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Abstract

Typical stability assessments characterize performance in standing balance despite the fact that most falls occur during dynamic activ-
ities such as walking. The objective of this study was to identify dynamic stability differences between fall-prone elderly individuals,
healthy age-matched adults, and young adults. Three-dimensional video-motion analysis kinematic data were recorded for 35 contiguous
steps while subjects walked on a treadmill at three speeds. From this data, we estimated the vector from the center-of-mass to the center
of pressure at each foot-strike. Dynamic stability of walking was computed by methods of Poincare analyses of these vectors. Results
revealed that the fall-prone group demonstrated poorer dynamic stability than the healthy elderly and young adult groups. Stability
was not influenced by walking velocity, indicating that group differences in walking speed could not fully explain the differences in sta-
bility. This pilot study supports the need for future investigations using larger population samples to study fall-prone individuals using

nonlinear dynamic analyses of movement kinematics.
© 2007 Published by Elsevier Ltd.
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1. Introduction

Stability is a critical component of both static standing
balance and dynamic walking (Goswami et al., 1998; Hur-
muzlu and Basdogan, 1994a). It is characterized by the
dynamic state of a system wherein the state is the multi-
dimensional posture and movement trajectories at an
instant in time. This state is stable if small disturbances
are attracted toward a prescribed reference point (Neyfeh
and Balachandran, 2005). For example, an upright static
reference state of standing posture is stable if small distur-
bances are attenuated in time such that the state is
attracted toward the static upright state (Collins and DeL-
uca, 1993; Leipholz, 1987). Otherwise, a small state distur-
bance may grow without bound and the observed posture
will sway precipitously. Hence, a kinematic trajectory is
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considered Lyapunov stable if all trajectories that start suf-
ficiently close to the reference remain close for all time
(Strogatz, 2000). The reference trajectory may describe a
static posture or it may describe a dynamic movement.
Estimates of static stability identify individuals at greatest
risk of falling (Maki et al., 1994), but there are few studies
to determine whether stability of dynamic movement can
identify fall-prone individuals.

Methods of clinical posturography record natural pos-
tural sway during quiet upright standing (Nashner, 1979).
Others record the response to a kinetic or inertial distur-
bance during quiet upright standing. These assessments
are performed because control of postural sway is corre-
lated with prospective risk of falls (Maki et al., 1994).
The most common techniques record the behavior of
the center of pressure (CoP). Summary statistics include
average or RMS distance from the geometric mean
(Goldie et al., 1993; Maki et al., 1990), excursions of the
CoP (Daley and Swank, 1981; Era and Heikkinen, 1985),
excursion normalized per unit time, i.e. mean velocity
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(Lichtenstein et al., 1990; Maki et al., 1990), or area cir-
cumscribed by the CoP trajectory (Hasan et al., 1990;
Hufschmidt et al., 1980; Maki et al., 1990; Motta et al.,
1991), among others. Frequency-domain estimates include
a variety of summary statistics describing the spectral dis-
tribution of the CoP (Era and Heikkinen, 1985; Maki
et al., 1990; Mauritz et al., 1979; Mizrahi and Susak,
1989; Motta et al., 1991). These CoP statistics are often
used because they represent the generalized control forces
necessary to maintain the center-of-mass (CoM) over the
base-of-support (Peterka, 2003; Sliwinski et al., 2004).
The relation between CoP and CoM movements provide
further insight into the control of standing balance (Winter
et al., 1998). However, risk of falls may also be related to
dynamic performance.

