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Impacts of El Nino and La Nifa on interannual
snow accumulation in the Andes: Results
from a high-resolution 31 year reanalysis
Gonzalo Cortés” (2} and Steven Margulis’

"Department of Civil and Environmental Engineering, University of California, Los Angeles, California, USA

Abstract we present new insights on extratropical Andean snow climatology (27°S to 37°S) based on the
results from a 31 year high-resolution reanalysis. The snow water equivalent (SWE) estimates were generated
by integrating observed snow depletion data from Landsat together with a snow model forced by the
Modern-era Retrospective Analysis for Research and Applications. The spatial resolution (180 m), geographic
extent (175,000 km?), and temporal span (1984-2015) constitute an unprecedented data set for the region.
SWE reaches annual peak volumes between 13 and 66 km?, with a climatological average of 27.7 km>. A
positive correlation between SWE and the Oceanic Nifio Index (R* = 0.35) exists for the region, with a
strengthening of the signal from north to south, peaking at 34°S. Although the correlation between El Nifio
and positive SWE anomalies is significant, La Nifia was not found to drive negative anomalies beyond what is
observed during non-La Nifa years.

Plain Language Summary This article presents a new data set of snow water resources over the
Andes extratropical region of the countries of Chile and Argentina. The methods integrate Landsat satellite
data with numerical models to derive an enhanced snow data set for a region where access to in situ snow
measurements is limited due to geographical and logistical constrains.

1. Introduction and Objectives

The Andes is the most significant mountain range in the Southern Hemisphere in terms of elevation and
extent, and it impacts the atmospheric circulation across scales ranging from the synoptic to the microscale,
resulting in different phenomena that affect the hydrology of the entire South American continent [Garreaud,
2009]. Yet as in other mountain regions throughout the globe, many basic questions on Andean snowpack
remain largely unanswered due to lack of data, and an observation-driven, continuous characterization of
seasonal snow water volume and its temporal and spatial variability is still missing. Existing in situ networks
over the region do not have a spatial density adequate enough to address small-scale (<1 km) features in
snow accumulation, and forward modeling generally lacks sufficient accuracy over large scales due to
relatively uncertain or biased input forcing data.

Dozier et al. [2016] describe the problem of characterizing the spatiotemporal distribution of SWE over moun-
tain regions as one of the most important unsolved issues in snow hydrology. The Andean region represents
an excellent example of the challenges that exist when addressing this problem due to the significant topo-
graphic complexity and influence of different climate regimes, which result in complex interactions leading
to significant spatial variability across small scales [Cortés et al., 2016]. Previous studies have attempted to
better characterize SWE spatial variability and analyze trends using retrospective energy-based SWE recon-
structions for the 2001-2014 period [Cornwell et al., 2016], forward model simulations (4 km resolution, forced
by Modern-era Retrospective Analysis for Research and Applications (MERRA) [Mernild et al., 2016]), and regio-
nal indices derived from in situ data [Masiokas et al., 2006]. We highlight these valuable data sets and the
relevant science questions addressed by previous studies; however, the known biases of MERRA over the
Andes [Yi et al., 2011; Cortés et al., 2016], the scarce in situ data, and biases in remotely sensed Moderate
Resolution Imaging Spectroradiometer Snow Covered Fraction data [Rittger et al., 2013] likely hinder the abil-
ity of such methods in capturing the complex spatial patterns of Andean snow at high resolutions (<500 m).
The development of methodologies that combine high-resolution remotely sensed observational data sets
together with robust modeling frameworks is necessary for the region, allowing the leveraging of the bene-
fits of high-resolution observations over complex topography and adequately addressing the underlying
uncertainty of the data sets through ensemble methods.
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In this paper a new high-resolution snow data set for the Andes is presented. The methods used to generate it
aim to mitigate some of the shortcomings mentioned above by integrating high-resolution remote sensing
imagery and modeling within a data assimilation framework. The framework integrates an ensemble of snow
model simulations forced by MERRA [Rienecker et al., 2011] together with Landsat fractional snow covered
area (fSCA) data [Margulis et al., 2015] via Bayesian principles (i.e., data assimilation), combining the physics
of a land surface model (LSM) with the information content from the remotely sensed Landsat data and
the meteorological reanalysis forcing data. The method has been shown to be a robust generalization of
retrospective energy-based reconstructions [Girotto et al., 2014] and has been used to characterize the
long-term climatology of the Sierra Nevada and the recent effects of the 2011-2016 California drought
[Margulis et al., 2015, 2016a, 2016b]. The generated estimates of snowpack states are consistent with the
historical remotely sensed observed depletion record, explicitly taking into account the inherent uncertain-
ties of all sources of the information used. In this work, we characterize the spatiotemporal distribution of
SWE over the extratropical Andes, emphasizing conditions present during El Nifio and La Nifa years.

