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Abstract—We describe an end-to-end platform called
SpecSense to support large scale spectrum monitoring.
SpecSense crowdsources spectrum monitoring to low-cost,
low-power commodity SDR/embedded platforms and provides
necessary analytics support in a central spectrum server. In this
work, we describe SpecSense and address specific challenges
related to accurately estimate spectrum occupancy on demand
with low overhead. To address the accuracy question, we augment
state-of-the-art spatial interpolation techniques to accommodate
scenarios where RF propagation characteristics change across
space. To address the overhead question, we solve the sensor
selection problem to select the minimum number of spectrum
sensors that can best estimate the spectrum at the requested
locations.

I. INTRODUCTION

There is a growing realization that the RF spectrum must

be treated as an important natural resource that is in limited

supply. This stems from unbridled growth of mobile data

and the need to support emerging applications such as M2M

communications, telemedicine, autonomous cars/drones and

mobile virtual/augmented reality. Policy makers have been

promoting new forms of spectrum sharing models to replace

the regimented spectrum allocation models in existence to-

day [3], [6]. The goal is to improve spectrum utilization as a

means to alleviate any future spectrum crunch.

Just like any other resource with mismatched demand and

supply, all steps towards better utilization from both technical

and policy angles have increased the need for large scale spec-

trum monitoring [15], [25]. Large scale spectrum monitoring

serves two primary purposes: (i) it can aid effective spectrum

sharing technologies by identifying spectrum opportunities [3],

[13]; (ii) it can act as a vehicle for deeper understanding of

spectrum use across time and space [25]. The latter serves as

a driver for future policy and technical directions. Alongside,

indirect needs are also growing such as spectrum patrolling to

detect unauthorized spectrum use [18], [37]. While the need

for RF spectrum monitoring is not a new realization by itself,

current approaches suffer from two significant limitations:

1) Lack of scalability: Most exiting approaches on RF spec-

trum monitoring [4], [20], [25] do not scale. For example,

approaches such as Specnet [20] or Microsoft spectrum

observatory [4] require use of relatively expensive spectrum

sensing stations that are networked with data delivered to

†The first two authors are co-primary student authors.

central, perhaps cloud-based platforms.1 Alternatives such

as Vscope [36] can provide fine-grain data across space, but

are limited to contracted vehicular platforms.

2) Lack of application support: There is a growing body

of work on applications that can benefit from spectrum

awareness, such as spectrum opportunity detection, shared

spectrum models [6], [12], [13], RF-based localization [22],

transmitter identification [18], [37], spectrum analytics [33],

etc. However, there is virtually no attempt in the community

to couple such applications to large-scale spectrum mon-

itoring. This is a missed opportunity as applications are

important drivers for large-scale deployments.

In the SpecSense project, we are creating an infrastruc-

ture that integrates scalable RF spectrum monitoring with

application support, and build an end-to-end system with

monitoring data and connected apps working seamlessly at

scale. The idea is to develop (1) an effective crowdsourcing

mechanism using low-cost, low-power sensors [26], [28] to

support distributed fine grain spectrum sensing, along with (2)

necessary support for spectrum-aware applications. There is a

growing evidence that incentive mechanisms can be developed

to enable crowdsourcing measurements of this kind once data

is considered valuable. A good example is FlightAware [2],

a popular flight tracking company, which uses low-cost com-

modity RF sensor hardware (similar platforms as in this work)

to capture ADS-B signals emitted from airplanes flying over-

head. The power of FlightAware comes from crowdsourcing

with 5000+ sensing sites worldwide, collating such data on

the backend to track flights.

Fig. 1 provides an an overview of SpecSense. In

SpecSense, the spectrum-aware apps are the drivers and

spectrum data is collected and processed as needed by such

apps. Supporting such on-demand mechanism is critical as

large-scale spectrum data with fine time/frequency precision

is unrealistic to collect and maintain.