The majority of fall-related injuries in the elderly occur
during walking or dynamic movement tasks (Campbell
et al., 1989). Walking is a dynamic condition wherein the
CoM is rarely located within the base-of-support of a stance
foot (MacKinnon and Winter, 1993). The walking process
does not include an equilibrium state. Instead, the system
must be described as a stable dynamic limit-cycle (Goswami
et al., 1996). Methods of static posturography cannot be
applied to limit-cycle dynamics thereby limiting predictive
acuity regarding the risk associated with stability of walk-
ing. It is reasonable to assume that poor neuromuscular
control in static equilibrium may indicate neuro-control
limitations in dynamic tasks (Dingwell and Marin, 2006;
England and Granata, 2007), but evidence from the motor
control literature challenges this assumption (Winter,
1990). Therefore, assessment of dynamic walking stability
may help to identify potential fallers (Granata and Lock-
hart, 2006). For example, evidence suggests that spatio-
temporal parameters of walking, kinematic variability,

and kinetic variability of walking may discriminate between
populations of fall-prone and low-risk individuals (Haus-
dorff et al., 1999; Masani et al., 2002; Scarborough et al.,
1999; Winter, 1989). However, those analyses are based
on variability and variability is not equal to dynamic stabil-
ity (Dingwell et al., 2000).

Stability of human walking can be estimated from time-
dependent analyses of dynamic variability (Wolf et al.,
1985). For example, stable dynamic walking can be
achieved when simulating a two-segment, unactuated,
walking robot (McGeer, 1990) (Fig. 1 insert). Quasi-peri-
odic behavior of the leg segment angles [0;,0,] and veloci-
ties [0, 0,] illustrates stable limit-cycle dynamics (Fig. 1),
i.e. the dynamic state is attracted to an orbit that never
intersects a static balance configuration at the origin.
Therefore, the system can be dynamically stable but is
unstable in most static postures (Coleman and Riuna,
1998). Similar behavior is observed in human locomotion
but has more degrees-of-freedom than can be graphically
illustrated. Disturbances to the walking trajectory are con-
tinuously manifest in human locomotion and typically
recorded as kinematic variability. Analyses of the time-
dependent behavior of this variability can quantify the rate
at which the disturbances are attracted toward the steady-
state trajectory (Leipholz, 1987; Wolf et al., 1985). Every
instant during the gait cycle need not be stable, i.e. local
instability. For example, the steady-state walking trajec-
tory of the robot simulation is locally unstable in the early
phase of the cycle. Similarly, measurements of walking by
Dingwell and Cusumano (2000) suggest local instability
in human locomotion. However, a dynamic system can
be orbitally stable despite brief local instabilities (Ali and
Menzinger, 1999), i.e. the gait trajectory is stable as a
whole. Orbital stability is determined by integrating local
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Fig. 1. Simulation of two-segment passive dynamic walker (inset) demonstrates limit-cycle dynamics (Granata and Lockhart, 2006; McGeer, 1990). The
stable dynamic orbit never intersects a static balance configuration at the origin. Notice how disturbances are attracted toward a common stable orbit.
Poincare analyses can be used to characterize the orbital stability (Hurmuzlu and Basdogan, 1994a).
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dynamic stability over the entire gait cycle. Alternatively, it
can be determined from kinematic data recorded from
repetitive walking strides (Hurmuzlu and Basdogan,
1994a). Hurmuzlu et al. (1996) used Poincare analyses to
quantify dynamic orbital stability of human locomotion
by recording joint angles and joint angular velocities at spe-
cific cyclic events, e.g. heel contact. These nonlinear meth-
ods can be used to evaluate the dynamic walking stability
of fall-prone individuals.

The goal of our ongoing research efforts are to charac-
terize the dynamic stability of fall-prone elderly individuals
versus healthy age-matched subjects. However, it is first
reasonable to test in a pilot sample of subjects whether
there are significant differences in dynamic stability
between these subject groups. Therefore, Poincare analyses
were performed to quantify the stability of the center-of-
mass (CoM) with respect to the CoP at the instant of
foot-strike. Controlled foot placement assures an appropri-
ate relation between the generalized momentum of the
CoM and the base-of-support (Pai and Patton, 1997; Red-
fern and Schumann, 1994). We hypothesized that fall-
prone individuals demonstrate significantly reduced
dynamic stability compared to individuals without a
history of falls.