2. Methods
2.1. Study Area

The study domain (Figure 1a) consists of the extratropical Andes between 27°S and 37°S above 1500 mean
annual sea level (i.e., the nominal snowline). The region represents the headwaters of the most important
Chilean and Argentinean mountain watersheds (Pacific and Atlantic draining, respectively). The climate is
alpine with a large spatial variability in precipitation, ranging from arid over the north (usually below
100 mm/yr) to the more humid south (above 2000 mm/yr). The highest temperatures are observed during
the months of November to March (Spring-Summer season), which coincide with the driest months. The
months of June-September (winter season) are characterized by lower temperatures and higher precipi-
tation. The physiographic characteristics of each of the watersheds are tabulated in Table S1 in the
supporting information.

2.2. Remote Sensing Data, Modeling, and Assimilation Framework

The methodology used in this study is presented in detail in Margulis et al. [2015, 2016a] and Cortés et al.
[2016] and described in detail in Text ST and Figure S1 in the supporting information. The methodology uses
ensemble estimates of SWE and fSCA from forward modeling (prior) and then conditions them via data
assimilation of historical fSCA data from Landsat TM, ETM+, and OLI sensors (totaling more than 5000 images).
The assimilation step results in posterior SWE and fSCA estimates that are probabilistically conditioned on the
observed depletion record from Landsat and on the forward model state uncertainty. The fSCA retrieval is
performed using a spectral unmixing algorithm [Painter et al., 2003; Cortés et al., 2014].

The forward model used to generate the prior ensemble estimates is the SSiB3 LSM [Yang et al., 1997; Xue et al.,
2003] combined with a Snow Depletion Curve model (SDC) [Liston, 2004]. LSM and SDC are used to generate
the prior ensemble estimates of snowpack states at an hourly time step and at a resolution of 180 m. The
ensemble forcing fields used as input for the LSM were generated by characterizing the MERRA uncertainty
[Girotto et al., 2014] using the local meteorological observation network and then downscaling those fields to
the 180 m resolution as described in Text S1 in the supporting information (downscaling of MERRA from the
native resolution of 0.5° latitude by 2/3° longitude to the model grid of 180 m consisted of topographic
adjustment of radiation, temperature, humidity and pressure) [Kunkel, 1989; Cosgrove et al., 2003; Liston
and Elder, 2006; Urrutia and Vuille, 2009; Girotto et al., 2014; Cortés et al., 2016]. Precipitation uncertainty at
each model grid cell was represented via a multiplicative error coefficient [Pan et al., 2003], characterized
using the in situ meteorological network which is implicitly updated during the assimilation step.

The Particle Batch Smoother (PBS) data assimilation algorithm described by Margulis et al. [2015, 2016a]
and further implemented over Andean test verification sites by Cortés et al. [2016] is used. In the PBS
algorithm, the prior and posterior ensemble replicates are the same. For the prior ensemble, the prior
weight associated with each replicate is the same: the assimilation step updates these weights based
on the assimilated fSCA observations, assigning higher weights to those replicates that show model
predictions closer to the observations (higher likelihood) and lower weights for those with larger differ-
ences (lower likelihood). The prior and posterior weights can then be used to calculate prior and posterior
ensemble metrics such as the ensemble median SWE. Verification of the reanalysis framework results has
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Figure 1. (a) Study domain showing the elevation and delineation of each of the watersheds (identified by basin IDs and
cluster analysis categorization in Table S1); (b) 31 year average pixelwise peak SWE climatology.

