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Abstract: Paraglacial coastal systems are formed on or proximal to formerly ice-
covered terrain from sediments derived directly or indirectly from glaciation. This
manuscript reviews the roles of tectonic controls, glacial advances and retreats,
sea-level changes and coastal processes on sediment production, delivery and re-
distribution along the paraglacial Gulf of Maine coast (USA & Canada). Beaches
and barriers along this coast are characterized by lithological heterogeneity and
spatially variable sediment textures. They are found primarily at the mouths of
estuaries, particularly those associated with the Kennebec/Androscoggin, Saco
and Merrimack rivers. The formation of these barrier systems is directly

attributable to the availability of sediments produced through the glacial erosion

of plutons within the river basins and locally along the coast. Multiple post-glacial
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phases of sea-level rise and fall drove the redistribution of these sediments across
the modern coastal lowland and shallow inner shelf. Most important for the
formation of barrier systems was the paraglacial sand maximum, a period of
relative sea-level fall and enhanced fluvial sand delivery 3—5 thousand years
following glacial retreat. These sediments were reworked landward during the
subsequent marine transgression and combined with younger sediments derived
from the river basins to form the modern barrier and backbarrier systems. Today,
reduced fluvial sediment loads due to natural depletion of glacially liberated
sediment as well as anthropogenic modifications to the barriers and river systems
combine with an increasing rate of relative sea-level rise to intensify beach
erosion. These changes may also accelerate disintegration of backbarrier marshes
and eventually force the Gulf of Maine barriers to return to states of rapid

landward migration.

Glaciations perturb large parts of the global landscape to a greater degree and over a shorter time
period than any other surface process. Gross sedimentation rates associated with glaciations are
much higher than during interglacial periods (Broecker ef al. 1958) and the mean rate of
sediment delivery from ice sheets is an order of magnitude higher than from fluvial activity in
some of the largest river systems in the world (Dowdeswell e al. 2010). Glaciers leave behind
large volumes of easily erodible unconsolidated sediment that are subsequently redistributed by
non-glacial earth-surface processes (Ryder 1971; Church & Ryder 1972).

Modern coasts located within the sphere of influence of these formerly glaciated terrains

are known as paraglacial coasts (Forbes & Syvitski 1994). The concept of a paraglacial
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environment was first developed in terrestrial settings to describe the non-glacial processes that
were directly conditioned by glaciation and occurred literally ‘beyond the glacier’, in
environments located around and within the margins of glaciation (Ryder 1971; Church & Ryder
1972). 1t has since come to include not only the processes, but also the land systems, landscapes
and sediment accumulations that are directly conditioned by glaciation and deglaciation.
Paraglacial environments are unstable or metastable systems experiencing transient responses to
a variety of non-glacial processes, acting over a number of spatial (metres to hundreds of
kilometres) and temporal (years to thousands of years) scales to drive the systems toward
recovery from glaciation (Ballantyne 2002a; Hewitt et al. 2002; Knight & Harrison 2009;
Slaymaker 2009). Paraglacial environments are found in all regions of the globe that underwent
or were directly influenced by glaciation during the Pleistocene (Fig. 1) (Mercier 2009).
Paraglacial coasts include erosional and depositional coastal landforms such as fjords and
coarse-clastic barriers as well as formerly glaciated shelves (Forbes & Syvitski 1994). Such
coasts fringe more than 30% of Northern Hemisphere continental shelves: they are common
throughout northern North America, northern Eurasia, and Greenland (Forbes & Syvitski 1994;
Forbes ef al. 1995; Forbes 2005). In the Southern Hemisphere, the southern tip of South America
and ice-free parts of Antarctica are prominent examples (Fig. 1). These coasts retain the
recognizable influence of glacigenic sediments or morphologies (Forbes & Syvitski 1994). They
are distinguished from many of their non-paraglacial counterparts by a unique combination of:
(1) glacially overprinted landforms (such as fjords and drumlin fields); (2) nourishment by
heterogeneous sand and gravel sources; (3) variable rates of sediment supply governed by
substrate erodibility and impacted by terrestrial and marine processes; and (4) a high degree of

compartmentalization (Forbes & Syvitski 1994).
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Barrier islands and beaches are common along most paraglacial coasts. They are
generally small (10° —10* m long; 10*-10° m® sediment volume) and relatively isolated
(FitzGerald & van Heteren 1999). Many of the most prominent and continuous paraglacial
barriers flank the mouths of rivers draining glaciated terrains. The goal of this paper is to provide
an idealized stratigraphic and process framework that describes the unique features of barrier
formation over periods ranging from hundreds to thousands of years in such river-associated
paraglacial settings. This is accomplished by comparing three river-associated barriers along the
paraglacial coast of the Gulf of Maine (GoM), located in the northeast United States (USA) and
southeast Canada (Fig. 2), and by contrasting these systems with river-associated barriers formed
in other paraglacial and non-glaciated settings. We review the dominant controls common to the
formation of these coastal systems (underlying geology; glacial advance and retreat, relative sea-
level changes, sediment redistribution by fluvial, coastal and marine processes) and their
affiliated deposits. Detailed examples of these processes and deposits are drawn from the
evolutionary histories of the barriers associated with the Kennebec/Androscoggin rivers
(Kennebec barrier chain), the Saco River (Saco Bay barrier system) and the Merrimack River
(Merrimack Embayment barrier chain) (Table 1; Fig. 3a). These details and comparisons are then
used to refine and expand upon earlier concepts of the paraglacial period by reviewing the role
of various contributions of glacial, paraglacial and nonglacial sediment sources to the
development of the GoM barriers. Finally, we assess the future of the GoM barrier systems given

climate change and human interference in the natural sediment-supply pathways.

River-associated paraglacial coasts
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Most barriers located along paraglacial coasts are mainland-attached spits or bayhead barriers,
formed through a cyclic pattern of formation and destruction as finite local sediment sources
(such as drumlins, till bluffs and outwash) are periodically made available as relative sea-level
(RSL) rises and shorelines migrate landward across formerly glaciated terrain (Boyd et al. 1987;
Forbes & Taylor 1987; Duffy et al. 1989). They are generally composed of coarse-grained sand
and gravel; coarse-clastic beaches up to boulder size are common as fines are progressively
removed from the system (Orford & Carter 1985; Carter et al. 1989; Forbes et al. 1995). Even
tidal flats, with sediment derived from erosion of glacial deposits, commonly contain a
substantial gravel component.

Longer and more voluminous paraglacial barriers directly nourished by glacial sediment
are generally confined to zones proximal to the maximum ice limit of the Last Glacial
Maximum. On the coasts of outer Cape Cod, Massachusetts, and southern Long Island, New
York, for example, RSL rise and coastal processes have reworked ample, easily eroded sediment
from terminal moraines and expansive outwash (sandur) plains since deglaciation. Here, most
barriers are moderately long (2—12 km), 200 m to > 1 km wide, 5-25 m thick and composed
primarily of sand (Rampino & Sanders 1981; FitzGerald et al. 1994; FitzGerald & van Heteren
1999).

By contrast, paraglacial coasts located at the mouth of major rivers have received
sediment not only from the erosion and direct reworking of local glacial deposits, but also from
sediments delivered by rivers from the erosion of both glacigenic and paraglacial, upstream
sources (Forbes & Syvitski 1994; Ballantyne 2002a; Forbes 2005). In New England, such river-
associated paraglacial coasts have been influenced by late-Pleistocene and Holocene RSL

changes. During many millennia, the sea has eroded and smoothed landforms as they passed
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through the nearshore zone, reworking previously deposited glacial, paraglacial and fluvial
sediments into swash-aligned barrier island which front extensive backbarrier marshes and tidal
flats (Kelley 1987; Hein et al. 2012). These barriers are composed chiefly of sand with a minor

gravel component.

Coastal evolution in the Gulf of Maine: Dominant controls and common deposits

The GoM covers an area of ca. 93,000 km? from Cape Cod to the southern tip of Nova Scotia
(Fig. 2). It is fringed by almost every type of paraglacial coast and has been ice free for 12—17
thousand years depending on position along a north-south gradient. Thus, its shore presents an
ideal location to investigate glacial and paraglacial coastal evolution, and to study coastal
environments and deposits formed at various stages of post-glacial recovery. The major controls
on coastal evolution in the GoM are antecedent (bedrock-governed) structure, glaciation-
dominated sediment generation, river-dominated sediment supply, RSL change, and sediment

redistribution by marine and coastal processes.

Structural Control

The bedrock in the western GoM and on the adjacent land is dominated by granite, granitic
gneiss and metasedimentary and metavolcanic rocks ranging from Precambrian to Middle
Palaeozoic in age (Osberg et al. 1985; Lyons ef al. 1997; Robinson & Kapo 2003). The major

GoM rivers flow to the south-southeast, generally across the structural grain of bedrock, except
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locally where erosion of weaker strata by both fluvial and glacial scouring controls brief strike-
aligned courses (Kelley 1987).

Structural controls related to Palacozoic tectonism have played a dominant role in
shaping the variability between barrier systems in the western GoM. For example, the
southward-facing Kennebec/Androscoggin coastline is largely protected from northeast waves
by bedrock headlands, resulting in the development of swash-aligned barriers (Buynevich 2001).
By contrast, the Merrimack River drains into structural lowlands, providing ample
accommodation for the development of the associated northeast-facing (drift-aligned) barriers,
but less protection from dominant waves (Goldsmith 1991; FitzGerald et al. 2005). Faulting and
folding patterns control the configuration of individual coastal compartments, and the gradients
of the coastal lowland and proximal continental shelf control accommodation available for
backbarrier and offshore deposits. Barriers throughout the GoM are commonly pinned to
bedrock promontories, with abundant granitic plutons in southwest Maine serving as headlands
anchoring and protecting beaches and marshes (Kelley 1987). Tidal inlets are typically situated

in drowned bedrock-controlled river valleys (FitzGerald ef al. 2002).

Advancing and receding ice sheets

Quaternary glaciations resulted in significant sediment and bedrock erosion across the GoM and
in extensive scouring of bedrock-controlled fluvial channels. Physical and chemical weathering
of intrusive granitic (with minor gabbro and granodiorities) plutons common to inland regions
throughout the GoM (Fig. 3b), as well as glacial excavation of saprolite, generated much of the

sand-rich sediment that was later reworked into glacial and paraglacial deposits (Hanson &



173 Caldwell 1989; Thompson et al. 1989; FitzGerald et al. 2005). Ice sheets of the most recent
174  glaciations, the Illinoian and Wisconsinan, left behind non-stratified glacigenic sediments

175  throughout the GoM and in adjacent New England. These take two dominant forms: (1)

176  drumlins, which have a patchy, clustered distribution and were deposited in part during the

177  Illinoian glaciation; and (2) coarse-grained till of late Wisconsinan age (Stone et al. 2006). This
178 latter deposit drapes bedrock surfaces throughout the region as a thin veneer.

