Chen, and K. Ghose. Marss: A full system simulator for
multicore x86 cpus. DAC ’11, pages 1050 —1055, june 2011.

[14] J. Pedicone, T. Chiacchira, and A. Alvarez. Content addressable memory FIFO
with and without purging, Apr. 18 2000. US Patent 6,052,757.

[15] J.Ren,J. Zhao, S. Khan, J. Choi, Y. Wu, and O. Mutlu. ThyNVM: Enabling
software-transparent crash consistency in persistent memory systems.
MICRO-48, pages 1-13, 2015.

[16] P.Rosenfeld, E. Cooper-Balis, and B. Jacob. DRAMSim2: A cycle accurate
memory system simulator. Computer Architecture Letters, 10(1):16-19, 2011.

[17] Z.Sun, X. Bi, H. H. Li, W.-F. Wong, Z.-L. Ong, X. Zhu, and W. Wu. Multi
retention level STT-RAM cache designs with a dynamic refresh scheme.
MICRO-44, pages 329-338, New York, NY, USA, 2011. ACM.

[18] M. Sunohara, T. Tokunaga, T. Kurihara, and M. Higashi. Silicon interposer with
TSVs (through silicon vias) and fine multilayer wiring. In Proc. of the
Electronic Components and Technology Conference, pages 847-852, 2008.

[19] J. Swanson and J. Wickeraad. Apparatus and method for tracking flushes of
cache entries in a data processing system, July 8 2003. US Patent 6,591,332.

[20] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne: Lightweight persistent
memory. ASPLOS XVI, pages 91-104, New York, NY, USA, 2011. ACM.

[21] M. Wu and W. Zwaenepoel. eNVy: A non-volatile, main memory storage
system. ASPLOS ’94, pages 86-97, 1994.

[22] M. T. Yourst. PTLsim: A cycle accurate full system x86-64 microarchitectural
simulator. In ISPASS, pages 23-34. IEEE Computer Society, 2007.

[23] J.Zhao, S. Li, D. H. Yoon, Y. Xie, and N. P. Jouppi. Kiln: Closing the
performance gap between systems with and without persistence support.
MICRO-46, pages 421-432, 2013.

[5

8

