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Abstract
Variability in kinematic and spatio-temporal gait parameters has long been equated with stability
and used to differentiate fallers from non-fallers. Recently, a mathematically rigorous measure of
local dynamic stability has been proposed based on the non-linear dynamics theory to differentiate
fallers from non-fallers. This study investigated whether the assessment of local dynamic stability
can identify fall-prone elderly individuals who were unable to successfully avoid slip-induced falls.
Five healthy young, four healthy elderly and four fall-prone elderly individuals participated in a
walking experiment. Local dynamic stability was quantified by the maximum Lyapunov exponent.
The fall-prone elderly were found to exhibit significantly lower local dynamic stability (i.e. greater
sensitivity to local perturbations), as compared to their healthy counterparts. In addition to providing
evidence that the increased falls of the elderly may be due to the inability to attenuate/control stride-
to-stride disturbances during locomotion, the current study proposed the opportunity of using local
dynamic stability as a potential indicator of risk of falling. Early identification of individuals with a
higher risk of falling is important for effective fall prevention. The findings from this study suggest
that local dynamic stability may be used as a potential fall predictor to differentiate fall-prone adults.

Keywords
local dynamic stability; falls; gait; risk assessment; slips and falls; locomotion; elderly falls; fall
accidents

Introduction
Reducing fall accidents has been the goal of numerous researchers since the 1920s. Although
much has been learned over the past few decades about the mechanism of and contributing
factors to fall accidents (Lockhart 2008), fall accidents continue to represent a significant
burden to society, both in terms of human suffering and economic losses (National Safety
Council 2006). Fall accidents are among the most common and serious problems facing the
elderly and these accidents constitute a major cause of mortality, reduced functioning and
premature nursing home placement. Although modern medicine and new medical technologies
offer enormous potential to improve diagnosis and treatment of many diseases, mortalities from
fall accidents are steadily on the rise for the elderly (Centers for Disease Control 1999–
2005). Early detection of fall-related risks is therefore critical to timely interventions prior to
falling episodes (Celler et al. 1995).
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Before effective fall-prevention strategies can be implemented, it is important to identify those
individuals subject to a higher risk of falling. A risk of falling among the elderly has been
attributed to gait. The acquisition of gait characteristics during walking provides important
information about limb propulsion and control and provides insight into muscle performance
(Winter 1990). Furthermore, gait evaluations can be used as global indicators of stability
(Scheiner et al. 1995). Age and disease-related degradation of an individual’s ability to
ambulate in a repetitive and stable manner is regarded as an apparent sign of many gait
pathologies leading to falls. For example, a study investigating the gait characteristics of older
adults who were hospitalised after falls suggested that individuals with greater step variability
fell more often than non-fallers (Guimaraes and Isaacs 1980). Furthermore, the work of Imms
and Edholm (1979) also demonstrated that gait variability is linked to falls in the elderly.
Although many older adults walk without any significant mobility impairment (Bloem 1992),
Nayak and Isaacs (1982) proposed that one of the effects of old age is an increased intercycle
(step-to-step) variability of gait, possibly associated with the gradual deterioration of balance
mechanisms, which is known to occur. Several gait characteristics including stride length
(spatial) and step duration (temporal) are related to balance control. In terms of the
biomechanical principle, decrease in stride length and step duration will lead to greater stability
and may be regarded as compensation for instability. An increase in the variability of one or
both of these parameters could indicate lack of compensation for instability and might
predispose an individual to falls, especially when balance mechanisms are stressed (Hausdorff
et al. 1997). As such, gait analyses may provide an effective tool for evaluating and quantifying
gait problems associated with fall-prone individuals.

However, even with the assistance of gait analysis, objectively quantifying the risk of falls or
instability remains difficult. For example, numerous studies suggest that elderly people tend
to have a shorter step length and a broader walking base, which results in an increase in stance
time and double support time (Winter et al. 1990). These gait adaptations are thought to result
in a more stable or safer gait pattern. However, despite these adaptive changes, many older
adults fall while walking. Furthermore, most studies using gait analysis have relied on
comparisons of a limited number of specific gait characteristics (i.e. step length and step
frequency, etc.) by normalising and averaging together data from a number of isolated and
independent strides. This approach ignores the high degree of correlation that exists between
various aspects of an individual’s gait and is not well-suited to address the fundamental control
task of locomotion (i.e. maintaining dynamic stability). As such, to accurately evaluate the
extent of gait deviations from normal gait and associated risk of fall accidents, it is necessary
to consider not only how a single stride is generated, but also how movements are controlled
from one stride to the next, requiring continuous monitoring of gait (Dingwell and Cusumano
2000, Schutte et al. 2000).

