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Abstract: Recent advances in nanoengineering and super-resolution microscopy have enabled new 10 
capabilities for creating and observing membrane curvature. However, the effects of curvature on 11 
single-lipid diffusion have yet to be revealed. The simulations presented below describe the 12 
capabilities of varying experimental methods for revealing the effects of nanoscale curvature on 13 
lipid mobility. Traditionally, lipid mobility is revealed through fluorescence recovery after 14 
photobleaching (FRAP), fluorescence correlation spectroscopy (FCS), and single particle tracking 15 
(SPT). However, these techniques vary greatly in their ability to detect the effects of nanoscale 16 
curvature on lipid behavior. FRAP and FCS depend on diffraction-limited illumination and 17 
detection. A simulation of FRAP shows minimal effects on lipids diffusion due to a 50 nm radius 18 
membrane bud. Throughout the stages of the budding process, FRAP detected minimal changes in 19 
lipid recovery time due to the curvature versus flat membrane. Simulated FCS demonstrated small 20 
effects due to a 50 nm radius membrane bud that was more apparent with curvature-dependent 21 
lipid mobility changes. However, SPT achieves sub-diffraction-limited resolution of membrane 22 
budding and lipid mobility through the identification of the single-lipid positions with ≤15 nm 23 
spatial and ≤20 ms temporal resolution. By mapping the single-lipid step lengths to locations on the 24 
membrane, the effects of membrane topography and curvature could be correlated to membrane 25 
viscosity. Single-fluorophore localization techniques such SPT can detect membrane curvature and 26 
its effects on lipid behavior. These simulations and discussion provide a guideline for optimizing 27 
the experimental procedures in revealing the effects of curvature on lipid mobility and effective 28 
local membrane viscosity.  29 
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 32 

1. Introduction 33 
The shape of biological membranes is precisely controlled for diverse, essential, cellular 34 

processes such as regulating organelle morphology, exocytosis/endocytosis, pathogen 35 
vulnerability/protection, and effective therapeutic targeting [1–3]. Accordingly, the dysregulation of 36 
membrane curvature is broadly implicated in cardiovascular disease, viral infections, cancer, 37 
Alzheimer's disease, Huntington disease, diabetes, and other diseases [4–6]. Each of these processes 38 
requires the fusion or fission of <50 nm radius vesicles with otherwise near planar membranes via 39 
precise regulation of the local curvature-generating forces [7]. Cellular membrane shape regulation 40 
incorporates a wide variety of proteins that can bend the membrane. For example, BAR domains 41 
have an intrinsic molecular shape [8], clathrin proteins create a scaffold [9], and intrinsically 42 
disordered proteins apply steric repulsion to induce membrane curvature [10]. The underlying 43 
non-specific, lipid-based influences remain relatively unknown in complex cellular membranes, 44 
although the importance of some key lipids has been previously demonstrated [11–14].  45 

 46 
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 47 
Figure 1. Simulations were performed by mimicking the membrane topography throughout the 48 
fission and fusion of a single 50 nm radius vesicle with a planar membrane. (A) By maintaining a 50 49 
nm radius of curvature on top and a smooth, 20-nm radius of curvature connection to the 50 
surrounding membrane, the stage of membrane budding was tracked via the maximum bud height 51 
above the surrounding membrane (hbud). (B) Bud growth results in an increased area of total 52 
membrane within a 250 nm of the bud center. When hbud > 137 nm, the bud undergoes fission, a 53 
separate vesicle is formed, which is assumed to diffuse away and not contribute to these simulations. 54 
(C) The simulated trajectories in are shown in assorted colors over a membrane topography with hbud 55 
= 120 nm.  56 

Experimental studies on the effects of curvature on membrane behavior are becoming possible 57 
with nanoengineering and super-resolution microscopy. For example, naturally occurring plasma 58 
membrane tubules [15], engineered plasma membrane tubules [16], and engineered model 59 
membrane tubules have demonstrated protein and lipid sorting dependent on the membrane 60 
curvature. Nanoscale tubules have been created with model membrane via microbead pulling [17], 61 
protein crowding [18], or molecular motor pulling [19]. Prior experimental attempts to reveal 62 
diffusion differences on membrane tubules of varying radii were complicated by coupled variations 63 
in membrane composition and tension. However, slower diffusion is consistently observed on 64 
membrane tubules of smaller radii [20–22], as expected theoretically [23–26]. 65 

By engineering curvature on a solid substrate, modeled or living membranes may assume the 66 
substrate topography if the substrate curvature and the membrane-substrate adhesion are 67 
sufficiently large. These engineered buds represent a membrane shape similar to endocytic pits 68 
preceding vesiculation and the post-fusion state of exocytosis, although the engineered structures 69 
are static while endocytosis and exocytosis require dynamic membrane changes. Nanoscale 70 
membrane buds have been formed over substrates patterned via electron-beam lithography 71 
[16,27–30] and polystyrene nanoparticles [31–34]. These studies have revealed the effects of 72 
membrane curvature on protein sorting [16,27,34], lipid phases [28–30], and single-lipid dynamics 73 
[31–33].  74 

