

1 Article

2 Revealing the effects of nanoscale membrane 3 curvature on lipid mobility

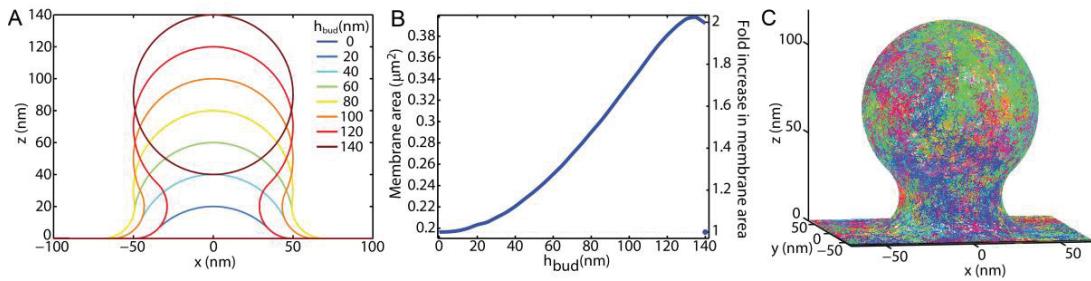
4 Abir Maarouf Kabbani^{1,†}, Xinxin Woodward^{1,†}, and Christopher V. Kelly^{1,*}

5 Department of Physics and Astronomy, Wayne State University

6 [†] These authors contributed equally to this work.

7 * Correspondence: cvkelly@wayne.edu; Tel.: +1-313-577-8471

8 Academic Editor: name


9 Received: date; Accepted: date; Published: date

10 **Abstract:** Recent advances in nanoengineering and super-resolution microscopy have enabled new
11 capabilities for creating and observing membrane curvature. However, the effects of curvature on
12 single-lipid diffusion have yet to be revealed. The simulations presented below describe the
13 capabilities of varying experimental methods for revealing the effects of nanoscale curvature on
14 lipid mobility. Traditionally, lipid mobility is revealed through fluorescence recovery after
15 photobleaching (FRAP), fluorescence correlation spectroscopy (FCS), and single particle tracking
16 (SPT). However, these techniques vary greatly in their ability to detect the effects of nanoscale
17 curvature on lipid behavior. FRAP and FCS depend on diffraction-limited illumination and
18 detection. A simulation of FRAP shows minimal effects on lipids diffusion due to a 50 nm radius
19 membrane bud. Throughout the stages of the budding process, FRAP detected minimal changes in
20 lipid recovery time due to the curvature versus flat membrane. Simulated FCS demonstrated small
21 effects due to a 50 nm radius membrane bud that was more apparent with curvature-dependent
22 lipid mobility changes. However, SPT achieves sub-diffraction-limited resolution of membrane
23 budding and lipid mobility through the identification of the single-lipid positions with ≤ 15 nm
24 spatial and ≤ 20 ms temporal resolution. By mapping the single-lipid step lengths to locations on the
25 membrane, the effects of membrane topography and curvature could be correlated to membrane
26 viscosity. Single-fluorophore localization techniques such SPT can detect membrane curvature and
27 its effects on lipid behavior. These simulations and discussion provide a guideline for optimizing
28 the experimental procedures in revealing the effects of curvature on lipid mobility and effective
29 local membrane viscosity.

30 **Keywords:** fluorescence recovery after photobleaching; fluorescence correlation spectroscopy;
31 single-particle tracking; supported lipid bilayers; membrane curvature; diffusion
32

33 1. Introduction

34 The shape of biological membranes is precisely controlled for diverse, essential, cellular
35 processes such as regulating organelle morphology, exocytosis/endocytosis, pathogen
36 vulnerability/protection, and effective therapeutic targeting [1–3]. Accordingly, the dysregulation of
37 membrane curvature is broadly implicated in cardiovascular disease, viral infections, cancer,
38 Alzheimer's disease, Huntington disease, diabetes, and other diseases [4–6]. Each of these processes
39 requires the fusion or fission of <50 nm radius vesicles with otherwise near planar membranes via
40 precise regulation of the local curvature-generating forces [7]. Cellular membrane shape regulation
41 incorporates a wide variety of proteins that can bend the membrane. For example, BAR domains
42 have an intrinsic molecular shape [8], clathrin proteins create a scaffold [9], and intrinsically
43 disordered proteins apply steric repulsion to induce membrane curvature [10]. The underlying
44 non-specific, lipid-based influences remain relatively unknown in complex cellular membranes,
45 although the importance of some key lipids has been previously demonstrated [11–14].
46

47

48 **Figure 1.** Simulations were performed by mimicking the membrane topography throughout the
 49 fission and fusion of a single 50 nm radius vesicle with a planar membrane. (A) By maintaining a 50
 50 nm radius of curvature on top and a smooth, 20-nm radius of curvature connection to the
 51 surrounding membrane, the stage of membrane budding was tracked via the maximum bud height
 52 above the surrounding membrane (h_{bud}). (B) Bud growth results in an increased area of total
 53 membrane within a 250 nm of the bud center. When $h_{bud} > 137$ nm, the bud undergoes fission,
 54 a separate vesicle is formed, which is assumed to diffuse away and not contribute to these simulations.
 55 (C) The simulated trajectories in are shown in assorted colors over a membrane topography with h_{bud}
 56 = 120 nm.

57 Experimental studies on the effects of curvature on membrane behavior are becoming possible
 58 with nanoengineering and super-resolution microscopy. For example, naturally occurring plasma
 59 membrane tubules [15], engineered plasma membrane tubules [16], and engineered model
 60 membrane tubules have demonstrated protein and lipid sorting dependent on the membrane
 61 curvature. Nanoscale tubules have been created with model membrane via microbead pulling [17],
 62 protein crowding [18], or molecular motor pulling [19]. Prior experimental attempts to reveal
 63 diffusion differences on membrane tubules of varying radii were complicated by coupled variations
 64 in membrane composition and tension. However, slower diffusion is consistently observed on
 65 membrane tubules of smaller radii [20–22], as expected theoretically [23–26].

66 By engineering curvature on a solid substrate, modeled or living membranes may assume the
 67 substrate topography if the substrate curvature and the membrane-substrate adhesion are
 68 sufficiently large. These engineered buds represent a membrane shape similar to endocytic pits
 69 preceding vesiculation and the post-fusion state of exocytosis, although the engineered structures
 70 are static while endocytosis and exocytosis require dynamic membrane changes. Nanoscale
 71 membrane buds have been formed over substrates patterned via electron-beam lithography
 72 [16,27–30] and polystyrene nanoparticles [31–34]. These studies have revealed the effects of
 73 membrane curvature on protein sorting [16,27,34], lipid phases [28–30], and single-lipid dynamics
 74 [31–33].

75 Substrate nanoengineering has enabled the creation of the same membrane topographies
 76 simulated in this manuscript. The limited studies to date regarding the effective membrane viscosity
 77 on a nanoscale buds have reported that curvature can have no effect [32] or can slow the lipid
 78 mobility to 4–10% of the planar system [33–36]; however, these reports vary widely in their
 79 experimental methods. A focus of this manuscript is to demonstrate how varying observational
 80 methods can yield varying results on the effects of nanoscale curvature. Further, the collection of
 81 membrane morphologies simulated here represent a subset of the diverse membrane shapes created
 82 during endocytosis and exocytosis.

83 Understanding the effects of curvature on lipid dynamics will require separately resolving the
 84 two leaflets and the variation across the ≤ 100 nm diameter membrane bud. Within the membrane
 85 bud, there is positive and negative principal curvature and positive and negative Gaussian
 86 curvature. The molecular structure of the constituent lipids and proteins can lead to
 87 curvature-induced nanoscale molecular sorting and compositional variation laterally across the
 88 membrane or between leaflets [21,37]. No known experiments to date have been able to distinguish
 89 the effects of nanoscale positive versus negative curvature on the effective membrane viscosity.
 90 However, membrane curvature generally seems to have the net effect of increasing the local effective

91 membrane viscosity and slowing of the lipid and protein mobility [20,21,33–36]. Accordingly,
 92 sub-diffraction-limited spatial resolution and distinguishing between bilayer leaflets will be
 93 necessary to experimentally measure how membrane curvature influences lipid and protein
 94 dynamics.

95 Optical techniques are traditionally limited by diffraction to a spatial resolution of >200 nm.
 96 Nanoscopic optical methods such as direct stochastic optical reconstruction microscopy
 97 [(d)STORM], photoactivated localization microscopy [(f)PALM], and stimulated depletion emission
 98 microscopy (STED) [38–42] have improved the resolution of optical microscopy to >10 nm. Many
 99 variations on these techniques have been adapted to yield fluorophore height or orientation [43–50].
 100 In particular, polarized localization microscopy (PLM) was designed to reveal nanoscale, membrane
 101 curvature with sub-diffraction-limited resolution [33]. PLM combines single-molecule localization
 102 microscopy (SMLM) and polarized total internal reflection fluorescence microscopy
 103 (TIRFM)[33][11]. Polarized TIRFM is sensitive to membrane orientation by selectively coupling
 104 linearly polarized fluorescence excitation with lipidated indocarbocyanine dyes (*i.e.*, Dil, DiO, DiD)
 105 that maintain their fluorescence dipole moment in the plane of the membrane [51]. Pointillist SMLM
 106 methods such as (d)STORM, (f)PALM, and PLM provide raw data that can be interpreted for
 107 high-throughput single particle tracking of lipid diffusion dependent on membrane curvature.
 108 Tracking individual fluorophores that stay *on* for multiple sequential frames enables the observation
 109 of single-molecule diffusion rates *versus* membrane topology. For example, Dil molecules diffuse on
 110 curved membranes at <10% of the speed at which they diffuse on flat membranes [33,35]. Analysis of
 111 single-molecule diffusion rates relative to membrane topology reveals information regarding the
 112 local environment (*i.e.*, lipid phase or molecular crowding) associated with membrane bending.

