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Abstract: Recent advances in nanoengineering and super-resolution microscopy have enabled new
capabilities for creating and observing membrane curvature. However, the effects of curvature on
single-lipid diffusion have yet to be revealed. The simulations presented below describe the
capabilities of varying experimental methods for revealing the effects of nanoscale curvature on
lipid mobility. Traditionally, lipid mobility is revealed through fluorescence recovery after
photobleaching (FRAP), fluorescence correlation spectroscopy (FCS), and single particle tracking
(SPT). However, these techniques vary greatly in their ability to detect the effects of nanoscale
curvature on lipid behavior. FRAP and FCS depend on diffraction-limited illumination and
detection. A simulation of FRAP shows minimal effects on lipids diffusion due to a 50 nm radius
membrane bud. Throughout the stages of the budding process, FRAP detected minimal changes in
lipid recovery time due to the curvature versus flat membrane. Simulated FCS demonstrated small
effects due to a 50 nm radius membrane bud that was more apparent with curvature-dependent
lipid mobility changes. However, SPT achieves sub-diffraction-limited resolution of membrane
budding and lipid mobility through the identification of the single-lipid positions with <15 nm
spatial and <20 ms temporal resolution. By mapping the single-lipid step lengths to locations on the
membrane, the effects of membrane topography and curvature could be correlated to membrane
viscosity. Single-fluorophore localization techniques such SPT can detect membrane curvature and
its effects on lipid behavior. These simulations and discussion provide a guideline for optimizing
the experimental procedures in revealing the effects of curvature on lipid mobility and effective
local membrane viscosity.

Keywords: fluorescence recovery after photobleaching; fluorescence correlation spectroscopy;
single-particle tracking; supported lipid bilayers; membrane curvature; diffusion

1. Introduction

The shape of biological membranes is precisely controlled for diverse, essential, cellular
processes such as regulating organelle morphology, exocytosis/endocytosis, pathogen
vulnerability/protection, and effective therapeutic targeting [1-3]. Accordingly, the dysregulation of
membrane curvature is broadly implicated in cardiovascular disease, viral infections, cancer,
Alzheimer's disease, Huntington disease, diabetes, and other diseases [4-6]. Each of these processes
requires the fusion or fission of <50 nm radius vesicles with otherwise near planar membranes via
precise regulation of the local curvature-generating forces [7]. Cellular membrane shape regulation
incorporates a wide variety of proteins that can bend the membrane. For example, BAR domains
have an intrinsic molecular shape [8], clathrin proteins create a scaffold [9], and intrinsically
disordered proteins apply steric repulsion to induce membrane curvature [10]. The underlying
non-specific, lipid-based influences remain relatively unknown in complex cellular membranes,
although the importance of some key lipids has been previously demonstrated [11-14].
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Figure 1. Simulations were performed by mimicking the membrane topography throughout the
fission and fusion of a single 50 nm radius vesicle with a planar membrane. (A) By maintaining a 50
nm radius of curvature on top and a smooth, 20-nm radius of curvature connection to the
surrounding membrane, the stage of membrane budding was tracked via the maximum bud height
above the surrounding membrane (fwui). (B) Bud growth results in an increased area of total
membrane within a 250 nm of the bud center. When heue > 137 nm, the bud undergoes fission, a
separate vesicle is formed, which is assumed to diffuse away and not contribute to these simulations.
(C) The simulated trajectories in are shown in assorted colors over a membrane topography with /ua
=120 nm.

Experimental studies on the effects of curvature on membrane behavior are becoming possible
with nanoengineering and super-resolution microscopy. For example, naturally occurring plasma
membrane tubules [15], engineered plasma membrane tubules [16], and engineered model
membrane tubules have demonstrated protein and lipid sorting dependent on the membrane
curvature. Nanoscale tubules have been created with model membrane via microbead pulling [17],
protein crowding [18], or molecular motor pulling [19]. Prior experimental attempts to reveal
diffusion differences on membrane tubules of varying radii were complicated by coupled variations
in membrane composition and tension. However, slower diffusion is consistently observed on
membrane tubules of smaller radii [20-22], as expected theoretically [23-26].

By engineering curvature on a solid substrate, modeled or living membranes may assume the
substrate topography if the substrate curvature and the membrane-substrate adhesion are
sufficiently large. These engineered buds represent a membrane shape similar to endocytic pits
preceding vesiculation and the post-fusion state of exocytosis, although the engineered structures
are static while endocytosis and exocytosis require dynamic membrane changes. Nanoscale
membrane buds have been formed over substrates patterned via electron-beam lithography
[16,27-30] and polystyrene nanoparticles [31-34]. These studies have revealed the effects of
membrane curvature on protein sorting [16,27,34], lipid phases [28-30], and single-lipid dynamics
[31-33].