Understanding the locomotor control can help predict future falls since motor variability could
arise due to failure of the automatic stepping mechanisms. A local dynamic stability measure,
which is based on the non-linear dynamic theory, has been proposed as a more precise
measurement of individuals’ resistance to perturbations. Using the dynamic stability concept,
Dingwell and Cusumano (2000) successfully explained that individuals with pathological gait
exhibited a slow-down adaptation to increase their stability and clearly demonstrated the
difference between dynamic stability and conventional gait variability measurements. This
dynamic stability measure was also shown to be able to detect the influences of external
conditions (treadmill gait and over-ground gait) (Dingwell et al. 2001) and patients with and
without peripheral neuropathy (Dingwell and Cusumano 2000).

Biomechanically, age and disease-related degradation of an individual’s ability to ambulate in
a repetitive and stable manner is linked to risk of falling and variability in kinematic and spatio-
temporal gait parameters has been used to differentiate fallers from non-fallers (Maki 1997,
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Hausdorff et al. 2001, Barak et al. 2006). Higher variability observed in time series
measurements are often considered to be indicative of higher instability and, thus, higher risk
of falling. However, equating variability with stability lacks theoretical foundation (Stergiou
2004) and may fail to explain some seemingly confusing phenomena. For example, adopting
a slower walking speed, which is considered to be a common practice to increase stability, is
often found to be associated with higher gait variability (Dingwell et al. 2000). Therefore, since
the early 2000s, a mathematically rigorous definition of stability, local dynamic stability, has
been proposed to complement existing variability measures based on the non-linear dynamics
theory (Dingwell and Cusumano 2000).

Local dynamic stability, as quantified by maximum finite-time Lyapunov exponent (maxLE),
refers to the sensitivity of a dynamic system to infinitesimally small perturbations (Dingwell
and Cusumano 2000). In the context of human gait, local dynamic stability measures the ability
of the human neuromuscular control system to attenuate those disturbances manifested from
either neuro-control errors or environmental noises (e.g. uneven floor surfaces, small obstacles,
etc.). A survey of literature has shown its promising applications in various aspects of human
movement research. With a slower walking speed, the diabetic neuropathic patients were found
to adopt a more locally stable gait pattern, despite exhibiting a greater kinematic variability
than the healthy controls (Dingwell and Cusumano 2000). By examining the local stability in
both unperturbed standing and walking conditions, it was concluded that the motor control
mechanisms governing static balance and dynamic balance are different (Kang and Dingwell
2006b, Roerdink et al. 2006). The local dynamic stability has also been successfully applied
to examine the underlying dynamics of specific body segments, including the knee joint
(Stergiou et al. 2004) and trunk segment (Granata and England 2006) and slow-time-scale
physiological changes such as fatigue (Yoshino et al. 2004). With the evidences that support
its utility, a natural question arises as to whether local dynamic stability can be used to
effectively assess the risk of falling.

Unfortunately, knowledge about the link between an individual’s risk of falling and local
dynamic stability is insufficient and unclear. On one hand, researchers have suggested that the
underlying mechanisms responsible for governing local and global stability (the response of
the motor control system to much larger perturbations including slips and falls) are likely
related in some manner (Dingwell and Marin 2006). If local perturbations are permitted to
grow without proper attenuation, stable walking behaviour cannot be maintained and may
eventually result in a fall (Granata and Lockhart 2008). A recent study (Granata and Lockhart
2008) utilising orbital dynamic stability (i.e. another local stability measure based on non-linear
dynamics) successfully differentiated fall-prone individuals from healthy counterparts.
Although a primary fall risk factor, ageing, was found to result in significant local instability
(Buzzi et al. 2003), the evidence that directly relates local dynamic stability to fall-prone
individuals with impaired global stability is lacking. In order to justify the utility of local
dynamic stability measures in fall prevention, it becomes necessary to directly assess its
capability in identifying those individuals who are deemed as unable to successfully avoid
large-scale perturbations (e.g. slip-induced falls).