113 In this manuscript, we demonstrate the capabilities of various fluorescence techniques to reveal
 114 lipid dynamics relative to membrane curvature. We focus on the three most common methods of
 115 measuring lipid mobility: fluorescence recovery after photobleaching (FRAP), fluorescence
 116 correlation spectroscopy (FCS), and single-particle tracking (SPT). Through Monte Carlo simulations
 117 of Brownian diffusing lipids over membrane buds of varying heights, we demonstrate the ability of
 118 each of these techniques in revealing the presence of the membrane bud, the lipid dynamics on the
 119 bud, and the effects of curvature on lipid mobility. Our simulations demonstrate how FRAP was not
 120 sufficiently sensitive to reveal that a bud was present under any of our simulation conditions. FCS
 121 revealed the bud's presence, but FCS is typically limited to diffraction-limited length scales. SPT,
 122 however, measured the effects of membrane topography change with and without
 123 curvature-induced alteration to lipid mobility on each part of the membrane bud. By mapping the
 124 single-lipid steps over space, buds of varying heights and membranes of laterally varying viscosity
 125 could be distinguished. Within these simulations, we consider the effects of lipid diffusion variations
 126 with membrane curvature could have on the collected data, but we do not advocate for any
 127 particular function of curvature dependence on the diffusion rates or distinguish between different
 128 types of lipids. Through carefully chosen methods, SPT data can reveal spatial information across
 129 the sample with <20 nm resolution. Guidelines are provided for designing SPT experiments to
 130 optimize the resolution of membrane curvature and its effects on molecular mobility.

131 2. Methods

132 The diffusion of lipids through membrane buds was simulated and analyzed to mimic the
 133 expected experimental results that would be obtained by a variety of fluorescence-based methods.
 134 All simulations were performed with custom MATLAB (MathWorks, Inc.) programming, which is
 135 available in the Supplemental Material. Membrane buds were modeled with a radius of curvature
 136 equal to 50 nm and varying heights above a surrounding planar membrane (h_{bud}). The bud
 137 membrane was smoothly connected to the surrounding planar membrane with a radius of curvature
 138 equal to 20 nm along the principal plane radial from the bud center (Figure 1), as done previously
 139 [33,34]. $h_{bud}=0$ represents the case of a planar membrane with no bud protrusion. When $h_{bud}=140$ nm,
 140 the bud had detached from planar membrane such that there was no diffusion between the vesicle
 141 and the planar membrane, and the vesicle was assumed to not contribute to the observed lipid

142 diffusions as if the newly formed endosome had quickly left the proximity of the plasma membrane.
 143 Simulations of diffusion on a vesicle disconnected from a surrounding SLB have been recently
 144 published [35]. This is a minimalistic model of membrane shape during endocytosis or exocytosis
 145 qualitatively matches electron microscopy images of cell plasma membranes [3,16] and allows for
 146 the single parameter h_{bud} to report the stage of progression as the membrane transitions between
 147 planar and the moment of fission or fusion.

148 Trajectories of the individual lipids were simulated upon the budding topography via a
 149 Monte-Carlo method for a discrete set of randomly distributed points. The discrete points were
 150 created at a density of 4 points/nm² across the bud top, the bud-to-planar membrane neck, and the
 151 surrounding planar membrane. At each time step, the lipid moved to one of the 110 ± 10 random
 152 points within 3 nm. This resulted in an average single step distance of 2 nm. To mimic the diffusion
 153 coefficient (D) of 1 $\mu\text{m}^2/\text{s}$ over many steps, each time step would correspond to 1.1 μs . Each
 154 trajectory of each lipid started 1 μm away from the bud center, then diffused randomly upon the
 155 simulated membrane until it was $>1\mu\text{m}$ away from the bud center. More than 10^5 different
 156 trajectories were simulated for each condition, and 1300 ± 100 of those trajectories made it onto the
 157 membrane bud for each h_{bud} . Example trajectories over a bud of $h_{bud} = 120$ nm are shown in Figure 1C.
 158 The methods of analyzing these trajectories were designed to mimic experimental fluorescence
 159 techniques.

160 To mimic the curvature-induced slowing of the lipid diffusion, the effective time per simulation
 161 step was changed to be 11 μs or 28 μs for each 2 nm step whenever the simulated lipid was on the
 162 bud to mimic $D_{Bud} = 0.1$ or $0.04 \mu\text{m}^2/\text{s}$, respectively. Simulations were performed with the varying
 163 values of D_{Bud} to reveal how the various observation methods would report curvature-induced lipid
 164 slowing.

165 The analyses performed in this manuscript were limited to the z -projection of the fluorescence
 166 signal into the imaging xy -plane. The fluorescence emission was assumed to have no z -dependence
 167 or polarization dependence. These two assumptions apply well to nanoscale structures that vary in
 168 the thickness (*i.e.*, ≤ 140 nm as done here), less than the diffraction-limit of light (>200 nm for optical
 169 fluorescence), and for fluorophores that tumble randomly through all orientations.

170 2.1 Mimicking Fluorescence Recovery After Photobleaching

171 Fluorescence recovery after photobleaching (FRAP) measures the recovery of a fluorescence
 172 signal from a region of the sample after the fluorophores within that region were bleached. Here,
 173 two bleaching conditions were used and compared. The first bleaching method, "complete
 174 bleaching", was identical to the processes of coming to equilibrium, as described above, in which all
 175 fluorophores within 1 μm from the bud center were bleached. The second method, "Gaussian
 176 bleaching," took an equilibrated distribution of fluorophores and imposed a bleaching probability
 177 upon the i^{th} fluorophore equal to $P_{GB}(i) = \exp(-2r_i^2/w^2)$ with a $w = 250$ nm and r_i equal to the
 178 lateral distance of the fluorophore from the bud center. In both cases, simulated trajectories were
 179 analyzed with a Gaussian illumination (I) centered on the membrane bud according to
 180

$$181 \quad I(t) = \sum_i \exp(-2r_i^2/w^2) \quad (1)$$

182 with an illumination width (w) set equal to 250 nm, as would be expected for a diffraction-limited
 183 illumination. Immediately after bleaching, $I(t)$ was reduced by $50 \pm 5\%$ after Gaussian bleaching.

184 New single-lipid trajectories were started at the perimeter of the 2 μm diameter system every
 185 0.08 μs for an equilibrium density of 0.00146 lipids/nm² or approximately 10 mol% fluorescent lipids.
 186 Since an area larger than the illumination spot was initially bleached with the complete bleaching
 187 method, only the $I(t)$ after recovery 25% complete was analyzed for these data. The increasing $I(t)$
 188 was fit to
 189

$$190 \quad I_{\text{FRAP Fit}}(t) = A(1 - e^{-t/\tau_{\text{FRAP}}}). \quad (2)$$

191 The fitting variable A represents the steady-state magnitude of I and is proportional to the
 192 steady-state fluorophore density, the membrane area, the illumination intensity, and the
 193 fluorescence emission collection efficiency. The fitting variable τ_{FRAP} represents the characteristic
 194 FRAP recovery time. This fitting model is approximated to which would be expected for planar
 195 systems with uniform [52] or Gaussian illumination [53]; an approximation was used since the exact
 196 recovery shape over the non-planar membrane topography varied with h_{bud} .

197 *2.2 Mimicking Fluorescence Correlation Spectroscopy*

198 Fluorescence correlation spectroscopy (FCS) examines the fluctuations in the steady state I
 199 versus t signal. This is mainly performed by calculating the autocorrelation (G) as a function of lag
 200 time (τ) and finding the characteristic fluctuation time (τ_{FCS}). In these simulations, $I(t)$ for FCS was
 201 calculated from the single-molecule trajectories through a Gaussian illumination profile according to
 202 Eq. 1, as would be expected for typical confocal FCS. G was calculated from $I(t)$ according to