2. Methods

Twelve adult subjects participated in an experiment of
dynamic walking stability. Subjects included four healthy young
adults, four healthy elderly individuals, and four fall-prone elderly
individuals (Table 1). Fall-prone subjects were identified by self-
report medical questionnaires indicating recent histories of falling.
These individuals had fallen more than two times within six
months prior to the study but were uninjured at the time of the
experiment. Participants provided informed consent approved by
the Virginia Tech IRB before data collection.

Video-motion analyses recorded kinematics as each subject
walked on a treadmill (Qualysis Medical AB, Gothenburg, Swe-
den, 120 Hz). Ten infrared-reflective markers were placed bilat-
erally over participants’ bony landmarks. Marker locations
included the left and right second metatarsal, calcaneus, lateral
malleolus, lateral epicondyle, and anterior-superior iliac spine
(ASIS). Piezoelectric sensors were attached to each heel to identify
heel contact events.

Each participant walked for 5 min on a motorized treadmill to
become acclimated to the system (Parker Treadmill Co., Auburn,
AL). They were allowed to freely adjust the treadmill speed so as
to achieve a self-selected comfortable walking speed without
having to hold onto the handrails. This self-selected speed was
operationally defined as 100% normal treadmill walking speed for

Table 1
Participant’s anthropometric information

Group Age (years) Weight (kg) Height (cm)
HY 26.3 (2.1) 70.6 (13.2) 174.5 (7.1)
HO 71.3 (6.5) 71.2 (7.3) 164.7 (9.3)
FP 71.0 (3.0) 88.6 (10.4) 172.3 (10.8)

HY = healthy young; HO = healthy elderly; FP = fall-prone elderly.

each participant. After completing the familiarization walking
task, each subject participated in three-trials of treadmill walking
at 100%, 110% and 120% of their comfortable walking speed. The
walking speed conditions were presented in sequentially increas-
ing order to assure subject confidence in all walking conditions.
The duration of each trial lasted 5 min, with kinematic data
recorded during the final 50 s of each trial. This assured a mini-
mum of 35 contiguous steps were recorded. Three-dimensional
position of each marker was collected and computed at the instant
of foot-strike using the ProReflex motion analysis system (Qual-
ysis, USA) and stored for data analysis. For the current study
only the calcaneous and ASIS markers were analyzed.

Poincare analyses of the kinematic dispersion were performed
to estimate dynamic orbital stability of each walking trial. Three-
dimensional locations of a point mid-way between the ASIS and
the location of the heel-markers were recorded. Although the
point of the mid-ASIS location is not identical to the location of
the whole body CoM, it can be used as a surrogate because this
point shares similar dynamic variance as the whole body CoM.
Likewise, the heel-marker is not identical to the CoP but they
share similar kinematic variance at the instant of foot-strike.
Three-dimensional position vectors between these surrogate CoM
and CoP were recorded at the instant of foot-strike for every step.
Velocity vectors of the heel-marker with respect to the mid-ASIS
point were computed using methods of finite difference. There-
fore, the vectors approximated the 3-D position [x;,y;,z;] and
velocity [x;, i, z;] of CoP relative to CoM for each of the right (Rt)
and left (Lt) leg at the instant of foot contact for each step. These
were collected into a 12 element state-vector ¢; = [x;ry, ViRt ZiRts
XiRt, ViRt ZiRts XiLts Vi ZiLo XiLo ViLo 2] at each  foot-strike
event, i = 1...n, where n is the number of steps.

Walking dynamics at the instant of foot-strike were repre-
sented as a nonlinear map of the state-vector at step i to the state-
vector at step i + 1

91 = 1(q:)- (1)
The function f{...) is a 12 x 1 nonlinear dynamic representation of
movement and describes how kinematic posture is modified in the
time period between foot-strike events at steps 7 and i + 1. This is
a Poincare section of the dynamic system. Response to a small dis-

turbance dg;, of the state-vector during step i can be represented
by Taylor series expansion of Eq. (1)

0q; = Vf(qi)(sqi _f(qi)7 (2)