Substrate nanoengineering has enabled the creation of the same membrane topographies
simulated in this manuscript. The limited studies to date regarding the effective membrane viscosity
on a nanoscale buds have reported that curvature can have no effect [32] or can slow the lipid
mobility to 4-10% of the planar system [33-36]; however, these reports vary widely in their
experimental methods. A focus of this manuscript is to demonstrate how varying observational
methods can yield varying results on the effects of nanoscale curvature. Further, the collection of
membrane morphologies simulated here represent a subset of the diverse membrane shapes created
during endocytosis and exocytosis.

Understanding the effects of curvature on lipid dynamics will require separately resolving the
two leaflets and the variation across the <100 nm diameter membrane bud. Within the membrane
bud, there is positive and negative principal curvature and positive and negative Gaussian
curvature. The molecular structure of the constituent lipids and proteins can lead to
curvature-induced nanoscale molecular sorting and compositional variation laterally across the
membrane or between leaflets [21,37]. No known experiments to date have been able to distinguish
the effects of nanoscale positive versus negative curvature on the effective membrane viscosity.
However, membrane curvature generally seems to have the net effect of increasing the local effective
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membrane viscosity and slowing of the lipid and protein mobility [20,21,33-36]. Accordingly,
sub-diffraction-limited spatial resolution and distinguishing between bilayer leaflets will be
necessary to experimentally measure how membrane curvature influences lipid and protein
dynamics.

Optical techniques are traditionally limited by diffraction to a spatial resolution of >200 nm.
Nanoscopic optical methods such as direct stochastic optical reconstruction microscopy
[(d)STORM], photoactivated localization microscopy [(f)PALM], and stimulated depletion emission
microscopy (STED) [38-42] have improved the resolution of optical microscopy to >10 nm. Many
variations on these techniques have been adapted to yield fluorophore height or orientation [43-50].
In particular, polarized localization microscopy (PLM) was designed to reveal nanoscale, membrane
curvature with sub-diffraction-limited resolution [33]. PLM combines single-molecule localization
microscopy (SMLM) and polarized total internal reflection fluorescence microscopy
(TIRFM)[33][11]. Polarized TIRFM is sensitive to membrane orientation by selectively coupling
linearly polarized fluorescence excitation with lipidated indocarbocyanine dyes (i.e., Dil, DiO, DiD)
that maintain their fluorescence dipole moment in the plane of the membrane [51]. Pointillist SMLM
methods such as (d)STORM, (f)PALM, and PLM provide raw data that can be interpreted for
high-throughput single particle tracking of lipid diffusion dependent on membrane curvature.
Tracking individual fluorophores that stay on for multiple sequential frames enables the observation
of single-molecule diffusion rates versus membrane topology. For example, Dil molecules diffuse on
curved membranes at <10% of the speed at which they diffuse on flat membranes [33,35]. Analysis of
single-molecule diffusion rates relative to membrane topology reveals information regarding the
local environment (i.e., lipid phase or molecular crowding) associated with membrane bending.

In this manuscript, we demonstrate the capabilities of various fluorescence techniques to reveal
lipid dynamics relative to membrane curvature. We focus on the three most common methods of
measuring lipid mobility: fluorescence recovery after photobleaching (FRAP), fluorescence
correlation spectroscopy (FCS), and single-particle tracking (SPT). Through Monte Carlo simulations
of Brownian diffusing lipids over membrane buds of varying heights, we demonstrate the ability of
each of these techniques in revealing the presence of the membrane bud, the lipid dynamics on the
bud, and the effects of curvature on lipid mobility. Our simulations demonstrate how FRAP was not
sufficiently sensitive to reveal that a bud was present under any of our simulation conditions. FCS
revealed the bud’s presence, but FCS is typically limited to diffraction-limited length scales. SPT,
however, measured the effects of membrane topography change with and without
curvature-induced alteration to lipid mobility on each part of the membrane bud. By mapping the
single-lipid steps over space, buds of varying heights and membranes of laterally varying viscosity
could be distinguished. Within these simulations, we consider the effects of lipid diffusion variations
with membrane curvature could have on the collected data, but we do not advocate for any
particular function of curvature dependence on the diffusion rates or distinguish between different
types of lipids. Through carefully chosen methods, SPT data can reveal spatial information across
the sample with <20 nm resolution. Guidelines are provided for designing SPT experiments to
optimize the resolution of membrane curvature and its effects on molecular mobility.

2. Methods

The diffusion of lipids through membrane buds was simulated and analyzed to mimic the
expected experimental results that would be obtained by a variety of fluorescence-based methods.
All simulations were performed with custom MATLAB (MathWorks, Inc.) programming, which is
available in the Supplemental Material. Membrane buds were modeled with a radius of curvature
equal to 50 nm and varying heights above a surrounding planar membrane (fwa). The bud
membrane was smoothly connected to the surrounding planar membrane with a radius of curvature
equal to 20 nm along the principal plane radial from the bud center (Figure 1), as done previously
[33,34]. heua= 0 represents the case of a planar membrane with no bud protrusion. When huus = 140 nm,
the bud had detached from planar membrane such that there was no diffusion between the vesicle
and the planar membrane, and the vesicle was assumed to not contribute to the observed lipid
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diffusions as if the newly formed endosome had quickly left the proximity of the plasma membrane.
Simulations of diffusion on a vesicle disconnected from a surrounding SLB have been recently
published [35]. This is a minimalistic model of membrane shape during endocytosis or exocytosis
qualitatively matches electron microscopy images of cell plasma membranes [3,16] and allows for
the single parameter huato report the stage of progression as the membrane transitions between
planar and the moment of fission or fussion.

