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Abstract

The estimation of the direction of visual attention is critical to a large number of interactive systems.
This paper investigates the cross-modal relation of the position of one's feet (or standing stance) to
the focus of gaze. The intuition is that while one CAN have arange of attentional foci from a particular
stance, one may be MORE LIKELY to look in specific directions given an approach vector and
stance. We posit that the cross-modal relationship is constrained by biomechanics and personal style.
We define a stance vector that models the approach direction before stopping and the pose of a
subject's feet. We present a study where the subjects' feet and approach vector are tracked. The
subjects read aloud contents of note cards in 4 locations. The order of “visits' to the cards were
randomized. Ten subjects read 40 lines of text each, yielding 400 stance vectors and gaze directions.
We divided our data into 4 sets of 300 training and 100 test vectors and trained a neural net to estimate
the gaze direction given the stance vector. Our results show that 31% our gaze orientation estimates
were within 5°, 51% of our estimates were within 10°, and 60% were within 15°. Given the ability
to track foot position, the procedure is minimally invasive.
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1. INTRODUCTION

The estimation of a subject's zone of attention is important to such domains in human-centered
computing as computer-supported collaboration, teaching and learning environments, context-
aware interaction, large-scale visualization, smart homes, multimodal interfaces, wearable
computing, and analysis of group interaction. Systems that estimate such attention typically
involve intrusive sensing technology such as video tracking and wearable technology. In this
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paper, we explore the possibility of estimating one's “zone of attention' by tracking one's
footfalls and standing stance. The specific mode of tracking is not the focus of this paper,
although one might imagine pressure sensitive carpets with [1,2] thin piezoelectric cables [3],
sensorized tiled floors [4-8], and a variety of wearable devices [9—11]. If such zone of attention
estimation is possible, a range of multimodal interactive systems will be enabled that present
timely information on ambient displays, support human meetings by estimating the zone of
attention of one's interlocutor, and create active displays that are attention-sensitive.

By "zone of attention', we mean the sector of visual space of a subject. Our interest here is not
in the exact angle of gaze as might be required when using an eye-tracker to support gaze
control of a screen cursor. Rather, we want to estimate the general zone of attention (or where
the subject is looking) centered on some sector axis as shown in Figure 1. Observe that our
estimate does not require that the center of the attention zone be coincident with the ‘nose-
forward' vector.

Our approach is to exploit the anatomical and behavioral constraints of the subject when her
feet are set and to employ a biomechanical model from whose parameters we estimate the zone
of attention using a classifier or by function estimation. In Section 2, we discuss the rationale
for our approach by reviewing the need for gaze/awareness, and reviewing existing attention
awareness approaches. We show that there is need for a coarse-scale attention estimation
approach that is able to work over a large area. In Section 3, we ground our approach by
outlining our biomechanical assumptions and discussing our model. In Section 4, we describe
our empirical approach and report our experimental results. We conclude in Section 5.

2. Attention Awareness and Tracking

2.1 Rationale

We make a distinction between gaze tracking and attention awareness. The former typically
requires precise detection of the angle or locus of gaze so that, for example, one may control
a screen cursor with the output. Attention awareness requires that the zone of gaze be detected
to determine the object or area of visual attention. The focus in this paper is the latter. The
ability to detect attentional focus is critical to a wide variety of multimodal interaction and
interface systems. These include computer-supported group interaction [12—16], wearable
computing, augmented reality [17-21], context/attention aware applications [21-26],
education and learning [26,27], smart homes [28,29], and meeting analysis [30—36]. In many
of these applications, non-intrusiveness in the mode of sensing is more important than the
accuracy of gaze angle tracking. We investigate the estimation of the zone of attention from a
standing stance unobtrusively using information that may be obtained entirely from a sensing
carpet, smart floor, or instrumented shoes. In this section, we review the state of the art in
tracking visual attention, discuss the biometric and psycho-social behavioral constraints in
direction of visual attention with respect to stance, and advance our model for zone of attention
detection and tracking.