Contributions: A large number of interesting technical chal-

lenges arise in SpecSense. For brevity we will focus our

attention to only a few of them in this paper. We first show

how crowdsourcing with large number of inexpensive RF

sensors can be beneficial (Section II). In SpecSense, many

applications have the canonical need to estimate the RF power

1This limitation is clearly evidenced by very limited actual deployment of
Microsoft’s observatory (only 11 stations in the US) even after several years
of effort and all software tools made available.
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at high density of deployment (beyond 15 sensors per sq. km.)

all sensors perform similarly regardless of capability. At this

density the interpolation error dominates.

Clearly, the tradeoff is in favor of inexpensive sensors, as

higher density still results in lower total cost and power with

the added advantage of ubiquitous operation. There are several

theoretical results in this space that also makes similar observa-

tions albeit with respect to specific signals and sensing models

(e.g., [19]). SpecSense does not rely on specific sensors,

but our current design uses above-mentioned commodity USB-

powered SDRs with mobile phone or commodity embedded

platforms.

III. SPATIAL INTERPOLATION OF RF SIGNALS

Spatial interpolation of RF signal is the key enabler for

many applications of SpecSense. The confluence of highly

granular data gathering ability in SpecSense and the need

for accurately answering the spectrum occupancy queries by

applications require revisiting of spatial interpolation tech-

niques. While prior work (e.g., [34]) has indeed considered

spatial interpolation of spectrum data, they either used syn-

thetic data or had access to much less granular data than what

SpecSense is able to gather. Thus, some of the inefficien-

cies have not been exposed. Our specific contribution here is

showcasing improved spatial interpolation of RF signals by

data collected via SpecSense. Specifically, we extend the

well-known Ordinary Kriging (OK) interpolation technique

by (i) “detrending” the signal by averaging the path-loss

exponent, and (ii) partitioning the given spatial region based

on path-loss characteristics.

A. Basics of Spatial Interpolation of RF Signals

Many interpolation techniques have been explored for RF

signals in recent works [10], [11], [29], [34], heavily borrow-

ing on huge literature available in the general area of geospatial

interpolation [24]. In a recent paper of interest [23], the authors

have presented a performance evaluation of various techniques

over signal strength data collected using commodity smart-

phones, and have observed that Ordinary Kriging (OK), Uni-

versal Kriging (UK) and Inverse Distance Weighting (IDW)

methods perform better than other techniques. Also, [24], [30]

note that the performance of UK deteriorates significantly with

decrease in density of the observation data points. Because of

this concern, we consider only IDW and OK in evaluating

SpecSense. We describe these techniques next.

Inverse Distance Weighting (IDW): This is a straightforward

interpolation technique that estimates the value at the location

s0 to be a weighted average of known values at nearby

locations, weighted by inverse of their (powers of) distances

from s0.

Ordinary Kriging (OK): Like IDW, Ordinary Kriging also

defines the predicted value as a linear combination of the

known neighboring values, but unlike IDW, the weights are

computed by minimizing the prediction variance (under certain

assumptions). The main advantage of Kriging over other

spatial interpolation techniques is that it considers the structure

of the spatial correlation (deduced through semivariograms),

and thus, yielding more reliable predictions. We start with

some basic definitions.

Let s ∈ R
d be a generic location in a d-dimensional

Euclidean space and {Z(s), s ∈ R
d} be a spatial random

function (rf), with Z denoting the attribute/signal of interest.

We assume that Z(s) is continuous, i.e., the attribute Z can

be observed at any point of the domain.

Semivariogram; Second-order Stationary. Semivariogram for

a pair of locations (si, sj) is denoted as γ(si, sj) and is defined

as half of the variance of the difference between the field

values at these locations.

A random function {Z(s), s ∈ R
d} is said to be second-

order stationary, if the following two conditions hold: (i) the

expectation E[Z(s)] is a constant, and (ii) The semivariogram

at a pair of locations s and s+ h depends only on the vector

h (called the lag), i.e., γ(s, s+ h) = γ(h) for all s and h.