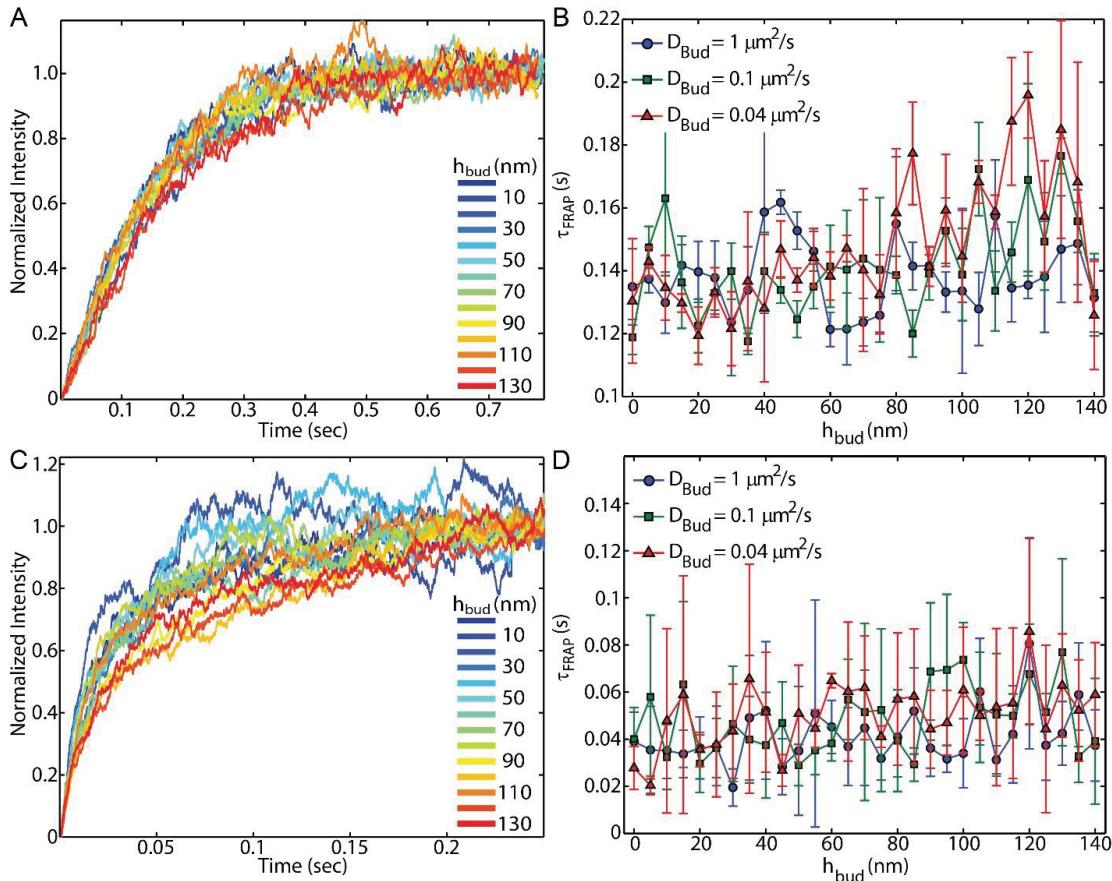
$$203 \quad G(\tau) = \langle \delta I(t) \delta I(t - \tau) \rangle / \langle I(t) \rangle^2. \quad (3)$$

204 The angle brackets ($\langle \rangle$) represent the average over t and $\delta I(t) = I(t) - \langle I(t) \rangle$. The correlation time (τ_{FCS})
 205 in $I(t)$ was found by fitting $G(\tau)$ according to

$$206 \quad G_{Fit}(\tau) = G_0 (1 - (\tau / \tau_{FCS})^2)^{-1}, \quad (4)$$

207 as is expected for 2D Brownian diffusion. The fitting variable G_0 is inversely proportional to the
 208 number of diffusers simultaneously observed, and other experimental conditions not relevant in
 209 these simulations. With a membrane bud present, the autocorrelation is not expected to fit perfectly
 210 to Eq. 4; however, the inherent averaging incorporated into an autocorrelation analysis makes
 211 finding minor populations difficult, and complex fitting functions are typically unwarranted [54].
 212 For this analysis, Eq. 1 was assumed to be the spatial detection sensitivity, which is the standard
 213 approximation of the Airy point spread function in a diffraction-limited system [55] and especially
 214 accurate when a confocal collection pinhole is used with a diameter of one Airy unit.

215 *2.3 Mimicking Single Particle Tracking*


216 Single-particle tracking (SPT) includes identifying the center of each single-fluorophore image
 217 via computational analysis of a movie of sparse, dynamic fluorophores. From the motion of the
 218 single-molecules between sequential frames, single-molecules trajectories were observed. The
 219 single-steps lengths (s) observed in a region of the sample may be fit to a 2D Maxwell-Boltzmann or
 220 Rayleigh Distribution to determine the local D , where the probability distribution (P) of step lengths
 221 over a time step of Δt for a single Brownian diffuser in a uniform membrane is expected to be

$$222 \quad P(s) = \frac{s}{2D\Delta t} e^{-\frac{s^2}{4D\Delta t}}. \quad (5)$$

223 The observed single-molecule steps were grouped and fitted according to their location in the
 224 sample (x, y) or distance from the bud center (r) such that D could be measured at different locations
 225 in the sample. The ability to gain finer spatial resolution for variations in D across a sample is the key
 226 differences between a single-step length analysis used here versus the more traditional mean
 227 squared displacement (MSD) analysis, as further discussed below. Optimization of MSD analysis
 228 has been recently described [56].

229 However, the single-step analysis in experimental systems is affected by the 2D localization
 230 uncertainty ($\sigma_r^2 = \sigma_x^2 + \sigma_y^2$) and camera exposure duration (t_{exp}) to yield a systematic difference
 231 between the D found from fitting Eq. 5 to experimental data (D_{Fit}) and the D that would be found
 232 from an idealized system (D_{Real}), according to

$$233 \quad D_{Real} = (D_{Fit} - \frac{\sigma_r^2}{2\Delta t}) / (1 - \frac{t_{exp}}{3\Delta t}). \quad (6)$$

234

235
236
237
238
239
240
241

Figure 2. Increasing the bud height does not result in significant changes to the FRAP recovery time, including when the lipid diffusion was slowed to $D_{Bud} = 0.1$ or $0.04 \mu\text{m}^2/\text{s}$ on the curved membrane for both (A, B) complete bleaching and (C, D) Gaussian Bleaching. (A, C) Simulated $I(t)$ traces while $D_{Plane} = 1 \mu\text{m}^2/\text{s}$ and $D_{Bud} = 0.1 \mu\text{m}^2/\text{s}$ shows the recovery of $I(t)$ after bleaching. There was no apparent trend in the recovery rate changing with bud height. (B, D) The recovery rate was quantified by fitting Eq. 2 to find τ_{FRAP} from $I(t)$ of each condition. Error bars represent the standard error of the mean between separately four repeated simulations.

242
243
244

Frequently, Δt is equal to the time between adjacent frames (t_{frame}) used in this analysis, however, any Δt that is a multiple of t_{frame} are permitted. t_{frame} is equal to the sum of t_{exp} and the frame read time such that the inverse of $1/t_{frame}$ equal the imaging frequency.

245
246
247
248
249
250
251

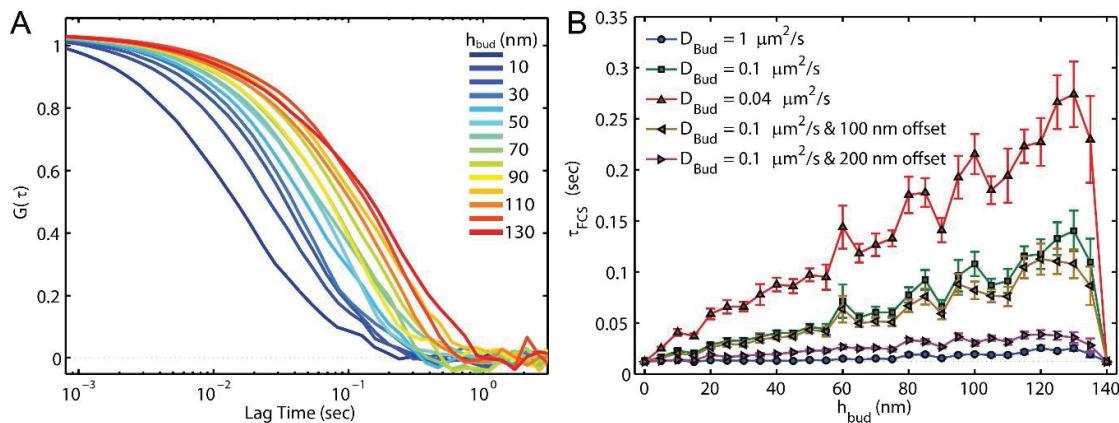
When the membrane is not parallel to the coverslip, then the z-component of the lipid diffusion within the membrane, results in a slowing of the lipid through the xy-plane. It was not possible to extract the in-plane diffusion rate from the observed diffusion through the xy-plane (D_{xy}) when both the membrane topography and the influence of curvature on membrane viscosity are unknown. In the below analysis, D_{Real} was calculated under the approximation that the membrane was parallel to the coverslip, and this value was reported as D_{xy} to be explicit in representing that the membrane topography was contributing to the measurements.

252

2.4. Assumptions used in the simulations

253
254
255
256
257
258

Super-resolution methods may incorporate a light polarization and z-dependence in the localization probability *versus* membrane height or orientation. The localization probability can vary as a fluorophore diffuses away from the objective focal plane in the z-direction. However, this probability change occurs only when variations in z are greater than the diffraction limit are allowable. Since the nanoscale buds simulated here vary in z by <140 nm, no variation in the probability of fluorophore localization is expected. Polarization was important in FCS of vesicles


259 containing DiD [35]; however, no differences in s- versus p-polarized illumination was observed in
 260 SPT of DiI [33]. The simulations presented here mimic randomly tumbling fluorophores with no
 261 polarization dependence.