2.2 Review of Attention Awareness Approaches

Allocation of attention is a key aspect of collaboration, meeting conduct, and interaction that
is a prime determiner of information flow among participants or supporting technologies. Gaze
has long been recognized as a primary indicator of zone of attention and as a conversational
resource that assists participants in assessing connection, comprehension, reaction,
responsiveness, and in interpreting intention [37]. Other researchers have investigated the
attentional behavior of subjects who are observing the gaze of others [38,39]. As several
researchers point out, however, it is still possible to visually fixate one location while diverting
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attention to another [40,41]; even though eye tracking may be highly accurate, gaze direction
is not necessarily a highly accurate estimator of attentional focus.

Eye tracking has been by far the technology of choice for gaze estimation. There has been
much interest in the use of gaze to control interaction [42,43], to modify information
presentation [44—46], and to interact directly with data [47]. Duchowski [40] partitions eye
tracking applications into either diagnostic or interactive categories, depending upon whether
the tracker provides objective and quantitative evidence of the user's visual and attentional
processes or whether it serves as an interaction device.

Eye tracking has been of intense interest for many years, and many techniques have been
proposed [48]. Some, such as electrooculography [49], which involves attaching electrodes
near the eyes, and magnetic eye-coil tracking, which involves special contact lenses, are
particularly invasive and uncommon. Most current tracking methods are video based and fall
into one of two categories, using either infrared illumination or passive tracking. The use of
remote fixed cameras is not of great interest except in special studies because of the problems
of occlusion, head tracking, and tracking multiple subjects simultaneously. Excellent work has
also been done in the case of head mounted trackers to minimize the invasiveness of the camera,
mount, and cabling [50], but the apparatus is always present in front of the wearer.

The so-called limbus trackers are usually passive trackers that utilize ambient light to track the
limbus, which is the junction between the iris and the white surrounding sclera. These trackers
are somewhat simpler since they do not require a special illumination source but suffer from
the uncontrolled nature of the ambient light and limitations in vertical tracking due to eyelid
movements. On the other hand, the use of an infrared illumination source makes it practical to
track the pupil, which is a more sharply defined and less occluded feature than the limbus.
However, infrared trackers can suffer in the presence of other infrared sources such as natural
sunlight. Other infrared trackers make use of the so-called Purkinje images [51], which are due
to reflections from the several optical boundaries within the eye such as the surfaces of the lens
and cornea. The measurement of individual features requires that the head position be fixed or
tracked; sophisticated trackers can avoid this by tracking features that move differentially when
the eye moves as opposed to the head. More important, neither approach is feasible for
estimating attention of subjects over a large space.

Some eye trackers separate the process of determining head orientation from the local process
of determining eye orientation given the head pose [52—55]. Others have proposed the use of
head pose alone as an estimator of gaze direction [41,56,57] in order to eliminate the need for
invasive head mounted hardware. Stiefelhagen's results [41,57] provide strong evidence to
support the effectiveness of head orientation alone as an estimator of focus of attention.

The prime deterrents to the use of eye trackers for gaze analysis have been the cost of eye
tracking, its invasiveness, its lack of robustness, and the difficulty of performing the analysis
simultaneously on large groups of meeting or collaboration participants. Yet other problems
concern calibration, dynamic range, response time, and angular range. Since gaze direction
does not uniquely determine focus of attention, there are many applications in which
determining zone of attention to high accuracy (< 1 degree) is unnecessary, applications for
which gait, location, identity, and pose are sufficient estimators of the desired information.

The advent of wearable computing has sensitized researchers to the need for deeper context
awareness that includes, among other things, the pose and location of the wearer. As always,
the dilemma is how to determine this information as noninvasively as possible, simultaneously
for multiple individuals, and over a large area where the motion of users are minimally
constrained. Our hypothesis is that useful estimates of zone of attention can be obtained from
floor stance and approach vector, so that the search for suitable sensor systems can be shifted
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to shoe and floor systems. An extensive sensor system for determining floor stance has been
proposed by the Responsive Environments Group at the MIT Media Laboratory in which each
participant shoe is fitted with a rich complement of wireless sensors [9-11].