179  Contemporaneously, meltwater streams drove the accumulation of extensive, quartz-feldspar-
180  rich, stratified ice-contact sediments throughout the region, both under and in front of the ice
181  sheet. The distribution of sandy eskers, outwash plains and fans, and coarse sandy ice-marginal
182  deltas (Fig. 3b) reflect the ice-sheet extent and recession (FitzGerald ef al. 2005).

183 The Laurentide Ice Sheet of the Wisconsinan glaciation reached its maximum extent,
184  beyond the southern boundary of the GoM (Fig. 1a), between 28.0 and 23.7 thousand calendar
185  years before present (ka) (Balco ef al. 2002). As it then receded rapidly northward between ca.
186 17 and 15 ka (Borns et al. 2004), rising RSL in the GoM submerged isostatically depressed areas
187  immediately upon deglaciation (Fig. 4) (Bloom 1963). This submergence culminated in a

188  highstand of RSL several tens of metres above modern mean sea level (MSL) (Fig. 4), prelude to
189  asubsequent set of complex RSL changes that served to redistribute the sediments produced by
190  the glaciers.

191

192 Relative sea-level change

193

194  Late-Pleistocene and Holocene RSL changes (Fig. 4) resulted from the combined forcings of

195  global eustatic sea-level rise and regional glacio- and hydro-isostatic adjustments. These RSL
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changes were largely similar across the GoM coast, varying only in amplitude and timing (Fig.
4).

While near its maximum extent, the mass of the Laurentide Ice Sheet depressed the
lithosphere, including that of the GoM region. The outward displacement of the underlying
asthenosphere formed a peripheral crustal forebulge 10s to 100s of kilometres beyond the glacial
front (Daly 1934; Barnhardt et al. 1995). The ice sheet receded northward as climate warmed,
exiting present-day Massachusetts by ca 17—16 ka and coastal Maine by ca 15 ka (Borns ef al.
2004). Global eustatic sea level rose rapidly during this period. The continuous isostatic
depression of the crust below contemporary MSL due to delayed rebound resulted in immediate
marine flooding of land in the GoM (Bloom 1963). Isostatic rebound halted this process and the
maximum marine limit was reached at 31-33 m above modern MSL in Massachusetts (Fig. 4)
(Stone & Peper 1982; Oldale et al. 1983; Ridge 2004; Stone et al. 2004) and at 70—75 m above
MSL in coastal Maine (Fig. 4) (Thompson et al. 1989; Kelley ef al. 1992).

Continued isostatic rebound resulted in rapid RSL fall as regional uplift outpaced global
eustatic sea-level rise. RSL stabilised as rebound decelerated and temporarily matched the rate of
eustatic sea-level rise. This produced a relative marine lowstand across the GoM that ranged
from ca. -41 m MSL at 13-14 ka (Oldale et al. 1993) in northern Massachusetts to -60 m MSL at
12.5 ka in central coastal Maine (Barnhardt ez al. 1997) and -65 m MSL at 11.5 ka along eastern
Nova Scotia (Fig. 4) (Stea et al. 1994).

Following this regional relative lowstand, RSL rose very rapidly (ca. 40 mm/yr) in
coastal Maine for about 1000 years as eustatic sea-level rise greatly outpaced isostatic rebound.
RSL rise then slowed abruptly to only 1-1.5 mm/yr at 11.5 ka as the forebulge that migrated

north through coastal Maine collapsed (Barnhardt ez al. 1995). This so-called slowstand (Fig. 4)
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(Kelley et al. 2010, 2013) along the Maine coast lasted until 7.5 ka. No such detailed information
is available for the southern GoM, where sparse post-lowstand data indicate that sea level rose at
a time-averaged rate of ca. 4 mm/yr between 13.5 and 6 ka.

RSL rise in the southern GoM gradually slowed to less than 2 mm/yr by 4-5 ka (Fig. 4).
By contrast, coastal Maine saw one final period of relatively rapid (ca. 7.5 mm/yr) RSL rise
between 7.5 and 5.5 ka, followed by 5 ka of much slower change (less than 1 mm/yr) to its

modern vertical position (Fig. 4) (Barnhardt et al. 1995; Kelley et al. 2010, 2013).

Deposits associated with changing sea levels

In governing the changing extent of the GoM, RSL rise and fall set the stage for large-scale
erosion and redistribution of glacigenic sediment across the modern coastal zone and adjacent
shallow shelf, generating a range of coastal, marine and glaciomarine landforms and deposits
(Table 2; Fig. 5).

Following the Last Glacial Maximum, receding ice sheets across the GoM left behind
extensive stratified and non-stratified deposits, including sandy eskers, outwash plains and fans,
coarse sandy ice-marginal deltas and till (Stone et al. 2006). In the GoM region, this latter
deposit is an unsorted mixture of mud, sand and gravel in various proportions and lithological
compositions, depending on the material eroded and on the influence of eroding and transporting
processes.

Flooding of land immediately following deglaciation resulted in the deposition of
glaciomarine silt and clay across the modern shelf and adjacent terrestrial environments,

occasionally extending several hundred kilometres inland from the modern shoreline (Thompson
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& Borns 1985). Although this deposit smoothed antecedent topography, it provided limited
sediment for the later development of barriers and beaches. Glaciomarine silt and clay was
generally deposited in environments of low wave energy along the coast and in river estuaries.
Its strongly micaceous composition indicates derivation from glacially eroded metamorphic
rocks (Kelley 1989).

Falling RSL following the 17—15 ka highstand forced rapid shoreline progradation.
Sediments delivered to the contemporary coast were reworked cross- and along-shore by coastal
processes, forming sandy parasequences and regressive deltas that reflect the seaward migration
of the coastal zone (Oldale ef al. 1983; Barnhardt et al. 1997; Belknap et al. 2002; Kelley et al.
2003). Coastal and fluvial processes modified the landscape and redistributed sediments across
discrete segments of emergent glaciomarine plains. Discontinuous, disparate remnants of
regressive beaches and spits and fluvial terraces have been identified between the highstand and
modern coastlines along much of GoM (Retelle & Weddle 2001). Near several river mouths,
these regressive deposits formed extensive and thick strandplains and braidplain deltas (braided
deltaic plain) as ample fluvially derived sand and fine gravel was efficiently reworked
alongshore by waves and tides (Fig. 3b; Table 2). The Sanford-Kennebunk braidplain delta for
example, located upstream of the Mousam River near Wells, Maine (Fig. 3b), has a surface area
of 125 km?, a thickness of 5-14 m. Its volume of 1.5 x 10° m® (Tary et al. 2001) exceeds that of
all individual modern-day GoM barriers. The Brunswick braidplain delta, located at the former
confluence of the Kennebec and Androscoggin rivers, covers an area of 25 km”and is 5-15 m
thick. It gradually steps-down in elevation from west to east, reflecting underlying seaward-
dipping bedrock gradually exposed by falling RSL (Crider 1998). Similar regressive units have

also been found on the shallow shelves proximal to several river mouths. For example, off the
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mouth of the Merrimack River, abundant coarse sediment produced a 10-km-wide strandplain
that parallels the shore for 16 km and is 4—15 m thick (Barnhardt et al. 2009). Its upper surface is
marked by a lag deposit of coarse sand and fine gravel, formed during the later Holocene
transgression (Hein et al. 2013).

Deceleration and subsequent cessation of RSL fall led to the deposition of lowstand delta
lobes at the mouths of several major rivers discharging into the contemporary GoM, most
notably the Merrimack and Kennebec/Androscoggin rivers (Oldale ef al. 1983; Barnhardt et al.
1997). No equivalent deltaic deposits have been uncovered offshore the Piscataqua (New
Hampshire / Maine border), St. John (New Brunswick) and Saco rivers. Some deltaic sediments
were deposited in Penobscot Bay (Fig. 3a) before ca. 9 ka. However, sediment supply was
largely cut off as the Penobscot River lost its competence to transport sand when isostatic uplift
in its headwaters led to a drainage-divide shift and associated loss of water and sediment to the
Kennebec River (Kelley ef al. 2011). As much as 10 m of Holocene mud now covers this
pseudo-palaeodelta (Belknap et al. 2002; Kelley ef al. 2011). Eroded eastward-facing fossil
shoreline features abound in Saco Bay, but these are very thin (less than 1 m) (Kelley et al.
2003).

The period of rapid RSL rise following the lowstand led to the surficial erosion of
regressive and lowstand deposits and to the formation of a thin (< 1 m) transgressive sand-and-
gravel unit on newly formed shelves. Muddy sands started to accumulate during the slowstand
period in Maine (Fig. 4) to form wedge-shaped estuarine units over eroded glaciomarine mud,
thickening toward the modern shoreline and showing large regional differences (Barnhardt et al.
1997). Off the Kennebec River, the estuarine unit is up to 10 m thick. In Saco Bay, a similar but

muddier and much thinner (up to several metres) unit marked by an intertidal to shallow-subtidal
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fauna extends from the present shoreline out ~2 km offshore (Kelley et al. 2005; D. Barber,
personal communication).

The broad time-transgressive sand sheets that occupy the shallow shelves between the
lowstand and modern shorelines evolved from sediment not only reworked from early
transgressive barriers and intertidal / supratidal sand shoals (Oldale 1985; Oldale ef al. 1993;
FitzGerald et al. 1994) but also contributed by direct fluvial input and by wave-driven erosion of
glacial and regressive deposits exposed at the seabed. As the rate of RSL rise decreased, coastal
processes associated with slowly retrograding shorelines drove sediments from coastal and river
sources ever farther onshore, eventually forming proto-barriers (Mclntire & Morgan 1964;
FitzGerald et al. 1994; van Heteren 1996; Buynevich 2001; Buynevich & FitzGerald 2003). In
many areas, sand and silt derived from fluvial and nearshore sources were deposited in
backbarrier lagoons, tidal inlets and channels, and flood-tidal deltas as these proto-barriers
lengthened and widened to their modern dimensions (van Heteren 1996; Buynevich 2001; Hein
etal 2012).

Freshwater and brackish marsh deposits initially formed at the leading edge of the
transgression (MclIntire & Morgan 1964). Most observations suggest a rapid transition from
barren tidal flats to well-developed high marsh around or after 4 ka (Oldale 1989; FitzGerald et
al. 1994; Kelley et al. 1995b). The cause and timing of salt-marsh expansion in New England
estuaries has generally been attributed to a late-Holocene decrease in the rate of RSL rise.
However, local settings and processes must not be neglected: salt-marsh development behind the
Saco barriers, for example, is hypothesized to have coincided with a reduction in the width of the
palaeolagoon, when an inferred palacobarrier system was replaced by a more landward series of

barriers. Previous to this event, a combination of rapid RSL rise and strong winds across wide

13



311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

lagoons had maintained open-water conditions (Van Heteren 1996). Today, these salt-marsh
systems are dominated by Spartina alterniflora, Spartina patens, black rush, Juncus gerardii and

the shrub Iva frutescens.