Therefore, the objective of this study was to investigate the capability of local dynamic stability
in identifying fall-prone elderly who were unable to successfully avoid slip-induced falls.
Additionally, spatio-temporal gait parameters were studied as a comparison with local stability
measures. It was hypothesised that: 1) fall-prone elderly would have lower local dynamic
stability (as measured by Lyapunov exponent) than their healthy counterparts; 2) the spatial-
temporal gait parameters of the fall-prone elderly would also be different from those of the
healthy individuals. The findings from the current study would help substantiate the utility of
the local dynamic stability measure in fall-risk assessment and open the possibility of ‘in-the-
field’ development and testing with an ambulatory monitoring system.
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Methods
Participants

Five healthy young, four healthy elderly and four fall-prone elderly individuals were involved
in the current study. Their anthropometric information is summarised in Table 1. Informed
consent was reviewed by the Institutional Review Board (IRB) at Virginia Tech and obtained
from each participant prior to data collection. Fall-prone elderly were selected based on
previous slip-and-fall studies (Liu and Lockhart 2006a,b) and identified as unable to avoid slip-
induced falls. Self-reported medical questionnaires also indicated they had recent histories of
falling (at least one fall within 6 months).

Instrument and procedure
One dual-axial accelerometer (ADXL 203; Analog Devices, Norwood, MA, USA; range =
+1.7 g, sensitivity = 1 mV/mg, noise level = 1 mVrms, frequency = 125 Hz) was placed near
the right anterior superior iliac spine (ASIS). The accelerometer measurements were
transmitted to a local computer via Bluetooth networking for further processing. Two infrared-
reflective markers were placed bilaterally on the heels for kinematic motion capture with a six-
camera ProReflex system (Qualysis Medical AB, Gothenburg, Sweden; 120 Hz). An overhead
safety harness system was used to protect participants from accidentally losing balance while
walking on the treadmill.

Before the data collection, each participant was allowed up to 5 min to familiarise themselves
on the Parker PM treadmill (Parker Treadmill Co., Auburn, AL, USA). Sleeveless shirts, tight
shorts and athletic shoes of the same type were provided to each participant. Participants
selected their own preferred speeds at which they felt comfortable to swing their arms naturally
without requiring the use of the handrails on the treadmill. A continuous 1-min dataset was
taken by both the motion capture system and accelerometer system simultaneously.

Computation of gait parameters
Marker data were low-pass filtered (Butterworth, fourth order, 6 Hz) before further processing.
The timing of heel contact was determined using the heel kinematics data with an algorithm
similar to that proposed by Ghoussayni et al. (2004). Step duration, step length and heel contact
velocity were then calculated for each participant according to a previous publication (Lockhart
et al. 2003).

Local dynamics stability computation
Stability is defined as the ability of the neuromuscular system to maintain dynamic equilibrium
of walking in the presence of kinematic and control variability and can be quantified from
engineering analysis of the kinematic movement patterns and kinematic disturbances (Leipholz
1987). One quantitative measure of stability describes the rate at which kinematic variability
approaches the equilibrium movement trajectory.

Local dynamic stability was quantified by the maxLE from a non-linear dynamics approach.
Based on Taken’s (1981) theorem, any single-dimensional time-series measurements contain
sufficient information about the underlying dynamics of the system of interest and can be used
to reconstruct a multi-dimensional state space via a so-called time-delayed coordinate
approach. Such state space can faithfully represent the underlying characteristics (system
invariants such as stability characteristics) of the dynamical system (human motor control
system, in this case) under investigation. Two parameters, minimum embedding dimension
(dE) and time delay (T), are required for the time-delayed approach and can be determined via
the auto mutual information approach (Cao 1997) and nearest false neighbours approach
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(Abarbanel et al. 1993). With an initial single dimension time series data x(t), the state space
X(t) can be reconstructed as:

(1)