In summary, head-mounted and wearable trackers encumber the user; many are still tethered
by cabling, which is especially problematic in multi-user environments. Other systems that
employ video and electromagnetic technology restrict the movement of the user to the effective
tracking volume of the technology.

3. Stance Model

3.1 Biomechanical Orientation Constraint

Floor stance and approach vector during locomotion can provide useful estimates of zone of
attention. Figure 3 shows the degrees of freedom available to a human viewer when the feet
are set. Human locomotion is guided by optic flow and egocentric direction strategy utilizing
variant degrees of target visual context [S8—61]. Optic flow describes temporal changes in
image structure as a walker moves; and egocentric direction strategies describe how one walks
in different contexts (e.g. in dimly lit areas one may use egocentric coding that minimizes
angular distances to the goal.) The assumption behind both of these locomotion strategies is
that the goal is visible, and as such, directly related to the salience of the visual context [62].
The saliency dependence of the visual context suggests that gaze transient (i.e., flow and
direction) of a target is an important parameter for goal directed gait. This can be conceptualized
as a constraint on the way one approaches a target of focal attention prior to the static (standing)
stance or configuration.

Gaze control involves motion coordination of eyes, head and trunk to allow both flexibility of
movements and stability of gaze. During straight walking, gaze is maintained in the direction
of forward locomotion with small head yaw oscillations in space, despite relatively large
oscillations and lateral displacements of the body. A study investigating three-dimensional
head, body and eye angles during walking and turning, it was found that the peak body yaw of
3.5° in space was compensated by the relative peak head yaw of 3°, which consequently
resulted in a very small head yaw angles (less than 1°) in space. Additionally, the naso-occipital
axis of the head was closely aligned with the anterio-posterior direction of locomotion [63].
The head pitch and roll angles peaked at approximately 3° as observed both in over-ground
walking [63] and in treadmill walking [64,65]. In terms of gaze behavior, eyes were found to
spend the majority of the time (78.8%) fixating the aspects of the environment along the
direction of locomotion and a small amount of time (16.3%) searching for possible future
routes. What appears to be random point inspecting only took 4.9% of the time during walking
[66]. Furthermore, such gazing patterns (fixating along the direction of walking) appeared not
to be influenced by individual differences [66].

During turning, gaze is directed in advance of the body heading, and after turning, gaze is
returned to align with the direction of motion. During a 90° turn while walking, head yaw was
maintained smoothly in space, with a maximum 25° deviation from the heading direction of
the body [63]. Eye position, however, was found to shift in saccades in the direction of turn
(Figure 2), reaching yaw angles as high as 50° relative to the head. Once the turn was complete,
eye position and foot position returned to zero relative to the head [67]. Our goal, then, is to
determine the pattern of behavior that relate both the vector of approach and the final pose of
the static stance with the likely final focus of attention.

3.2 Modeling Stance and Attention

In addition to biomechanical constraints in the previous section, we add behavioral constraints
of instrumental gaze. In our work on meeting analysis [30-32,35,68], we observed that there
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is a difference between interactive deployment of gaze and an instrumental one [32,69-71].
Interactive gaze takes place between people, and is influenced by aspects of social behavior
such as the avoidance of 'nose-to-nose' fixations, and back-channeling behavior. Instrumental
gaze involves the deployment of gaze for the purpose of acquiring information (such as reading,
or viewing a graphic). Our preliminary analysis of meeting room data suggests that there is
greater variation in gaze deflection from the "nose-forward' vector of head orientation for
interactive gaze with respect to instrumental gaze. Since our interest is in instrumental use of
gaze with technology, our expectation is that eye deflection variability is reduced for such
activity. Furthermore, the kind of instrumental gaze necessary to access information requires
the deployment of central-foveal vision.