Riverine sediment redistribution

Rivers draining ca. 160,000 km? of land discharge into the GoM (Fig. 2; Table 3). Their drainage
basins contain voluminous glaciofluvial and glaciomarine deposits. Together, the rivers annually
deliver ca. 950 x 10° m’ of freshwater and more than a million cubic metres of suspended
sediment (Kelley et al. 1995a). Directly or indirectly, via temporary storage on the inner
continental shelf, sediment input from these rivers has supplied nearly all of the sediment for the
development of most barrier and backbarrier systems of the GoM (FitzGerald et al. 2005; Kelley
et al. 2005; Hein ef al. 2012); without them barriers in the GoM would be rare or absent, even in
areas marked by extensive inland sand sources (FitzGerald ef al. 2002). Sediment feeding the
Saco and Merrimack barriers was dominantly provided by the rivers themselves (Kelley et al.
2003; FitzGerald et al. 2005; Hein et al. 2012). Elsewhere, marine erosion and reworking of
shelf and post-glacial fluvial deposits, and, to a lesser extent, coastal erosion of drumlins (Chute
& Nichols 1941; Dougherty et al. 2004; Hein et al. 2012), have also played a role.

Modern fluvial sediment delivery is episodic, dominated by high-discharge events
associated with precipitation from the passage of hurricanes and extratropical storms (Hill ez al.
2004), and by annual spring floods (freshets) governed by melting snow and enhanced rainfall
(Brothers et al. 2008). Although these high-discharge events feed sediment to barrier systems

across the GoM (FitzGerald et al. 2002), they are especially important at the mouth of the Saco
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River, where nearly all sediment is trapped in the estuary during normal flow conditions

(Brothers et al. 2008).

Modern sediment redistribution by marine and coastal processes

Estuarine sediment trapping, salt-marsh development and barrier dynamics continue to the
present day. Offshore, the presence of abundant active bedforms along the shallow shelves off
the Merrimack and Kennebec rivers indicates that paraglacial deposits undergo varying degrees
of reworking by waves, tides and currents (Dickson 1999; Hein ef al. 2007). Prevailing summer
wind throughout the GoM is from the south-southeast and produces low-energy wave conditions
and swells (Bigelow 1924; Jensen 1983). Spring, fall and winter prevailing winds are from the
west-northwest, and storm events are associated with the passage of high-pressure fronts from
the northwest, inland low-pressure systems and northeast storms that parallel the coast (Hill et al.
2004). Nor’easters (macrostorms driven by northeastern wind) account for at least 50% of all
winter storms (Dolan & Davis 1992) and produce the strongest wind and waves across the GoM.
Along the mixed-energy, east- to northeast-facing, drift-aligned coastline at the mouth of the
Merrimack River, these nor’easters drive southerly longshore transport at a rate of 38,000 (Castle
Neck) to 150,000 (Plum Island) m*/yr (Smith 1991). By contrast, Saco Bay is more sheltered;
here, wave refraction around headlands leads to a net northeast longshore transport estimated at
only 10,000-16,000 m*/yr (Kelley et al. 2005). The southward-facing coast near the mouth of the
Kennebec/Androscoggin river system is largely protected from northeast waves by bedrock
headlands. This swash-aligned system experiences a clockwise sediment gyre driven by tidal

currents and storm waves (FitzGerald et al. 2000).
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Tides in the GoM are semidiurnal and ranges generally increase from 2.5 m at Cape Cod
in the southwest to ca. 17 m in the Bay of Fundy in the northeast. The shorelines at the mouths of
the Kennebec/Androscoggin, Saco and Merrimack rivers all experience similar spring tidal
ranges (2.9-3.1 m), though tidal prisms vary markedly among them as a function of the area and
nature of backbarrier environments (percentage covered by tidal flats, bays and/or marshes),
river dimensions and anthropogenic modifications (Table 1) (FitzGerald et al. 2005). Circulation
in the present GoM, which has a mean depth of ~140 m, is generally cyclonic and dominated by
buoyancy-driven coastal currents (Beardsley et al. 1997; Lynch et al. 1997; Lentz 2012) that

have little impact on the coast except during major storms.

River-associated paraglacial barrier development: Examples from three barrier complexes

The combination of variable structural controls, sediment sources and supply rates, RSL changes
and hydrographic regimes has produced a diverse set of barrier systems in the GoM. Three of the
best studied are the Kennebec barrier chain (Kennebec and Androscoggin rivers), the Saco Bay
barrier system (Saco River) and the Merrimack Embayment barrier chain (Merrimack River)
(Fig. 1; Table 1). Each has distinctive features and a middle- to late-Holocene history of barrier
formation and development. Evolutionary models for these systems are used here to contrast
barrier formation along river-associated paraglacial coasts in different settings of sediment

supply and accommodation, and exhibiting diverse intra-system variability.

Kennebec barrier chain
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Located at the mouth of the Kennebec/Androscoggin river system, the Kennebec barrier chain
(KBC) is located along a fjard-type paraglacial coast; that is, one formed along flooded glacial
valleys with moderately shallow depths and moderate relief. The KBC consists of approximately
30 coastal accumulation forms (welded barriers and mainland beaches) stretching between New
Meadows Bay (west of Small Point Harbor) and Sheepscot Bay (Fig. 6). These are subdivided
into four physiographic provinces (West, Central, East-Central and Eastern complexes) that span
nearly 250° in shoreline orientation (Fig. 6).

The KBC is fed by the Kennebec and Androscoggin rivers, which join at Merrymeeting
Bay about 20 km north of the estuary mouth, and continue toward the GoM in a narrow bedrock-
carved channel (Figs 3a & 6). The confluent, lower Kennebec River is a partially mixed to
stratified mesotidal paraglacial estuary with seasonal variations in river discharge (Fenster &
FitzGerald 1996). This river system continues to supply coarse-grained sediment to the coastal
region, especially during spring freshets (Fenster & FitzGerald 1996). Most of this sediment is
derived from upland outwash deposits, with compositions inherited from distinct bedrock
lithologies (Borns & Hagar 1965). Today, the Kennebec River Estuary seaward of the
Merrymeeting Bay receives a mixture of sediments from both the Kennebec and Androscoggin
rivers; their sources can be differentiated on the basis of contrasting mineralogies that reflect the
compositional differences of the respective river drainage basins (FitzGerald et al. 2002).

The KBC exemplifies an indented paraglacial coast that has experienced active but
localized riverine sediment contribution to Holocene accumulation forms. All incipient
transgressive barriers proximal to the Kennebec River mouth were established approximately 4.6
ka (Buynevich 2001). Away from the direct river influence, along sediment-starved complexes

supplied primarily from the abandoned early Holocene deposits of the Kennebec River
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palaeodelta, transgressive barriers did not form until 1.2 ka (Buynevich 2001). The proximity to
fluvial and palaecodeltaic sediment reservoirs and changes in three-dimensional accommodation
space during decelerating RSL rise have been the major factors controlling the timing of barrier
emplacement and progradation (Buynevich & FitzGerald 2001, 2005), degree of
compartmentalization, and sediment volume (Barnhardt et al. 1997). Thus, despite their
proximity and similarities, each complex of the KBC has a unique evolutionary history.

Situated on the western margin of the Kennebec estuary mouth, the Popham Beach
System consists of a 4-km-long sandy barrier subdivided into three segments (Riverside,
Hunnewell, and Seawall beaches) (Fig. 7a) anchored to pegmatitic bedrock headlands and
isoclinally folded metasedimentary formations. Intertidal shoals connect the western and eastern
ends of Hunnewell Beach to Fox Island and Wood Island, respectively (Figs 6 & 7). Extensive
geophysical (ground-penetrating-radar (GPR)) and sediment-core data show that the Popham
System contains at least 14 x 10° m® of Holocene sand (Buynevich & FitzGerald 2005). A
texturally and compositionally submature, fluvially derived transgressive unit at -1.5 to -7.0 m
MSL is confined to the landward part of this system, and can be traced alongshore for over 4 km,
forming the core of the Hunnewell and Seawall beaches. Changes in shoreline exposure and
decreasing proximity to the estuary mouth as the transgression proceeded led to an increase in
maturity of subsequently deposited barrier sediments. Minimally reworked facies of fluvial
origin were covered by younger parasequences composed of relatively mature, micaceous sand
with evidence of estuarine sorting (Riverside Beach).

East of the Kennebec River Estuary, the Eastern Complex of Reid State Park (Fig. 6)
demonstrates the effect of structural controls and relict offshore sediment sources on its

Holocene development. This complex consists of two segments separated by a bedrock ridge:
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Mile Barrier to the east and Half Mile Barrier to the west (Fig. 6). Mile Barrier is backed by a
salt-marsh along its entire length, extending up to 600 m into the bedrock re-entrants. A small,
man-made bedrock-bound inlet provides exchange between the ocean and the backbarrier.
Numerous ledges and islands represent offshore structural extensions of bedrock ridges. These
structural extensions can be followed for more than 10 km offshore in seismic-reflection profiles
(Fig. 8) (Belknap et al. 1989; Buynevich et al. 1999), where they likely served as anchor points
and compartmentalisation elements for early barriers. The coarse to very coarse-grained sand,
particularly along the Mile Barrier, forms a steep (reflective) beach backed by a narrow dune
ridge. GPR profiles and vibracores show an extensive salt-marsh unit beneath the barrier
lithosome on either side of Todd’s Head promontory that separates Mile and Half Mile Beaches
(Buynevich & FitzGerald 2002). The presence, extent and age of this unit indicate that the salt-
marsh functioned as a supratidal backbarrier platform for overwash and aggradation as early as
3000 years ago (Buynevich 2001).

The regressive/aggradational phases of barrier development along the KBC were marked
by punctuated barrier progradation and dune development (Buynevich & FitzGerald 2001;
Buynevich ef al. 2004). Barrier progradation phases, which lasted for tens to hundreds of years,
are recorded in the stratigraphy of the Popham Beach System as uniform to complex
progradational units truncated by erosional scarps that are marked by high concentrations of
heavy minerals (Fig. 7c). By contrast, along many of the small, sand-starved systems of the
Western and East-Central complexes (Fig. 6), regressive barrier elements range from a single
beach or dune ridge to widespread wind-driven aggradational units. Formation of these barriers,
including some exhibiting limited progradation, was likely stimulated by a combination of a

deceleration in RSL rise and increasingly efficient alongshore sand delivery facilitated by
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sediment filling of re-entrants (Buynevich 2001). Localized areas of retrogradation (Buynevich
& FitzGerald 2005) reflect intense seaward-side barrier erosion as indicated by extensive dune
scarps and heavy-mineral concentrations caused by storm surges and/or tidal-inlet migration
(Fig. 7¢) (Buynevich et al. 2004).

Depending on sediment supply and wind direction (for example, the large south-facing
beaches of the Central Complex vs. the small north-facing pocket beaches within the Western
Complex), internal sediment reworking and landward transport have resulted in growth and
limited migration of parabolic and transgressive (climbing) dunes (Buynevich & FitzGerald
2003). The dune facies that presently comprise up to 40-50% of the barrier lithosome represents

no more than 5-15% (~200 years) of the barrier history.