OK System of Equations. Let {Z(s)} be a second-order

stationary random function. Given observation values

Z(s1), Z(s2), . . . , Z(sn) at n locations, we wish to find the

estimate Ẑ(s0) of the value Z(s0) at location s0. In particular,

we seek a linear function predictor Ẑ(s0) =
∑n

i=1 λiZ(si)

that minimizes V [Ẑ(s0) − Z(s0)], the variance of the

prediction error, where λi are the weights to be derived. With

some arithmetic manipulation and writing γij = γ(si, sj), the

goal reduces to:

Minimize 2
n∑

i=1

λiγi0 −
n∑

i=1

n∑

j=1

λiλjγij subject to

n∑

i=1

λi = 1

The above is solved using the Lagrange multiplier method with

a multiplier α, and results in the following system of Ordinary

Kriging equations:




λ1

λ2

...

λn

α



=




γ11 γ12 · · · γ1n 1
γ21 γ22 · · · γ2n 1

...
... · · ·

...
...

γn1 γn2 · · · γnn 1
1 1 · · · 1 0




−1 


γ10
γ20

...

γn0
1




(1)

Using the OK interpolation technique involves: (i) determining

the semivariogram function to estimate γij values (as dis-

cussed below), (ii) using the above system of equations to

predict the value at new locations.

Determining the semivariogram function: To use the above

system of equations (Eqn. (1), we need to compute γij values

from the observation data. The simplest estimator for γ(h)
(and thus, for any γij due to second-order stationary property)

is [16]:

γ(h) =
1

2|N(h)|

∑

(si,sj)∈N(h)

(Z(si)− Z(sj))
2,

where N(h) are the pairs of observations such that h − ε <
|si−sj | < h+ε with ε being a small tolerance parameter. Now,

to make the semivariogram function continuous and negative-

semidefinite, a parametric semivariogram model is usually
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fitted to the above estimated model. We use the commonly

used exponential model with two parameters C and a:

γ(h) = C
(
1− e−(h/a)

)
.

See Fig. 4 for an example.

B. Improving OK by Detrending and Partitioning

In this section, we introduce two techniques to improve OK

in our context of RF signal interpolation: (i) detrending the

observation data based on average path-loss exponent, and

(ii) partitioning the given spatial region based on path-loss

characteristics.

Detrending the observation data: Recall that the rf {Z(s)}
must have a constant mean to derive the OK system of equa-

tions. To ensure this condition, we decompose the received

signal (in dBm) at si into two parts:

Z(si) = L(si) + δ(si),

where L(si) is estimated independently as shown below and

δ(si) is the component estimated by the OK technique. Here,

we implicitly assume the log-normal path-loss model, where

the received power at a distance of d from the transmitter with

a transmitter power P is given by:

P − 10α log10(d) +N(0, σ2) (2)

where N(0, σ2) reflects the attenuation due to flat fading (e.g.,

shadowing) and is represented by a Gaussian (or normal)

random variable with zero mean and variance σ2, α is the

path-loss exponent, and all power values are expressed in dBm.

Thus, we let L(si) represent the P −10α log10(d) component

of the received power and estimate it as described below, and

use OK to estimate δ(si) which has a constant mean of zero.

Estimating L(si) Values. We estimate L(si) component of the

received power as follows. The basic idea is to estimate α as

the mean of the perceived α across all observation points.

1. First, we assume that the transmitter is located at the

observation point st that has the maximum signal strength.

2. Then, we compute the “perceived” path-loss exponent αi

at observation point si to be:
Z(st)− Z(si)
10 log10(di)

where Z(st)

and Z(si) are the observed values at the locations si and

the assumed transmitter location st respectively, and di is

the distance between si from st.

3. Now, we compute the mean ᾱ of the perceived αi’s, and use

it to compute the L(si) values at the observation locations

as well as the new location s0 by:

L(si) = Z(st)− 10ᾱ log10 di.