262 Simulations performed here do not incorporate any differences in the lipid diffusion due to the
 263 membrane-substrate adhesion. The diffusion of transmembrane proteins and >100 nm diameter
 264 lipid domains can be greatly slowed in SLBs *versus* freestanding membranes; however, the diffusion
 265 of individual lipids are significantly less affected by the substrate [57]. We would expect to see
 266 significant substrate effects for fluorescent lipids with larger head-group labeling [58] or for systems
 267 that may form >100 nm phase-separated domains.

268 **3. Results**

269 *3.1. Membrane bending and FRAP*

270 Experimental FRAP conditions such as the laser-based illumination with complete or Gaussian
 271 bleaching and small observation areas were mimicked in the simulations presented here. The
 272 presence of the membrane bud and the extra membrane area associated with it were not sufficient to
 273 consistently influence the FRAP recovery time. Upon incorporating a curvature-induced slowing of
 274 the lipid diffusion on the bud, where D_{Bud} was reduced to 0.1 or 0.04 $\mu\text{m}^2/\text{s}$ while maintaining $D_{Plane} =$
 275 1 $\mu\text{m}^2/\text{s}$, the variation between repeated simulations proved to provide insignificant differences in
 276 τ_{FRAP} versus h_{Bud} for both complete bleaching (Figure 2A, B) and Gaussian bleaching (Figure 2C, D).
 277 Further, these results were created from a perfectly centered Gaussian illumination on the bud
 278 center (Eq. 1). Upon slight deviations of the illumination from the bud center, the effects of the bud
 279 on τ_{FRAP} were reduced further. Within the range of D_{Bud} explored here, the identification of the bud
 280 and the curvature-induced changes in lipid diffusion were undetectable by FRAP.

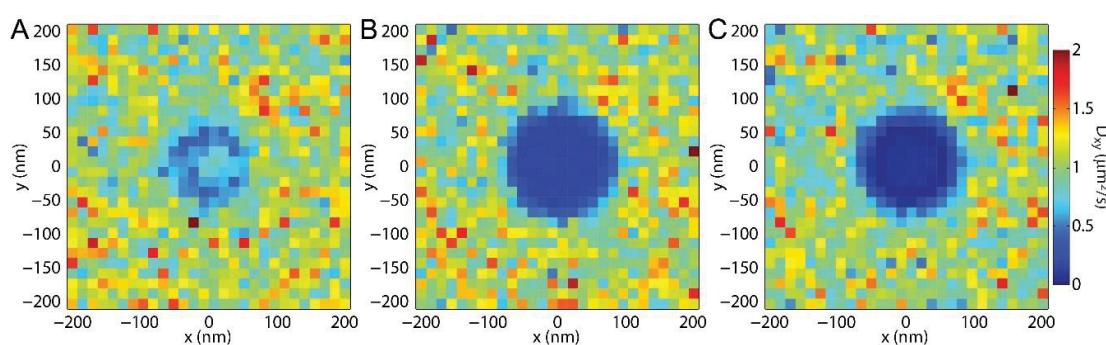
281

282 Figure 3. A membrane bud may be detected by FCS if $h_{Bud} > 80$ nm or the membrane curvature
 283 inherently slows the local lipid diffusion. While a lipid on the planar membrane experiences $D_{Plane} = 1$
 284 $\mu\text{m}^2/\text{s}$, varying the diffusion rate of the lipid on the curved membrane and the location of the bud
 285 within the excitation spot affects the observed FCS results. (A) A shifting of $G(\tau)$ to longer lag times
 286 was apparent when $D_{Bud} = 0.1 \mu\text{m}^2/\text{s}$ and the bud was centered on the 250 nm wide Gaussian
 287 illumination. (B) If $D_{Bud} = 1 \mu\text{m}^2/\text{s}$ and $h_{Bud} \leq 50$ nm, a minimal effect of the bud was observed on the
 288 measured τ_{FCS} ; the extra membrane area and varying membrane orientation are not sufficient to
 289 affect the FCS results within the uncertainty of finding τ_{FCS} . However, if $D_{Bud} = 0.1 \mu\text{m}^2/\text{s}$, the presence
 290 of the bud becomes clear for $h_{Bud} \geq 15$ nm. The bud can be offset by 200 nm from the center of the
 291 illumination and still yield a clear change in the τ_{FCS} . If the observation spot was off-centered from
 292 the bud by 100 nm or 200 nm, the effects of the bud are decreased by an average of 15% or 66%,
 293 respectively.

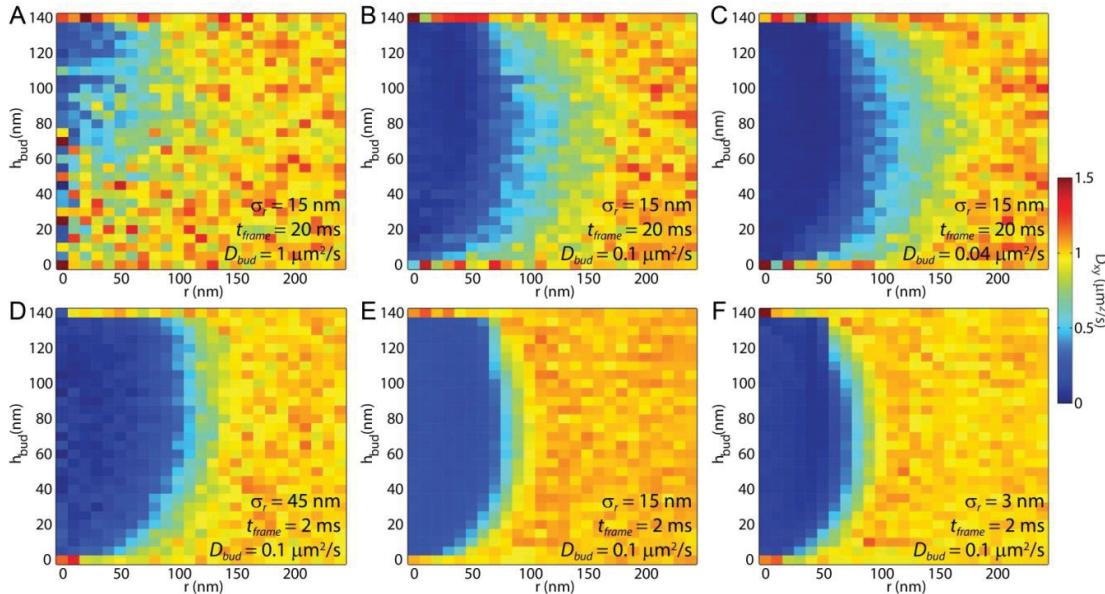
294

295 3.2. Membrane bending and FCS

296 The presence of a single nanoscale membrane bud can be detected with FCS with or without
 297 curvature-induced lipid slowing (Figure 3). With diffraction-limited illumination (Eq. 1) and
 298 imprecise centering of the observation spot over the membrane bud, simulated FCS detected the
 299 effects of the bud on the lipid dwell time. For example, with D_{Plane} and $D_{Bud} = 1 \mu\text{m}^2/\text{s}$, the addition of
 300 the extra membrane area for a bud of $h_{bud} = 100$ results in a 60% slowing of the intensity fluctuations;
 301 $\tau_{FCS} = 12.3 \pm 0.6 \text{ ms}$ and $20 \pm 1 \text{ ms}$ when $h_{bud} = 0$ and 100 nm , respectively. This change is consistent
 302 with the 60% extra membrane area created by the bud when $h_{bud} = 100 \text{ nm}$ versus 0 nm (Figure 1B).


303 When the membrane bud incorporated slower lipid diffusion, the effects of the membrane bud
 304 on the FCS result were more pronounced. For example, a 1700% slowing τ_{FCS} was observed between
 305 $h_{bud} = 0$ and 100 nm when $D_{Bud} = 0.1 \mu\text{m}^2/\text{s}$ and $D_{Plane} = 1 \mu\text{m}^2/\text{s}$, with $\tau_{FCS} = 12.3 \pm 0.6 \text{ ms}$ and 210 ± 20
 306 ms, respectively; the autocorrelations for varying h_{bud} are shown for this condition in Figure 3A.

307 The effects of the membrane bud on the FCS results were apparent but reduced if the
 308 fluorescence illumination was not well centered over the membrane bud. For example, the effects on
 309 τ_{FCS} was decreased by an average 15% when the center of the membrane bud was 100 nm offset away
 310 from the center of the diffraction-limited FCS illumination spot, as calculated by the average ratio of
 311 the centered versus offset τ_{FCS} values for h_{bud} from 5 nm to 135 nm (Figure 3B).


312 3.3. Membrane Bending and SPT

313 Mapping the locations of single molecule steps enables measuring D_{xy} at specific locations
 314 within the sample (Figure 4). When a membrane with consistent viscosity and consistent lipid
 315 mobility was simulated, the variations in the measured D_{xy} across the sample were due to the
 316 membrane topology change, and the measured shorter lipid step lengths on tilted membranes as the
 317 lipid trajectories are projected on the imaging xy -plane (Figure 4A). The effects of the membrane bud
 318 presence are enhanced when the curved membrane reduces the lipid mobility (Figure 4B, C). When
 319 the membrane bending occurs in a rotationally symmetrical way, as would be expected for an
 320 endocytic pit and the engineered curvature shown here, a radial averaging provides greater clarity
 321 in the effects of membrane budding on the SPT results (Figure 5).