been performed for the Sierra Nevada using in situ sensor data [Margulis et al., 2016a] and for the Andes
[Cortés et al., 2016] using more than 2000 snow survey points obtained from 2009 to 2015 (Figure S2 in
the supporting information) and 350 site years of peak annual snow pillow and snow course SWE data
from 1985 to 2015. Verification results showed unbiased posterior estimates of SWE with a correlation
coefficient of 0.73, RMSE of 0.29 m, and mean error of less than 0.01 m using snow pillow and snow
course peak SWE. Results using snow survey data showed similar unbiased estimates as well with a
correlation coefficient of 0.50, RMSE of 0.29 m, and mean error of less than 0.01 m. Cortés et al. [2016]
found that no significant posterior error structure was found to exist as a function of elevation, slope,
aspect, and wind exposure/sheltering. A more detailed analysis of the verification results is described in
Text S1 in the supporting information, with the information for the verification sites tabulated in Table S3.
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2.3. Spatiotemporal Analysis

The spatiotemporal distribution of SWE is analyzed herein by computing the water year (1 April to 31
March) annual peak SWE over each of the grid cells of the domain. The annual peak SWE corresponds
to the maximum value observed during the water year for any given pixel (i.e, pixelwise peak).
Hydrology of rivers within the region is characterized by a period of low flows from April to August, fol-
lowed by an increase in streamflow due to melt of the snow, peaking between November and January.
Previous work has shown a very high correlation (>0.90) between observed seasonal flows and in situ
snow data [Masiokas et al., 2006]. A cluster classification [Kaufman and Rousseeuw, 2009; Rubio-Alvarez
and McPhee, 2010; Cornwell et al., 2016] was performed using the integrated peak SWE volumes observed
over each of the study watersheds in order to identify zones of long-term coherent behavior (see Text S3
in the supporting information). The impact of El Nifio-Southern Oscillation (ENSO) is analyzed by evaluat-
ing the annual pixelwise peak SWE distribution during each of the El Nifio and La Nifa years that occurred
during the 1984-2014 water years. Each year during which El Nifio or La Nifia conditions were present was
classified according to strength (very strong, strong, and weak) using the Oceanic Nifio Index (ONI) time
series from NOAA (Table S1).

3. Results and Discussion
3.1. Spatial and Temporal SWE Distribution

Figure 1a shows the results of the cluster classification analysis by outlining the study watersheds that belong
to the same cluster with the same color. The domain can be partitioned into five distinct snow accumulation
zones: northern arid, northern semiarid, central semiarid, central Mediterranean, and southern. The classifica-
tion is in general consistent between watersheds at both sides of the continental divides. We anticipate that a
pixelwise cluster classification would result in less discrete borders between the zones, but the computational
costs of performing such classification are significant given the large domain and high resolution. Figure 1b
shows the pixelwise climatological value of peak annual SWE over the study period. The mean integrated
pixelwise peak SWE over the domain was found to be approximately 27.7 km>. The values presented here
do not include snow over glacierized areas, where the reanalysis framework is not applied due to the lack
of seasonal fSCA disappearance over the ice. Table S1 in the S| details the pixelwise peak SWE volumes for
each of the watersheds over the domain. The spatial variation in SWE is a direct consequence of the latitudi-
nal variation of precipitation between the arid Northern and humid Southern Andes, a feature widely
documented by other authors [e.g., Montecinos et al., 2000; Viale and Nuiiez, 2011], together with the varia-
tions in elevation across the domain. There is a significant contrast between SWE on the western (windward)
and eastern (leeward) sides of the range due to orographic enhancement and rain shadow effects [Viale and
Nuriez, 2011], with Pacific draining watersheds containing more than twice (19 versus 8.7 km?) the climatolo-
gical peak SWE volumes of the Atlantic draining watersheds despite having half the area (i.e., Pacific draining
watersheds accumulate approximately 3.7 times more snow per unit area in comparison to Atlantic draining
watersheds). The deepest SWE is observed between 33.5°S and 36°S, peaking at approximately 35.5°S
where the effect of orographic enhancement, latitudinal precipitation bands, and elevation reaches a
combined maximum.