Predicting Value at New Location s0. Once L(si) component

has been estimated as above, we can compute δ(si) = Z(si)−
L(si) at the observation locations (but not s0). Finally, we

use the OK technique to estimate the δ(s0) value at the new

location s0 using the δ(si) values at the observation locations.

OK with Partitioning: In our context of predicting RF signal

values, Ordinary Kriging technique can be further improved

by partitioning the region of interest into subregions with

different path-loss characteristics and then applying the OK

technique independently for each subregion. The intuition

behind such an approach is as follows. Recall that one of the

conditions required for optimality of OK technique is that the

semivariogram at a pair of locations si and si+h depends only

on h. However, in our context of RF signal, such a condition

doesn’t really hold – partly because of the different path-loss

characteristics in different parts of the given region, and our

proposed approach of partitioning the region into subregions

is to mitigate its impact.

In particular, in the proposed partitioning approach, we

first partition the given region into subregions based on the

average path-loss characteristics, as described below. Then, we

construct semivariogram function curves for each subregion

independently (Fig. 4). Finally, to predict the value at a new

location, we first determine the subregion it belongs to, then

use neighboring observation locations from the same subregion

and the corresponding semivariogram function to predict its

value.

We note that the above partitioning technique will result in

lesser observation points in each subregion, but our experi-

ments suggest that the disadvantage due to lesser observation

points is more than offset by more accurate semivariograms

due to partitioning.

Partitioning the Region into Subregions. One simple approach

to partitioning a region into subregions is just use the terrain

information/characteristics; e.g., indoor and outdoor regions

can be considered two subregions, as they are likely to have

different path-loss characteristics. However, a terrain-based

approach is not always feasible due to lack of sufficient

information about terrain characteristics. Thus, we use the

following approach to partition the given region: First, we

compute the Voronoi diagram [27] over the observation points,

and assign the Voronoi region of an observation point as its

initial subregion. Then, we iteratively merge two adjacent

subregions into (bigger) subregions, based on the “merging

condition” defined below. This merging of adjacent subre-

gions is repeated until no two adjacent subregions satisfy the

merging-condition. Eventually, the above process results in

partitioning of the original region into contiguous subregions.

Merging Condition. First, as done before to estimate L(si)
values, we compute the perceived path-loss exponent αi at

each observation point si (by assuming the transmitter location

to be at the point with maximum signal strength). Then, we

iteratively merge two adjacent subregions, if the corresponding

two sets of perceived path-loss exponents are “similar;” in

particular, if X and Y are the 25-75 percentile ranges of the

alphai values in the two sets, then the two subregions are

merged if the overlap between the X and Y ranges is more

than 50% of the smaller of the X and Y ranges. If there are

multiple pairs of subregions that can be merged, then we pick

the pair with the largest overlap between their exponent sets.

Note that the 25-75 percentile overlap condition minimizes the

impact of any outliers.
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(b) USRP Dataset
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(c) Synthetic Dataset

Fig. 3: Median prediction errors for various interpolation techniques for the three datasets.

Fig. 4: Fitted curves of the semivariograms after partitioning

into subregions.

C. Performance of Interpolation Techniques

To showcase the improvements due to proposed detrending

and partitioning, we present a comparison of proposed OK-

based techniques, viz., Ordinary Kriging (OK), OK with

detrending (OKD), OK with partitioning (OKP), and OK

with detrending and partitioning (OKDP). We use IDW as a

baseline. For evaluation, multiple datasets are used described

in the following.

Datasets: We use three datasets: two of these are real dataset

collected using SpecSense using RTL-SDR with Nexus 5 and

Samsung Galaxy S4 phones, while the third dataset is syn-

thetic.

• Cellular Data. This data is the total signal strength collected

in AT&T’s LTE downlink (751MHz) in a 2 MHz bandwidth.

Samples were collected in 1500 locations spanning indoors

and outdoors covering a ≈15K sq m area.