322 In an SPT experiment, a balance between acquisition frame rate, localization precision, laser
 323 power, and 'on' fluorophore density is required to achieve meaningful data. The simulations
 324 performed here demonstrate that a faster frame rate at the cost of worse localization precision yields
 325

326
 327 Figure 4. D_{xy} mapped over the sample through SPT. The single steps from all trajectories are binned
 328 according to the average x position and the average y position of the two localizations. This 2D
 329 binning of the x and y positions allows for the analysis of all the step lengths in each region on the
 330 sample, as represented by a single pixel in these images. Here, $h_{bud} = 100 \text{ nm}$, $\sigma_r = 15 \text{ nm}$, $D_{Plane} = 1$
 331 $\mu\text{m}^2/\text{s}$, and $t_{frame} = 2 \text{ ms}$ while (A) $D_{Bud} = 1 \mu\text{m}^2/\text{s}$, (B) $D_{Bud} = 0.1 \mu\text{m}^2/\text{s}$, and (C) $D_{Bud} = 0.04 \mu\text{m}^2/\text{s}$. The
 332 bud induced slowing in (A) was due to the membrane topography causing the lipid to move slower
 333 through the xy -plane with constant local diffusion in the membrane of varying orientation; this effect
 334 also contributes to (B) and (C). The distinction between the bud and the planar membrane is
 335 enhanced when there is a greater difference between D_{Plane} and D_{Bud} .

336

337
338
339
340
341
342
343
344
345

Figure 5. Azimuthal averaging of the spatial mapping of D_{xy} around a bud (*i.e.*, Figure 4) improved the data statistics and enabled easier comparison of D_{xy} versus distance from the bud center (r) and h_{bud} . Simulated SPT results for D_{xy} are presented with varying σ_r , t_{frame} , and D_{Bud} . (A) When $D_{Plane} = D_{Bud} = 1 \mu\text{m}^2/\text{s}$ and, the single molecules maintain a uniform average local speed through the membrane, and the observed variations in D_{xy} were due to the tilt of the membrane. (B, C) As D_{Bud} decreased to 0.1 or 0.04 $\mu\text{m}^2/\text{s}$, the bud became increasingly apparent at all h_{bud} . The (D-F) significant improvements in the resolution of D_{xy} were obtained by decreasing t_{frame} , even at the expense of increasing σ_r . (F) Differences in D_{xy} may be observed across the bud, including slowing at the vertical edge of the bud.

346
347
348
349
350
351
352
353
354

a greater resolution in understanding the curvature effects on lipid mobility for most experimental conditions. The most commonly experimental SMLM and SPT parameters result in $\sigma_r = 15 \text{ nm}$ and $t_{frame} = 20 \text{ ms}$. The effects of the membrane bud for the membrane topography simulated here, assuming $D_{Plane} = D_{Bud}$, resulted in a negligible change in D_{xy} versus r until $h_{bud} \geq 60 \text{ nm}$ (Figure 5A). The greatest loss of signal with these conditions came from the long distance the fluorophore moved between adjacent frames, and individual steps sampling both the curved and planar portions of the membrane. For $t_{frame} = 20 \text{ ms}$ and $D = 1 \mu\text{m}^2/\text{s}$, the expected step length of a single fluorophore between adjacent frames (\bar{s}_1) would be $(4D t_{frame})^{1/2} = 280 \text{ nm}$. This is much farther than noise added by the single-fluorophore localization imprecision.

355
356
357
358
359

When the membrane curvature caused the local lipid diffusion coefficient to slow, the membrane bud was readily apparent via SPT with $\sigma_r = 15 \text{ nm}$ and $t_{frame} = 20 \text{ ms}$ for any h_{bud} (Figure 5A-C). SPT revealed D_{xy} for the top of the bud separate from the surrounding planar SLB; however, the diffusion around the bud neck was challenging to interpret considering the combined effects of membrane tilt and data blur.

360
361
362
363
364
365
366
367
368
369

Significant benefits can be obtained from SPT results by employing faster imaging frame rates. Keeping all other parameters constant, the effects of decreasing t_{frame} from 20 ms to 2 ms resulted in a 3x improvement in blur induced by diffusion between frames (Figure 5B, E). Additionally, the shorter t_{frame} provided an improvement in data statistics for a given total acquisition time, this is mainly due to the increased number of independent steps observed per time. Even if decreasing t_{frame} comes at the cost of increasing σ_r to 45 nm, there was still a clear improvement in the obtained results (Figure 5B, D). This relative importance of t_{frame} and σ_r is further demonstrated by showing how marginal improvements in the resolution of D_{xy} were obtained if $t_{frame} = 2 \text{ ms}$ and σ_r was decreased from 15 nm to 3 nm, which is feasible when fluorescent beads or metal nanoparticles are used for tracking rather than single fluorophores (Figure 5E, F).

370 4. Discussion

371 Resolving the nanoscale biophysical effects of membrane curvature remains experimentally
 372 challenging. Optical techniques such as PLM enables the detection of curvature with higher
 373 sensitivity and resolution than comparable optical techniques while providing a biologically
 374 friendly imaging environment. However, decoupling the effects of varying membrane area,
 375 orientation, and curvature can be challenging when the primary data collected is the z-projection of
 376 sample topography changing on sub-diffraction-limited length scales. The focus of this manuscript
 377 is to provide a framework for protocols and capabilities of experimental measurements of lipid
 378 diffusion as influenced by nanoscale membrane curvature. The simulation results presented here
 379 guide the experimental procedures that will improve the understanding of membrane curvature.

380 4.1. Capabilities of FRAP, FCS, and SPT

381 The method of draping a supported lipid bilayer over nanoparticles has been used in prior
 382 experimental studies to reveal the influence of curvature on lipid dynamics and protein sorting.
 383 FRAP [30,31] and SPT [32,33] have been used to confirm the continuity of the membrane over the
 384 nanoparticles. FRAP was used to confirm membrane integrity by matching the final fluorescence
 385 emission intensity after bleaching and recovery to the before-bleaching intensity. SPT was used to
 386 confirm membrane integrity through the observation of single-particle trajectories connecting the
 387 bud to the surrounding SLB. However, FRAP was unable to reveal any difference in the recovery
 388 rate of the fluorescence due to the presence of curvature in experiments [31,32], as expected by the
 389 simulations performed here (Figure 2). The setup in these simulations matches most prior
 390 experimental approaches where a single membrane bud is being observed at a time. Should the bud
 391 density become high enough for multiple buds were present within the FRAP observation region,
 392 FRAP may prove to provide bud-dependent results.

393 FCS can detect the effects of the bud and curvature-induced slowing on lipid diffusion in these
 394 simulations with diffraction-limited illumination (Eq. 1) and imprecise centering of the observation
 395 spot over the membrane bud (Figure 3). However, the ability for FCS to detect membrane buds
 396 without curvature-induced lipid slowing was limited to mature buds ($h_{bud} > 55$ nm) for a 20% change
 397 in τ_{FCS} . With curvature induced slowing ($D_{Bud} \leq D_{Plane}/10$), significant changes to τ_{FCS} are apparent as
 398 soon as the bud is formed. Additionally, it would be feasible to provide sub-diffraction-limited
 399 resolution of the bud's location in the sample without a complementary signal (e.g., nanoparticle,
 400 atomic force microscopy, or clathrin co-localization) by finding where τ_{FCS} was most slowed when
 401 scanning the illumination beam over the sample. Without a complementary signal co-localized to
 402 the slowed τ_{FCS} , however, it would be difficult to confirm τ_{FCS} slowing was caused to a membrane
 403 budding rather than another membrane defect, such as membrane-substrate interaction or sorting to
 404 domains of lipid phase separation.

405 FCS is a valuable technique for identifying the presence of a membrane bud and/or the
 406 magnitude of slowing induced by the curvature; however, the ability of FCS to reveal the lipid
 407 mobility on different parts of the bud are prohibited by the relatively large size of the
 408 diffraction-limited illumination ($w = 250$ nm) compared to the bud radius (50 nm). Potentially
 409 sub-diffraction-limited STED-FCS could yield a greater resolution of the lipid mobility on distinct
 410 parts of the bud as well as increase sensitivity to the membrane topography itself [59]; however,
 411 STED-FCS is technically challenging, expensive, and rare. Sub-bud resolution may be achievable
 412 with FCS by exploiting rotationally-limited diffusion of fluorophores with polarized excitation or
 413 emission, as has been done on lipid vesicles of varying size [35].

414 SPT is unique among these techniques in that it provides sub-diffraction-limited spatial
 415 resolution with the capability to reveal the locations on the bud that most affect the local lipid
 416 diffusion. By binning the single-lipid step size versus distance from the center of the membrane bud
 417 and fitting the resulting histogram of step lengths to the Rayleigh distribution, the effects of lipid
 418 topography can be revealed directly even without curvature-affected lipid mobility (Figure 4, 5A).
 419 The effect of the membrane bending was observed via D_{xy} in these simulations without any
 420 curvature-induced changes to D . Similarly, observation of D_{xy} across a sample could reveal

421 previously unknown membrane topography if there were curvature induced change to lipid
 422 mobility were known. This is particularly shown in Figure 4C in which the vertical edge of the
 423 membrane bud, the horizontal top of the bud, and the surrounding SLB are each individual
 424 identifiable.