Figure 2 shows the spatial patterns of annual peak SWE anomalies. Years with significantly higher SWE are
generally related to El Niflo occurrence (e.g., 1987, 1992, 1997, and 2002; see Table S2 in the supporting
information). The driest years on record correspond to 1985, 1996, 1998, and the period 2010-2014, which
is unprecedented in terms of drought duration and extent [Boisier et al., 2016]. The highest range-wide
SWE occurred during 1987 (very strong El Nifio year), with a total of approximately 66.3 km?, while the lowest
occurred during 1998 (strong La Nifa year), totaling approximately 12.9 km®.

We observed clear bimodal patterns of anomalies during years 1993, 1994, 1995, and 2009. For all of these
years the latitudes north of 33-34°S show negative SWE anomalies, and south of this divide we observe posi-
tive SWE anomalies. For the rest of the years the anomaly signs are uniform throughout the domain. Masiokas
et al. [2006] identify weakening of the subtropical Pacific anticyclone as a factor driving the positive anoma-
lies in snow accumulation over a similar geographical domain. The results presented herein suggest that the
consequence of this weakening is present throughout the entire extratropical Andes domain where snow is
present, with only a few instances of bimodality observed throughout the time series. Similarly, Viale and
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Figure 2. Annual pixelwise peak SWE anomaly (in meters).

Nuriez [2011] relate heavy precipitation events to strong water vapor transport from the Pacific. This transport
is reduced with the strengthening of the Pacific Anticyclone, reducing the amount of moisture that reaches
the Andes and hence SWE accumulation.

3.2. El Niflo and La Nifa Influence on Snow Accumulation

Figure 3 shows Hovmoller diagrams (latitude versus time) for annual peak SWE, together with the
corresponding Z score (the value of the year minus the mean, divided by the standard deviation). The latitu-
dinal SWE distribution was calculated by averaging all of the SWE values over 0.1° (approximately 10 km)
latitude bins. The strongest positive anomalies generally occur during very strong and strong El Nifio years.
It is not possible to assert a strong correlation between La Nifa years and negative SWE anomalies. The
northern region (north of 30°S) is usually in a state of quasi-permanent snow drought, with Z score values
generally negative and only interrupted by a few wet El Nifio years. The last year with a predominant pattern
of significant positive anomalies for the extratropical Andes was 2002, and the whole domain experienced
snow-drought conditions between 2005 and 2015.

The pixelwise annual peak SWE maps averaged over the different years according to each ENSO classifica-
tion are shown in Figures 4a—4e. The value for each pixel was calculated as the average of peak SWE
values for the years belonging to each of the defined ENSO categories. There is a clear monotonic
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Figure 3. Hovmoller diagram for annual pixelwise peak (a) SWE distribution and corresponding (b) Z score. Very strong El
Nifo (VSEN), strong El Nifio (SEN), and strong La Nifia (SLN) years are identified.

pattern when the effect of ENSO in SWE is presented this way: El Nifio years are generally wetter than La
Nifa years, and at a first glance the strength of the ENSO shows a direct influence to how wet or dry the
average pattern is; however, these results need to be analyzed carefully as the relationship between ENSO
and SWE is quite noisy (see Figure 5). The average integrated water volume during the two very strong El
Nifio years (65.1 km>, 1987 and 1997) was nearly 5 times the average integrated water volume during the
strong La Nifa years (14.6 km3), and more than twice the average water volume (30.3 km?®) over the
1984-2014 water years. There were no very strong La Nifia years during the analyzed period according
to the classification system used.

Figures 4f-4j show the Hovmoller diagrams for the latitudinal distribution of weekly averaged SWE during
the years belonging to the different El Nifio/La Nifia categories (same years as Figures 4a-4e). During El
Nifio years, SWE shows high positive anomalies throughout the entire domain. The duration of the snow
cover is also significantly higher than other years, ranging from approximately 30 weeks over the
northern latitudes to more than 40 weeks over the southern regions (and even persisting beyond the
end of the water year for some high-elevation locations). Figure 4j shows a significant snow presence
during the beginning of the water year as two of the strong La Nifa years (1988 and 1998) were pre-
ceded by a very strong El Niflo. The persistent snow appears only to be relevant south of 32°S, and
the northern latitudes show extremely low snow volumes and no year-to-year persistence of snow, even
after the strong 1987 El Nifo. During strong La Nifa years, the snow cover duration is greatly diminished
with respect to El Nifio years: for the northern regions, there is minimal snow cover, lasting for
only 10-20 weeks.