The resistance of the motor control system to local perturbations, in other words local dynamic
stability, can be assessed by tracking the average divergence of the neighbouring trajectories
in the state space. Lyapunov exponents were used to quantify dynamic stability from the
reconstructed state space X(t). ‘Nearest neighbours’ are found by picking data points from
separate strides that are closest to each other in state space. This is performed for all data points.
The distance measure (D, see below for definition) between all of these nearest neighbours is
tracked forward in time, t, to record time-dependent change in kinematics variability. Hence,
the divergence or attenuation of kinematic variability is recorded as a function of time. These
points will diverge at a rate given by the maxLE:

(2)

where Dj(i) is the Euclidean distance between the jth pair of nearest neighbours after i discrete
time steps, Δt is the sampling period of the time series data and 〈⋯〉 denotes the average over
all values of j.

For experimental data, this local dynamic stability can be quantified by maxLE via linearly
fitting the logarithmic rate of divergence with regard to time, based on the principle that
divergence due to local perturbations will grow exponentially (Abarbanel 1996). The higher
the maxLE is, the faster the divergence will grow and the worse the system’s resistance to local
perturbations. Consequently, higher maxLE indicates lower local dynamic stability of the
human motor control system of interest (i.e. instability).

Specifically, in the current study (Figure 1), the anterior–posterior accelerometer signal close
to the hip joint was first low-pass filtered using a constrained least squares finite impulse
response (FIR) filter (order = 6, cut off frequency = 10 Hz). The FIR filter, instead of a regular
infinite impulse response (IIR) filter, was chosen in order to avoid distorting the underlying
chaotic structure of the target system (Abarbanel et al. 1993). For each participant, a time series
dataset of 40 continuous gait cycles was extracted and re-sampled to 4000 frames. Thus, 100
frames were roughly equal to one gait cycle. This re-sampling approach was to ensure the
between-subject comparison could be made on the same timescale without losing or artificially
removing the cycle-to-cycle temporal variability information (England and Granata 2007). The
time-delayed coordinate approach (Packard et al. 1980) was then used to reconstruct the state
space with the embedding dimension of 5 and the time delay of 10 frames. Afterwards,
Rosenstein’s algorithm (Rosenstein et al. 1993) was applied to track the average divergences
between neighbouring trajectories in the reconstructed state space. The maxLE was then
calculated as the logarithmic rate of average divergence with regard to the time duration of 0
to 50 frames, which corresponded to the first gait step. Therefore, the maxLE obtained in the
current study indicated the capability of the human motor control system to resist the
perturbations generated within a single step.

Detailed computation can be found in a previous publication (Liu et al. 2008). All of the
computations were performed by custom-made programs in MATLAB 7.0 (The MathWorks
Inc., Natick, MA, USA) and TSTool (Merkwirth et al. 1997).
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Statistical analysis
The current study had four dependent variables (i.e. maxLE, step length, step duration and heel
contact velocity) and one independent variable (i.e. group), which had three levels (i.e. fall-
prone old, FO; healthy old, HO; healthy young, HY). One-way between-subject ANOVA was
performed on each of the dependent variables with group as the independent variable. A Tukey-
Krammer HSD test was performed in case of significant ANOVA test results. A significance
level of p < 0.05 was adopted for all of the tests. All of the statistical analyses were performed
in JMP 7.0 (SAS Institute Inc., Cary, NC, USA).

Results
Local dynamic stability

The ensemble divergence curves, which were averaged across each group, are shown in Figure
2. According to this figure, the average divergence of the FO group during the initial step
appeared much faster than that of the HY and HO groups. The ANOVA test confirmed that
the maxLE was significantly influenced by group (p = 0.0066). A Tukey-Krammer HSD test
further indicated that the maxLE of the FO group was significantly higher (approximately 20%
to 31% higher) than those of HO and HY groups (Figure 3). Recall that higher maxLE indicates
more rapidly diverging dynamics and thus represents lower stability. The results indicate that
the fall-prone elderly were characterised as having significantly lower local dynamic stability
than their healthy counterparts (i.e. higher instability).