Trajectories of the individual lipids were simulated upon the budding topography via a
Monte-Carlo method for a discrete set of randomly distributed points. The discrete points were
created at a density of 4 points/nm?across the bud top, the bud-to-planar membrane neck, and the
surrounding planar membrane. At each time step, the lipid moved to one of the 110 + 10 random
points within 3 nm. This resulted in an average single step distance of 2 nm. To mimic the diffusion
coefficient (D) of 1 um?/s over many steps, each time step would correspond to 1.1 ps. Each
trajectory of each lipid started 1 um away from the bud center, then diffused randomly upon the
simulated membrane until it was >Ium away from the bud center. More than 10° different
trajectories were simulated for each condition, and 1300 + 100 of those trajectories made it onto the
membrane bud for each /. Example trajectories over a bud of hwud =120 nm are shown in Figure 1C.
The methods of analyzing these trajectories were designed to mimic experimental fluorescence
techniques.

To mimic the curvature-induced slowing of the lipid diffusion, the effective time per simulation
step was changed to be 11 ps or 28 us for each 2 nm step whenever the simulated lipid was on the
bud to mimic Dsut = 0.1 or 0.04 um?/s, respectively. Simulations were performed with the varying
values of Dsuito reveal how the various observation methods would report curvature-induced lipid
slowing.

The analyses performed in this manuscript were limited to the z-projection of the fluorescence
signal into the imaging xy-plane. The fluorescence emission was assumed to have no z-dependence
or polarization dependence. These two assumptions apply well to nanoscale structures that vary in
the thickness (i.e., <140 nm as done here), less than the diffraction-limit of light (>200 nm for optical
fluorescence), and for fluorophores that tumble randomly through all orientations.

2.1 Mimicking Fluorescence Recovery After Photobleaching

Fluorescence recovery after photobleaching (FRAP) measures the recovery of a fluorescence
signal from a region of the sample after the fluorophores within that region were bleached. Here,
two bleaching conditions were used and compared. The first bleaching method, “complete
bleaching”, was identical to the processes of coming to equilibrium, as described above, in which all
fluorophores within 1 um from the bud center were bleached. The second method, “Gaussian
bleaching,” took an equilibrated distribution of fluorophores and imposed a bleaching probability
upon the i fluorophore equal to Pgp(i) = exp(—2r?/w?) with a w = 250 nm and ri equal to the
lateral distance of the fluorophore from the bud center. In both cases, simulated trajectories were
analyzed with a Gaussian illumination (I) centered on the membrane bud according to

1(t) = Z; exp(—2rf/w?) M

with an illumination width (w) set equal to 250 nm, as would be expected for a diffraction-limited
illumination. Immediately after bleaching, I(t) was reduced by 50 + 5% after Gaussian bleaching.

New single-lipid trajectories were started at the perimeter of the 2 um diameter system every
0.08 us for an equilibrium density of 0.00146 lipids/nm? or approximately 10 mol% fluorescent lipids.
Since an area larger than the illumination spot was initially bleached with the complete bleaching
method, only the I(t) after recovery 25% complete was analyzed for these data. The increasing I(t)
was fit to

Ierap rie(t) = A(1 — e_t/TFRAP)- 2)
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The fitting variable A represents the steady-state magnitude of I and is proportional to the
steady-state fluorophore density, the membrane area, the illumination intensity, and the
fluorescence emission collection efficiency. The fitting variable trrar represents the characteristic
FRAP recovery time. This fitting model is approximated to which would be expected for planar
systems with uniform [52] or Gaussian illumination [53]; an approximation was used since the exact
recovery shape over the non-planar membrane topography varied with huua.

2.2 Mimicking Fluorescence Correlation Spectroscopy

Fluorescence correlation spectroscopy (FCS) examines the fluctuations in the steady state I
versus t signal. This is mainly performed by calculating the autocorrelation (G) as a function of lag
time (7) and finding the characteristic fluctuation time (7rcs). In these simulations, I(t) for FCS was
calculated from the single-molecule trajectories through a Gaussian illumination profile according to
Eq. 1, as would be expected for typical confocal FCS. G was calculated from I(t) according to

G(t) =< 8I(t)SI(t — 1) >/< 1(t) >2. 3)

The angle brackets (<>) represent the average over t and 0I(f) = I(t)-<I(t)>. The correlation time (trcs)
in I(t) was found by fitting G(t) according to

Grie (1) = Go(1 = (t/Tes)) 7, 4)

as is expected for 2D Brownian diffusion. The fitting variable Go is inversely proportional to the
number of diffusers simultaneously observed, and other experimental conditions not relevant in
these simulations. With a membrane bud present, the autocorrelation is not expected to fit perfectly
to Eq. 4, however, the inherent averaging incorporated into an autocorrelation analysis makes
finding minor populations difficult, and complex fitting functions are typically unwarranted [54].
For this analysis, Eq. 1 was assumed to be the spatial detection sensitivity, which is the standard
approximation of the Airy point spread function in a diffraction-limited system [55] and especially
accurate when a confocal collection pinhole is used with a diameter of one Airy unit.