Substrate nanoengineering has enabled the creation of the same membrane topographies 75 
simulated in this manuscript. The limited studies to date regarding the effective membrane viscosity 76 
on a nanoscale buds have reported that curvature can have no effect [32] or can slow the lipid 77 
mobility to 4-10% of the planar system [33–36]; however, these reports vary widely in their 78 
experimental methods. A focus of this manuscript is to demonstrate how varying observational 79 
methods can yield varying results on the effects of nanoscale curvature. Further, the collection of 80 
membrane morphologies simulated here represent a subset of the diverse membrane shapes created 81 
during endocytosis and exocytosis.  82 

Understanding the effects of curvature on lipid dynamics will require separately resolving the 83 
two leaflets and the variation across the ≤100 nm diameter membrane bud. Within the membrane 84 
bud, there is positive and negative principal curvature and positive and negative Gaussian 85 
curvature. The molecular structure of the constituent lipids and proteins can lead to 86 
curvature-induced nanoscale molecular sorting and compositional variation laterally across the 87 
membrane or between leaflets [21,37]. No known experiments to date have been able to distinguish 88 
the effects of nanoscale positive versus negative curvature on the effective membrane viscosity. 89 
However, membrane curvature generally seems to have the net effect of increasing the local effective 90 
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membrane viscosity and slowing of the lipid and protein mobility [20,21,33–36]. Accordingly, 91 
sub-diffraction-limited spatial resolution and distinguishing between bilayer leaflets will be 92 
necessary to experimentally measure how membrane curvature influences lipid and protein 93 
dynamics. 94 

Optical techniques are traditionally limited by diffraction to a spatial resolution of >200 nm. 95 
Nanoscopic optical methods such as direct stochastic optical reconstruction microscopy 96 
[(d)STORM], photoactivated localization microscopy [(f)PALM], and stimulated depletion emission 97 
microscopy (STED) [38–42] have improved the resolution of optical microscopy to >10 nm. Many 98 
variations on these techniques have been adapted to yield fluorophore height or orientation [43–50]. 99 
In particular, polarized localization microscopy (PLM) was designed to reveal nanoscale, membrane 100 
curvature with sub-diffraction-limited resolution [33]. PLM combines single-molecule localization 101 
microscopy (SMLM) and polarized total internal reflection fluorescence microscopy 102 
(TIRFM)[33][11]. Polarized TIRFM is sensitive to membrane orientation by selectively coupling 103 
linearly polarized fluorescence excitation with lipidated indocarbocyanine dyes (i.e., DiI, DiO, DiD) 104 
that maintain their fluorescence dipole moment in the plane of the membrane [51]. Pointillist SMLM 105 
methods such as (d)STORM, (f)PALM, and PLM provide raw data that can be interpreted for 106 
high-throughput single particle tracking of lipid diffusion dependent on membrane curvature. 107 
Tracking individual fluorophores that stay on for multiple sequential frames enables the observation 108 
of single-molecule diffusion rates versus membrane topology. For example, DiI molecules diffuse on 109 
curved membranes at <10% of the speed at which they diffuse on flat membranes [33,35]. Analysis of 110 
single-molecule diffusion rates relative to membrane topology reveals information regarding the 111 
local environment (i.e., lipid phase or molecular crowding) associated with membrane bending.  112 

In this manuscript, we demonstrate the capabilities of various fluorescence techniques to reveal 113 
lipid dynamics relative to membrane curvature. We focus on the three most common methods of 114 
measuring lipid mobility: fluorescence recovery after photobleaching (FRAP), fluorescence 115 
correlation spectroscopy (FCS), and single-particle tracking (SPT). Through Monte Carlo simulations 116 
of Brownian diffusing lipids over membrane buds of varying heights, we demonstrate the ability of 117 
each of these techniques in revealing the presence of the membrane bud, the lipid dynamics on the 118 
bud, and the effects of curvature on lipid mobility. Our simulations demonstrate how FRAP was not 119 
sufficiently sensitive to reveal that a bud was present under any of our simulation conditions. FCS 120 
revealed the bud’s presence, but FCS is typically limited to diffraction-limited length scales. SPT, 121 
however, measured the effects of membrane topography change with and without 122 
curvature-induced alteration to lipid mobility on each part of the membrane bud. By mapping the 123 
single-lipid steps over space, buds of varying heights and membranes of laterally varying viscosity 124 
could be distinguished. Within these simulations, we consider the effects of lipid diffusion variations 125 
with membrane curvature could have on the collected data, but we do not advocate for any 126 
particular function of curvature dependence on the diffusion rates or distinguish between different 127 
types of lipids. Through carefully chosen methods, SPT data can reveal spatial information across 128 
the sample with <20 nm resolution. Guidelines are provided for designing SPT experiments to 129 
optimize the resolution of membrane curvature and its effects on molecular mobility. 130 