Saco Bay barrier system

Two prominent headlands composed of Paleozoic metamorphic rocks (Osberg ef al. 1985),
Prouts Neck and Biddeford Pool, delimit the 15-km-long Saco Bay barrier system (Fig. 9). This
system is composed of relatively narrow barriers that are compartmentalized by bedrock ridges
and pinnacles, tidal inlets, and, in the south, the Saco River Estuary. Differential erosion of
Palaeozoic basement rocks by Paleogene and Neogene fluvial processes and Quaternary glacial
processes has resulted in irregular topography that has given the coastal area its islands,
headlands, and embayments.

The Saco River, which presently contributes 10,000 to 16,000 m*/yr of sand to Saco Bay
(Kelley et al. 1995c¢), primarily during spring freshets (Brothers et al. 2008), has supplied much

of the sediment to the Saco Bay barrier system over the course of the Holocene (Kelley ef al.
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1995c¢; FitzGerald et al. 2005). During deglaciation, large amounts of glaciofluvial sand and
gravel were deposited between the ice sheet and the ocean at many locations in the Saco River
drainage basin and on the modern shallow shelf. These easily erodible sediments have been a
particularly important source for the Saco Bay dune, beach, and shoreface systems (D. Barber,
personal communication). Additional sediment has come from the erosion of glacial deposits
near Prouts Neck (Kelley et al. 2005c).

GPR and core data allow the distinction of one longshore and three cross-shore barrier-
sequence types within the Saco Bay barrier system (Fig. 10) (Van Heteren 1996). Highly diverse
morphostratigraphies are reflective of several phases of middle- to late-Holocene barrier
development. The Saco Bay barrier system shows a strong imprint of overstepping, fostered by
the presence of numerous anchor points in the form of bedrock pinnacles, Pleistocene till
mounds and other highs (Fig. 11) (van Heteren 1996). Backbarrier peat extends beneath only
limited parts of the present-day barrier system, primarily on its landward margin, next to the
modern salt-marshes. Inorganic backbarrier facies are much more widespread, underlying much
of the modern barrier lithosome (Fig. 10) and occurring in the subsurface of the present-day
inner shelf. This evidence of an ancient, wide, open-water lagoon or estuary extending well
beyond the location of the modern barrier system indicates that an early barrier system formed
seaward of the modern barriers during the early to middle Holocene (van Heteren 1996),
possibly coincident with the sea-level slowstand of ca. 11.5 to 7.5 ka.

The precursor barriers deteriorated between 7.0 and 4.5 ka. This likely occurred in
conjunction with the initial establishment, and subsequent longshore accretion, of proto-barriers
that formed in the approximate location of the modern barriers (van Heteren 1996). This barrier

morphosome initially abutted the mainland, at the edge of the former lagoon. In time a narrow
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backbarrier region developed through submergence of upland induced by rising RSL, allowing
salt-marsh development and expansion (van Heteren 1996). Limited burial of backbarrier salt-
marsh as a result of slow, RSL-induced barrier retrogradation has not compensated salt-marsh
encroachment onto the mainland; this has resulted in the gradual widening of the backbarrier
areas (van Heteren 1996).

The barrier system underwent limited retrogradation and continued longshore accretion
until about 1 ka. Tidal inlets narrowed and the barrier system grew more continuous during this
time. Finally, in the last 1000 years, most inlets closed or narrowed substantially to their modern
dimensions and the barrier has primarily prograded seaward (van Heteren 1996).

The modern Saco Bay coastline has a distinct log-spiral (or zeta [{]) shape, reflecting the
refraction pattern of oblique incident waves (Farrell 1970). Minor deviations from this log-spiral
form are related to the presence of islands and submerged bathymetric highs off the present-day
coast (Bremner & LeBlond 1974). The subaerial beach and dune system contains approximately
2.2x 10" m’ of sand (Kelley et al. 2005c¢). Relatively narrow, segmented barriers are exposed to
waves from the easterly quadrant, driven by the region’s dominant winds. Breaker heights are <
0.5 m for the majority of the year, but during storms they average between 0.9 and 1.4 m (Farrell
1972). Net northerly transport along the beaches, at an estimated rate of 17,000 m>/yr, results in
long-term infilling of Scarborough River Inlet, a sediment trap located at the northern end of the
barrier system (Kelley et al. 2005c). In the south, construction of jetties at the mouth of the Saco
River in the mid-1800s has greatly impacted the adjacent shoreline and may have resulted in
closure of the former Little River Inlet and rapid progradation of Pine Point (Fig. 9). This human

measure resulted in the evolution of a secondary sediment sink between the Saco River jetties,
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which has necessitated regular dredging of the inlet at a rate of 10,000 m*/yr (Kelley et al.

2005¢).

Merrimack Embayment barrier system

The longest barrier chain in the GoM is located in the Merrimack Embayment (Figs. 2, 12). This
mixed-energy inlet-segmented (FitzGerald & van Heteren 1999) embayment contains a 34-km-
long series of barriers, tidal inlets, estuaries and backbarrier sand flats, channels and marshes.
Individual barriers are 2—13 km long, generally less than 1 km wide and are backed primarily by
marsh and tidal creeks that typically expand to small bays near inlets (Smith & FitzGerald 1994).
They are commonly pinned to bedrock or shallow glacial deposits (Fig. 13a). Each contains
abundant, vegetated parabolic dunes that reach as much as 20 m in elevation. These are best
developed along central and southern Plum Island and Castle Neck, reflecting abundant quartz
sand associated with high rates of longshore transport.

Sediments for this system were dominantly derived from the 180-km-long Merrimack
River. Like the Kennebec, Androscoggin and Saco rivers, the Merrimack is largely bedrock-
controlled. Its headwaters are in the pluton-dominated White Mountains of New Hampshire (Fig.
3b), ensuring a steady supply of quartz-rich, sandy sediments to the embayment. The Merrimack
River has delivered an average annual bedload volume of 4.16x10* m*/yr since at least the mid-
1900s (Hein et al. 2012). Assuming a stable flux over time, the volume of coarse sand and gravel
delivered by the Merrimack since barrier pinning at 4 ka (166 x 10° m®) can account for the
entire volume of the barriers and tidal deltas of the Merrimack Embayment (ca. 137 x 10° m?)

(Hein 2012). These barrier / tidal delta sand volumes are dwarfed by the volume of finer, sandy
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estuarine sediment in the backbarriers of the Merrimack barrier chain (ca. 850 x 10° m®) (Hein et
al. 2011a), comparable in volume to the lowstand palacodelta (1300 x 10° m®) (Oldale e al.
1983). Additional Holocene sandy sediments deposited across the shallow shelf as a sand sheet
total ~650 x 10° m® (Barnhardt e al. 2009; Hein 2012). Assuming modern fluxes, sandy
sediment supply from the Merrimack River since the 14 ka lowstand would amount to no more
than 500 x 10° m®, only ~1/3 of the combined volume of the sand sheet and backbarriers, both of
which postdate the lowstand. Thus, fluvial sediment-supply rates during the early Holocene were
likely several times higher than at present. Additional sediment for the present barrier,
backbarrier and/or shelf sand sheet was also contributed from the erosion of regressive and
lowstand deposits; seismic-reflection profiles across the lowstand delta demonstrate the presence
of a smooth, gently dipping erosional surface that truncates the upper parts of delta foresets (Fig.
13b), indicating complete removal of thin topset beds and scouring to an unknown depth during
the early transgression (Oldale ef al. 1983; Barnhardt ef al. 2009). The relative contributions
from the river and from marine reworking of Upper Pleistocene coastal and deltaic deposits are
unknown.

The large supply of fluvial, glacial, and paraglacial sediment available to the Merrimack
Embayment barriers has played a dominant role in their formation and subsequent development.
Sediments provided by the erosion of the lowstand palaecodelta and the regressive braidplain
delta during the period of relatively rapid RSL rise and shoreline transgression (ca. 12—-6 ka), as
well as the direct contribution by the Merrimack River, triggered the development of
overstepping barriers and transgressive sand shoals (FitzGerald et al. 1994). Thin and mobile
protobarriers were pinned to contemporaneous emerged drumlins and bedrock outcrops proximal

to modern barrier positions by 4 ka (Figs 13a & 14a) (Hein et al. 2012). There is little evidence
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of overwash following this original pinning phase. Abundant GPR profiles collected along
Salisbury Beach and Plum Island reveal few overwash deposits along the proximal landward side
of the barriers (Fig. 15a, b) (Costas & FitzGerald 2011; Hein ef al. 2012). Although preserved
washovers are somewhat more prevalent along the Crane Beach section of Castle Neck
(Dougherty et al. 2004), southerly and seaward-dipping reflections generally dominate (greater
than 90%) barrier widths (Fig. 15¢). This is indicative of the several thousand years of
progradation, aggradation and spit elongation that built the modern barriers (Hein et al. 2012).

Palaeo-inlet sequences are common along the Merrimack Embayment barrier chain (Fig.
14) (Hein et al. 2012). The closure of the palaeco-Parker Inlet, located in central Plum Island,
highlighted the role of the deposition of abundant fine- to medium-grained estuarine sand in
barrier stabilisation. Here, decelerating RSL rise at about 6 ka led to reduced mainland shoreline
transgression and diminished creation of backbarrier accommodation. Backbarrier sedimentation
exceeded accommodation creation over several thousand years, leading to a decrease in tidal
prism and ultimately to inlet closure between 3.6 and 3.0 ka. This closure, which created a single
13-km-long island, was closely followed by a rapid expansion of backbarrier marshes and by the
aggradation, elongation, and progradation of the barrier itself (Hein ez al. 2011a, 2012).

Modern sediment supplied by the Merrimack River is largely driven southward along
Plum Island towards Castle Neck by the dominant northeast storm waves. Southerly oriented,
ebb-dominant sandwaves within the large ebb-tidal-delta complex corroborate sedimentological
evidence of a southerly fining trend across the ebb delta, and of a general trend of increasing
textural and mineralogical maturity in the same direction, away from the river (FitzGerald ef al.
1994, 2002). The dominant southerly transport regime has resulted in the growth of recurved

spits on the downdrift ends of Crane Beach and Plum Island (Farrell 1969), is reflected in an
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increase in the spacing of offshore contours to the south along the barrier chain (Smith 1991),
and has influenced the development of the southern part of the Merrimack Embayment as a net
sediment sink (Hubbard 1976; Barnhardt et al. 2009). Active transport across the shallow (less
than ca. 40 m) shelf during northeast storms likely serves to rework some of this temporarily
stored sediment toward the barrier system (Hein ez al. 2007). Proximal to the mouth of the
Merrimack River, continued fluvial sediment inputs combine with complex river / inlet / tidal-
delta interactions to create the most dynamic section of this coast (Fig. 15a) (FitzGerald et al.

1994; Costas & FitzGerald 2011).

