Logging in Persistent Memory: to Cache, or Not to Cache?

Mengjie Li, Matheus Ogleari, Jishen Zhao
University of California, Santa Cruz, CA, 95064

1. OVERVIEW

Persistent memory is a new class of memory that functions
as a hybrid of traditional storage systems and main memory.
It combines the benefits of both the data persistence property
of storage and the fast load/store interface of memory. In
order to maintain data persistence in memory, a widely used
mechanism is logging — in addition to updating the original
data structures as in traditional memory systems, persistent
memory systems also log the update. Most previous persistent
memory studies suggest that log updates should bypass the
cache hierarchy because the log is only used for system recov-
ery and will not be reused during program execution. Caching
the log only contaminates critical cache resources, leading
to performance degradation. However, our study shows that
current cache bypassing schemes (e.g., cache bypassing in-
structions and write-combining buffers) are sub-optimal for
accommodating log writes. Making the log uncacheable can
degrade persistent memory system performance worse than
with cacheable logging. This presentation outlines our obser-
vations of the trade-offs between cacheable and uncacheable
logging, based on our experimental results. We also analyze
the reasons that lead to such trade-offs.

2. PERSISTENT MEMORY

Traditional systems maintain persistent data in slow stor-
age devices (e.g., disks and flash) via block-level I/Os. Byte-
addressable nonvolatile RAM (NVRAM) technologies [3, 6,
8,12] enable new persistent memory techniques that combine
fast load/store interface of memory with data recoverability
of storage. As demonstrated in prior studies, doing so can im-
prove the performance and energy efficiency of storage work-
loads, such as file systems, databases, and key-value stores,
by an order of magnitude [9, 10]. Yet conventional memory
system management schemes do not support data persistence.
Persistence cannot be supported by simply replacing volatile
DRAM with an NVRAM device. For example, a power out-
age can occur while an application is inserting a node to a
linked list. In this case, the processor caches and memory
controllers can reorder the write requests, writing the pointer
into NVRAM before writing the values of the new node. The
linked list would thus lose consistency due to dangling point-
ers if values of the new node remaining in processor caches
are lost due to the power outage. This would lead to unrecov-
erable data corruption. To avoid such inconsistency problems,
most persistent memory designs maintain persistence in the
memory by borrowing data persistence mechanisms used in
traditional databases and file systems [9, 10].

3. SHOULD WE CACHE LOG UPDATES?

Logging in persistent memory. One of widely used persis-
tence mechanisms is logging [4, 9]. With logging, persistent
memory systems can maintain two data versions: one in the
original data structure, the other in the log. Applications
update both versions but not at the same time. As a result,
system failures can corrupt one of the versions, but never both.
Using our linked list example: persistent memory systems
can first write the values of the new node into a log and then
update the original linked list (nodes and pointers) after the
log updates arrive at NVRAM. Therefore, if the system loses
power before logging is complete, the original linked list is
intact. Otherwise, if system failures corrupt the linked list,
the log updates already committed can be used to recover the
original data structure.

Problems with Caching the Log. Most previous studies
suggest that log updates should not be cached in the processor
caches [4,9,11]. The reason is straightforward: caches are
meant to utilize memory access locality and exploit data
reuse. Yet the log is only reused during system recovery.
Therefore, it has low temporal locality and is thus less likely
to be re-accessed during program execution. Furthermore,
because processor caches have limited capacity, caching the
log can pollute the cache, forcing the cache hierarchy to
evict useful working data with high locality. Therefore, it
appears beneficial to make the log uncacheable to avoid cache
pollution.