Vf(¢,) is the nonlinear gradient of the step function about the ref-
erence state ¢;. For small disturbances typical of steady-state
walking this gradient can be represented as a 12-by-12 Jacobian
matrix, J. This Jacobian was estimated from the measured kine-
matic state-vectors using methods described by Hurmuzlu and
Basdogan (1994a). Disturbance vectors dq; at foot-strike of each
step i, were computed from the measured data, i.e. the difference
between each state-vector component at step i versus the mean va-
lue across all steps i=1...n

5%:%_1/"’2%' 3)
o

where g, = ¢;.,

These measured disturbances can be arranged into a 12-by-(n — 1)
matrix 6Q; where rows are the vector components of dg; and the
columns represent separate steps j = 1...n — 1. The Jacobian ma-
trix, Jy, is readily computed from the linear least-square fit of

6Qj+1 = ']_/'5Qﬂ (4)
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using the pseudo-inverse routine in MATLAB (Mathworks,
Natick, MA).

To assure stability of the dynamic system, variation, d¢;, must
decay in time, dq;+; < dg;, i.e. a CoP placement error at step i
decays with subsequent steps. This requires the eigenvalues of J,
must have a magnitude less than one (Fig. 2). These eigenvalues
are called Floquet multipliers, ;. Recognizing that there are 12
eigenvalues per condition, Hurmuzlu and Basdogan (1994a,b)
recommend characterizing stability by the mean Floquet magni-
tude to compare stability differences between subject groups

12
() =172y |, 5)
=1
where k is the number of generalized coordinates k =1...12. The
condition with the largest overall value of (1) is least stable.
Dynamics of the system are quickly dominated by the least stable
dimension of the step placement, i.e. maximum eigenvalue
(Rosenstein et al., 1993). Therefore, in addition to the mean Flo-
quet value we also recorded maximum Floquet multiplier for each
subject and walking speed. The hypotheses suggest that these val-
ues will be statistically greater for fall-prone individuals than
healthy adults.

Analyses of covariance were performed to investigate effects of
group and walking speed. Group served as the between-subject
variable (HY = healthy young, HO = healthy old, FP = fall-
prone old). Although all subjects walked at 100%, 110%, and
120% of normal walking speed, these velocities were different for
every subject, i.e. self-selected. Therefore, walking velocity
recorded from the treadmill was treated as a covariate. Post-hoc
analyses of significant effects were performed using a Tukey HSD
test. Effects of step and stride stability were examined in inde-
pendent analyses. Specifically, separate analyses examined the
mean and maximum Floquet coefficients for: (1) left-step: left
foot-strike to the subsequent right foot-strike; (2) right-step: right
foot-strike to the subsequent left foot-strike; (3) stride: foot-strike
to the subsequent ipsilateral foot-strike. Separate univariate
analyses were performed to test for group and speed condition
effects on walking velocity. All statistical analyses were performed
in SAS (SAS Institute Inc., USA) using a significance level of
p <0.05.
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Fig. 2. Overall mean (solid line at 0.322), individual subject mean values
(brief vertical lines), quartile (box) and standard deviation of the mean
Floquet multiplier computed from stride differences in the dynamic state
at foot-strike. The fall-prone elderly demonstrated poorer dynamic
stability of walking then the healthy old and young adults.

3. Results

The elderly subjects walked slower than the young par-
ticipants. There was a significant main effect of group and
experimental speed conditions (F{33g) = 10.37, p = 0.001).
As expected, the walking speed was significantly faster dur-
ing 120% of normal walking speed than at 100% of normal
walking speed (F{23s) = 25.78, p = 0.001).

When evaluating the mean Floquet multipliers there was
a significant main effect of group (Fi 35 = 7.08, p = 0.04)
but not velocity (Table 2). This indicates a group difference
in orbital stability of the CoM with respect to the CoP
(Fig. 2) independent of the group differences in walking
velocity. In other words, the walking velocity does not
explain the group differences in stability. Post-hoc analyses
indicated that the mean Floquet multiplier computed from
the stride differences in foot-strike dynamics were signifi-
cantly greater for the FP elderly than the healthy elderly
(p <0.05) and the young adults (p < 0.05). There was no sig-
nificant difference between the healthy old and young adult
groups. Values computed from stride-to-stride comparisons
of measured data were significantly less (p <0.01) than
right-step and left-step results. There were no significant
main effects of group or velocity when investigating the