Paraglacial coasts: Barrier formation in a distinctive setting

River-associated barriers of the Gulf of Maine in a paraglacial context

Coastal barriers within a paraglacial coastal framework occur in a variety of settings, including
braided outwash plains, estuarine re-entrant coasts, and prograding deltaic systems. These
systems have responded to different RSL histories, sediment supplies, and physical processes of
sediment reworking, but they have all built barriers, tidal inlets and associated tidal sand bodies,
and various types of backbarrier environments. Similarities among these systems and differences
within individual systems emphasize the importance of wave and tidal processes and RSL
changes in dictating coastal morphology.

Closest to active glaciers, most barriers formed at the leading edge of exposed,
prograding outwash plains, a setting found along the active Skeidararsandur coast of southeast

Iceland (Hine & Boothroyd 1978; Nummedal et al. 1987), the Gulf of Alaska coast from Dry
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Bay west to Kayak Island (Hayes & Ruby 1994), the Hallo Bay region along the Alaskan
Peninsula and the Karaginsky Gulf coast of the Kamchatka Peninsula, Siberia. Coastal
accumulation forms of this type are marked by a wide range in grain sizes, but coarse sand and
fine gravel dominate most barrier and tidal-delta lithosomes. These arctic and subarctic coasts
are dominated by spit systems; true barrier islands are rare. Tidal inlets tend to be located at the
downdrift end of littoral cells. Barriers fronting active, prograding outwash plains are generally
susceptible to breaching during storms, a process that commonly repositions inlets in the middle
of embayments. Flood-tidal deltas along these outwash-plain barriers tend to be well developed
and are commonly a product of storm deposition, whereas ebb deltas are only prominent at inlets
with large tidal prisms.

Farther from active ice margins, the largest paraglacial barriers are associated with fluvial
systems draining glaciated landscapes. These have voluminous sand and gravel sources which
are generally replenished less frequently as glaciers recede. Still within the sphere of influence of
ice caps or glaciers, some systems are nourished by sediment eroded locally from outwash plains
that are no longer fully replenished by meltwater-derived sediment, especially in the coarsest
fractions, whereas others are supplied by major transport conduits from sediment supplied from
farther away. These latter systems are found at the mouths of rivers draining active mountain
glaciers (for example, the Copper River, Alaska; Hayes & Ruby 1994). They are commonly
characterized by well-developed barrier islands and tidal inlets and by backbarriers with open-
water (lagoonal) or intertidal (marsh, tidal flats and tidal creeks) dominance, dependent in part on
antecedent setting. Sand dominates these systems because of the distal location of the primary
sediment source, although fine gravel may also be an important component. The spacing and

dimensions of inlets along these coasts are a function of tidal prism, whereas inlet positions and
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sizes on barrier coasts such as those fronting the Kennebec/Androscoggin, Saco and Merrimack
rivers in the GoM are usually a function of flood events, basement controls, storm breaching, and
prominent river-discharge sites.

Beyond the area of direct glacially driven sediment replenishment, most paraglacial
barriers are formed and modified using finite and shrinking sand and gravel sources, both on-
and offshore. Where these sources are large and exposed enough to supply transporting conduits
and processes with a continuous and steady flow of sediment, the absence of replenishment does
not influence barrier development (such as the Kennebec, Saco and Merrimack barrier chains).
Where sources are small and localized, they will eventually become rapidly exhausted (for
example, along the drumlin-dominated Eastern Shore of Nova Scotia; Carter ef al. 1990; Forbes
etal. 1991).

When viewing the GoM barriers in light of these proximal and distal settings, behavioural
differences and temporal developmental patterns related to sediment availability can be
explained. The most voluminous sediment resources along the GoM are located farthest south,
near the terminus of the Wisconsinan ice sheet at Cape Cod. Here, early barrier systems will
have been dominated by coarse-clastic spits. Even today, sediment eroded from exposed outwash
bluffs nourishes attached barriers, some of which are periodically breached to become islands.
On the other side of the spectrum, barrier systems beyond the area of continuing glacial sediment
replenishment, and thus dependent on local sediment supplies, are most strongly affected by the
finite nature of sediment sources. Examples include the barriers of the Eastern Shore of Nova
Scotia and the barriers and spits of northwest Alaska. Similar to the river-associated GoM
barriers, these barriers are generally composed of medium to coarse sand and gravel (Short 1979;

Boyd et al. 1987); where present, backbarrier and estuarine sediments are composed of fine sand
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and mud (Boyd & Honig 1992; Carter et al. 1992). However, sediment supply to river-associated
barriers along the central Maine coast is much less variable. With rare exceptions, such as near
the southern end of Plum Island where drumlins have been eroded episodically, middle- and late-
Holocene sediment supply has been marked by a steady decrease (D. Barber, personal
communication). Here, RSL changes have maintained a dominant differential control over
barrier evolution during the past ca. 8000 years. The present organization of the Kennebec, Saco
Bay and Merrimack Embayment barrier systems indicates an increasingly high degree of
maturity that developed during an extended period (3000-5000 years) of lateral barrier accretion
and barrier progradation under conditions of near-steady fluvial sediment supply to the coast.
Earlier in their development, however, each of these systems may have shown a much higher
morphologic diversity as they went through one or more stages of morphologic immaturity and
deterioration during periods of rapid RSL rise and barrier retrogradation that dominated over
sediment availability. The coexistence of immature, mature, and disintegrating barriers along
these and other paraglacial coasts (Kliewe & Janke 1991; Orford ef al. 1991; Nichol & Boyd
1993) is a morphological reflection of recent diachronicity in barrier development. Morphologic

evidence from past developmental phases, however, is easily overprinted by later events.

Features of barrier formation in paraglacial settings

The paraglacial barriers of the GoM differ from well-researched lower-latitude barriers that are
located far beyond the limits of the Pleistocene ice sheets in terms of both their development and
morphostratigraphy (Table 4). Their development has been affected by: (1) numerous bedrock

promontories that compartmentalized the coast and served as pinning points for barriers; (2)
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spatially and temporally variable sediment sources (plutons, reworking of glacial and paraglacial
sediments) and a wide range in particle sizes (clay to boulders) and sediment supply rates; ; and
(3) multiple phases of transgression and regression, associated with rapid, large-scale, post-
glacial sea-level changes (for example, RSL fall of 120 m over 2000 years in central Maine; Fig.
4) that allowed the reworking of sediment across the modern coastal plain, coastal zone and
shelf. The resulting barrier systems are characterized by progradational dunes and beaches
composed of spatially variable sediment textures; for example, beaches are coarser proximal to
glacial (till) outcrops and fluvial sediment sources and fine with distance. They have complex
mineralogical compositions, such as the presence of horizons rich in garnet derived from erosion
of plutons, and an overall lithological heterogeneity such as glaciomarine silt and clay directly
underlying coarse sandy barriers. Bioclastics within the barrier lithosomes are mid/late Holocene
to modern in age. Preserved marine organisms are largely similar within GoM coastal sediments,
with differences reflecting the presence of exposed bedrock. For example, barnacle plates are
much more common in the bedrock-dominated KBC than in the glacially pinned Merrimack
barriers.

Paraglacial GoM barriers are more commonly composed of coarser-grained sediment
(siliciclastic medium-grained sand to gravel) than is found along non-glaciated continental
trailing-edge coasts. This reflects their (1) proximity to major river systems with coarse sediment
loads; (2) glacial sediment sources, and (3) continued inputs from both glacial (drumlins and

other till deposits) and paraglacial (upstream terraces, outwash deposits) sediment sources.

Variable sediment supply: The defining feature of paraglacial barrier formation
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Glacial and paraglacial settings are, by definition, transient: their existence and persistence are
inextricably linked to the availability and supply of glacially derived sediment. The surficial
evidence of glaciation along river-associated paraglacial coasts may be removed within several
thousand years by non-glacial processes. Nonetheless, a glacial imprint remains, commonly
hidden within the stratigraphic framework of fluvial and coastal deposits. The sedimentological,
stratigraphic and chronologic frameworks of the river-associated barriers of the GoM contain
valuable information on the nature and timescales of coastal landscape responses to glaciation.
The paraglacial period, as defined by Ballantyne (2002a, b), is the timescale over which
glacigenic sediment stores are tapped and finally exhausted, or landscapes equilibrate to
reworking processes. Following this phase, the landscape returns to a non-glacial or post-glacial
state. As such, a coastline is only paraglacial for as long as glacially excavated landforms and
glacigenic sediments have a recognizable influence on the character and evolution of the coast
(Forbes & Syvitski 1994). The duration of the paraglacial period along any given coastline can
be affected by regional geology (erodibility of bedrock) and by temporally varying sediment
supplies. Sediment-supply variations can be driven by changes in climate (amount / seasonality
of precipitation), vegetation (stabilisation of hill slopes), proximity to meltwater (steady
meltwater fluxes; annual melting events; convulsive outburst and catastrophic flooding events
(jokulhlaups)), regional coastal setting (wave; tides; river inputs) and RSL changes (for example,
erosion of untapped glacigenic sediment sources by rising RSL) (Forbes & Taylor 1987; Forbes
& Syvitski 1994; Forbes ef al. 1995). Continued fluvial input of sediment eroded from
voluminous glacial sources and complex post-glacial RSL changes along the river-associated
paraglacial coast of the GoM served to lengthen the paraglacial period through the late Holocene

and broaden its influence from inland to far offshore. The sediment yield of all river systems
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feeding these coasts is dominated by reworked glacial and paraglacial deposits. These serve only
as temporary storage for sand and gravel generated thousands of years earlier. Elevated sediment
export from river catchments will continue as long as glacigenic or paraglacial sediments remain
easily accessible to fluvial scouring (Church & Ryder 1972; Ballantyne 2002a). The re-
entrainment of submerged paraglacial deposits within the coastal setting is another mechanism
lengthening the period of influence of glaciation. In the GoM, the reworking of regressive and
lowstand deposits offshore of river mouths has produced transgressive sand sheets and nourished
barrier systems. Ballantyne (2002a, b) suggested the term “secondary paraglacial system” to
describe such features. In this case, the regressive and lowstand deposits can be considered
primary paraglacial deposits and the later barriers secondary paraglacial landforms.

The delivery of sediment to river-associated coastal paraglacial systems during and after
glaciation occurs over multiple periods, each marked by the deposition of distinct sedimentary

units and the formation and modification of specific landforms (Figs 5 & 16):

Glacial period

Characteristic deposits and landforms during this period are formed by glaciers during both
advance and retreat of ice sheets. These features include glacially striated bedrock, fjords, over-
steepened embayments, drumlins, crag-and-tail ice-streamlined deposits, kames, eskers,
grounding-line fans, ground and washboard moraines and deglaciation-related moraines (lateral,
terminal, recessional; submarine ice-pushed moraines) (Belknap et al. 1987; Syvitski 1991;

Forbes & Syvitski 1994). Till is the dominant deposit.
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747  Proglacial period

748

749  The proglacial period begins immediately following deglaciation (Church & Ryder 1972;

750  Ballantyne 2002a,b; Slaymaker 2009). Although the term proglacial specifically refers to an area
751  literally “in front of the glacier”, it is adopted here for a time period during which a landscape is
752 located in such a position because of retreat of an ice sheet. Sediments deposited during this
753  period are largely derived directly from the glacier and are therefore glacial rather than

754  paraglacial in origin.