Gait parameters
A summary of gait parameters is provided in Table 2. The ANOVA test indicated that the group
had a significant effect only on step length (p = 0.0018). A Tukey-Krammer HSD test further
revealed that the FO group had a significantly shorter step length (approximately 45% to 52%
shorter) than both the HO and HY groups (Figure 4). In other words, the step lengths of the
fall-prone elderly were significantly shorter than those of their healthy counterparts.
Additionally, the fall-prone elderly walked significantly slower than the other two groups (p
= 0.0002).

No significant group effects were found in heel contact velocity or step duration (Table 2).

Discussion
The objective of the current study was to provide an initial evaluation of whether local dynamic
stability, as quantified by maxLE utilising a simple ambulatory monitoring accelerometer, can
be used to discriminate fall-prone individuals from healthy adults. Previous studies have
suggested that the results supported by the local dynamic stability measure may or may not
extend to global stability, which is more directly relevant to an individual’s risk of falling
(Dingwell and Marin 2006). Thus, there is a need to determine whether maxLE can predict
individuals’ resilience to larger perturbations. Additionally, several gait parameters were
compared to assess the effectiveness of these measures in differentiating the fall-prone elderly
individuals. Indeed, the results from the current study indicate that measures of local dynamic
stability can identify fall-prone elderly from healthy young and older adults. Specifically, the
fall-prone elderly were found to be less stable than their healthy counterparts when considering
local dynamic stability during treadmill walking.

The current findings are in agreement with a previous analysis (Granata and Lockhart 2008),
suggesting that the stability measures derived from non-linear dynamics can be used to quantify
the risk of falling. Granata and Lockhart (2008) suggested that stability describes the ability
of the neuromuscular system to maintain dynamic equilibrium in the presence of kinematic
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and control variability. In essence, stability is maintained by active neuromuscular control.
This will require both active as well as passive stiffness control (Winter et al. 1998, Morasso
and Sanguineti 2002) and recruitment strategies of active muscles (Nielsen et al. 1994). The
neuro-control system provides active corrective response and intrinsic joint torques to maintain
dynamic equilibrium in the presence of kinematic disturbances (i.e. micro-slip, step-
disturbance, neuromotor recruitment error, etc.). Attenuation of kinematic disturbances is
manifested in dynamic stability measures and fall-prone individuals may be less able to
attenuate the kinematic disturbances. For example, utilising maximum Floquet multiplier (a
measure of orbital dynamic stability, i.e. maximum eigenvalue of the system), a previous study
(Granata and Lockhart 2008) was able to differentiate fall-prone elderly from healthy adults.
Similar differentiation was also evident in the current study, in which local dynamic stability
calculation was applied.

It has been suggested that measures of local stability and orbital stability quantify different
properties of system dynamics (Dingwell and Kang 2007). On one hand, the local dynamic
stability quantifies the divergence in terms of both space and time variables. Additionally, the
tracking of the divergence for a given trajectory is relative to its own neighbouring trajectory.
Being the maximum value among the Lyapunov exponent spectrum in the state space, the
maxLE represents the least stable aspect of the movement dynamics (Granata and England
2006). On the other hand, the orbital dynamic stability quantifies the divergence only in space.
Additionally, assuming limit cycle systems, the orbital stability quantifies the tendency of the
dynamic system to diverge/converge back to its (one target) trajectory in a discrete manner. In
a scenario of continuous walking, the stochastic disturbances and control errors are manifested
as the kinematic variability about its target trajectory. The ability of the neuromuscular response
to such kinematic variability is quantified by the orbital dynamic stability. A recent study
(Dingwell and Kang 2007) has shown that an individual can be both locally unstable and
orbitally stable. The results from the current study and a previous study (Granata and Lockhart
2008) clearly demonstrate that both local dynamic stability and orbital dynamic stability can
be used to effectively identify fall-prone individuals. Having both measures as potential
candidates, an important line of future research will be to compare and determine the most
robust and sensitive stability measure as the effective fall-risk predictor. For example, Floquet
analysis can be made at the instance of a gait cycle to determine and quantify the system’s
ability to recover from the perturbation at a fixed point (e.g. at the time of heel contact, mid
stance, etc.) to identify and help pinpoint where in the older adults’ gait cycle instability may
occur.