2. Methods  131 
The diffusion of lipids through membrane buds was simulated and analyzed to mimic the 132 

expected experimental results that would be obtained by a variety of fluorescence-based methods. 133 
All simulations were performed with custom MATLAB (MathWorks, Inc.) programming, which is 134 
available in the Supplemental Material. Membrane buds were modeled with a radius of curvature 135 
equal to 50 nm and varying heights above a surrounding planar membrane (hbud). The bud 136 
membrane was smoothly connected to the surrounding planar membrane with a radius of curvature 137 
equal to 20 nm along the principal plane radial from the bud center (Figure 1), as done previously 138 
[33,34]. hbud = 0 represents the case of a planar membrane with no bud protrusion. When hbud = 140 nm, 139 
the bud had detached from planar membrane such that there was no diffusion between the vesicle 140 
and the planar membrane, and the vesicle was assumed to not contribute to the observed lipid 141 
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diffusions as if the newly formed endosome had quickly left the proximity of the plasma membrane. 142 
Simulations of diffusion on a vesicle disconnected from a surrounding SLB have been recently 143 
published [35]. This is a minimalistic model of membrane shape during endocytosis or exocytosis 144 
qualitatively matches electron microscopy images of cell plasma membranes [3,16] and allows for 145 
the single parameter hbud to report the stage of progression as the membrane transitions between 146 
planar and the moment of fission or fussion.  147 

Trajectories of the individual lipids were simulated upon the budding topography via a 148 
Monte-Carlo method for a discrete set of randomly distributed points. The discrete points were 149 
created at a density of 4 points/nm2 across the bud top, the bud-to-planar membrane neck, and the 150 
surrounding planar membrane. At each time step, the lipid moved to one of the 110 ± 10 random 151 
points within 3 nm. This resulted in an average single step distance of 2 nm. To mimic the diffusion 152 
coefficient (D) of 1 μm2/s over many steps, each time step would correspond to 1.1 μs. Each 153 
trajectory of each lipid started 1 μm away from the bud center, then diffused randomly upon the 154 
simulated membrane until it was >1μm away from the bud center. More than 105 different 155 
trajectories were simulated for each condition, and 1300 ± 100 of those trajectories made it onto the 156 
membrane bud for each hbud. Example trajectories over a bud of hbud = 120 nm are shown in Figure 1C. 157 
The methods of analyzing these trajectories were designed to mimic experimental fluorescence 158 
techniques. 159 

To mimic the curvature-induced slowing of the lipid diffusion, the effective time per simulation 160 
step was changed to be 11 μs or 28 μs for each 2 nm step whenever the simulated lipid was on the 161 
bud to mimic DBud = 0.1 or 0.04 μm2/s, respectively. Simulations were performed with the varying 162 
values of DBud to reveal how the various observation methods would report curvature-induced lipid 163 
slowing. 164 

The analyses performed in this manuscript were limited to the z-projection of the fluorescence 165 
signal into the imaging xy-plane. The fluorescence emission was assumed to have no z-dependence 166 
or polarization dependence. These two assumptions apply well to nanoscale structures that vary in 167 
the thickness (i.e., ≤140 nm as done here), less than the diffraction-limit of light (>200 nm for optical 168 
fluorescence), and for fluorophores that tumble randomly through all orientations.  169 

2.1 Mimicking Fluorescence Recovery After Photobleaching 170 
Fluorescence recovery after photobleaching (FRAP) measures the recovery of a fluorescence 171 

signal from a region of the sample after the fluorophores within that region were bleached. Here, 172 
two bleaching conditions were used and compared. The first bleaching method, “complete 173 
bleaching”, was identical to the processes of coming to equilibrium, as described above, in which all 174 
fluorophores within 1 μm from the bud center were bleached. The second method, “Gaussian 175 
bleaching,” took an equilibrated distribution of fluorophores and imposed a bleaching probability 176 
upon the ith fluorophore equal to  with a w = 250 nm and ri equal to the 177 
lateral distance of the fluorophore from the bud center. In both cases, simulated trajectories were 178 
analyzed with a Gaussian illumination (I) centered on the membrane bud according to  179 

 180 
         (1) 181 

 182 
with an illumination width (w) set equal to 250 nm, as would be expected for a diffraction-limited 183 
illumination. Immediately after bleaching, I(t) was reduced by 50 ± 5% after Gaussian bleaching. 184 

New single-lipid trajectories were started at the perimeter of the 2 μm diameter system every 185 
0.08 μs for an equilibrium density of 0.00146 lipids/nm2 or approximately 10 mol% fluorescent lipids. 186 
Since an area larger than the illumination spot was initially bleached with the complete bleaching 187 
method, only the I(t) after recovery 25% complete was analyzed for these data. The increasing I(t) 188 
was fit to 189 

.        (2) 190 
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The fitting variable A represents the steady-state magnitude of I and is proportional to the 191 
steady-state fluorophore density, the membrane area, the illumination intensity, and the 192 
fluorescence emission collection efficiency. The fitting variable τFRAP represents the characteristic 193 
FRAP recovery time. This fitting model is approximated to which would be expected for planar 194 
systems with uniform [52] or Gaussian illumination [53]; an approximation was used since the exact 195 
recovery shape over the non-planar membrane topography varied with hbud.  196 

2.2 Mimicking Fluorescence Correlation Spectroscopy 197 
Fluorescence correlation spectroscopy (FCS) examines the fluctuations in the steady state I 198 

versus t signal. This is mainly performed by calculating the autocorrelation (G) as a function of lag 199 
time (τ) and finding the characteristic fluctuation time (τFCS). In these simulations, I(t) for FCS was 200 
calculated from the single-molecule trajectories through a Gaussian illumination profile according to 201 
Eq. 1, as would be expected for typical confocal FCS. G was calculated from I(t) according to 202 

.       (3) 203 
The angle brackets (<>) represent the average over t and δI(t) = I(t)-<I(t)>. The correlation time (τFCS) 204 
in I(t) was found by fitting G(τ) according to  205 