425 *4.2. Comparative ease of performing FRAP, FCS, and SPT*

426 The decision of which technique to use requires considering both the type of information
 427 needed to be obtained and the associated technical challenges. FRAP, FCS, and SPT each provide
 428 benefits regarding the specific membrane processes to which they are sensitive to and the ease by
 429 which they are experimentally performed. FRAP is the easiest to these techniques in both the
 430 execution and analysis of the experiment. FRAP can be carried out on large observation regions with
 431 a conventional epifluorescence microscope through the opening and closing of a field diaphragm in
 432 the conjugate image plane. Alternatively, greater spatial resolution can be gained with
 433 diffraction-limited bleaching and illumination, as simulated here. Although these methods of
 434 performing FRAP can provide a coarse analysis of membrane integrity and lipid mobility, it can be
 435 difficult to achieve a high intensity of the fluorescence emission and small enough observation areas
 436 to provide precise measurements. Even if performed with a relatively weak and slow bleaching
 437 procedure, FRAP can reveal the fraction of the diffusers that are immobile and the average diffusion
 438 coefficient of the mobile diffusers in a large observation area. This is especially valuable for
 439 demonstrating the continuity of a model membrane.

440 The correlation of intensity versus time for FCS only reports the diffusers that move through the
 441 diffraction-limited observation spot over the ~30 sec of data collection; FCS does not incorporate any
 442 information from immobile particles on a membrane. However, FCS is more sensitive to
 443 sub-populations of diffusers than FRAP and provides greater accuracy in the measured diffusion
 444 coefficients of the mobile diffusers. Commercial FCS setups require laser illumination, expensive
 445 detectors, hardware correlators, and software, but can provide analysis of the results in real-time.
 446 Homebuilt FCS setups may use high-frame rate EMCCD or sCMOS cameras and custom software
 447 for correlation calculation and fitting. Since FCS can reveal late-stage bud formation and the effects
 448 of bending on lipid mobility, it is feasible that future incorporations of FCS will be used to report the
 449 biophysical ramifications of membrane bending.

450 As shown above, SPT provides the best spatial resolution of membrane bending and the effects
 451 of bending on lipid mobility. However, SPT requires significantly more effort in data collection and
 452 analysis. SPT requires a high photon flux for precise single-fluorophore fitting ($\sigma_r < 50$ nm) with fast
 453 frame rates (≥ 50 Hz), which often requires oxygen-scavenging buffers to reduce fluorophore
 454 oxidization to provide more photons per fluorophore 'on' state and greater conversion from the
 455 fluorophore 'off' to 'on' states. The raw SPT data typically comprises $\geq 5k$ individual camera images
 456 from which the single-molecule locations are calculated. The locations are linked for trajectory
 457 analysis, MSD analysis, and/or single-step length analysis. A complicating factor of SPT is that the
 458 data quality and signal-to-noise ratio can vary between experiments such that user confirmation is
 459 needed for the analysis of each experiment. Despite these experimental challenges, the resolution
 460 benefits of SPT commonly justify its implementation.

461 *4.3. SPT without examining long trajectories*

462 Typically, the single-particle trajectories are analyzed by calculating the MSD versus Δt such
 463 that 2D Brownian diffusion results in a linear relationship of

$$464 \quad MSD(\Delta t) = 4D\Delta t + 2\sigma_r^2 - 8DRt_{frame}. \quad (7)$$

465 The localization uncertainty and camera blur contribute to these last two terms of Eq. 7, respectively.
 466 Camera blur is a spreading of the acquired image due to the motion of the subject during the finite
 467 single-frame acquisition time. Camera blur depends on the motion blur coefficient (R), such that $R =$
 468 $t_{exp}/(6t_{frame}) \leq 1/6$ for continuous exposures within each frame [60]. MSD analysis has the potential to
 469 provide a precise D for a single diffuser and prior analysis has optimized the experimental

470 parameters for *MSD* analysis [56]. However, *MSD* versus Δt analysis spatially averages each
 471 trajectory. For trajectories that include dozens of sequential localizations, this analysis may provide
 472 an average over many square microns of the sample, well beyond the extent of a membrane bud.
 473 Conventional *MSD* analysis is unable to provide the curvature-dependent diffusion of lipids when
 474 the expected length of a single molecule step between adjacent frames (\bar{s}_1) is of similar length to the
 475 radius of membrane curvature.

476 *4.4. Effects of frame rate on SPT*

477 Individual fluorophore localizations for SMLM or SPT are frequently made to ≤ 20 nm certainty
 478 with precisely optimized imaging buffers, illumination intensities, and detection optics. However,
 479 the spatial resolution of the mobility measurement is often determined by the distance between
 480 sequential localizations rather than the precision of single localizations. SMLM methods yield σ_r
 481 approximately proportional to the inverse of the square root of the number of photons collected per
 482 single fluorophore image (N), while N is proportional to t_{exp} [61]. Similarly, \bar{s}_1 is proportional to
 483 $\sqrt{t_{frame}}$. Assuming minimal image readout time, minimal background noise, and $t_{exp} \approx t_{frame}$, \bar{s}_1 and σ_r
 484 are approximately inversely related to each other, and an imaging frame rate could be found that
 485 results in $\bar{s}_1 \approx \sigma_r$ for which the best resolution of D across a sample could be achieved. This is
 486 demonstrated by comparing panels B and D in Figure 5 for which a substantial improvement in the
 487 resolution of D results from t_{frame} being decreased by 90% (from 20 ms to 2 ms), \bar{s}_1 decreasing by
 488 70% (from 280 nm to 90 nm), and σ_r increasing by 200% (from 15 nm to 45 nm). Presumably,
 489 decreasing t_{frame} further would have resulted in even greater resolution benefit until \bar{s}_1 equaled σ_r ;
 490 however, experimental realities such as image background noise becomes significant at shorter t_{frame}
 491 when $N < 100$ such that σ_r increases significantly faster than $1/\sqrt{N}$ and there are no longer benefits of
 492 decreasing t_{frame} .

493 Increasing the photon flux from a single molecule can improve both σ_r and \bar{s}_1 . Single
 494 biomolecules that have been labeled with metal nanoparticles have yielded more fluorescence
 495 emission. For example, membrane hop diffusion has been observed by gold nanoparticle tracking
 496 with $\sigma_r = 17$ nm and $t_{frame} = 0.03$ ms [62]. Metal nanoparticles detected in a non-fluorescence,
 497 interferometric microscope have yielded $\sigma_r = 1.7$ nm and $t_{frame} = 1$ ms [63]. However, these
 498 experiments with ≤ 1 ms frame rates depend on > 20 nm diameter gold nanoparticle labels and are
 499 associated experimental uncertainties that are not present with single-fluorophore labels. The
 500 uncertainties associated specifically with gold nanoparticle labels include the reduced specificity of
 501 the number of lipids per nanoparticle, the effects of drag on the nanoparticle, the non-specific
 502 binding between the nanoparticle and the other membrane components, and the local heating that
 503 may be caused by the gold absorption of the illumination.

504 **5. Conclusions**

505 There are numerous challenges for observing the effects of membrane bending at physiological
 506 length scales. Diverse super-resolution optical techniques are providing resolution to the features of
 507 nanoscale membrane topography; however, the dynamical effects of curvature remain largely
 508 unknown. The ability for super-resolution optical techniques such as PLM to reveal nanoscale
 509 membrane bending is expanding the experimental capabilities for membrane curvature detection.
 510 The capacity to engineer membrane bending through the creation of supported lipid bilayers draped
 511 over nanoengineered substrates allows the experimental creation of membrane topographies that
 512 are analogous to endocytosis and exocytosis. With SPT, the spatial resolution of lipid mobility and
 513 membrane bending can be observed with higher precision than detectable with FCS or FRAP. The
 514 fitting of the histogram of single-step sizes distribution enables the calculation of the lipid diffusion
 515 coefficients that are corrected for the localization uncertainty and the camera blur. Future
 516 experimental implementations of PLM and SPT will reveal the effects of membrane bending on the
 517 membrane viscosity and lipid mobility. Through asymmetric labeling of model membranes, the
 518 specific contribution of each bilayer leaflet will be determined in the nanoscale budding membrane.

519 The sum of these results will contribute to the greater understanding of membrane biophysics and
 520 the mechanisms of cellular regulation of membrane topography.

521 **Supplementary Materials:** The custom MATLAB scripts used in this work are available online at
 522 www.mdpi.com/link.

523 **Acknowledgments:** The authors thank the Wayne State University High Performance Computing Grid. A.M.K.
 524 was funded by Thomas C. Rumble Fellowship Award. Financial support was provided by Wayne State
 525 University laboratory startup funds and Richard J. Barber. This material is based upon work supported by the
 526 National Science Foundation under Grant No. DMR1652316.

527 **Author Contributions:** A.M.K., X.W., and C.K. conceived of and designed the simulations; A.M.K., X.W., and
 528 C.K. analyzed the data; A.M.K., X.W., and C.K. wrote the paper.

529 **Conflicts of Interest:** The authors declare no conflict of interest. The founding sponsors had no role in the
 530 design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in
 531 the decision to publish the results.