Figure 4 illustrates our base model of stance for the estimation of the zone of visual attention.
We call this the base model because we expect that our model will have to evolve as more is
known about the relationship between gaze and stance. The reference frame of the model is
formed by the connecting line between the centers of mass of the feet, and the normal to that
line in the forward direction of the subject (shown as the x—y reference frame in Figure 4). The
orientations of the right and left feet are described by the angles ¢, and ¢, respectively. The
approach angle y describes the direction of locomotion prior to stopping in the resultant pose.
d describes the width of the stance. The angle 07 is the angle of gaze to the target of attention
as a deflection off the stance normal. By this model, v; = [¢,, ¢;, d, Y] constitutes an input
stance vector, and the value 07 is the output value to be estimated.

4. Experiment

To test the hypothesis that stance may be a predictor of gaze direction, we designed an
experiment where subjects are required to read a series of lines of text that are mounted on
aluminum posts. The text is small so that the subjects had to move to the target to read the
lines. We tracked the feet of the subjects to obtain the stance vector and used a neural net
approach to learn the gaze direction. The point of this experiment is not to advance any specific
learning approach. It is to ascertain if any patterning exists by which our cross-modal
hypothesis may be validated.

4.1 Experiment Design

Figure 5 shows the plan view of our experimental configuration. Since our model describes
only horizontal gaze deployment (Figure 4 does not include viewing pitch) the target cards are
set at eye height for each subject. Figure 6 shows a picture of our experimental setup in the
laboratory. Two gaze targets can be seen. We employ our Vicon near-infrared motion trackers
to estimate the parameters in our model to obtain the stance vector, v;=[¢,, ¢;, d, y]. By tracking
the retro-reflector marker configurations on the frame attached to the subject's shoes (see Figure
6 inset), our experiment software produces a time-stamped stream of quaternions from which
we derive the basis vectors of the tracked frame for each foot. To simplify the determination
of the approach vector, we also track the location of the subject's head (tracked goggles in
Figure 6). This also gives us access to the subject's head orientation, although we did not use
it for this experiment.

By having the subject place her foot in a box of known coordinates and orientation marked on
the floor we obtain the toe-forward vector from the basis frame of each tracked position. Given
the unit basis matrix B¢ of the calibration box, and the unit basis matrix By of the tracked frame
attached to a foot, we obtain the tracking transformation My= B¢ * By (for foot f, where fis
ror [ for the right and left foot respectively). Given a subsequent tracked unit basis matrix
B, the toe-forward frame is simply given by My B;.
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The subjects are directed to read lines in 12-point font printed on 3x5 cards placed at in four
known coordinates in the laboratory (pictured in Figure 6, and labeled A, B, C, D in Figure 5).
Each line of each card contains three columns: a sequential index (A.1, A.2 ... for card A, B.
1,B.2 ... for card B etc.), a line of text to be read, and the index of the next line to be read. The
station for the next line to be read is randomized so that the subject will go from station to
station to read the next line. The small fonts ensure that subject must move from one station
to the next. The subject reads each line aloud so that we know when her attention is fixed on
the target 3x5 cards. With this information, we can extract the parameters described in Figure
4 (Section 3.2). Each time a target is read, we record a stance vector vi=[¢,, ¢;, d, y] and attention
angle 07. For each trial, the subject reads 40 lines randomly located at the 4 targets. This trial
is repeated 10 times with 10 subjects, yielding a training dataset containing 400 vectors.

4.2 Gaze Estimation from Stance

We employed a standard three-layer backpropagation neural network parameter approach
[72] to estimate 07 from v;. Kolmogorov [73,74] showed that any continuous function can be
represented as a linear additions of multiple continuous functions. In our implementation, the
input layer has four neurons for the input of the four parameters ¢,, ¢;, d, y. The output layer
has one neuron for the parameter 67 and the hidden layer has 15 neurons (using a rule of thumb
of between 4 and 5 times the number of input neurons) [72]. The network was initialized with
random weights. After training with samples, the network can learn the relationship [¢,, ¢;,
d,v] ® 67. We can apply it to estimate the 67 for some new v;. For our study, we divided our
dataset into four sets of 300 training vectors and 100 test vectors. We trained our network on
the former, and ran the resulting network using the stance vectors from the latter group.