,        (4) 206 
as is expected for 2D Brownian diffusion. The fitting variable G0 is inversely proportional to the 207 
number of diffusers simultaneously observed, and other experimental conditions not relevant in 208 
these simulations. With a membrane bud present, the autocorrelation is not expected to fit perfectly 209 
to Eq. 4; however, the inherent averaging incorporated into an autocorrelation analysis makes 210 
finding minor populations difficult, and complex fitting functions are typically unwarranted [54]. 211 
For this analysis, Eq. 1 was assumed to be the spatial detection sensitivity, which is the standard 212 
approximation of the Airy point spread function in a diffraction-limited system [55] and especially 213 
accurate when a confocal collection pinhole is used with a diameter of one Airy unit. 214 

2.3 Mimicking Single Particle Tracking 215 
Single-particle tracking (SPT) includes identifying the center of each single-fluorophore image 216 

via computational analysis of a movie of sparse, dynamic fluorophores. From the motion of the 217 
single-molecules between sequential frames, single-molecules trajectories were observed. The 218 
single-steps lengths (s) observed in a region of the sample may be fit to a 2D Maxwell-Boltzmann or 219 
Rayleigh Distribution to determine the local D, where the probability distribution (P) of step lengths 220 
over a time step of Δt for a single Brownian diffuser in a uniform membrane is expected to be 221 

.          (5) 222 

The observed single-molecule steps were grouped and fitted according to their location in the 223 
sample (x, y) or distance from the bud center (r) such that D could be measured at different locations 224 
in the sample. The ability to gain finer spatial resolution for variations in D across a sample is the key 225 
differences between a single-step length analysis used here versus the more traditional mean 226 
squared displacement (MSD) analysis, as further discussed below. Optimization of MSD analysis 227 
has been recently described [56]. 228 

However, the single-step analysis in experimental systems is affected by the 2D localization 229 
uncertainty ( ) and camera exposure duration (texp) to yield a systematic difference 230 
between the D found from fitting Eq. 5 to experimental data (DFit) and the D that would be found 231 
from an idealized system (DReal), according to  232 

 /( .        (6) 233 
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 234 
Figure 2. Increasing the bud height does not result in significant changes to the FRAP recovery time, 235 
including when the lipid diffusion was slowed to DBud = 0.1 or 0.04 μm2/s on the curved membrane 236 
for both (A, B) complete bleaching and (C, D) Gaussian Bleaching. (A, C) Simulated I(t) traces while 237 
DPlane = 1 μm2/s and DBud = 0.1 μm2/s shows the recovery of I(t) after bleaching. There was no apparent 238 
trend in the recovery rate changing with bud height. (B, D) The recovery rate was quantified by 239 
fitting Eq. 2 to find τFRAP from I(t) of each condition. Error bars represent the standard error of the 240 
mean between separately four repeated simulations.  241 

Frequently, Δt is equal to the time between adjacent frames (tframe) used in this analysis, 242 
however, any Δt that is a multiple of tframe are permitted. tframe is equal to the sum of texp and the frame 243 
read time such that the inverse of 1/tframe equal the imaging frequency. 244 

When the membrane is not parallel to the coverslip, then the z-component of the lipid diffusion 245 
within the membrane, results in a slowing of the lipid through the xy-plane. It was not possible to 246 
extract the in-plane diffusion rate from the observed diffusion through the xy-plane (Dxy) when both 247 
the membrane topography and the influence of curvature on membrane viscosity are unknown. In 248 
the below analysis, DReal was calculated under the approximation that the membrane was parallel to 249 
the coverslip, and this value was reported as Dxy to be explicit in representing that the membrane 250 
topography was contributing to the measurements.  251 

2.4. Assumptions used in the simulations 252 
Super-resolution methods may incorporate a light polarization and z-dependence in the 253 

localization probability versus membrane height or orientation. The localization probability can vary 254 
as a fluorophore diffuses away from the objective focal plane in the z-direction. However, this 255 
probability change occurs only when variations in z are greater than the diffraction limit are 256 
allowable. Since the nanoscale buds simulated here vary in z by <140 nm, no variation in the 257 
probability of fluorophore localization is expected. Polarization was important in FCS of vesicles 258 
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containing DiD [35]; however, no differences in s- versus p-polarized illumination was observed in 259 
SPT of DiI [33].  The simulations presented here mimic randomly tumbling fluorophores with no 260 
polarization dependence. 261 

Simulations performed here do not incorporate any differences in the lipid diffusion due to the 262 
membrane-substrate adhesion. The diffusion of transmembrane proteins and >100 nm diameter 263 
lipid domains can be greatly slowed in SLBs versus freestanding membranes; however, the diffusion 264 
of individual lipids are significantly less affected by the substrate [57]. We would expect to see 265 
significant substrate effects for fluorescent lipids with larger head-group labeling [58] or for systems 266 
that may form >100 nm phase-separated domains. 267 