532 References

1. Jarsch, I. K.; Daste, F.; Gallop, J. L. Membrane curvature in cell biology: An integration of molecular mechanisms. *J. Cell Biol.* **2016**, *214*, 375–387, doi:10.1083/jcb.201604003.
2. McMahon, H. T.; Boucrot, E. Membrane curvature at a glance. *J. Cell Sci.* **2015**, *128*, 1065–1070, doi:10.1242/jcs.114454.
3. Bonifacino, J. S.; Glick, B. S. The mechanisms of vesicle budding and fusion. *Cell* **2004**, *116*, 153–166.
4. Chaibva, M.; Burke, K. A.; Legleiter, J. Curvature enhances binding and aggregation of huntingtin at lipid membranes. *Biochemistry (Mosc.)* **2014**, *53*, 2355–2365, doi:10.1021/bi401619q.
5. Williams, T. L.; Serpell, L. C. Membrane and surface interactions of Alzheimer’s A β peptide--insights into the mechanism of cytotoxicity. *FEBS J.* **2011**, *278*, 3905–3917, doi:10.1111/j.1742-4658.2011.08228.x.
6. Michel, V.; Bakovic, M. Lipid rafts in health and disease. *Biol. Cell Auspices Eur. Cell Biol. Organ.* **2007**, *99*, 129–140, doi:10.1042/BC20060051.
7. Stachowiak, J. C.; Brodsky, F. M.; Miller, E. A. A cost-benefit analysis of the physical mechanisms of membrane curvature. *Nat. Cell Biol.* **2013**, *15*, 1019–1027, doi:10.1038/ncb2832.
8. Mim, C.; Unger, V. M. Membrane curvature and its generation by BAR proteins. *Trends Biochem. Sci.* **2012**, *37*, 526–533, doi:10.1016/j.tibs.2012.09.001.
9. Fotin, A.; Cheng, Y.; Sliz, P.; Grigorieff, N.; Harrison, S. C.; Kirchhausen, T.; Walz, T. Molecular model for a complete clathrin lattice from electron cryomicroscopy. *Nature* **2004**, *432*, 573–579, doi:10.1038/nature03079.
10. Busch, D. J.; Houser, J. R.; Hayden, C. C.; Sherman, M. B.; Lafer, E. M.; Stachowiak, J. C. Intrinsically disordered proteins drive membrane curvature. *Nat. Commun.* **2015**, *6*, 7875, doi:10.1038/ncomms8875.
11. Baumgart, T.; Capraro, B. R.; Zhu, C.; Das, S. L. Thermodynamics and Mechanics of Membrane Curvature Generation and Sensing by Proteins and Lipids. *Annu. Rev. Phys. Chem.* **2011**, *62*, 483–506, doi:10.1146/annurev.physchem.012809.103450.
12. Sadeghi, S.; Müller, M.; Vink, R. L. C. Raft formation in lipid bilayers coupled to curvature. *Biophys. J.* **2014**, *107*, 1591–1600, doi:10.1016/j.bpj.2014.07.072.
13. Larsen, J. B.; Jensen, M. B.; Bhatia, V. K.; Pedersen, S. L.; Bjørnholm, T.; Iversen, L.; Uline, M.; Szleifer, I.; Jensen, K. J.; Hatzakis, N. S.; Stamou, D. Membrane curvature enables N-Ras lipid anchor sorting to liquid-ordered membrane phases. *Nat. Chem. Biol.* **2015**, *11*, 192–194, doi:10.1038/nchembio.1733.
14. Parthasarathy, R.; Yu, C.; Groves, J. T. Curvature-modulated phase separation in lipid bilayer membranes. *Langmuir* **2006**, *22*, 5095–5099, doi:10.1021/la060390o.
15. Roshholm, K. R.; Leijnse, N.; Mantsiou, A.; Tkach, V.; Pedersen, S. L.; Wirth, V. F.; Oddershede, L. B.; Jensen, K. J.; Martinez, K. L.; Hatzakis, N. S.; Bendix, P. M.; Callan-Jones, A.; Stamou, D. Membrane curvature regulates ligand-specific membrane sorting of GPCRs in living cells. *Nat. Chem. Biol.* **2017**, *13*, 724–729, doi:10.1038/nchembio.2372.
16. Zhao, W.; Hanson, L.; Lou, H.-Y.; Akamatsu, M.; Chowdary, P. D.; Santoro, F.; Marks, J. R.; Grassart, A.; Drubin, D. G.; Cui, Y.; Cui, B. Nanoscale manipulation of membrane curvature for probing endocytosis in live cells. *Nat. Nanotechnol.* **2017**, *12*, 750–756, doi:10.1038/nnano.2017.98.

571 17. Roux, A.; Cuvelier, D.; Nassoy, P.; Prost, J.; Bassereau, P.; Goud, B. Role of curvature and phase
572 transition in lipid sorting and fission of membrane tubules. *EMBO J.* **2005**, *24*, 1537–1545,
573 doi:10.1038/sj.emboj.7600631.

574 18. Stachowiak, J. C.; Hayden, C. C.; Sasaki, D. Y. Steric confinement of proteins on lipid membranes can
575 drive curvature and tubulation. *Proc. Natl. Acad. Sci.* **2010**, *107*, 7781–7786,
576 doi:10.1073/pnas.0913306107.

577 19. Roux, A.; Cappello, G.; Cartaud, J.; Prost, J.; Goud, B.; Bassereau, P. A minimal system allowing
578 tubulation with molecular motors pulling on giant liposomes. *Proc. Natl. Acad. Sci. U. S. A.* **2002**, *99*,
579 5394–5399, doi:10.1073/pnas.082107299.

580 20. Domanov, Y. A.; Aimon, S.; Toombes, G. E. S.; Renner, M.; Quemeneur, F.; Triller, A.; Turner, M. S.;
581 Bassereau, P. Mobility in geometrically confined membranes. *Proc. Natl. Acad. Sci. U. S. A.* **2011**, *108*,
582 12605–12610, doi:10.1073/pnas.1102646108.

583 21. Zhu, C.; Das, S. L.; Baumgart, T. Nonlinear Sorting, Curvature Generation, and Crowding of
584 Endophilin N-BAR on Tubular Membranes. *Biophys. J.* **2012**, *102*, 1837–1845,
585 doi:10.1016/j.biophys.2012.03.039.

586 22. Tian, A.; Baumgart, T. Sorting of Lipids and Proteins in Membrane Curvature Gradients. *Biophys. J.* **2009**, *96*,
587 2676–2688, doi:10.1016/j.biophys.2008.11.067.

588 23. Daniels, D. R.; Turner, M. S. Diffusion on membrane tubes: a highly discriminatory test of the
589 Saffman-Delbrück theory. *Langmuir ACS J. Surf. Colloids* **2007**, *23*, 6667–6670, doi:10.1021/la0635000.

590 24. Klaus, C. J. S.; Raghunathan, K.; DiBenedetto, E.; Kenworthy, A. K. Analysis of diffusion in curved
591 surfaces and its application to tubular membranes. *Mol. Biol. Cell* **2016**, *27*, 3937–3946,
592 doi:10.1091/mbc.E16-06-0445.

593 25. Henle, M. L.; Levine, A. J. Hydrodynamics in curved membranes: the effect of geometry on
594 particulate mobility. *Phys. Rev. E Stat. Nonlin. Soft Matter Phys.* **2010**, *81*, 011905,
595 doi:10.1103/PhysRevE.81.011905.

596 26. Renner, M.; Domanov, Y.; Sandrin, F.; Izeddin, I.; Bassereau, P.; Triller, A. Lateral Diffusion on
597 Tubular Membranes: Quantification of Measurements Bias. *PLoS ONE* **2011**, *6*,
598 doi:10.1371/journal.pone.0025731.

599 27. Xie, C.; Hanson, L.; Cui, Y.; Cui, B. X. Vertical nanopillars for highly localized fluorescence imaging.
600 *Proc. Natl. Acad. Sci. U. S. A.* **2011**, *108*, 3894–3899, doi:10.1073/pnas.1015589108.

601 28. Ogunyankin, M. O.; Longo, M. L. Metastability in pixelation patterns of coexisting fluid lipid bilayer
602 phases imposed by e-beam patterned substrates. *Soft Matter* **2013**, *9*, 2037–2046,
603 doi:10.1039/c2sm27027g.

604 29. Ogunyankin, M. O.; Huber, D. L.; Sasaki, D. Y.; Longo, M. L. Nanoscale Patterning of
605 Membrane-Bound Proteins Formed through Curvature-Induced Partitioning of Phase-Specific
606 Receptor Lipids. *Langmuir* **2013**, *29*, doi:10.1021/la401011d.

607 30. Ogunyankin, M. O.; Torres, A.; Yaghmaie, F.; Longo, M. L. Lipid domain pixelation patterns imposed
608 by e-beam fabricated substrates. *Langmuir ACS J. Surf. Colloids* **2012**, *28*, 7107–7113,
609 doi:10.1021/la3008415.

610 31. Black, J. C.; Cheney, P. P.; Campbell, T.; Knowles, M. K. Membrane curvature based lipid sorting
611 using a nanoparticle patterned substrate. *Soft Matter* **2014**, *10*, 2016–2023, doi:10.1039/C3SM52522H.

612 32. Cheney, P. P.; Weisgerber, A. W.; Feuerbach, A. M.; Knowles, M. K. Single Lipid Molecule Dynamics
613 on Supported Lipid Bilayers with Membrane Curvature. *Membranes* **2017**, *7*,
614 doi:10.3390/membranes7010015.