2.3 Mimicking Single Particle Tracking

Single-particle tracking (SPT) includes identifying the center of each single-fluorophore image
via computational analysis of a movie of sparse, dynamic fluorophores. From the motion of the
single-molecules between sequential frames, single-molecules trajectories were observed. The
single-steps lengths (s) observed in a region of the sample may be fit to a 2D Maxwell-Boltzmann or
Rayleigh Distribution to determine the local D, where the probability distribution (P) of step lengths
over a time step of At for a single Brownian diffuser in a uniform membrane is expected to be

S2
P(s) = ﬁe_m. )

The observed single-molecule steps were grouped and fitted according to their location in the
sample (x, y) or distance from the bud center (r) such that D could be measured at different locations
in the sample. The ability to gain finer spatial resolution for variations in D across a sample is the key
differences between a single-step length analysis used here versus the more traditional mean
squared displacement (MSD) analysis, as further discussed below. Optimization of MSD analysis
has been recently described [56].

However, the single-step analysis in experimental systems is affected by the 2D localization
uncertainty (o7 = 07 + 0;) and camera exposure duration (fey) to yield a systematic difference
between the D found from fitting Eq. 5 to experimental data (Drit) and the D that would be found
from an idealized system (Dre), according to

0'1% tex:
Dgear = (Dpit — E)/(l - Xf)- (6)
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Figure 2. Increasing the bud height does not result in significant changes to the FRAP recovery time,
including when the lipid diffusion was slowed to Dsus = 0.1 or 0.04 pm?/s on the curved membrane
for both (A, B) complete bleaching and (C, D) Gaussian Bleaching. (A, C) Simulated I(t) traces while
Dpiane=1 um?/s and Dsus = 0.1 um?/s shows the recovery of I(t) after bleaching. There was no apparent
trend in the recovery rate changing with bud height. (B, D) The recovery rate was quantified by
fitting Eq. 2 to find 7rrap from I(t) of each condition. Error bars represent the standard error of the
mean between separately four repeated simulations.

Frequently, At is equal to the time between adjacent frames (tfan) used in this analysis,
however, any At that is a multiple of ffiume are permitted. tfame is equal to the sum of texp and the frame
read time such that the inverse of 1/ttme equal the imaging frequency.

When the membrane is not parallel to the coverslip, then the z-component of the lipid diffusion
within the membrane, results in a slowing of the lipid through the xy-plane. It was not possible to
extract the in-plane diffusion rate from the observed diffusion through the xy-plane (Dxy) when both
the membrane topography and the influence of curvature on membrane viscosity are unknown. In
the below analysis, Drea was calculated under the approximation that the membrane was parallel to
the coverslip, and this value was reported as Dx, to be explicit in representing that the membrane
topography was contributing to the measurements.

2.4. Assumptions used in the simulations

Super-resolution methods may incorporate a light polarization and z-dependence in the
localization probability versus membrane height or orientation. The localization probability can vary
as a fluorophore diffuses away from the objective focal plane in the z-direction. However, this
probability change occurs only when variations in z are greater than the diffraction limit are
allowable. Since the nanoscale buds simulated here vary in z by <140 nm, no variation in the
probability of fluorophore localization is expected. Polarization was important in FCS of vesicles
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containing DiD [35]; however, no differences in s- versus p-polarized illumination was observed in
SPT of Dil [33]. The simulations presented here mimic randomly tumbling fluorophores with no
polarization dependence.

Simulations performed here do not incorporate any differences in the lipid diffusion due to the
membrane-substrate adhesion. The diffusion of transmembrane proteins and >100 nm diameter
lipid domains can be greatly slowed in SLBs versus freestanding membranes; however, the diffusion
of individual lipids are significantly less affected by the substrate [57]. We would expect to see
significant substrate effects for fluorescent lipids with larger head-group labeling [58] or for systems
that may form >100 nm phase-separated domains.