• USRP Data. For this data set, a USRP transmits software-

synthesized DTV signal in an otherwise free (DTV channel

26) using a transmit power of -10dBm. The tramsmitter

is located indoors, but data is collected both indoors and

outdoors at 500 locations in a ≈5K sq m area of campus.

• Synthetic Data. Real data does not provide any way to con-

trol the shadowing variance. To study the impact on different

variances, we also consider a simulated environment with

an area of 2 km × 2 km, with two indoor subareas (with

roughly 40% area) and a transmitter placed in the center.

Using the log-normal path-loss model (Eqn. 2), we compute

the signal strength at various indoor and outdoor locations.

We use different path-loss exponents and variance (σ) of the
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Fig. 5: Median prediction errors for varying shadowing vari-

ance (indoor’s is 2σ2) for the synthetic dataset.

shadowing component for indoor and outdoor subregions.

In all, 1000 random locations were used.
Performance Comparison: For each experiment and dataset,

we randomly chose a certain number of observation points

depending on the desired density. Using these observation

points, we predict the value at each of the remaining points,

compute the prediction error
|Ẑ(s0)− Z(s0)|

Z(s0)
×100% for each

point s0, where Z(s0) and Ẑ(s0) are the true and predicted

values respectively. When comparing various approaches, we

use the same set of observation (and thus, testing) points. For a

given setting, we conduct 20 experiments and plot the median

prediction error Perr value across all experiments and testing

points. The density of observation points is 4 per 100m ×
100m in Figs. 5-7. For each of the data sets, our partitioning

algorithm yielded two partitions closely matching the indoor

and outdoor partitioning of the region. See Fig. 4 for the

variograms of the subregions created. Figs. 3 and 5 plot

median predication errors for varying densities of observation

points and variance of shadowing attenuation, respectively,

across all datasets. In both the plots, we observe that, for

all datasets, the median prediction errors of the techniques

decreases in the following order: IDW, OK, OKD, OKP,

OKDP. In particular, the improvement of OKDP over OK is

significant — reducing the prediction error by one-third to

half. Also, as expected, the prediction error decreases with

increase in the density of observation points and increases

with the increase in the variance. Finally, Figs. 6 and 7 plot

the reduction in % of observation points needed compared

to IDW to achieve at most 5% prediction error, for different
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to IDW, to achieve 5% prediction error for varying shadowing

variance (indoor’s is 2σ2), for the synthetic dataset.

datasets and variances respectively. We observe the same order

of relative performance of different techniques as above.

IV. OPTIMIZED SELECTION OF SENSORS

During SpecSense operation, there are three main

events: (i) availability (arrival) of new spectrum sensors, (ii)

spectrum-occupancy query requests by user apps, (iii) actually

sensing/measurement of the spectrum signal by some of the

spectrum sensors (when instructed by the system, in response

to the queries [5]). The first two steps are user-driven, while the

third step involves an optimization problem. In particular, we

address the problem of selecting a minimum number of sensors

to report signal at their locations in order to best predict the

values at the given query locations. This saves the battery

power and backhaul communication costs for the sensors that

contribute little to answering spectrum queries. The above

optimization problem may be executed at the arrival of each

new query, or at regular intervals for the set of queries arriving

in the previous interval. In the latter approach, the interval may

depend upon certain factors such as the arrival frequency of

queries, tolerable prediction delay, etc. Our below problem

formulation assumes a set of queries as an input, but can also

be used for a single query. We start with the formulation of the

above sensor selection problem, and then present our proposed

heuristic followed by a performance evaluation.

Selection of Sensors (SOS) Problem: Given a set of sensor

locations S, a set of query location Q, and a constraint m,

the SOS problem is to select a set of at most m sensors

SQ ⊆ S that minimizes the total prediction error (based on

the OK interpolation technique) for the given queries. The

total prediction error for the queries Q from a selected set of

sensors SQ is given by

∑

q∈Q

(Z(q)− Ẑ(q|SQ)) (3)

where Z(q) is the true value at location q and Ẑ(q|SQ)
is the predicted value from observations SQ using the OK

interpolation technique.