615 33. Kabbani, A. M.; Kelly, C. V. The Detection of Nanoscale Membrane Bending with Polarized
616 Localization Microscopy. *Biophys J* **2017**, *In Press*.

617 34. Kabbani, A. M.; Kelly, C. V. Nanoscale membrane budding induced by CTxB on quasi-one
618 component lipid bilayers detected by polarized localization microscopy. *Biophys J* **2017**, *In Press*.

619 35. Chao, M.-H.; Lin, Y.-T.; Dhenadhayalan, N.; Lee, H.-L.; Lee, H.-Y.; Lin, K.-C. 3D Probed Lipid
620 Dynamics in Small Unilamellar Vesicles. *Small Wein. Bergstr. Ger.* **2017**, *13*,
621 doi:10.1002/smll.201603408.

622 36. Risselada, H. J.; Marrink, S. J. Curvature effects on lipid packing and dynamics in liposomes revealed
623 by coarse grained molecular dynamics simulations. *Phys. Chem. Chem. Phys. PCCP* **2009**, *11*,
624 2056–2067, doi:10.1039/b818782g.

625 37. Cooke, I. R.; Deserno, M. Coupling between Lipid Shape and Membrane Curvature. *Biophys. J.* **2006**,
626 91, 487–495, doi:10.1529/biophysj.105.078683.

627 38. Betzig, E.; Patterson, G. H.; Sougrat, R.; Lindwasser, O. W.; Olenych, S.; Bonifacino, J. S.; Davidson, M.
628 W.; Lippincott-Schwartz, J.; Hess, H. F. Imaging Intracellular Fluorescent Proteins at Nanometer
629 Resolution. *Science* **2006**, 313, 1642–1645, doi:10.1126/science.1127344.

630 39. Hess, S. T.; Girirajan, T. P. K.; Mason, M. D. Ultra-High Resolution Imaging by Fluorescence
631 Photoactivation Localization Microscopy. *Biophys. J.* **2006**, 91, 4258–4272,
632 doi:10.1529/biophysj.106.091116.

633 40. Rust, M. J.; Bates, M.; Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction
634 microscopy (STORM). *Nat. Methods* **2006**, 3, 793–796, doi:10.1038/nmeth929.

635 41. Willig, K. I.; Kellner, R. R.; Medda, R.; Hein, B.; Jakobs, S.; Hell, S. W. Nanoscale resolution in
636 GFP-based microscopy. *Nat. Methods* **2006**, 3, 721–723, doi:10.1038/nmeth922.

637 42. van de Linde, S.; Löschberger, A.; Klein, T.; Heidbreder, M.; Wolter, S.; Heilemann, M.; Sauer, M.
638 Direct stochastic optical reconstruction microscopy with standard fluorescent probes. *Nat. Protoc.*
639 **2011**, 6, 991–1009, doi:10.1038/nprot.2011.336.

640 43. Deschout, H.; Zanacchi, F. C.; Mlodzianoski, M.; Diaspro, A.; Bewersdorf, J.; Hess, S. T.; Braeckmans,
641 K. Precisely and accurately localizing single emitters in fluorescence microscopy. *Nat. Methods* **2014**,
642 11, 253–266, doi:10.1038/nmeth.2843.

643 44. Huang, B.; Jones, S. A.; Brandenburg, B.; Zhuang, X. Whole-cell 3D STORM reveals interactions
644 between cellular structures with nanometer-scale resolution. *Nat. Methods* **2008**, 5, 1047–1052,
645 doi:10.1038/nmeth.1274.

646 45. Shtengel, G.; Galbraith, J. A.; Galbraith, C. G.; Lippincott-Schwartz, J.; Gillette, J. M.; Manley, S.;
647 Sougrat, R.; Waterman, C. M.; Kanchanawong, P.; Davidson, M. W.; Fetter, R. D.; Hess, H. F.
648 Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. *Proc. Natl. Acad. Sci. U. S. A.* **2009**, 106, 3125–3130, doi:10.1073/pnas.0813131106.

649 46. Schnitzbauer, J.; McGorty, R.; Huang, B. 4Pi fluorescence detection and 3D particle localization with a
650 single objective. *Opt. Express* **2013**, 21, 19701–19708, doi:10.1364/OE.21.019701.

651 47. Pavani, S. R. P.; DeLuca, J. G.; Piestun, R. Polarization sensitive, three-dimensional, single-molecule
652 imaging of cells with a double-helix system. *Opt. Express* **2009**, 17, 19644–19655,
653 doi:10.1364/OE.17.019644.

654 48. Aguet, F.; Geissbühler, S.; Märki, I.; Lasser, T.; Unser, M. Super-resolution orientation estimation and
655 localization of fluorescent dipoles using 3-D steerable filters. *Opt. Express* **2009**, 17, 6829–6848.

656 49. Backer, A. S.; Backlund, M. P.; Lew, M. D.; Moerner, W. E. Single-molecule orientation measurements
657 with a quadrated pupil. *Opt. Lett.* **2013**, 38, 1521–1523.

658 50. Backlund, M. P.; Lew, M. D.; Backer, A. S.; Sahl, S. J.; Grover, G.; Agrawal, A.; Piestun, R.; Moerner,
659 W. E. Simultaneous, accurate measurement of the 3D position and orientation of single molecules.
660 *Proc. Natl. Acad. Sci. U. S. A.* **2012**, 109, 19087–19092, doi:10.1073/pnas.1216687109.

661 51. Sund, S. E.; Swanson, J. A.; Axelrod, D. Cell Membrane Orientation Visualized by Polarized Total
662 Internal Reflection Fluorescence. *Biophys. J.* **1999**, 77, 2266–2283, doi:10.1016/S0006-3495(99)77066-9.

663 52. Soumpasis, D. M. Theoretical analysis of fluorescence photobleaching recovery experiments. *Biophys. J.* **1983**, 41, 95–97.

664 53. Axelrod, D.; Koppel, D. E.; Schlessinger, J.; Elson, E.; Webb, W. W. Mobility measurement by analysis
665 of fluorescence photobleaching recovery kinetics. *Biophys. J.* **1976**, 16, 1055–1069,
666 doi:10.1016/S0006-3495(76)85755-4.

667 54. Guo, S.-M.; He, J.; Monnier, N.; Sun, G.; Wohland, T.; Bathe, M. Bayesian approach to the analysis of
668 fluorescence correlation spectroscopy data II: application to simulated and in vitro data. *Anal. Chem.*
669 **2012**, 84, 3880–3888, doi:10.1021/ac2034375.

670 55. Ries, J.; Schwille, P. Fluorescence correlation spectroscopy. *BioEssays News Rev. Mol. Cell. Dev. Biol.*
671 **2012**, 34, 361–368, doi:10.1002/bies.201100111.

672 56. Vestergaard, C. L. Optimizing experimental parameters for tracking of diffusing particles. *Phys. Rev. E* **2016**, 94, 022401, doi:10.1103/PhysRevE.94.022401.

673 57. Seu, K. J.; Pandey, A. P.; Haque, F.; Proctor, E. A.; Ribbe, A. E.; Hovis, J. S. Effect of Surface Treatment
674 on Diffusion and Domain Formation in Supported Lipid Bilayers. *Biophys. J.* **2007**, 92, 2445–2450,
675 doi:10.1529/biophysj.106.099721.

676 677 678

679 58. Shi, X.; Kohram, M.; Zhuang, X.; Smith, A. W. Interactions and Translational Dynamics of
680 Phosphatidylinositol Bisphosphate (PIP2) Lipids in Asymmetric Lipid Bilayers. *Langmuir ACS J. Surf.*
681 *Colloids* **2016**, *32*, 1732–1741, doi:10.1021/acs.langmuir.5b02814.

682 59. Eggeling, C.; Ringemann, C.; Medda, R.; Schwarzmann, G.; Sandhoff, K.; Polyakova, S.; Belov, V. N.;
683 Hein, B.; von Middendorff, C.; Schonle, A.; Hell, S. W. Direct observation of the nanoscale dynamics
684 of membrane lipids in a living cell. *Nature* **2009**, *457*, 1159-U121.

685 60. Berglund, A. J. Statistics of camera-based single-particle tracking. *Phys. Rev. E Stat. Nonlin. Soft Matter*
686 *Phys.* **2010**, *82*, 011917, doi:10.1103/PhysRevE.82.011917.

687 61. Thompson, R. E.; Larson, D. R.; Webb, W. W. Precise nanometer localization analysis for individual
688 fluorescent probes. *Biophys. J.* **2002**, *82*, 2775–2783.

689 62. Fujiwara, T.; Ritchie, K.; Murakoshi, H.; Jacobson, K.; Kusumi, A. Phospholipids undergo hop
690 diffusion in compartmentalized cell membrane. *J. Cell Biol.* **2002**, *157*, 1071–1081,
691 doi:10.1083/jcb.200202050.

692 63. Hsieh, C.-L.; Spindler, S.; Ehrig, J.; Sandoghdar, V. Tracking single particles on supported lipid
693 membranes: multimobility diffusion and nanoscopic confinement. *J. Phys. Chem. B* **2014**, *118*,
694 1545–1554, doi:10.1021/jp412203t.

695

696 © 2017 by the authors. Submitted for possible open access publication under the
697 terms and conditions of the Creative Commons Attribution (CC BY) license
698 (<http://creativecommons.org/licenses/by/4.0/>).