3. Results

3.1. Membrane bending and FRAP

Experimental FRAP conditions such as the laser-based illumination with complete or Gaussian
bleaching and small observation areas were mimicked in the simulations presented here. The
presence of the membrane bud and the extra membrane area associated with it were not sufficient to
consistently influence the FRAP recovery time. Upon incorporating a curvature-induced slowing of
the lipid diffusion on the bud, where Dsu was reduced to 0.1 or 0.04 um?/s while maintaining Depiane =
1 pm?/s, the variation between repeated simulations proved to provide insignificant differences in
TrrAP Versus hwd for both complete bleaching (Figure 2A, B) and Gaussian bleaching (Figure 2C, D).
Further, these results were created from a perfectly centered Gaussian illumination on the bud
center (Eq. 1). Upon slight deviations of the illumination from the bud center, the effects of the bud
on trrar were reduced further. Within the range of Dsu explored here, the identification of the bud
and the curvature-induced changes in lipid diffusion were undetectable by FRAP.

A B 035

T i
+DBud71 um-/s

_ 7]
03 +DBud =01 um /25
+DBud =0.04 um/s
+DBud =0.1 umzls& 100 nm offset

=Dy =01 pmzls& 200 nm offset

0.25

Treg (5€0)

0.1
0.05
ol4 5
1 0 20 40 60 80 100 120 140
Lag Time (sec) hpyq ()

Figure 3. A membrane bud may be detected by FCS if hwi > 80 nm or the membrane curvature
inherently slows the local lipid diffusion. While a lipid on the planar membrane experiences Dpiane = 1
um?/s, varying the diffusion rate of the lipid on the curved membrane and the location of the bud
within the excitation spot affects the observed FCS results. (A) A shifting of G(7) to longer lag times
was apparent when Dsu = 0.1 um?/s and the bud was centered on the 250 nm wide Gaussian
illumination. (B) If Deui=1 pm?/s and hwa < 50 nm, a minimal effect of the bud was observed on the
measured 7rcs; the extra membrane area and varying membrane orientation are not sufficient to
affect the FCS results within the uncertainty of finding trcs. However, if Dsui=0.1 um?/s, the presence
of the bud becomes clear for hwu > 15 nm. The bud can be offset by 200 nm from the center of the
illumination and still yield a clear change in the trcs. If the observation spot was off-centered from
the bud by 100 nm or 200 nm, the effects of the bud are decreased by an average of 15% or 66%,
respectively.
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3.2. Membrane bending and FCS

The presence of a single nanoscale membrane bud can be detected with FCS with or without
curvature-induced lipid slowing (Figure 3). With diffraction-limited illumination (Eq. 1) and
imprecise centering of the observation spot over the membrane bud, simulated FCS detected the
effects of the bud on the lipid dwell time. For example, with Driae and Dsui =1 pm?/s, the addition of
the extra membrane area for a bud of hwi = 100 results in a 60% slowing of the intensity fluctuations;
Tres= 12.3 + 0.6 ms and 20 + 1 ms when /e = 0 and 100 nm, respectively. This change is consistent
with the 60% extra membrane area created by the bud when /s = 100 nm versus 0 nm (Figure 1B).

When the membrane bud incorporated slower lipid diffusion, the effects of the membrane bud
on the FCS result were more pronounced. For example, a 1700% slowing 7rcs was observed between
hewa = 0 and 100 nm when Dsuw = 0.1 um?/s and Dpiane = 1 um?/s, with trcs = 12.3 £ 0.6 ms and 210 + 20
ms, respectively; the autocorrelations for varying hwaare shown for this condition in Figure 3A.

The effects of the membrane bud on the FCS results were apparent but reduced if the
fluorescence illumination was not well centered over the membrane bud. For example, the effects on
Trcs was decreased by an average 15% when the center of the membrane bud was 100 nm offset away
from the center of the diffraction-limited FCS illumination spot, as calculated by the average ratio of
the centered versus offset trcs values for huui from 5 nm to 135 nm (Figure 3B).

3.3. Membrane Bending and SPT

Mapping the locations of single molecule steps enables measuring D:, at specific locations
within the sample (Figure 4). When a membrane with consistent viscosity and consistent lipid
mobility was simulated, the variations in the measured Dx across the sample were due to the
membrane topology change, and the measured shorter lipid step lengths on tilted membranes as the
lipid trajectories are projected on the imaging xy-plane (Figure 4A). The effects of the membrane bud
presence are enhanced when the curved membrane reduces the lipid mobility (Figure 4B, C). When
the membrane bending occurs in a rotationally symmetrical way, as would be expected for an
endocytic pit and the engineered curvature shown here, a radial averaging provides greater clarity
in the effects of membrane budding on the SPT results (Figure 5).