In general, the above “sensor selection” problem has

been studied before in similar contexts [17], [21]. Most

recently, [35] considers the above problem with the different

objective of minimizing the OK prediction variance, which is

an indirect measure of prediction error; [35] incorrectly claims

that a straightforward greedy approach for the problem will be

approximate.3 Instead, we directly focus on minimizing the

prediction error. In our evaluation (see below), we show that

our proposed heuristic outperforms the greedy heuristic that

targets minimization of prediction variance.

The above SOS problem can be easily shown to be NP-hard

by a reduction from the set cover problem. Thus, we focus

on designing efficient heuristics. We note that the straight-

forward greedy approach that iteratively picks the sensor that

minimizes the total prediction error, is infeasible since the

prediction error can’t be computed due to unknown true values

at the queries. Thus, we instead propose a greedy heuristic

based on “coverage” of queries by sensors.

Proposed Heuristic: Iterative Query Cover (IQC): Our

proposed heuristic, viz., iterative query cover (IQC), is based

on the intuition that the prediction error of a particular query

is minimized by maximizing the number of neighboring ob-

servation points. To define neighbors of a query location, we

assume a given/known “correlation range” r, which defines

the maximum distance of spatial correlation and can be easily

deduced from historical semivariogram curve [24]. Based on

the above intuition, the IQC heuristic works in a sequence of

rounds, wherein in each round it selects sensors to ensure at

least one neighboring sensor for each query. To maximize the

number of neighbors for each query, IQC tries to maximize the

number of rounds by minimizing the number of sensor selected

in each round. More formally, let SQ be the set of sensors

already selected in previous rounds. Then, in the current round,

we essentially run a greedy set cover heuristic to cover all (or

as many as possible) queries in Q using a minimal number of

sensors from S−SQ. The set of sensors selected in this round

are added to the maintained solution set SQ. Then, we go to the

next round. The heuristic stops when |SQ| becomes m (which

could happen in the middle of a round). See Algorithm 1.

Nearest-Query Cover (NQC) Heuristic: For comparison

purposes, we also explore another greedy heuristic NQC —

which is based on the thesis that the prediction error is

minimized by selecting sensors closest to the queries. Like

3Essentially, their claim that the OK prediction variance function is “sub-
modular” is true only in the special case when there are no “suppressor”
variables [17], [21].
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Fig. 8: Median prediction errors of various heuristics for varying constraint (number of sensors selected per 100m × 100m),

for different datasets.

Algorithm 1 Iterative Query Cover (IQC) Heuristic

1: Input: Set of sensors S, set of queries Q, correlation range

r, and constraint m ≤ |S|
2: Output: Set of selected sensors SQ, |SQ| ≤ m.

3: SQ ← {}, Qr ← Q
4: /* Qr is the set of uncovered queries in the current round

*/

5: while |SQ| < m do

6: for all s ∈ (S − SQ) do

7: Cs ← {q ∈ Qr | ||q − s|| ≤ r}
8: end for

9: s← argmax∀s ∈ (S − SQ)
|Cs|

10: SQ ← SQ ∪ {s}
11: Qr ← Qr − {Cs}
12: if Qr = ∅ then /* start a new round */

13: Qr ← Q
14: end if

15: end while
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Fig. 9: Residual battery levels for various heuristics and

datasets, for a fixed constraint of 4 sensors per 100m × 100m.

IQC, the NQC heuristic also executes in rounds. As before, let

SQ be the set of sensors already selected in previous rounds.

Then, in the current round, for each query q (that has a sensor

within r in (S − SQ)), we select the sensor closest to q in

(S−SQ). As before, we update SQ, proceed to the next round,

and continue till |SQ| becomes m.