Table 2

Summary of the dependent variables among three groups

Variables Young Healthy old Fall-prone old
Maximal Floquet coefficients

Left-step 0.648 (0.07) 0.674 (0.09) 0.716 (0.09)
Right-step 0.667 (0.07) 0.674 (0.04) 0.719 (0.11)
Stride* 0.536 (0.10) 0.501 (0.09) 0.646 (0.14)
Average Floquet coefficients

Left-step 0.416 (0.03) 0.428 (0.06) 0.454 (0.05)
Right-step 0.411 (0.04) 0.403 (0.05) 0.446 (0.05)
Stride* 0.327 (0.03) 0.306 (0.03) 0.339 (0.03)

* Significant at p <0.05.
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Fig. 3. Overall mean (solid line at 0.552), quartile (box) and standard
deviation of the maximum Floquet multiplier computed from stride
differences in the dynamic state at foot-strike. The fall-prone elderly
demonstrated poorer dynamic stability of walking then the healthy old
and young adults.
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right-step (F235)=2.73, p =0.17). However, there was a
trend toward stability differences evaluated from left-step
data (F(2”35) = 558, p= 006)

Results for the maximum Floquet multipliers were sim-
ilar to the results for the mean Floquet multipliers (Fig. 3).
Maximum Floquet multipliers computed from stride data
revealed a significant main effect of group (F2 35 = 7.35,
p = 0.04) but no velocity effects. Post-hoc comparison of
means indicated that the maximum Floquet multipliers
for the fall-prone elderly group was significantly greater
than both the young (p <0.05) and healthy old groups
(p <0.05). There was no significant difference between the
healthy old and young adult groups. Average left-step
(F235=0.7, p=0.54) and right-step (F235 =2.84,
p = 0.17) results were not significantly influenced by group.

4. Discussion

Health and economic aspects of fall interventions neces-
sitate the identification of and intervention for individuals
at greatest risk of falling (Hill et al., 1999; National Aging
Research Institute, 2000). In that regard, various measures
of balance and physical functions have been proposed to
identify potential fallers. The objective of this study was
to provide an initial evaluation of whether dynamic stabil-
ity of walking can be used to identify group differences
between fall-prone individuals and healthy adults. Results
demonstrated that measures of dynamic stability can differ-
entiate fall-prone older adults from healthy young and
older adults. Specifically, the fall-prone group was less sta-
ble than healthy old and young adults when considering
orbital stability of treadmill walking.

The present findings are in agreement with previous
results (Hausdorff et al., 2001; Tinetti et al., 1998; Wolfson
et al., 1990) suggesting that stride-to-stride fluctuations
may be used to characterize risk of falls. The utility of non-
linear techniques to identify the deterministic nature of
motor variability within a system has been identified in pre-
vious studies (Buzzi et al., 2003; Dingwell and Cusumano,
2000). Those studies suggested that traditional linear mea-
sures mask the dynamic structure of motor variability such
as the loss of the temporal variations of the gait pattern due
to averaging procedures. Measures of static equilibrium
during quiet standing are useful estimates of risk (Hill
et al., 1999) but cannot fully characterize stability during
walking wherein the majority of falls occur (Campbell
et al.,, 1981). Nonlinear stability assessments of walking
may augment traditional clinical assessments to help iden-
tify potential fallers.