In an SPT experiment, a balance between acquisition frame rate, localization precision, laser
power, and ‘on’ fluorophore density is required to achieve meaningful data. The simulations
performed here demonstrate that a faster frame rate at the cost of worse localization precision yields

A 200 LA = BZODFF C200 =
150 R = 150 150 SNE EEES S B
| | =
100 [N 100 100 8 - -
= -
50 50 50 m o
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>_so el > _spl® > _s0 &
50 fm_ -50 B - b - :- 053
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" m I | | - | n 0
-200 = —200|_w i o 5 —200 mm )
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Figure 4. Dxy mapped over the sample through SPT. The single steps from all trajectories are binned
according to the average x position and the average y position of the two localizations. This 2D
binning of the x and y positions allows for the analysis of all the step lengths in each region on the
sample, as represented by a single pixel in these images. Here, /o = 100 nm, or = 15 nm, Dpriane =1
um?/s, and tfame = 2 ms while (A) Dsud = 1 pm?/s, (B) Dsua = 0.1 um?/s, and (C) Dsu = 0.04 um?/s. The
bud induced slowing in (A) was due to the membrane topography causing the lipid to move slower
through the xy-plane with constant local diffusion in the membrane of varying orientation; this effect
also contributes to (B) and (C). The distinction between the bud and the planar membrane is
enhanced when there is a greater difference between Dpiae and DBud.
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Figure 5. Azimuthal averaging of the spatial mapping of Dy around a bud (i.e., Figure 4) improved
the data statistics and enabled easier comparison of Dxy versus distance from the bud center (r) and
hvua. Simulated SPT results for Dy are presented with varying ov, tfame, and Daud. (A) When Dpiane = Diud
=1 um?/s and, the single molecules maintain a uniform average local speed through the membrane,
and the observed variations in Dxy were due to the tilt of the membrane. (B, C) As Dsui decreased to
0.1 or 0.04 pm?s, the bud became increasingly apparent at all hwi. The (D-F) significant
improvements in the resolution of Dxy were obtained by decreasing tfane, even at the expense of
increasing o (F) Differences in Dxy may be observed across the bud, including slowing at the
vertical edge of the bud.

a greater resolution in understanding the curvature effects on lipid mobility for most experimental
conditions. The most commonly experimental SMLM and SPT parameters result in or = 15 nm and
tpame = 20 ms. The effects of the membrane bud for the membrane topography simulated here,
assuming Driane = Dpud, resulted in a negligible change in Dxy versus r until i > 60 nm (Figure 5A). The
greatest loss of signal with these conditions came from the long distance the fluorophore moved
between adjacent frames, and individual steps sampling both the curved and planar portions of the
membrane. For ffiume = 20 ms and D = 1 um?/s, the expected step length of a single fluorophore
between adjacent frames (5;) would be (4D#frame)'’? = 280 nm. This is much farther than noise added by
the single-fluorophore localization imprecision.

When the membrane curvature caused the local lipid diffusion coefficient to slow, the
membrane bud was readily apparent via SPT with or = 15 nm and tfame = 20 ms for any hea (Figure
5A-C). SPT revealed Dxy for the top of the bud separate from the surrounding planar SLB; however,
the diffusion around the bud neck was challenging to interpret considering the combined effects of
membrane tilt and data blur.

Significant benefits can be obtained from SPT results by employing faster imaging frame rates.
Keeping all other parameters constant, the effects of decreasing tfiame from 20 ms to 2 ms resulted in a
3x improvement in blur induced by diffusion between frames (Figure 5B, E). Additionally, the
shorter tpame provided an improvement in data statistics for a given total acquisition time, this is
mainly due to the increased number of independent steps observed per time. Even if decreasing tframe
comes at the cost of increasing or to 45 nm, there was still a clear improvement in the obtained results
(Figure 5B, D). This relative importance of tfme and or is further demonstrated by showing how
marginal improvements in the resolution of D, were obtained if tfame = 2 ms and or was decreased
from 15 nm to 3 nm, which is feasible when fluorescent beads or metal nanoparticles are used for
tracking rather than single fluorophores (Figure 5E, F).
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4. Discussion

Resolving the nanoscale biophysical effects of membrane curvature remains experimentally
challenging. Optical techniques such as PLM enables the detection of curvature with higher
sensitivity and resolution than comparable optical techniques while providing a biologically
friendly imaging environment. However, decoupling the effects of varying membrane area,
orientation, and curvature can be challenging when the primary data collected is the z-projection of
sample topography changing on sub-diffraction-limited length scales. The focus of this manuscript
is to provide a framework for protocols and capabilities of experimental measurements of lipid
diffusion as influenced by nanoscale membrane curvature. The simulation results presented here
guide the experimental procedures that will improve the understanding of membrane curvature.

4.1. Capabilities of FRAP, FCS, and SPT

The method of draping a supported lipid bilayer over nanoparticles has been used in prior
experimental studies to reveal the influence of curvature on lipid dynamics and protein sorting.
FRAP [30,31] and SPT [32,33] have been used to confirm the continuity of the membrane over the
nanoparticles. FRAP was used to confirm membrane integrity by matching the final fluorescence
emission intensity after bleaching and recovery to the before-bleaching intensity. SPT was used to
confirm membrane integrity through the observation of single-particle trajectories connecting the
bud to the surrounding SLB. However, FRAP was unable to reveal any difference in the recovery
rate of the fluorescence due to the presence of curvature in experiments [31,32], as expected by the
simulations performed here (Figure 2). The setup in these simulations matches most prior
experimental approaches where a single membrane bud is being observed at a time. Should the bud
density become high enough for multiple buds were present within the FRAP observation region,
FRAP may prove to provide bud-dependent results.