Weighted SOS Problem: Portable spectrum sensors have

limited energy and it is more desirable to choose those sensors

that have more battery power remaining. We incorporate this

prioritization by assigning weights to the sensors in the SOS

problem, and appropriately generalizing the problem formula-

tion and the heuristics as follows. Using the same notation as

before, the weighted-SOS (WSOS) problem is to find a set of

m sensors |SQ| ⊆ S that minimizes two objectives, viz., the

total prediction error as well as the total cost
∑

s∈SQ
1/b(s) of

the selected sensors where b(s) is the remaining battery level

at a sensor s.4

Our heuristics IQC and NQC heuristics can be easily gen-

eralized to the above weighted SOS problem as follows. For

IQC, the only change is that we replace Line 9 of Algorithm 1

by

s← argmax∀s ∈ (S − SQ)
|Cs|b(s).

Similarly, for NQC, within each round, for each query q,

instead of picking the nearest sensor, we pick the sensor s
whose dsq/b(s) is the smallest where dsq is the distance of s
from q.

Performance Comparison: We now evaluate our proposed

heuristics. In addition to the above IQC and NQC heuristics

and their weighted versions, we also consider the Prediction-

Variance Greedy (PVG) heuristic that, in each iteration, selects

the sensor that maximizes the reduction in OK prediction

variance which can be computed from the OK system of

equations [24]. For each experiment, we randomly pick half

of the given points as candidate sensor locations, and choose

a certain number of query points from the remaining points.

We initially assign 100% battery energy to each sensor, and

deduct a small amount (0.5%) of battery energy for each

sensing measurement. For a given constraint m, we run 10,000

experiments and in each experiment, randomly pick 5 to m

4We could have focused on minimizing the linear combination of these
two objectives, but that requires associating arbitrary weights with the two
objectives. An alternate formulation could be to use cost as the constraint,
but that precludes a fair comparison of the weighted and unweighted versions
of the problem.
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(randomly picked number) number of queries. Fig. 8 plots

the median prediction errors for various heuristics. We make

two observations: (i) First, IQC outperforms PVG as well as

NQC in weighted as well as unweighted versions. The relative

performance of IQC and NQC confirms the intuition that a

query is better interpolated by more neighboring points in its

range rather than a smaller number of closer neighbors. (ii)

Second, the weighted versions perform only slightly worse

than their unweighted versions. We also compare the distri-

bution of remaining battery levels in the sensors after all the

experiments, for each constraint m. See Fig. 9. We observe

that, as expected, the weighted versions have fewer sensors

with low battery levels than their unweighted versions, which

confirms the effectiveness of weighted heuristics. As before,

IQC outperforms NQC as well as PVG in all settings.

V. SYSTEM LEVEL EVALUATION

We now describe the overall operation of the SpecSense

system, and present key performance results of the end-to-end

system.

A. The SpecSense System

As shown in Fig. 1, the SpecSense system primarily

consists of four high level components: (a) sensing and/or

query clients, (b) central controller, (c) spectrum database, and

(d) analytics framework on top of the database. At this time,

the sensing clients consist of (i) a USB-powered RF sensor

(e.g., RTL-SDR [7], BladeRF [1]) with (ii) an ARM-based

processor board (Raspberry Pi) or smartphone acting as the

host. SpecSense is not tied to these sensors; they are used

for their low cost, low power and off-the-shelf availability.

In response to the spectrum occupancy queries, the central

controller runs the sensor selection algorithm to allocate spec-

trum sensing tasks to individual clients that are registered with

the controller. The clients respond back with the power spectral

density for the requested channel. The controller passes on

such data with time and location stamps to the interpolation

algorithm which generates answers to the spectrum occupancy

queries, communicates them to the query clients and also

stores them in the spectrum database. A web-based dashboard

is also implemented that visually shows channel availability,

query results, and the location/type of sensors on a map.

B. Latency Measurements

We benchmark SpecSense to measure different compo-

nents of latency for spectrum occupancy queries. All measure-

ments are done with a set of WiFi connected Samsung Galaxy

S4 phones and RTL-SDR dongles as the clients sensing the

UHF TVWS bands and the controller, database and analytics

platform running on a server-class computer in the lab. There

are two significant components of the latency – sensing latency

and query latency.