755 In the Gulf of Maine, the proglacial period was marked by deep isostatic depression of
756  the crust, rapid shoreline transgression, the presence of tidewater glaciers and the deposition of
757  outwash deposits and coarse sandy ice-marginal deltas. Elsewhere, proglacial coastal-zone

758  sediments accumulate in sandur (outwash) plains, braided outwash fans, jokulhlaup units,

759  glaciomarine deltas and coastal moraines, ice-rafted debris deposits, and glaciomarine basins
760  (Syvitski 1991; Slaymaker 2009). Along river-associated coasts in the GoM, fluvial sediment
761  delivery to the coast during this period was characterized by finer mean grain sizes than during
762  the glacial period (Fig. 5). The proglacial period can last for many (> 10) millennia if active
763  glaciers continue to indirectly deliver proglacial sediments to the coast via wide braidplains (for
764  example, Skeidararsandur, Iceland).

765

766  Early paraglacial period

767

768  This period is newly defined here for river-associated paraglacial coasts, differentiating them

769  from other paraglacial coastal settings. The onset of this period coincides with the end of
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widespread glaciation within the barrier-associated river drainage basin. Glacigenic sediments
are no longer being deposited within the drainage basin or along the coast. Sand-sized sediment
export to the coast reaches a maximum: a dearth of vegetation and soil, and large quantities of
glacially liberated and paraglacial sediment stored within the river basins at the start of this
period, lead to a high rate of sediment - notably sand - export. High fluvial sediment yields,
obviously proportional to river discharge, continue throughout this period. Along the coast, this
early paraglacial period may be referred to as the paraglacial sand maximum, a time of
unusually high rates of sand delivery to, and deposition in, various contemporaneous coastal
environments. Sediments supplied by rivers are reworked by coastal and fluvial processes in a
regressive setting, in response to isostatic-rebound-induced RSL fall. In the GoM, this
mechanism resulted in the deposition of both discrete and expansive (for example, the Sanford-
Kennebunk, Brunswick and Merrimack braidplain deltas) regressive shoreline deposits and
lowstand deltas and delta lobes. During this time of rapid isostatic land-level adjustments in the
drainage basins of paraglacial rivers, drainage divides of large and small streams shift and can

strongly alter both the competence of streams and the distribution river mouths.

Middle paraglacial period

This period of coastal paraglacial evolution is marked by a gradual exhaustion of terrestrial
glacigenic and paraglacial deposits by associated river systems and by a commensurate decrease
in fluvial sediment supply to the coast. Intense reworking by waves, tides and currents of
glacigenic landforms (drumlins, till bluffs, onshore outwash plains) and newly drowned primary

coastal paraglacial deposits (regressive shoreline deposits, lowstand deltas) results in the
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formation of secondary coastal paraglacial deposits and features such as transgressive sand
sheets, estuarine fills, barriers, tidal deltas, backbarrier marshes and tidal flats. Rising RSL
eventually fully submerges and strands glacigenic and primary paraglacial deposits beyond the
depth of reworking by waves as transgression progresses. However, this same RSL rise and
shoreline transgression can also tap new sediment sources and alter the distribution and
prominence of pinning points and coastline orientation, resulting in cyclic patterns of barrier
formation and destruction such as found along drumlin-dominated coasts (Rosen 1984; Forbes &
Taylor 1987; Nichol & Boyd 1993). A key feature of this period along river-associated barrier
coasts is the transition to dominantly non-glacigenic and non-paraglacial fluvial sediment export.
This reflects the development of post-glacial conditions upstream, in which sediment transport
and export is in equilibrium with erosion of primary materials (bedrock) by non-glacial
processes. Such a transition may take as long as 5000 to 10,000 years as even bedrock erosion
rates may remain elevated for long periods because of the persistence of a weakened upper

bedrock surface that had been physically fractured and weathered by a long-departed ice sheet.

Late paraglacial period

This stage is marked by the gradual exhaustion of accessible paraglacial sediment. During this
period, coastal systems are fed dominantly by rivers that export sediment derived only from
erosion of non-glacial sources, such as the bedrock in New England. Non-fluvial sediment inputs
to the coastal system are increasingly rare. Some final paraglacial activity is linked to occasional
erosion of coastal glacigenic or paraglacial deposits, but most of the non-fluvial sediment will be

derived from shorefaces and shelves that are increasingly in equilibrium with prevailing wave
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and current conditions. Along sediment-rich coasts such as at the mouths of the
Kennebec/Androscoggin, Saco and Merrimack rivers in the GoM, deposits associated with this
period largely reflect the maturation of coastal features first formed during the middle paraglacial
period. By contrast, along sediment-starved coasts or those with a high rate of creation of
accommodation space for a given RSL rise (that is, those with a low gradient), the period of
transition to negligible (or intermittent) glacigenic / paraglacial sediment supply can lead to
widespread erosion, barrier instability and eventual disintegration.

In the GoM, the transition to the late paraglacial period corresponded with a marked
decrease in the rate of RSL rise at ca. 4 ka (Fig. 4). Relatively mature fluvial and reworked
paraglacial sediments filled an increasing proportion of available accommodation along river-
associated coasts in the GoM. Progradation, aggradation, and the development of an equilibrium
shoreface, expansive vegetated and unvegetated dunes, marshes, and equilibrium ebb and flood-

tidal deltas were the result.

Post-paraglacial period

This period is characterized by a coast that is controlled exclusively by non-glacial processes and
does not receive any additional sediment from any glacigenic or paraglacial sources. The coast
responds to intrinsic and extrinsic forcings in a manner indistinguishable from a coast in a non-
glaciated setting.

The timing of the transition to, and even the existence of, the post-paraglacial period is
highly contentious for all areas falling within the sphere of influence of Quaternary glaciations.

Coastal systems within these areas are never fully and permanently removed from the effects of
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glaciation. After many years of non-paraglacial conditions, a storm may expose a glacial source,
or a changing coastal or fluvial configuration may make one barrier paraglacial again and render
another barrier non-paraglacial for the first time. For example, the river-associated paraglacial
barriers in the GoM, although formed solely by non-glacial processes, would not have had a
sediment source large enough for their formation without the prior deposition of paraglacial
deposits. Even after sediments have been reworked multiple times, these retain imprints, either
clear or very subtle, of their paraglacial origins. Furthermore, glacigenic and paraglacial
sediments can be released in terrestrial environments by processes unrelated to direct or lagged
landscape response to glaciation. For example, changes in climate or human disturbance can
rapidly change terrestrial landscapes, affecting erosion and deposition patterns and delivering
fresh quantities of previously unavailable glacigenic or paraglacial sediment to a river-associated
paraglacial coast many millennia following deglaciation. Likewise, increasing rates of RSL rise,
notably along the northeast coast of the USA (Sallenger et al. 2012) will force shorelines to
transgress previously untapped terrestrial glacigenic sediment sources, thus contributing new
glacigenic sediments to the barrier systems. In the Merrimack Embayment, drumlins presently
undergoing erosion at the southern end of Plum Island and on Castle Neck are cored by till of
[llinoian age (Stone et al. 2006); erosion of these would contribute glacigenic sediments that
have been stored along the coast for more than 100,000 years. Does this imply that the
Merrimack Embayment is still in a state of paraglacial or post-paraglacial non-equilibrium dating
back to approximately 120 ka? A positive answer to this question implies that coasts in regions
susceptible to glaciations may never truly enter a post-paraglacial period and will always be
paraglacial in nature. Using this line of reasoning, even the major North Sea barrier system

extending from northern France to Denmark is entirely paraglacial. Along the Frisian Islands, a
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clear paraglacial overprint is visible in eroding bluffs (Denmark and Germany) and in glacial
highs serving as anchor points to barrier islands (Denmark, Germany and the Netherlands).
Farther south, the paraglacial characteristics are more subtle. Here, the progradational barrier
system of the western Netherlands owes much of its size to a mid-Holocene abundance of fluvial
lowstand sand formed under periglacial conditions and later reworked by shallow-marine and

coastal processes as the initially gentle shoreface steepened toward equilibrium.

Changing climate, human interference and the future of river-associated barriers in the

Gulf of Maine

Coastal sediment supplies have undergone significant natural and human-induced perturbations
at local, regional and global scales and over time periods ranging from months to thousands of
years. Natural climate-geomorphic feedbacks under changing precipitation regimes have driven
changes in the rates of erosion and fluvial sediment delivery to the coast (Leeder et al. 1998;
Blum & Torngvist 2000; Goodbred 2003; Hein ef al. 2011b). Over the Anthropocene, fluvial
sediment supplies have further varied in response to deforestation, agricultural expansion and
contraction, urbanization, sediment quarrying and mining, land reclamation, and river
engineering, impoundment and damming (Yang et al. 2010; Kirwan et al. 2011; Milliman &
Farnsworth 2011). Over shorter timescales, the emplacement of artificial hard protective
structures (such as jetties, groins, seawalls, bluff-stabilisation measures, and breakwaters) and
implementation of soft engineering solutions (beach and shoreface nourishment, dewatering,
sand-bagging, scraping and draining) have disrupted natural pathways of sediment within the

littoral zone, resulting in migration of accretion and erosion hotspots, modification of overall

38



885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

beach morphodynamics, and localised flooding. Given projected increases in the rates of RSL
rise (Church et al. 2014), net coastal erosion resulting from both human-induced and natural
changes in sediment-supply systems will likely only accelerate.

Changing climate and enhanced anthropogenic stresses present unique challenges for the
future viability of river-associated paraglacial barrier coasts in particular. In contrast to coasts
proximal to actively melting glaciers that are fed by sediment-laden meltwater streams or
sustained by sediment eroded from coastal bluffs composed of thick glacial deposits, those with
thinner or less extensive glacigenic and paraglacial inland deposits are more likely to be
impacted by a future reduction in terrestrial sediment supply. The GoM barriers are presently
nourished by rivers with discharges similar to those of many moderate-sized rivers along the East
and Gulf coasts of the USA (Milliman & Farnsworth 2011); however, natural depletion of glacial
and paraglacial fluvial sediment sources and the stabilisation of slope, terrace and floodplain
deposits by vegetation cover have reduced fluvial sediment supply to these paraglacial coasts
more significantly than farther south. Unlike barriers in non-glaciated or river-distal settings,
river-associated paraglacial barriers formed in regimes of both ample accommodation and ample
fluvial sediment supply, but now face a substantial natural and anthropogenically induced
reduction in the latter. The drainage basins, tributaries and primary downstream river segments
of the Kennebec / Androscoggin, Saco and Merrimack rivers have all undergone extensive
anthropogenic modifications over the past several hundred years. Damming and re-routing of the
rivers and their tributaries and the jettying and dredging of their mouths have greatly impacted
sediment discharge and sand-dispersal patterns (Farrell 1970; FitzGerald 1993; Kelley et al.