3. Results  268 

3.1. Membrane bending and FRAP 269 
Experimental FRAP conditions such as the laser-based illumination with complete or Gaussian 270 

bleaching and small observation areas were mimicked in the simulations presented here. The 271 
presence of the membrane bud and the extra membrane area associated with it were not sufficient to 272 
consistently influence the FRAP recovery time. Upon incorporating a curvature-induced slowing of 273 
the lipid diffusion on the bud, where DBud was reduced to 0.1 or 0.04 μm2/s while maintaining DPlane = 274 
1 μm2/s, the variation between repeated simulations proved to provide insignificant differences in 275 
τFRAP versus hbud for both complete bleaching (Figure 2A, B) and Gaussian bleaching (Figure 2C, D). 276 
Further, these results were created from a perfectly centered Gaussian illumination on the bud 277 
center (Eq. 1). Upon slight deviations of the illumination from the bud center, the effects of the bud 278 
on τFRAP were reduced further. Within the range of DBud explored here, the identification of the bud 279 
and the curvature-induced changes in lipid diffusion were undetectable by FRAP. 280 

 281 

Figure 3. A membrane bud may be detected by FCS if hbud > 80 nm or the membrane curvature 282 
inherently slows the local lipid diffusion. While a lipid on the planar membrane experiences DPlane = 1 283 
μm2/s, varying the diffusion rate of the lipid on the curved membrane and the location of the bud 284 
within the excitation spot affects the observed FCS results. (A) A shifting of G(τ) to longer lag times 285 
was apparent when DBud = 0.1 μm2/s and the bud was centered on the 250 nm wide Gaussian 286 
illumination. (B) If DBud = 1 μm2/s and hbud ≤ 50 nm, a minimal effect of the bud was observed on the 287 
measured τFCS; the extra membrane area and varying membrane orientation are not sufficient to 288 
affect the FCS results within the uncertainty of finding τFCS. However, if DBud = 0.1 μm2/s, the presence 289 
of the bud becomes clear for hbud ≥ 15 nm. The bud can be offset by 200 nm from the center of the 290 
illumination and still yield a clear change in the τFCS. If the observation spot was off-centered from 291 
the bud by 100 nm or 200 nm, the effects of the bud are decreased by an average of 15% or 66%, 292 
respectively.  293 

 294 
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3.2. Membrane bending and FCS 295 
The presence of a single nanoscale membrane bud can be detected with FCS with or without 296 

curvature-induced lipid slowing (Figure 3). With diffraction-limited illumination (Eq. 1) and 297 
imprecise centering of the observation spot over the membrane bud, simulated FCS detected the 298 
effects of the bud on the lipid dwell time. For example, with DPlane and DBud = 1 μm2/s, the addition of 299 
the extra membrane area for a bud of hbud = 100 results in a 60% slowing of the intensity fluctuations; 300 
τFCS= 12.3 ± 0.6 ms and 20 ± 1 ms when hbud = 0 and 100 nm, respectively. This change is consistent 301 
with the 60% extra membrane area created by the bud when hbud = 100 nm versus 0 nm (Figure 1B).  302 

When the membrane bud incorporated slower lipid diffusion, the effects of the membrane bud 303 
on the FCS result were more pronounced. For example, a 1700% slowing τFCS was observed between 304 
hbud = 0 and 100 nm when DBud = 0.1 μm2/s and DPlane = 1 μm2/s, with τFCS = 12.3 ± 0.6 ms and 210 ± 20 305 
ms, respectively; the autocorrelations for varying hbud are shown for this condition in Figure 3A. 306 

The effects of the membrane bud on the FCS results were apparent but reduced if the 307 
fluorescence illumination was not well centered over the membrane bud. For example, the effects on 308 
τFCS was decreased by an average 15% when the center of the membrane bud was 100 nm offset away 309 
from the center of the diffraction-limited FCS illumination spot, as calculated by the average ratio of 310 
the centered versus offset τFCS values for hbud from 5 nm to 135 nm (Figure 3B). 311 

3.3. Membrane Bending and SPT 312 
Mapping the locations of single molecule steps enables measuring Dxy at specific locations 313 

within the sample (Figure 4). When a membrane with consistent viscosity and consistent lipid 314 
mobility was simulated, the variations in the measured Dxy across the sample were due to the 315 
membrane topology change, and the measured shorter lipid step lengths on tilted membranes as the 316 
lipid trajectories are projected on the imaging xy-plane (Figure 4A). The effects of the membrane bud 317 
presence are enhanced when the curved membrane reduces the lipid mobility (Figure 4B, C). When 318 
the membrane bending occurs in a rotationally symmetrical way, as would be expected for an 319 
endocytic pit and the engineered curvature shown here, a radial averaging provides greater clarity 320 
in the effects of membrane budding on the SPT results (Figure 5).  321 

In an SPT experiment, a balance between acquisition frame rate, localization precision, laser 322 
power, and ‘on’ fluorophore density is required to achieve meaningful data. The simulations 323 
performed here demonstrate that a faster frame rate at the cost of worse localization precision yields  324 
 325 