Sensing Latency: We define sensing latency as the total time

elapsed between the controller issuing a scan instruction for a

sensor and the time when the results are available back at the

controller. It involves the communication delay between the
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Fig. 10: Latency benchmarks for the SpecSense system.

SS-128, SS-256 and SS-1024 respectively uses 128, 256 and

1024 point FFT.

controller and the sensor, delay to invoke the driver, gather

the IQ samples from the device, and computational latency to

compute the FFT over the samples. We benchmark the sensing

latency in SpecSense for different FFT sizes. See Fig. 10a.

The latency is ≈ 800ms–2.3 secs, of which communication

latency is in the order of 100s of ms5 and the time required

to fetch the IQ samples from the device are few ms to 10s

of ms. The FFT computation time depends on the FFT size

and is the dominant part of the latency. However, this can be

potentially be outsourced to an FPGA or ASIC on the phone

in future designs to bring it down to negligible levels.

Query Latency: In a dynamic spectrum access scenario, spec-

trum occupancy queries need to be served in semi real-time.

This also implies that both sensor selection and interpolation

algorithms need to be implemented and executed efficiently.

The current deployment spans across our university campus

(≈ 6 sq. km) with ≈10 mobile spectrum sensor nodes. Due to

such limited hardware we moved the sensors across the area to

mimic a huge number of virtual sensors at different locations.

This assumes that the spectrum map does not change over time

which is indeed the case for TV channels we are using as test

cases. In all, we mimic ≈500 virtual sensors in the entire area.

We run spectrum occupancy queries at random locations

within the area. The controller is queried with the coordinates

of a location with no sensor to estimate the power at that

location for a given channel. The involves two steps, viz.,

sensor selection (Section IV) and interpolation (Section III).

Fig. 10b shows that a 50× increase in the number of si-

multaneous queries causes the latency to increase by only

3×, which clearly indicates the scalability of SpecSense.

Second, for a large number of queries, the total computation

time is only within 10s of milliseconds where as the network

latency involving the query client and the controller can be

100s of milliseconds.

Overall, this measurements establish that FFT computation

on the sensor is still the dominant part of the overall end-to-

end latency. Optimizing this to run directly on hardware has

5The amount of data to be communicated is modest and depends on FFT
size. This is roughly in the order of a few 10KBs. Compare this with a sample
Google search that consumes about 40 KB.
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the potential of achieving sub-seconds latency for spectrum

occupancy queries in SpecSense.

VI. RELATED WORK

Large-scale spectrum Monitoring: While spectrum monitor-

ing itself is not a new idea and substantial literature exists [4],

[20], [25], [36], they all use lab-grade expensive sensors.

Recent work has also demonstrated spectrum sensing in mo-

bile, low-power commodity platforms [14], [26], [28]. Mobile-

based crowdsourcing applications for spectrum monitoring

have been presented in [9], [31], [32]. While all these ideas

subscribe to the general philosophy of large-scale spectrum

monitoring, they all stop short of building any significant

support infrastructure for enabling apps to use spectrum data.

Radio Environment Mapping: A large number of recent

works [9], [10], [23], [29], [34], [35] have addressed mapping

techniques from sparse sensor measurements (often using Or-

dinary Kriging) using extensive wardriving or crowdsourcing.

It is unclear however a realistic spectrum sensing and query

infrastructure can address the algorithmic/computation issues

used in such techniques, particularly when spectrum queries

need to be served quickly or near realtime. We improve upon

existing interpolation techniques and address scalability issues.

VII. CONCLUSIONS

In this paper, we described SpecSense — an enabling

platform that supports crowdsourced spectrum sensing and

spectrum-aware apps. We specifically concentrated on two

related problems related to efficient answering of spectrum

occupancy queries – effective spatial interpolation of RF

signals and optimized selection of sensors. Our overall results

indicate that in practical deployments, on-demand answering

of spectrum occupancy queries can be effectively done with

only a modest latency overhead.
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