Figure 5a shows the latitudinal SWE distribution for each year analyzed, and Figure 5b shows the correspond-
ing Z score value. This figure is similar in nature to Figure 3, with the difference that in here the information
regarding ENSO fluctuations is conveyed by coloring each of the different latitudinal values according to the
April-September ONI value for the water year. The values have been color coded according to the average
ONl value during the year, with blue showing positive ONI values (El Nifio conditions) and red showing nega-
tive ONI values (La Nifa conditions). While wet years are usually associated with positive ONI values, only
1987 and 1997 stand out as significantly higher accumulations across the entire latitude range of the reana-
lysis. WY 1987 is particularly interesting as it is the only year that showed a wide difference (albeit same sign)
between the anomalies observed in the northern latitudes and the southern latitudes, with the northern lati-
tudes of the domain showing Z scores close to 5 for the arid regions north of 29°S. La Nifia years
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Figure 4. (a-e) Mean pixelwise peak SWE maps during El Nifio and La Nifa years and (f-j) Hovmoller diagrams for the aver-
age weekly SWE distribution. Very strong El Nifio (Figures 4a and 4f), strong El Nifo (Figures 4b and 4g), weak El Nifio
(Figures 4c and 4h), weak La Nina (Figures 4d and 4i), and strong La Nifna (Figures 4e and 4j).

predominantly result in negative anomalies south of 31°S, although the variation of the anomaly is not as
significant as the Z score difference seen for 1987. A detailed analysis of the presence of storms
throughout the season is required in order to understand the underlying reasons behind the spatial
variability in ONI-driven anomalies.

Figure 5c shows the latitudinal variation of the correlation coefficient between the annual time series of
domain-averaged peak SWE and ONI. Spearman (rank-based) correlation coefficients were included since
rank-based correlations are more robust to outliers. The 1987 and 1997 El Nifio years influence the Pearson
correlation coefficient significantly for the Northern regions due to the high SWE accumulations, resulting
in deceivingly high correlation coefficients north of 31°S. Regions south of 33°S tend to show a lower number
of extreme years (i.e., no significant Z score deviation), and hence the Pearson and Spearman correlation
coefficients tend to converge. Based on these results, the region with the largest influence by ENSO variations
is the 33°S to 35°S latitude range, with a mean correlation of approximately 0.5 using both Pearson and
Spearman calculations.
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4. Conclusions

This paper presents a new high-resolution snowpack data set generated by integrating ensemble simulations
and remotely sensed observations of snow covered area from the Landsat satellites. The data set illustrates
how snow over the Andes shows significant latitudinal variability in accordance with the significant climatic
and topographic variability across the domain. Northern watersheds are characterized by low peak SWE
values due to the high aridity and the low number of storms carrying significant precipitation. During the
1987 and 1997 El Nifo years these watersheds experienced significant positive anomalies, and some of the
watersheds evaluated in this study show that only 2 or 3 years are responsible for up to 80% of the total
cumulative SWE observed over the entire time series. The extreme effect of these El Nifio years in snow
accumulation, particularly over the northern regions, together with the prevalence of snow-drought condi-
tions for the region hints at a greater need to evaluate the effect of El Nifio in phenomena that are directly
impacted by snow precipitation such as glacier mass balance and seasonal runoff. Southern watersheds show
a more stable climatological regime with a more uniform distribution of snow volumes across the record, and
a more limited impact of El Nifio on snow accumulation, although the ONI index still shows a correlation with
SWE volumes for these latitudes. The high temporal variability exhibited in the northern regions represents
an interesting challenge for water planners, as aridity is the norm and the climatological mean may be signif-
icantly affected by the presence of strong El Nifio years in the time series. The impact of El Nifio events in 1987
and 1997 on snow deserve further study given the significant positive SWE anomalies observed throughout
the domain, particularly for the regions north of 33°S.
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