Problems with Uncacheable Log. Unfortunately, existing
cache bypassing schemes are sub-optimal with persistent
memory systems. Commodity processors offer special in-
structions and hardware components to accommodate un-
cacheable writes. For example, x86 processors offer un-
cacheable write instructions, such as movnti and movntgq,
that can invoked through inline functions (__asm__()) or
intrinsic functions (e.g., _.mm_stream_si64) [5]. These in-
structions require more cycles to complete than cacheable
write instructions (e.g., movl and movq) due to (i) additional
data movement across registers and (ii) longer latency of
writing to memory than to caches. Furthermore, uncacheable
writes are typically buffered in the processor to exploit write
coalescing. For example, Intel’s x86 processors provide write-
combining buffers, which are four to six cache line-sized
entries per core, to coalesce uncacheable stores. The un-
cacheable data are stored in this write-combining buffer in
a FIFO manner. If any buffer update propagates to mem-
ory when the entry is not full or does not contain new data,
the uncacheable store become a partial write. Partial writes

//Uncacheable log

for (i = 0; i < array_size; ++i) {
value = random_string;
key =i;

//Cacheable log

for (i = 0; i < array_size; ++i) {
value = random_string;
key =i;

/I Log updates

// Intrinsic functions to invoke movnti
_mm_stream_si32(&log[2 * i], key);
_mm_stream_si32(&log[2 * i + 1], value);
asm volatile (“sfence”);

// Log updates

log[2 *i] = key;

log[2 *i + 1] = value;
asm volatile (“sfence”);

arrayl[i] = value;
array[i] = value; }

Figure 1: Pseudocode examples with uncacheable log
and cacheable log, respectively.

are inefficient because it under-utilizes both write-combining
buffer and memory bus resources [1]. Therefore, log updates
at a granularity smaller than a cache line generates partial
writes to the write-combining buffers, leading to this under-
utilization of resources.

4. EXPERIMENTAL STUDIES

We compare the performance of cacheable and uncacheable
logging in persistent memory systems with a microbench-
mark shown in Figure 1. The benchmark uses a loop to
assign random strings to the elements in an array of strings.
We ensure persistence of the array updates in each iteration in
the loop by logging the index and values of the array element
to be updated (i.e., we employ redo logging). Figure 1 shows
two versions of the benchmark: one using intrinsic functions
to invoke movnti to perform uncacheable log updates; the
other caches log updates. We use intrinsic functions to invoke
movnti because compared to inline assembly functions, the
compiler has an innate knowledge of the intrinsic function
and can therefore better integrate it and optimize it for the
situation.

We run our benchmark on a Dell OptiPlex 7040 Tower
Desktop computer, with 4-core 3.4GHz Intel Core-i7 CPU
and an 8MB L3 cache. We construct the array to be 8MB in
size so the working data can fit in the last-level cache (LLC)
without logging. The log stores both array index and data
in the updates, making it larger than the LLC. We run each
version of our benchmark for 20 times and only collect statis-
tics during loop iterations. We observed that the performance
deviation is within 1%. Therefore, we only report the average
performance numbers. We use Linux perf [2], which is a ker-
nel tool that can instrument CPU hardware counters, to profile
processor performance statistics. We use rdtsc [7], the time
stamp counter available on x86 processors to obtain processor
timing statistics. Our experimental results do not consider
NVRAM'’s longer latency than DRAM. However, with longer
latency, the aforementioned resource under-utilization and
write latency issues of uncacheable log updates can be even
Worse.

E=3LLC Miss Rate —®—Execution Time

[}

100% 140E+09 2
% 30% 1.20E+09 2
4 1.00E+09 =
@ 60% 8.00E+08 E
s 40% 6.00E+08 :
9 - 4.00E+08 S
= ° 200E+08 3
0% . 0.00E+00 @
Uncacheable Cacheable w

Figure 2: LLC miss rate (bars) and execution time (line).

4.1 Cache Pollution with Cacheable Log

Figure 2 compares the LLC miss rate and execution time
between the two versions of our benchmark. Apparently,
uncacheable log substantially reduces LLC miss rate com-
pared with caching the log in the processor. This is expected
because caching the log stresses the cache capacity by con-
tention with the original data array. As a result, original data
and log updates yields substantial cache thrashing. We ob-
serve that the log updates frequently break the spatial locality
of working data updates in caches.

4.2 Inefficiencies of Uncacheable Log

Surprisingly, the cacheable log version of benchmark does
not appear to degrade system performance. Instead, it yields
much lower execution time compared with the uncacheable
log version of benchmark as shown in Figure 2. We further
analyze the reasons behind this performance observation.