FCS can detect the effects of the bud and curvature-induced slowing on lipid diffusion in these
simulations with diffraction-limited illumination (Eq. 1) and imprecise centering of the observation
spot over the membrane bud (Figure 3). However, the ability for FCS to detect membrane buds
without curvature-induced lipid slowing was limited to mature buds (hus > 55 nm) for a 20% change
in trcs. With curvature induced slowing (Dsut < Driane/10), significant changes to trcsare apparent as
soon as the bud is formed. Additionally, it would be feasible to provide sub-diffraction-limited
resolution of the bud’s location in the sample without a complementary signal (e.g., nanoparticle,
atomic force microscopy, or clathrin co-localization) by finding where trcs was most slowed when
scanning the illumination beam over the sample. Without a complementary signal co-localized to
the slowed 7rcs, however, it would be difficult to confirm 7rcs slowing was caused to a membrane
budding rather than another membrane defect, such as membrane-substrate interaction or sorting to
domains of lipid phase separation.

FCS is a valuable technique for identifying the presence of a membrane bud and/or the
magnitude of slowing induced by the curvature; however, the ability of FCS to reveal the lipid
mobility on different parts of the bud are prohibited by the relatively large size of the
diffraction-limited illumination (w = 250 nm) compared to the bud radius (50 nm). Potentially
sub-diffraction-limited STED-FCS could yield a greater resolution of the lipid mobility on distinct
parts of the bud as well as increase sensitivity to the membrane topography itself [59]; however,
STED-FCS is technically challenging, expensive, and rare. Sub-bud resolution may be achievable
with FCS by exploiting rotationally-limited diffusion of fluorophores with polarized excitation or
emission, as has been done on lipid vesicles of varying size [35].

SPT is unique among these techniques in that it provides sub-diffraction-limited spatial
resolution with the capability to reveal the locations on the bud that most affect the local lipid
diffusion. By binning the single-lipid step size versus distance from the center of the membrane bud
and fitting the resulting histogram of step lengths to the Rayleigh distribution, the effects of lipid
topography can be revealed directly even without curvature-affected lipid mobility (Figure 4, 5A).
The effect of the membrane bending was observed via D in these simulations without any
curvature-induced changes to D. Similarly, observation of Dy across a sample could reveal



421
422
423
424

425

426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460

461

462
463

464

465
466
467
468
469

11 of 16

previously unknown membrane topography if there were curvature induced change to lipid
mobility were known. This is particularly shown in Figure 4C in which the vertical edge of the
membrane bud, the horizontal top of the bud, and the surrounding SLB are each individual
identifiable.

4.2. Comparative ease of performing FRAP, FCS, and SPT

The decision of which technique to use requires considering both the type of information
needed to be obtained and the associated technical challenges. FRAP, FCS, and SPT each provide
benefits regarding the specific membrane processes to which they are sensitive to and the ease by
which they are experimentally performed. FRAP is the easiest to these techniques in both the
execution and analysis of the experiment. FRAP can be carried out on large observation regions with
a conventional epifluorescence microscope through the opening and closing of a field diaphragm in
the conjugate image plane. Alternatively, greater spatial resolution can be gained with
diffraction-limited bleaching and illumination, as simulated here. Although these methods of
performing FRAP can provide a coarse analysis of membrane integrity and lipid mobility, it can be
difficult to achieve a high intensity of the fluorescence emission and small enough observation areas
to provide precise measurements. Even if performed with a relatively weak and slow bleaching
procedure, FRAP can reveal the fraction of the diffusers that are immobile and the average diffusion
coefficient of the mobile diffusers in a large observation area. This is especially valuable for
demonstrating the continuity of a model membrane.

The correlation of intensity versus time for FCS only reports the diffusers that move through the
diffraction-limited observation spot over the ~30 sec of data collection; FCS does not incorporate any
information from immobile particles on a membrane. However, FCS is more sensitive to
sub-populations of diffusers than FRAP and provides greater accuracy in the measured diffusion
coefficients of the mobile diffusers. Commercial FCS setups require laser illumination, expensive
detectors, hardware correlators, and software, but can provide analysis of the results in real-time.
Homebuilt FCS setups may use high-frame rate EMCCD or sCMOS cameras and custom software
for correlation calculation and fitting. Since FCS can reveal late-stage bud formation and the effects
of bending on lipid mobility, it is feasible that future incorporations of FCS will be used to report the
biophysical ramifications of membrane bending.

As shown above, SPT provides the best spatial resolution of membrane bending and the effects
of bending on lipid mobility. However, SPT requires significantly more effort in data collection and
analysis. SPT requires a high photon flux for precise single-fluorophore fitting (o- < 50 nm) with fast
frame rates (250 Hz), which often requires oxygen-scavenging buffers to reduce fluorophore
oxidization to provide more photons per fluorophore ‘on” state and greater conversion from the
fluorophore ‘off” to “on’ states. The raw SPT data typically comprises 25k individual camera images
from which the single-molecule locations are calculated. The locations are linked for trajectory
analysis, MSD analysis, and/or single-step length analysis. A complicating factor of SPT is that the
data quality and signal-to-noise ratio can vary between experiments such that user confirmation is
needed for the analysis of each experiment. Despite these experimental challenges, the resolution
benefits of SPT commonly justify its implementation.