4.3 Results and Discussion

Figure 7 is an histogram of the absolute difference absé);, where 6?; is the estimated attention
direction and Ot is the measured direction. For this dataset, 31% of the estimations fell within
5° of the measurements. 51% of estimations were within 10°, and 60% of the estimates were
within 15° of error.

Figure 8 shows plots the absolute values measured 61 against the absolute error absH:. for a
particular dataset (testing against 100 vectors). This shows that our estimation error increases
with the size of deflection. Given the limited size of our dataset (only 400 samples), this might
be expected since the data becomes sparser with larger 0.

These results show an estimation accuracy far in excess of chance. For example, assuming that
the subject is capable of viewing 180° from a particular stance, chance would predict that a 5°
estimate of 2.77%, a 10° estimate at 5.56% and a 15° estimate at 8.33%. It should be noted
that this experiment did not take individual differences into account, and the training sets are
not extensive. Hence, one might expect that the results to improve with more user-specific
training. Also, we acknowledge that our stance vector is an initial principled guess. One might
imagine that extension of the stance vector to include weight distribution, subject parameters
(e.g. height), etc. the estimate may be improved. Our purpose here is to advance a proof-of-
concept for consideration by the research community.

5. Conclusion and Future Work

We have demonstrated a rather audacious presupposition that one is able to estimate a subject's
instrumental gaze direction or attentional focus from her approach vector and standing stance.
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We presented our rationale for our research by reviewing the need and the technologies for
gaze/attention estimation. We showed that there is need for a non-intrusive coarse scale
attention estimation approach that is able to track over a large area.

We ground our proposed stance model and the expectation that we may be able to estimate
attention from stance by discussing the biomechanics of approach and gaze fixation. We present
our stance model comprising only four parameters.

We present a set of experiments by which we track subjects' feet and approach vector to an
attention target using a motion tracking system. Subjects were required to move to one of four
stations randomly and read a line of text. We extracted 400 stance vector — attention direction
sets, and employed a neural net system to learn the relationship. The results are promising.

While the results are promising, more needs to be done. The approach is to find a mapping
between the stance vector and the direction of attention. Our initial stance vector, while arrived
at in a principled manner, ignores many other possible vectors that may be deterministic.
Examples of these include weight balance (right foot vs left foot, forward lean vs backward
lean), dynamics of approach, and duration of gaze.

Also, in our study, our subject approached an initial target and directed visual attention at it.
We can think of this as the initial zone of attention from a particular stance. This does not
address the retargeting of attentional focus from such a fixed stance after the initial attentional
gaze. We conjecture that once a stance is fixed, there is a ‘zone of comfort' where a subject
can redeploy gaze without moving her feet (shifting her stance). This might occur when the
subject has selected a stance for a particular initial target and a new target appears in close
proximity to the original. Let dx be the distance of some secondary target from the initial target.
To characterize the range of 8%, a second type of experiment is required that utilizes a large
display system such as our tiled wall-sized display (seen in the background in Figure 6). When
an initial target is displayed, the subject approaches and reads as before. Secondary targets are
displayed at different 6x's to determine typical range thresholds that engage adjustment of
stance. The range of these ‘within-stance attention redeployments' may require extension of
the stance vector to include balance components, or it may define a zone of uncertainty of
secondary gaze targets.
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Figure 1.
Top-down view of the one of attention
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Figure 2.

Coordination of eye, head and trunk rotation during gaze shift. Diagram of a typical 90° turn
(five phases) after locomotion approach to a target at T (Land, 2004). Eye movement completed
by phase 2, head movement completed by phase 4, and trunk rotates continuously until phase
5 — with feet directed forward
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Figure 3.
Degrees of freedom of attention with fixed stance
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Figure 4.
Subject stance and gaze estimation model
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Figure 5.
Plan view of experimental setup
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Figure 6.
Experiment setup

ACM Trans Comput Hum Interact. Author manuscript; available in PMC 2010 September 8.

Page 16



Quek et al. Page 17

KRR R L R I I R IR R

Absolute Error

Figure 7.
Histogram of errors of O estimates
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Figure 8.
Error estimates plotted against absolute deflection in test data
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