2005¢).
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Given the reductions in fluvial sediment supply and human alterations of fluvial
sediment-supply systems, enhanced creation of backbarrier accommodation in a regime of
accelerated RSL rise is likely to cause narrowing and shortening of the river-associated GoM
barriers (FitzGerald et al. 2008), with an increasing chance of barrier breaching. This process
may reach the point where some barriers become unstable and vulnerable to the step-wise
retrogradation and overstepping that characterized their earlier histories. The
retrogradational/aggradational pathway of the Kennebec barrier chain, for example, will likely
continue in the coming decades of accelerated RSL rise (Buynevich 2001). As attested by
occasional intertidal exposures of backbarrier sediments and tree stumps on the beach face,
onshore-offshore redistribution of sand and gravel during intense storms will continue to drive
longer-term barrier morphodynamics (Buynevich et al 2004). Mobility of the mature barrier-spit
systems of Saco Bay and the Merrimack Embayment is likely to be limited in the near term.
However, when sediment supply no longer compensates the effects of RSL rise, even these
barrier spits will either migrate rapidly to a nearby pinning point, as they have in the past (van
Heteren 1996; FitzGerald ef al. 1994; Hein et al. 2012), or be fragmented and destroyed, only to
reform in a more landward position that is favoured by palacotopography (Swift 1968; Boyd &
Penland 1984). Thus, river-associated paraglacial coasts dependent on continuous fluvial
sediment input are in a precarious situation and may be rapidly approaching a point of transition

from regressive to transgressive and destructive modes.

Conclusions
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Paraglacial coasts are those formed on or proximal to formerly ice-covered terrain and retain the
landforms and sediments derived directly or indirectly from glaciation. The river-associated
paraglacial barriers of the GoM (USA & Canada) formed along such a paraglacial coast during a
period of decelerating RSL rise over the past ca. 5000 years. These barriers are distinguishable
from barriers formed in coastal plain settings or even those along other paraglacial coasts. They
are characterized by spatially variable sediment textures, complex sediment composition and
lithological heterogeneity. This variability reflects several unique features of barrier formation
along river-associated paraglacial coasts: (1) the abundance of bedrock and glacial promontories
that compartmentalize the coast and serve as pinning points for barriers; (2) the complex post-
glacial RSL changes that can shift depocenters laterally tens of km in hundreds of years; and (3)
the variable sources, conduits, and supply rates of glacial, primary and secondary paraglacial,
and nonglacial sediment sources. Sediment-supply rates along these river-associated paraglacial
barriers were highest within a few thousand years following deglaciation (the early and middle
paraglacial periods). Sand deposition peaks at a period herein defined as the paraglacial sand
maximum, as glacial and primary paraglacial deposits are eroded on land and sediments are
redeposited along the regressing coast as a series of sandy shorelines, braidplain deltas and
lowstand deltas.

The future stability of river-associated paraglacial barriers in a regime of accelerated RSL
rise is dependent upon the continued supply of sandy sediments to the barriers and beaches, and
of finer inorganic sediments to the backbarriers. However, a combination of a natural depletion
of glacially liberated sediment and anthropogenic modifications of both the river systems

delivering this sediment and the barriers themselves threatens to enhance barrier erosion, cause
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disintegration of backbarrier marshes, and, eventually, return these systems to the

retrogradational states that characterized their earlier development.
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Figure and Table Captions

Fig. 1. Extent of formerly glaciated coasts. Northern Hemisphere map is modified from Mercier

(2009); Southern Hemisphere map is constructed from data of Ehlers & Gibbard (2008) and

Denton (2011). LGM: Last Glacial Maximum.
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1493  Fig. 5. Idealized stratigraphic sections through (a) river-associated paraglacial barrier island and
1494  (b) shallow-shelf palacodelta sequence offshore a river-associated paraglacial barrier.

1495  Thicknesses given for each unit are approximate and estimated from data in McIntire & Morgan
1496  (1964), Rhodes (1973), van Heteren (1996), Buynevich (2001), Buynevich & FitzGerald (2001),

1497  Stone et al. (2006), Barnhardt ef al. (2009) and Hein et al. (2013).
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1504
1505  Fig. 7. Stratigraphy of Hunnewell Beach (modified from Buynevich ef al. 2004). (a) Satellite
1506  image of Popham Beach complex, with Riverside, Hunnewell and Seawall beaches, showing
1507  transect location (for overall location, see Fig. 6). (b) Stratigraphic cross-section extending from
1508  the modern beach to Silver Lake, showing the extent of both transgressive and regressive facies,
1509  with the latter punctuated by a series of buried erosional scarps (optical chronology from

1510  Buynevich et al. 2007). (¢) Analogue GSSI GPR section collected with a 200-MHz antenna and
1511  showing transgressive barrier core overlying bedrock, in turn overlain by a prograded barrier
1512 sequence. (MHW: mean high water; MSL: mean sea level; m MSL: metres with respect to mean

1513  sealevel; VE: vertical exaggeration).

66



1514
1515

1516

1517

1518

0 Ebb-tidal delt
\cal defta Transgressive sand & gravel

(m)

Estuarine mud and fine sand

Transgressive sand & gravel Inferred RSL
lowstan

Elevation Relative to MSL

-100

~<— North Distar?ce (km) South —»
Fig. 8. Shore-normal stratigraphic cross section across Kennebec palacodelta (modified from
Barnhardt et al. 1997).Cross section is interpreted from high-resolution boomer seismic-
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= 25x. Transect location shown in Fig. 6.
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Fig. 10. Barrier-sequence types at Saco Bay, interpreted from geophysical (GPR) and sediment-
core data (modified from Van Heteren 1996). (a) Headland-beach sequences interpreted to be the
result of beach stabilisation at outlying headlands that formed pinning points for subsequent
barrier-spit accretion. (b) Simple successions of barrier and backbarrier facies in which peat and
inorganic backbarrier facies have infilled irregular palaeo-topography and are partly capped by
washover and eolian sand in a retrogradational succession. (¢) Successions of inlet-proximal
barrier-spit and tidal-inlet facies in which coarse sandy and gravelly lag deposits formed in inlet
channels fine upward into platform facies, covered in turn by somewhat coarser spit-beach facies

and capped by aeolian sand. This sequence, with a strong shore-parallel element of variability, is
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interpreted to form by longshore migration of a barrier-spit and tidal-inlet system over
considerable lateral distances (cf- Heron ef al. 1984). Most of the spit sequences show a northerly
component of net migration, which is reflected in the shape of recurved ridges along the
landward barrier margin (Kelley et al. 1989). (d) Complex juxtaposition of barrier and

backbarrier facies, with marsh ridges forming near inlets during storms.
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Locations shown in Fig. 12. (a) Shore-parallel cross section across four barriers in Merrimack
Embayment (modified and expanded from Hein ef al. 2013). Salisbury Beach and Plum Island
sections are based on more than 20 km of GPR profiles (Hein ef al. 2012, 2013), ground-truthed
with core data from Mclntire & Morgan (1964), McCormick (1968), Rhodes (1973), Costas &
FitzGerald (2011), Hein (2012) and Hein et al. (2012). Castle Neck section of cross-section is
based on cores from Rhodes (1973). (b) Shore-normal cross section (modified from Hein ez al.
2013). Eastern half of cross section is based on high-resolution Chirp seismic-reflection data
(Barnhardt et al. 2009), ground-truthed with surficial sediment samples (not shown) and one
offshore vibracore. Western half is ground-truthed with core data from Mclntire & Morgan
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courtesy of G. Edwards. MSL: mean sea level. Note that vertical exaggeration of (a) is exactly
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profile is modified from Hein et al. (2013) and was collected with a digital GSSIT SIR-2000
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package. Coffins Beach GPR profile was collected with an analogue GSSI GPR with a 200-MHz

antenna. (Profile is courtesy of P. McKinlay).
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Fig. 15. Representative post-processed GPR profiles demonstrating the dominant formation
mechanisms of the Merrimack Embayment barriers. All GPR profiles were collected using a
digital GSSI SIR-2000 system with a 200-MHz antenna. Profile locations shown in Fig. 12. (a)
Shore-normal GPR section across Salisbury Beach, demonstrating the contribution of foreshore
drift and swash-bar welding to barrier elongation. (Profile modified from Costas & FitzGerald
2011). (b) Shore-parallel GPR section across central Plum Island showing spit progradation over
intertidal backbarrier deposits, the dominant mechanism of progradation and elongation of the
barrier-spit system. (Profile modified from Hein 2012). (¢) Shore-normal GPR section across
Castle Neck containing high-amplitude reflections representative of heavy-mineral
concentrations deposited during storm events (Dougherty et al. 2004). Here, barrier growth was
dominated by seaward progradation. Seaward part of unit labelled as a “tidal channel” is
interpreted as an onshore-migrating bar associated with the southward migration of the Parker

River Inlet. Profile modified from Dougherty et al. (2003).
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Fig. 16. Schematic diagram of the pattern of sedimentation during the paraglacial period. Note that time before present increases to the
left (modern is to the right). Conceptual model builds on ideas and models proposed by Church & Ryder (1972) and Ballantyne
(2002b). The post-glacial period is only possible once all glacigenic and primary paraglacial deposits have been exhausted or deeply
buried and can no longer contribute to barrier development. Question marks associated with this period reflect uncertainty in the
possibility that such a period is ever reached, as even indirect contributions by the cannibalization of barrier segments formed from

paraglacial sediments are excluded.
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Table 1. Physiography, hydraulics, and sedimentology of western Gulf of Maine estuaries (modified and updated from FitzGerald et

al. 2005).