 326 
Figure 4. Dxy mapped over the sample through SPT. The single steps from all trajectories are binned 327 
according to the average x position and the average y position of the two localizations. This 2D 328 
binning of the x and y positions allows for the analysis of all the step lengths in each region on the 329 
sample, as represented by a single pixel in these images. Here, hbud = 100 nm, σr = 15 nm, DPlane = 1 330 
μm2/s, and tframe = 2 ms while (A) DBud = 1 μm2/s, (B) DBud = 0.1 μm2/s, and (C) DBud = 0.04 μm2/s. The 331 
bud induced slowing in (A) was due to the membrane topography causing the lipid to move slower 332 
through the xy-plane with constant local diffusion in the membrane of varying orientation; this effect 333 
also contributes to (B) and (C). The distinction between the bud and the planar membrane is 334 
enhanced when there is a greater difference between DPlane and DBud. 335 
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 336 
Figure 5. Azimuthal averaging of the spatial mapping of Dxy around a bud (i.e., Figure 4) improved 337 
the data statistics and enabled easier comparison of Dxy versus distance from the bud center (r) and 338 
hbud. Simulated SPT results for Dxy are presented with varying σr, tframe, and DBud. (A) When DPlane = DBud 339 
= 1 μm2/s and, the single molecules maintain a uniform average local speed through the membrane, 340 
and the observed variations in Dxy were due to the tilt of the membrane. (B, C) As DBud decreased to 341 
0.1 or 0.04 μm2/s, the bud became increasingly apparent at all hbud. The (D-F) significant 342 
improvements in the resolution of Dxy were obtained by decreasing tframe, even at the expense of 343 
increasing σr. (F) Differences in Dxy may be observed across the bud, including slowing at the 344 
vertical edge of the bud. 345 

a greater resolution in understanding the curvature effects on lipid mobility for most experimental 346 
conditions. The most commonly experimental SMLM and SPT parameters result in σr = 15 nm and 347 
tframe = 20 ms. The effects of the membrane bud for the membrane topography simulated here, 348 
assuming DPlane = DBud, resulted in a negligible change in Dxy versus r until hbud ≥ 60 nm (Figure 5A). The 349 
greatest loss of signal with these conditions came from the long distance the fluorophore moved 350 
between adjacent frames, and individual steps sampling both the curved and planar portions of the 351 
membrane. For tframe = 20 ms and D = 1 μm2/s, the expected step length of a single fluorophore 352 
between adjacent frames ( ) would be (4Dtframe)1/2 = 280 nm. This is much farther than noise added by 353 
the single-fluorophore localization imprecision. 354 

When the membrane curvature caused the local lipid diffusion coefficient to slow, the 355 
membrane bud was readily apparent via SPT with σr = 15 nm and tframe = 20 ms for any hbud (Figure 356 
5A-C). SPT revealed Dxy for the top of the bud separate from the surrounding planar SLB; however, 357 
the diffusion around the bud neck was challenging to interpret considering the combined effects of 358 
membrane tilt and data blur.  359 

Significant benefits can be obtained from SPT results by employing faster imaging frame rates. 360 
Keeping all other parameters constant, the effects of decreasing tframe from 20 ms to 2 ms resulted in a 361 
3x improvement in blur induced by diffusion between frames (Figure 5B, E). Additionally, the 362 
shorter tframe provided an improvement in data statistics for a given total acquisition time, this is 363 
mainly due to the increased number of independent steps observed per time. Even if decreasing tframe 364 
comes at the cost of increasing σr to 45 nm, there was still a clear improvement in the obtained results 365 
(Figure 5B, D). This relative importance of tframe and σr is further demonstrated by showing how 366 
marginal improvements in the resolution of Dxy were obtained if tframe = 2 ms and σr was decreased 367 
from 15 nm to 3 nm, which is feasible when fluorescent beads or metal nanoparticles are used for 368 
tracking rather than single fluorophores (Figure 5E, F). 369 
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4. Discussion 370 
Resolving the nanoscale biophysical effects of membrane curvature remains experimentally 371 

challenging. Optical techniques such as PLM enables the detection of curvature with higher 372 
sensitivity and resolution than comparable optical techniques while providing a biologically 373 
friendly imaging environment. However, decoupling the effects of varying membrane area, 374 
orientation, and curvature can be challenging when the primary data collected is the z-projection of 375 
sample topography changing on sub-diffraction-limited length scales. The focus of this manuscript 376 
is to provide a framework for protocols and capabilities of experimental measurements of lipid 377 
diffusion as influenced by nanoscale membrane curvature. The simulation results presented here 378 
guide the experimental procedures that will improve the understanding of membrane curvature. 379 

4.1. Capabilities of FRAP, FCS, and SPT 380 
The method of draping a supported lipid bilayer over nanoparticles has been used in prior 381 

experimental studies to reveal the influence of curvature on lipid dynamics and protein sorting. 382 
FRAP [30,31] and SPT [32,33] have been used to confirm the continuity of the membrane over the 383 
nanoparticles. FRAP was used to confirm membrane integrity by matching the final fluorescence 384 
emission intensity after bleaching and recovery to the before-bleaching intensity. SPT was used to 385 
confirm membrane integrity through the observation of single-particle trajectories connecting the 386 
bud to the surrounding SLB. However, FRAP was unable to reveal any difference in the recovery 387 
rate of the fluorescence due to the presence of curvature in experiments [31,32], as expected by the 388 
simulations performed here (Figure 2). The setup in these simulations matches most prior 389 
experimental approaches where a single membrane bud is being observed at a time. Should the bud 390 
density become high enough for multiple buds were present within the FRAP observation region, 391 
FRAP may prove to provide bud-dependent results. 392 