There are several issues to be considered when applying local dynamic stability analysis to
experimental data. First is the choice of walking speed. Similar to previous research (Buzzi et
al. 2003, Granata and Lockhart 2008), participants were allowed to walk at a preferred speed
instead of a fixed speed. Walking speed was not involved in the analyses for two reasons; first,
to ensure the optimal consistency of gait performances (Diedrich and Warren 1995) and to
minimise any potential discomfort (Sekiya et al. 1997). Meanwhile, it was also argued that
each preferred gait speed behaves similarly to an attractor characterised by the stable state
phase (Diedrich and Warren 1995). Thus, it was posited that local dynamic stability analysis
should be performed when participants walk at a preferred speed. Second, involving walking
speed in the statistical model (e.g. as a covariate) was deemed inappropriate. Previous studies
have found an inverse relationship between local dynamic stability and walking speed among
healthy young adults (Dingwell and Marin 2006, England and Granata 2007). However,
whether this relationship would hold true for fall-prone elderly and/or a mixture of population
(young and elderly) has to be investigated in future studies. In fact, the current study indicated
that even with a slower walking speed (Table 2), the fall-prone elderly still exhibited a
significantly lower dynamic stability than healthy adults.
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With regard to the regular spatio-temporal gait parameters, the current study did not observe
any significant ageing effect on heel contact velocity and step duration. Similar results were
also found by Lockhart and Kim (2006), who argued that it may be due to the age-related
differences in fear of an upcoming slippery surface. Even though the current study did not
involve any slippery surface, walking on a treadmill continuously may present itself as a
challenging task for the fall-prone elderly. It is possible that they were adopting similar gait
patterns in the current study. The fall-prone elderly were also found to have a significantly
shorter step length than the healthy adults. Similar age-related reduction in step length was also
found in the literature (Maki 1997). Additionally, it is a confirmed gait adaptation strategy
when encountering a known slippery surface, so as to avoid a slip-induced fall (Lockhart et
al. 2007). Despite these known gait adaptations, fall-prone elderly still continue to fall. Buzzi
et al. (2003) hypothesised that one factor contributing to the increased falls due to ageing may
be the inability of the elderly to compensate for the natural stride-to-stride variations present
during walking. With local dynamic stability, the findings from the current study can be viewed
as a support to this hypothesis. Nevertheless, since most falls were initiated by larger (global)
perturbations, the connection between local dynamic stability and the ability to negotiate global
perturbations has to be investigated in future studies. As such, the current study should be
generalised with caution. Future studies should also investigate the direct correlation between
local dynamic stability and gait parameters.

It should be noted that the findings of this study were derived from a small sample size. It is
quite possible that the small but insignificant differences between the HO and HY groups would
have been significant given a larger sample size. Future studies with a larger number of
participants may produce more conclusive results regarding the discriminative capability of
local dynamic stability measures. Additionally, many other factors (i.e. individuals’ range of
motion, muscle strength, peripheral sensation, etc.) may play a role in one’s local stability and
should be considered in future studies.

It should also be noted that, for each participant, time series data of 40 continuous gait cycles
were extracted for the analysis. Although implicated (Kang and Dingwell 2006a), appropriate
trial length (of a time series data) for obtaining the most reliable results for the elderly should
be further investigated.

In summary, together with the aged-related spatio-temporal gait adaptations, the current study
found that the fall-prone elderly had a significantly reduced local dynamic stability. In addition
to providing the evidence that the increased falls of the elderly may be due to an age-related
inability to attenuate/control stride-to-stride variances during locomotion, the current study
proposed the possibility of using local dynamic stability as a potential predictor to assess risk
of falling.
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Figure 1.
Illustration of local dynamic stability computation. AP = anterior–posterior; maxLE =
maximum Lyapunov exponent; 1 gait cycle = 2 gait step.
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Figure 2.
Ensemble divergence curve by group. FO = fall-prone old; HO = healthy old; HY = healthy
young; 1 gait step = 0.5 gait cycle; dash line around each ensemble average curve represents
1 SE.
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Figure 3.
Mean and SD of maximum Lyapunov exponent (maxLE) by group. FO = fall-prone old; HO
= healthy old; HY = healthy young.
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Figure 4.
Mean and SD of step length by group. FO = fall-prone old; HO = healthy old; HY = healthy
young.
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