To interpret the results it is useful to understand Poin-
care analyses of dynamic stability. It is reasonable to
assume that every walking stride could be dynamically sim-
ilar to every other stride, i.e. reference trajectory. Variabi-
lity in kinematic and spatio-temporal gait parameters is
observed in empirical data and is associated with risk of
falls (Hausdorff et al., 2001; Tinetti et al., 1998; Wolfson
et al., 1990). This natural variance is attributed to mechan-

ical disturbances or neuromotor control errors. However,
variability is time-linked, i.e. mechanical momentum and
neuromuscular response associated with a disturbance
influence the movement and disturbance amplitude at sub-
sequent time intervals. In fact, a disturbance at a given time
may influence the walking movement for many subsequent
strides (Dingwell et al., 2001). If disturbances are permitted
to grow without bound then walking behavior cannot be
maintained; possibly resulting in a fall. Fortunately, the
neuro-controller and musculoskeletal system attenuates
the disturbances in order to maintain a stable walking pat-
tern. The Floquet multiplier quantifies how a disturbance
0q; at foot-strike is attenuated at the time of a subsequent
foot-strike. Results suggest that dynamic error correction is
slower in the fall-prone elderly.

Elderly, balance-impaired, and fall-prone individuals
walk slower than age-matched healthy older adults or
young adults (Winter, 1990). Reduced walking velocity
may be a compensatory behavior to maintain dynamic sta-
bility. Evidence supports the fact that local dynamic stabil-
ity is influenced by walking velocity (Dingwell and Marin,
2006; England and Granata, 2007). Conversely, current
results suggest that orbital dynamic stability of walking is
unaffected by small changes in walking velocity in the range
of 100% normal self-selected walking speed to 120% of nor-
mal speed. Dingwell et al. (2007) reports similar results, i.e.
walking velocity does not affect orbital dynamic stability of
walking. Thus, nonlinear dynamic stability as measured by
Floquet multipliers can characterize instability in lieu of
group differences in walking velocities. Analyses of covari-
ance supported this assertion. Group differences in
dynamic stability of walking were not attributable to walk-
ing velocity. This suggests that reduced walking velocity
commonly observed in the elderly may not be caused by
the need to enhance orbital stability. Alternative explana-
tions for reduced walking velocity in biomechanically
unstable individuals may be to facilitate detection of trip-
ping obstacles, to limit injury severity in the event of a
potential fall, etc.

Several limitations must be considered when interpret-
ing the results. First, the data represent a pilot study with
a small sample size. Our goal was to test whether larger
studies of dynamic stability in fall-prone individuals are
justified. Future studies will investigate larger population
samples and a broader velocity range. Second, data were
collected while walking on a treadmill. Subtle differences
between walking on a treadmill and walking over ground
may influence kinematic variability and dynamic stability
(Dingwell et al., 2001; Masani et al., 2002). Third, analyses
were limited to kinematics of foot-strike with respect to the
CoM. Similar methods could be applied to EMG. How-
ever, myoelectric data has greater dynamic complexity than
kinematics, e.g. biomechanical movement can be repre-
sented as the nonlinear convolution filter of multiple
EMG signals (Zajac, 1989). Therefore, stability analyses
using EMG must include much larger systems, i.e. more
degrees-of-freedom to account for co-contraction and
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time-delayed reflex response. Finally, theoretical develop-
ments are necessary to overcome limitations in the stability
analyses. Methods assume that the reference trajectory is a
period-one limit-cycle, i.e. repeats each step or stride, and
that the reference trajectory is identical to the mean state-
vector (Eq. (3)). Long-range correlations in stride-time
data have been observed (Hausdorff et al., 1999; Hausdorff
et al., 2001) that cause apparent non-deterministic noise to
the Poincare section. Nonetheless, a stable attractor refer-
ence trajectory clearly exists within the gait dynamics,
e.g. Floquet values were less than one. Despite empirical
and fractal noise in the data, the dynamic stability analyses
successfully discriminated between healthy and fall-prone
subject groups.

In summary, dynamic orbital stability of the anthropo-
metric CoM with respect to the CoP was quantified by
Poincare analyses in a pilot sample of fall-prone elderly
individuals and healthy adults. Although the fall-prone
adults walked slower than the healthy age-matched and
young adults, the mean Floquet multiplier value and max-
imum Floquet coefficients were significantly greater in the
fall-prone group. These indicate that the fall-prone group
demonstrated poorer stability of dynamic walking than
the other groups. Future investigation should include lar-
ger population samples and prospective studies of fall-
prone individuals using nonlinear dynamic analyses of
movement kinematics.
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