FCS can detect the effects of the bud and curvature-induced slowing on lipid diffusion in these 393 
simulations with diffraction-limited illumination (Eq. 1) and imprecise centering of the observation 394 
spot over the membrane bud (Figure 3). However, the ability for FCS to detect membrane buds 395 
without curvature-induced lipid slowing was limited to mature buds (hbud > 55 nm) for a 20% change 396 
in τFCS. With curvature induced slowing (DBud ≤ DPlane/10), significant changes to τFCS are apparent as 397 
soon as the bud is formed. Additionally, it would be feasible to provide sub-diffraction-limited 398 
resolution of the bud’s location in the sample without a complementary signal (e.g., nanoparticle, 399 
atomic force microscopy, or clathrin co-localization) by finding where τFCS was most slowed when 400 
scanning the illumination beam over the sample. Without a complementary signal co-localized to 401 
the slowed τFCS, however, it would be difficult to confirm τFCS slowing was caused to a membrane 402 
budding rather than another membrane defect, such as membrane-substrate interaction or sorting to 403 
domains of lipid phase separation. 404 

FCS is a valuable technique for identifying the presence of a membrane bud and/or the 405 
magnitude of slowing induced by the curvature; however, the ability of FCS to reveal the lipid 406 
mobility on different parts of the bud are prohibited by the relatively large size of the 407 
diffraction-limited illumination (w = 250 nm) compared to the bud radius (50 nm). Potentially 408 
sub-diffraction-limited STED-FCS could yield a greater resolution of the lipid mobility on distinct 409 
parts of the bud as well as increase sensitivity to the membrane topography itself [59]; however, 410 
STED-FCS is technically challenging, expensive, and rare. Sub-bud resolution may be achievable 411 
with FCS by exploiting rotationally-limited diffusion of fluorophores with polarized excitation or 412 
emission, as has been done on lipid vesicles of varying size [35]. 413 

SPT is unique among these techniques in that it provides sub-diffraction-limited spatial 414 
resolution with the capability to reveal the locations on the bud that most affect the local lipid 415 
diffusion. By binning the single-lipid step size versus distance from the center of the membrane bud 416 
and fitting the resulting histogram of step lengths to the Rayleigh distribution, the effects of lipid 417 
topography can be revealed directly even without curvature-affected lipid mobility (Figure 4, 5A). 418 
The effect of the membrane bending was observed via Dxy in these simulations without any 419 
curvature-induced changes to D. Similarly, observation of Dxy across a sample could reveal 420 
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previously unknown membrane topography if there were curvature induced change to lipid 421 
mobility were known. This is particularly shown in Figure 4C in which the vertical edge of the 422 
membrane bud, the horizontal top of the bud, and the surrounding SLB are each individual 423 
identifiable. 424 

4.2. Comparative ease of performing FRAP, FCS, and SPT 425 
The decision of which technique to use requires considering both the type of information 426 

needed to be obtained and the associated technical challenges. FRAP, FCS, and SPT each provide 427 
benefits regarding the specific membrane processes to which they are sensitive to and the ease by 428 
which they are experimentally performed. FRAP is the easiest to these techniques in both the 429 
execution and analysis of the experiment. FRAP can be carried out on large observation regions with 430 
a conventional epifluorescence microscope through the opening and closing of a field diaphragm in 431 
the conjugate image plane. Alternatively, greater spatial resolution can be gained with 432 
diffraction-limited bleaching and illumination, as simulated here. Although these methods of 433 
performing FRAP can provide a coarse analysis of membrane integrity and lipid mobility, it can be 434 
difficult to achieve a high intensity of the fluorescence emission and small enough observation areas 435 
to provide precise measurements. Even if performed with a relatively weak and slow bleaching 436 
procedure, FRAP can reveal the fraction of the diffusers that are immobile and the average diffusion 437 
coefficient of the mobile diffusers in a large observation area. This is especially valuable for 438 
demonstrating the continuity of a model membrane. 439 

The correlation of intensity versus time for FCS only reports the diffusers that move through the 440 
diffraction-limited observation spot over the ~30 sec of data collection; FCS does not incorporate any 441 
information from immobile particles on a membrane. However, FCS is more sensitive to 442 
sub-populations of diffusers than FRAP and provides greater accuracy in the measured diffusion 443 
coefficients of the mobile diffusers. Commercial FCS setups require laser illumination, expensive 444 
detectors, hardware correlators, and software, but can provide analysis of the results in real-time. 445 
Homebuilt FCS setups may use high-frame rate EMCCD or sCMOS cameras and custom software 446 
for correlation calculation and fitting. Since FCS can reveal late-stage bud formation and the effects 447 
of bending on lipid mobility, it is feasible that future incorporations of FCS will be used to report the 448 
biophysical ramifications of membrane bending. 449 

As shown above, SPT provides the best spatial resolution of membrane bending and the effects 450 
of bending on lipid mobility. However, SPT requires significantly more effort in data collection and 451 
analysis. SPT requires a high photon flux for precise single-fluorophore fitting (σr < 50 nm) with fast 452 
frame rates (≥50 Hz), which often requires oxygen-scavenging buffers to reduce fluorophore 453 
oxidization to provide more photons per fluorophore ‘on’ state and greater conversion from the 454 
fluorophore ‘off’ to ‘on’ states. The raw SPT data typically comprises ≥5k individual camera images 455 
from which the single-molecule locations are calculated. The locations are linked for trajectory 456 
analysis, MSD analysis, and/or single-step length analysis. A complicating factor of SPT is that the 457 
data quality and signal-to-noise ratio can vary between experiments such that user confirmation is 458 
needed for the analysis of each experiment. Despite these experimental challenges, the resolution 459 
benefits of SPT commonly justify its implementation.  460 