4.3. SPT without examining long trajectories

Typically, the single-particle trajectories are analyzed by calculating the MSD versus At such
that 2D Brownian diffusion results in a linear relationship of

MSD(At) = 4DAt + 20,” — 8DRtsyqme. (7)

The localization uncertainty and camera blur contribute to these last two terms of Eq. 7, respectively.
Camera blur is a spreading of the acquired image due to the motion of the subject during the finite
single-frame acquisition time. Camera blur depends on the motion blur coefficient (R), such that R =
texp/(6tframe) < 1/6 for continuous exposures within each frame [60]. MSD analysis has the potential to
provide a precise D for a single diffuser and prior analysis has optimized the experimental
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parameters for MSD analysis [56]. However, MSD versus At analysis spatially averages each
trajectory. For trajectories that include dozens of sequential localizations, this analysis may provide
an average over many square microns of the sample, well beyond the extent of a membrane bud.
Conventional MSD analysis is unable to provide the curvature-dependent diffusion of lipids when
the expected length of a single molecule step between adjacent frames (5;) is of similar length to the
radius of membrane curvature.

4.4. Effects of frame rate on SPT

Individual fluorophore localizations for SMLM or SPT are frequently made to <20 nm certainty
with precisely optimized imaging buffers, illumination intensities, and detection optics. However,
the spatial resolution of the mobility measurement is often determined by the distance between
sequential localizations rather than the precision of single localizations. SMLM methods yield or
approximately proportional to the inverse of the square root of the number of photons collected per
single fluorophore image (N), while N is proportional to tep [61]. Similarly, §; is proportional to
m . Assuming minimal image readout time, minimal background noise, and texp = tframe, §; and or
are approximately inversely related to each other, and an imaging frame rate could be found that
results in §; = or for which the best resolution of D across a sample could be achieved. This is
demonstrated by comparing panels B and D in Figure 5 for which a substantial improvement in the
resolution of D results from tf.qm. being decreased by 90% (from 20 ms to 2 ms), §; decreasing by
70% (from 280 nm to 90nm), and or increasing by 200% (from 15 nm to 45 nm). Presumably,
decreasing tfame further would have resulted in even greater resolution benefit until §; equaled o
however, experimental realities such as image background noise becomes significant at shorter tfame
when N < 100 such that o increases significantly faster than 1/+v/N and there are no longer benefits of
decreasing tfiame.

Increasing the photon flux from a single molecule can improve both or and §;. Single
biomolecules that have been labeled with metal nanoparticles have yielded more fluorescence
emission. For example, membrane hop diffusion has been observed by gold nanoparticle tracking
with or= 17 nm and tfame = 0.03 ms [62]. Metal nanoparticles detected in a non-fluorescence,
interferometric microscope have yielded or= 1.7 nm and ffme = 1 ms [63]. However, these
experiments with <1 ms frame rates depend on >20 nm diameter gold nanoparticle labels and are
associated experimental uncertainties that are not present with single-fluorophore labels. The
uncertainties associated specifically with gold nanoparticle labels include the reduced specificity of
the number of lipids per nanoparticle, the effects of drag on the nanoparticle, the non-specific
binding between the nanoparticle and the other membrane components, and the local heating that
may be caused by the gold absorption of the illumination.

5. Conclusions

There are numerous challenges for observing the effects of membrane bending at physiological
length scales. Diverse super-resolution optical techniques are providing resolution to the features of
nanoscale membrane topography; however, the dynamical effects of curvature remain largely
unknown. The ability for super-resolution optical techniques such as PLM to reveal nanoscale
membrane bending is expanding the experimental capabilities for membrane curvature detection.
The capacity to engineer membrane bending through the creation of supported lipid bilayers draped
over nanoengineered substrates allows the experimental creation of membrane topographies that
are analogous to endocytosis and exocytosis. With SPT, the spatial resolution of lipid mobility and
membrane bending can be observed with higher precision than detectable with FCS or FRAP. The
fitting of the histogram of single-step sizes distribution enables the calculation of the lipid diffusion
coefficients that are corrected for the localization uncertainty and the camera blur. Future
experimental implementations of PLM and SPT will reveal the effects of membrane bending on the
membrane viscosity and lipid mobility. Through asymmetric labeling of model membranes, the
specific contribution of each bilayer leaflet will be determined in the nanoscale budding membrane.
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The sum of these results will contribute to the greater understanding of membrane biophysics and
the mechanisms of cellular regulation of membrane topography.

Supplementary Materials: The custom MATLAB scripts used in this work are available online at
www.mdpi.com/link.
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