Kennebec/Androscoggin

Saco

Merrimack

Estuary physiography

Geological setting
Paraglacial coastal setting
(FitzGerald & van Heteren 1999)
Spring tidal range (m)
Shallow-water wave height (m)
Tidal prism (m°)
Estuary type
Anthropogenic alterations
Associated River Hydrology
Drainage area (x 10° km2)
Length (km)
Maximum elevation (m)
Mean Discharge (Q,) (km®/yr)
Total suspended sediment
(Mt/yr)
Lower-River Sedimentology
Bedload

Bedforms

Terrestrial sediment sources
Associated Barrier System

Barrier chain
Thickness (m)
Length (km)
Volume (m3)
Offshore Deposits

peninsula / deep embayment

mixed-energy mainland-
segmented (Type 3b)
3.0

0.4

101 x 10°
partially to vertically mixed
dams, dredging

24.9 (combined rivers)
520 (combined rivers)
1,200

12.9 (combined rivers)

0.82 (combined rivers)

medium sand to granules

megaripples, sand waves,
transverse bars

eskers, outwash plains, plutons

Kennebec Barrier Chain
5-10

11

24 x 10°

bedrock valley
mixed-energy mainland-
segmented (Type 3b)

3.1

0.4

8.1x 10°

partially to vertically mixed
dams, jetties, dredging

4.6
210
~500

2.2

medium sand to pebbles

megaripples, sand waves
eskers, outwash plains,
plutons

Saco Bay Barrier Chain
3-11

10

22 x 10°

drowned river valley / upper
bedrock valley

mixed-energy inlet-segmented
(Type 4b)

29

0.4

30 x 10°
partially to vertically mixed
dams, jetties, dredging

13.5
220
1600

6.5

0.2
medium to coarse sand
megaripples, sand waves

eskers, outwash plains, plutons

Merrimack Embayment Barrier
Chain

5-20
21
115 x 10°
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Glacial deposits

Primary paraglacial sediment
features

Holocene sediment deposits

till, glaciomarine clay

palaeodelta lobes at 20—30 m,
30—-40 m, and 50-60 m (total
volume: 2.1 x 10° m3)

thin (~1 m) transgressive sand
and gravel deposits

till, glaciomarine clay

scattered regressive and
lowstand deposits, no
lowstand delta (sediment
trapped in upland estuaries)

thin (~1 m) transgressive sand
and gravel deposits

scattered drumlins and drumlin-
related lag deposits, thin till
cover on drumlins and bedrock,
glaciomarine clay

regressive braidplain delta
(volume: 0.9 x 10° m®), lowstand
palaeodelta (volume: 1.3 x 10°
m

1-9 m thick mobile sand sheet
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Table 2. Sedimentological units common to the coastal zone along river-associated paraglacial coasts of the GoM.

Deposit Approximate Relative Sedimentology Direct Environment Associated Contributions
age in GoM sea-level sediment / mechanism features to barriers
(RSL) source of
conditions deposition
during
deposition
Till (non- 100-16 ka falling sea non-sorted, erosion of  direct drumlins; drumlins form
stratified ice- level during  non-stratified bedrock deposition by  crag-and-tail pinning points
contact glacial sediment witha and pre- glaciers ice- for barriers,
deposits) advance, matrix of sand glacial streamlined minor sediment
glacial and lesser sediments deposits; contributions
lowstand, amounts of silt by glaciers kames;
rising RSL and clay ground,
during containing washboard
deglaciation scattered gravel and deglacial
clasts and few moraines
large boulders
Glaciofluvial  100-16 ka glacial bedded gravel,  bedrock deposition by  eskers and erosion of
deposits lowstand, sand, and mud  erosion by meltwater in outwash deposits in river
rising RSL glaciers; terrestrial plains in all basins provides
during erosion environment  river basins sediment for
deglaciation and (Fig. 3b), barriers
reworking glaciomarine
of glacial deltas,
deposits grounding-line
fans
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Glaciomarine
silt-clay
deposits

Regressive
shoreline
deposits

21-13 ka

17-12 ka

RSL rise
and
highstand

sea-level

highstand
and RSL

fall

silty clay, fine
sand, & some
fine gravel,
containing
dropstone
gravel clasts;
highly

compacted and

dewatered;
commonly
sandy in the
upper few
meters,
overlying

thicker silty clay

sand and fine
gravel forming
coastal
landforms
(barrier
beaches, spits,
regressive
fluvial deltas)

bedrock
erosion by
glaciers;
erosion
and
reworking
of glacial
deposits

erosion
and
reworking
of sandy
glacial
deposits

transport to
marine
environment
by meltwater,
deposition by
settling in
marine
environment

transport to
highstand /
regressing
shoreline by
meltwater
and meteoric
water;
reworking by
waves,
currents,
tides and
wind action
along
highstand
and
regressive
shorelines

Presumpscot
Formation in
ME (Bloom
1963) ,
Boston Blue
Clay in MA
(Kaye 1961)

progradational
deltas,
beaches,
spits, dunes;
braidplain
deltas (BPD):
Sandford-
Kennebunk
BPD,
Brunswick
BPD,
Merrimack
BPD, parts of
Kennebec
River
palaeodelta

nearly
ubiquitous
deposit that
form
underpinnings
of barriers (Figs
8,11, 13)

deposits below
modern mean
sea level were
partially eroded
and reworked
by late-
Pleistocene /
Holocene
transgression,
thus
contributing
coarse
sediments to
barrier systems
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Lowstand
palaeodeltas

Shelf sand
sheets

RSL fall
and sea-
level
lowstand

rapidly,
then slowly
rising RSL

fine to coarse,
stratified sand
and silt;
bottomsets
dominated by
silt and clay;
foresets
dominated by
fine, well-sorted
sand and silt;
topsets
dominated by
medium to
coarse sand

well-sorted fine
to medium sand
with minor
quantities of silt
and gravel

erosion
and
reworking
of sandy
glacial
deposits

erosion
and
reworking
of
regressive
and
lowstand
deposits;
erosion of
sandy
glacial
deposits in
river
basins

transport to
lowstand
shoreline by
meteoric
water;
reworked by
waves,
currents,
tides and
deposited as
seaward-
prograding
bottomset,
foreset and
topset beds
in situ
erosion and
reworking of
shelf
deposits;
transport to
lowstand
shoreline by
meteoric
water;
reworked by
waves,
currents and
tides

Kennebec
palaeodelta
(Fig. 8);
Merrimack
palaeodelta
(Fig. 13a);
Penobscot
Bay deltaic
deposits

mobile sand
sheet in
Merrimack
Embayment;
thin
transgressive
sands and
gravels in
Kennebec
and Saco
Bays

palaeodeltas
partially eroded
and reworked
by late-
Pleistocene /
Holocene
transgression,
thus
contributing
coarse
sediments to
barrier systems

sand sheets
are fraction of
shelf deposits
not
incorporated
into barriers
during their
formation;
active
exchange of
shelf and
barrier
sediment
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Estuarine
deposits

Barrier
lithosome

8 ka to
present

6 ka to
present

rapidly,
then slowly
rising RSL

slowly
rising RSL

largely massive,
moderately
well-sorted fine
sand and silt,
dominated by
quartz with
traces of
organic material

moderately-
sorted, fine to
very-coarse
sand;
commonly
parallel
laminated;
coarser layers
contain some
granules and
fine pebbles;
finer layers
contain very-
fine sand and
traces of silt.

erosion
and
reworking
of
regressive
and
lowstand
deposits;
minor
bedrock
and
upland
erosion
(fluvial
inputs)

erosion
and
reworking
of
regressive
and
lowstand
deposits;
minor
bedrock
and
upland
erosion
(fluvial
inputs)

onshore
transport of
shelf
sediments;
transport to
backbarrier
by tides
through inlets
and by waves
as overwash
across
barriers

onshore
migration of
shelf
deposits;
direct fluvial
contributions;
reworking
alongshore
by waves,
tides and
currents

backbarrier
tidal channels
and tidal flats;
inlet ebb- and
flood-tidal
deltas;
common living
bivalve
species
include
Mercenaria,
Ostreidae,
Ensis directus
and
Pteriomorpha

barrier
beaches;
dunes; sandy
intertidal
Zones;
American
Dunegrass
common in
supratidal
areas

underlie
barriers; fill
most
accommodation
behind barriers;
active
exchange of
sediment
between
estuaries and
barriers through
inlet processes

some active
sediment
exchange
between
barriers
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Salt-marsh

4 ka to
present

slowly
rising RSL

fine-grained
clastic and
organic matter,
fibric and hemic
peat
interbedded
with fine sand,
silt and clay;
typically greater
than 30%
organic

in situ
production
of organic
sediments;
inorganic
sediments
largely
fluvially
derived

in situ
production;
inorganic
sediments
transported
to backbarrier
by tides
through inlets
and bydirect
fluvial influx
and overland
flow proximal
to upland
areas

marsh
grasses
include
Spartina
alterniflora
(cordgrass),
S. patens
(marsh hay),
J. gerardii
(black rush),
Phragmites
(common
reed), and
Ichnocarpus
frutescens
(shrub)
(Jacobson &
Jacobson
1989)

marsh peats
underlie
mainland-
proximal sides
of barrier
complexes
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Table 3. Major rivers draining into the Gulf of Maine.

Location of river mouth

States / provinces in drainage basin

Drinage-basin area

(km’)
Charles River Boston Harbor, Massachusetts (USA) 1593
Massachusetts (USA)
Merrimack River  Merrimack Embayment, Massachusetts / New Hampshire (USA) 13,507
Massachusetts (USA)
Saco River Saco Bay, Maine (USA) New Hampshire / Maine (USA) 4610
Androscoggin Popham, Maine (USA) Maine (USA) 9376
River
Kennebec River  Popham, Maine (USA) Maine (USA) 15,618
Penobscot River  Penobscot Bay, Maine Maine (USA) / New Brunswick 23,245
(USA) (Canada)
St. Croix River Passamaquoddy Bay, Maine (USA) / New Brunswick 3885
Maine (USA) / New (Canada)
Brunswick (Canada)
St. John River St. John, New Brunswick  New Brunswick (Canada) 7601
(Canada)
Annapolis River  Annapolis Basin, Nova Nova Scotia (Canada) 7600

Scotia (Canada)
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1601

Table 4. Generalized comparison between barrier systems formed along coastal plains and those formed along, or proximal to,

formerly glaciated coasts.

Glaciated coastal barriers

Coastal-plain barriers

Continuity

Relative sea-level
history during barrier
formation

Basement controls

Sediment sources

Sediment-supply
rates

Substrate lithology

Grain size

Backbarrier
environment

Examples

generally short barriers; may be sand or
gravel dominated; range from barrier
islands to welded barriers; barrier type
commonly changes abruptly

complex; ranges from slowly falling to
slowly rising RSL during middle to late
Holocene

drumlins and other glacial deposits
and/or bedrock act as pinning points for
barrier development

multiple sources that can change
spatially and temporally; include glacial
and primary and secondary paraglacial
deposits and fluvial sediments

complex; related to fluvial and coastal
erosion of glacial and paraglacial
sediment sources and to RSL change

barrier lithosomes overlie glacial and
paraglacial deposits such as till and
glaciomarine clay

fine to coarse sand and gravel; can
change rapidly across short distances

lagoon to marsh or tidal flat, incised by
tidal creeks; ice-rafted horizons
common in marshes

New England (USA), Long Island
(USA), Alaska (USA), Canada, New
Zealand, Ireland, United Kingdom,
Kamchatka Peninsula (Russia),
sections of Baltic coast

barrier type constant for 50—200
km

slow rate of RSL rise during
middle to late Holocene

barriers form on interfluves, and
tidal inlets stabilise in former river
valleys

continental shelf, minor fluvial
input in locations distal to medium
to large rivers

driven by sea-level change and
extreme events

barrier lithosomes overlie
Pleistocene coastal-plain
deposits or bedrock

fine to medium sand

lagoon to marsh or tidal flat,
incised by tidal creeks

East and Gulf Coasts of USA,;
West Africa; India; northern Black
Sea; Algarve of Portugal; central
and southern Brazil
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