4.3. SPT without examining long trajectories 461 
Typically, the single-particle trajectories are analyzed by calculating the MSD versus Δt such 462 

that 2D Brownian diffusion results in a linear relationship of  463 
.      (7) 464 

The localization uncertainty and camera blur contribute to these last two terms of Eq. 7, respectively. 465 
Camera blur is a spreading of the acquired image due to the motion of the subject during the finite 466 
single-frame acquisition time. Camera blur depends on the motion blur coefficient (R), such that R = 467 
texp/(6tframe) ≤ 1/6 for continuous exposures within each frame [60]. MSD analysis has the potential to 468 
provide a precise D for a single diffuser and prior analysis has optimized the experimental 469 
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parameters for MSD analysis [56]. However, MSD versus Δt analysis spatially averages each 470 
trajectory. For trajectories that include dozens of sequential localizations, this analysis may provide 471 
an average over many square microns of the sample, well beyond the extent of a membrane bud. 472 
Conventional MSD analysis is unable to provide the curvature-dependent diffusion of lipids when 473 
the expected length of a single molecule step between adjacent frames (  is of similar length to the 474 
radius of membrane curvature.  475 

4.4. Effects of frame rate on SPT 476 
Individual fluorophore localizations for SMLM or SPT are frequently made to ≤20 nm certainty 477 

with precisely optimized imaging buffers, illumination intensities, and detection optics. However, 478 
the spatial resolution of the mobility measurement is often determined by the distance between 479 
sequential localizations rather than the precision of single localizations. SMLM methods yield σr 480 
approximately proportional to the inverse of the square root of the number of photons collected per 481 
single fluorophore image (N), while N is proportional to texp [61]. Similarly, is proportional to 482 

. Assuming minimal image readout time, minimal background noise, and texp ≈ tframe, and σr 483 
are approximately inversely related to each other, and an imaging frame rate could be found that 484 
results in ≈ σr for which the best resolution of D across a sample could be achieved. This is 485 
demonstrated by comparing panels B and D in Figure 5 for which a substantial improvement in the 486 
resolution of D results from being decreased by 90% (from 20 ms to 2 ms),  decreasing by 487 
70% (from 280 nm to 90nm), and σr increasing by 200% (from 15 nm to 45 nm). Presumably, 488 
decreasing tframe further would have resulted in even greater resolution benefit until  equaled σr; 489 
however, experimental realities such as image background noise becomes significant at shorter tframe 490 
when N < 100 such that σr increases significantly faster than and there are no longer benefits of 491 
decreasing tframe.  492 

Increasing the photon flux from a single molecule can improve both σr and . Single 493 
biomolecules that have been labeled with metal nanoparticles have yielded more fluorescence 494 
emission. For example, membrane hop diffusion has been observed by gold nanoparticle tracking 495 
with σr = 17 nm and tframe = 0.03 ms [62]. Metal nanoparticles detected in a non-fluorescence, 496 
interferometric microscope have yielded σr = 1.7 nm and tframe = 1 ms [63]. However, these 497 
experiments with ≤1 ms frame rates depend on >20 nm diameter gold nanoparticle labels and are 498 
associated experimental uncertainties that are not present with single-fluorophore labels. The 499 
uncertainties associated specifically with gold nanoparticle labels include the reduced specificity of 500 
the number of lipids per nanoparticle, the effects of drag on the nanoparticle, the non-specific 501 
binding between the nanoparticle and the other membrane components, and the local heating that 502 
may be caused by the gold absorption of the illumination. 503 

5. Conclusions 504 
There are numerous challenges for observing the effects of membrane bending at physiological 505 

length scales. Diverse super-resolution optical techniques are providing resolution to the features of 506 
nanoscale membrane topography; however, the dynamical effects of curvature remain largely 507 
unknown. The ability for super-resolution optical techniques such as PLM to reveal nanoscale 508 
membrane bending is expanding the experimental capabilities for membrane curvature detection. 509 
The capacity to engineer membrane bending through the creation of supported lipid bilayers draped 510 
over nanoengineered substrates allows the experimental creation of membrane topographies that 511 
are analogous to endocytosis and exocytosis. With SPT, the spatial resolution of lipid mobility and 512 
membrane bending can be observed with higher precision than detectable with FCS or FRAP. The 513 
fitting of the histogram of single-step sizes distribution enables the calculation of the lipid diffusion 514 
coefficients that are corrected for the localization uncertainty and the camera blur. Future 515 
experimental implementations of PLM and SPT will reveal the effects of membrane bending on the 516 
membrane viscosity and lipid mobility. Through asymmetric labeling of model membranes, the 517 
specific contribution of each bilayer leaflet will be determined in the nanoscale budding membrane. 518 
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The sum of these results will contribute to the greater understanding of membrane biophysics and 519 
the mechanisms of cellular regulation of membrane topography. 520 
Supplementary Materials: The custom MATLAB scripts used in this work are available online at 521 
www.mdpi.com/link.  522 
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