Additional register access introduced by movnti. When
we further investigate the assembly-level execution of our
benchmarks, we notice that the intrinsic function that invokes
movnti takes more cycles to execute than a cacheable store.
One reason is that movnti instruction requires a general-
purpose register as one of its arguments and therefore gener-
ates extra data movements in the register file. The additional
latency caused by this additional register access is not negli-
gible in a program contains a large number of uncacheable
writes.

W Partial Writes ™ Full Writes
1.28 Gigacycles 0.12 Gigacycles

100%

80%
60%
40%
20%

Execution Time

0%
Cacheable

Uncacheable

Figure 3: Benchmark execution time reduction by per-
forming full writes in write-combining buffers.

Partial writes in write-combining buffers. Partial writes
in write-combining buffers is another reason for performance
degradation with the uncacheable log. Figure 3 shows our
evaluation of the partial vs. full writes’ effect on write-
combining buffers. The y-axis is benchmark execution time
(cycles) normalized to the benchmark iteration configura-
tion that generates partial writes to write-combining buffers.
Because partial writes will write less data than full writes
in each iteration, processing the same amount of working
data requires more iterations. Each iteration needs to ex-
ecute an sfence instruction (Figure 1), which can block
subsequent stores. Frequently invoking sfence can intro-
duce long latency during program execution. Reducing the
number of iterations can effectively decrease the number of
sfence instructions. As a result, with partial writes in write-
combining buffers, our benchmark with cacheable log has
11.13 x speedup over the version with uncacheable log. Yet
with full writes in write-combining buffers, the speedup is
reduced to 5.06x.

5. CONCLUSION

Most prior log-based persistent memory designs make
log updates uncacheable. This is reasonable given that log
is used during system recovery and can contaminate CPU
caches. However, our study and analysis show that caching
log updates leads to better persistent memory system perfor-
mance. This is because existing cache bypassing schemes are
sub-optimal in accommodating persistent memory access.

6. ACKNOWLEDGMENT

This work is supported in part by NSF 1652328 and NSF
I/UCRC Center for Research in Storage Systems at UCSC.

7. REFERENCES

[1

2
3

[4

[5

]

]
]

]

—

Intel, write combining memory implementation guidelines.
http://download.intel.com/design/PentiumlIl/applnots/24442201.pdf.

Perf wiki. http://perf.wiki.kernel.org/.

C. Cagli. Characterization and modelling of electrode impact in
HfO2-based RRAM. In Proceedings of the Memory Workshop, 2012.

J. Coburn, A. M. Caulfield, and A. Akel et al. NV-heaps: making
persistent objects fast and safe with next-generation, non-volatile
memories. In ASPLOS, pages 105-118, 2011.

Intel. In-
tel architecture instruction set extensions programming reference, 2016.

[6

2

[7

=

[8

=2

[9

=

[10]

[11]

[12]

https://software.intel.com/sites/default/files/managed/c5/15/architecture-
instruction-set-extensions-programming-reference.pdf.

Intel and Micron. Intel and Micron produce breakthrough memory
technology, 2015.
http://newsroom.intel.com/community/intel_newsroom/.

G. Paoloni. Intel, how to benchmark code execution times on Intel
TA-32 and IA-64 instruction set architectures. In Intel White Paper,
2010.

V. Sousa. Phase change materials engineering for RESET current
reduction. In Proceedings of the Memory Workshop, 2012.

H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne: Lightweight
persistent memory. In Proceedings of the Sixteenth International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS XVI, pages 91-104, New York, NY,
USA, 2011. ACM.

J. Xu and S. Swanson. NOVA: A log-structured file system for hybrid
volatile/non-volatile main memories. In /4th USENIX Conference on
File and Storage Technologies (FAST 16), pages 323-338, 2016.

J. Zhao, O. Mutlu, and Y. Xie. FIRM: Fair and high-performance
memory control for persistent memory systems. In Proceedings of the
47th International Symposium on Microarchitecture (MICRO-47),
2014.

W. Zhao, E. Belhaire, and Q. Mistral et al. Macro-model of
spin-transfer torque based magnetic tunnel junction device for hybrid
magnetic-CMOS design. In Behavioral Modeling and Simulation

Workshop, pages 40-43, 2006.

