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Abstract—Wireless communication systems are susceptible to
both unintentional interference and intentional jamming attacks.
For mesh and ad-hoc networks, interference affects the network
topology and can cause the network to partition, which may
completely disrupt the applications or missions that depend on
the network. Defensive techniques can be applied to try to prevent
such disruptions to the network topology. Most previous research
in this area is on improving network resilience by adapting the
network topology when a jamming attack occurs. In this paper,
we consider making a network more robust to jamming attacks
before any such attack has happened. We consider a network
in which the positions of most of the radios in the network are
not under the control of the network operator, but the network
operator can position a few ‘“helper nodes” to add robustness
against jamming. For instance, most of the nodes are radios on
vehicles participating in a mission, and the helper nodes are
mounted on mobile robots or UAVs. We develop techniques to
determine where to position the helper nodes to maximize the
robustness of the network to certain jamming attacks aimed
at disrupting the network topology. Using our recent results
for quickly determining how to attack a network, we use the
harmony search algorithm to find helper node placements that
maximize the number of jammers needed to disrupt the network.

I. INTRODUCTION

Wireless networks are susceptible to both unintentional
interference and intentional jamming attacks. Unintentional
interference often comes from other networks using the same
band and is usually mitigated through error-correction coding
and medium-access control (MAC) protocols. Jamming (or
intentional interference) [1]-[3] offers additional challenges
because it is purposefully designed to disrupt communication
and can be targeted at different layers of the protocol stack.

The vulnerability of wireless networks to jamming attacks
motivates the need to develop countermeasures. Such coun-
termeasures can be classified as providing either resilience or
robustness [4]. Resilience is a reactive countermeasure, which
characterizes a system’s ability change its methods of oper-
ation to survive from an attack and to recover from external
interference or disturbance. For instance, if a network detects
a jamming attack, it can map the affected network region [5],
adapt the topology to avoid those regions [6], [7], and recover
network performance after the attack is finished [3].

In contrast to resilience, robustness is a proactive counter-
measure. In the context of jamming attacks, a robust wireless
network should be able to continue functioning under a jam-
ming attack and not require any major system reconfiguration
to adapt to the attack. For instance, one measure of robustness
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of a wireless network may be the number of jammers required
for the network to be partitioned to some specified degree.
Robustness can be achieved by adding redundancy into the
network when designing the topology [8] or by reshaping
the network into a new topology with more redundant routes
without the knowledge of a specific jamming attack [9].

In this paper, we propose techniques to improve the robust-
ness of wireless networks to jamming attacks that are targeted
at partitioning the network. We previously investigated jammer
placement strategies to partition a wireless network in [10]—
[12]. Here we consider how to make the network more robust
by placing additional network “helper” nodes that create
backup network links and hence increase the difficulty for
the adversaries to partition the network by placing jammers.
Our measure of robustness to jamming attacks is the number
of jammers required to partition the network into a specified
number of disconnected subnetworks. A meta-heuristic search
algorithm called harmony search is used to search the space
of possible helper node locations, where potential helper node
placements are drawn from a probabilistic model that helps the
network form additional useful routes around jammed areas.

This paper is organized as follows. The network model,
jamming model, and our proposed defensive strategy are
described in Section II. The algorithms used for optimizing
helper node placement and evaluating our defensive strategy
are formulated in Section III. The performance of our approach
is assessed via simulation in Section IV, and the paper is
concluded in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Initial network: The network model we consider is the
same as in [11]. Radios are distributed in a two-dimensional
plane. The radios are homogeneous, with equal transmit
power, omnidirectional antennas, and equal noise figure. The
channel is modeled using the exponential path-loss model.
We consider the protocol model for reception, where two
radios can directly communicate if the signal-to-noise ratio for
communication between the radios is greater than a threshold,
which corresponds to radios being within some Euclidean
distance, R.. The induced network topology is modeled as
a simple graph G(V, £) with the radios as the vertices ) and
the communication link as the edges £ C V x V. Each vertex
V; is associated the geographic location, loc(V;) € R?2, of the
corresponding radio.

Jammers: We consider the jamming model from [11], in
which each jammer is located near one of the nodes in the



network and blocks all communication to that node, as well
as to all of that communication node’s neighbors.

Helper Nodes: The network is to be augmented by a group
of arbitrarily positionable radios that we call helper nodes. We
assume that the helper nodes’ radios have similar properties
as the original network nodes. However, the communication
radius for the helper nodes may be the same or larger than the
other communication nodes. For instance, the helper nodes
may be on UAVs, which results in better channel conditions,
or may have higher transmission powers and better receivers.

A. Attack Objective

Jamming nodes are placed to partition the network. Let K
be the minimum number of clusters and b; be a bound on the
number of nodes in cluster ¢. The problem of partitioning the
network can then be viewed at a high level as finding a graph
clustering scheme, which aims to find a partition

FZ{Vl,VQ,...,VKCV ‘Vi|§bi, Viﬂijw, 275]},

To simplify exposition, in what follows we bound all the
residual clusters by the same value by = N/K.

For non-trivial networks, searching for a minimum-
cardinality edge separator or vertex separator that partitions
G into K disconnected subsets requires a high computational
complexity [13], [14]. Even searching for an approximate
solution can be hard in certain cases [15]. In cases where
finding the optimal network partition is not feasible, there
are several viable suboptimal approaches. In our previous
research [12], we developed a technique based on the com-
bination of multilevel graph partitioning and a binary linear
program, and the combination requires a tenth or even a
hundredth of a second to find effective jammer placements
in networks of up to 500 nodes.

B. Helper Node Placement Problem

The objective of this paper is to determine how to make the
network robust to the type of jamming attacks described in
Section II-A. We need a robustness metric that represents the
difficulty for adversaries to perform jamming attacks aimed
at disrupting the network topology. The metric should be
comparable between different network topologies and sizes,
and it should also be easily computed. Metrics like vertex
connectivity, Fiedler value, and Cheeger constant [16], [17]
have been widely used when analyzing network connectivity
and robustness. All of them are able to indicate how “well-
knit” the network is but also possess their own drawbacks. Ver-
tex connectivity only measures the local property around each
vertex of the network and Fiedler value can only indirectly
estimate the global connectivity of the network. The Cheeger
constant also represents the global connectivity of the network.
Networks with small Cheeger constants have a “bottleneck”,
which consists of a small number of edges connecting two
large connected components. However, calculation of this
number is a NP-Hard problem and the “bottleneck™ only
considers a single edge cut. Hence this metric has limited

utility for the types of jamming attacks we consider. The
robustness measurement we adopt in this paper is:

n(G(V,€)) = [0JS(G(V, €))l

where |OJS(G)| is the cardinality of the Optimal Jamming Set,
which is a number of jammers that can partition the network
to achieve the objective in Section II-A. The details of the OJS
are deferred until Section III-A.

We consider the following optimization problem for helper
node placement. Let G(V,E) be the network that is to be
made more robust, and let P = {P;, P», ..., Py, |loc(P;) €
R? i=1,2,..., Ny} be additional vertices that represent the
N}, helpers. Each P; has a location in R2. Let H(V', &', G, P)
be the reinforced network induced by placing helper nodes at
the locations of the P; € P. Then H is specified by vertices
V' and edges £’, which can be determined from:

V =yup
E ={(u,v) € V' x V' | dist(u,v) < R.}.

Then the helper node placement problem is

/ !

P = arg Per&az?Nhn(H(V ,E',G,P))). (1)
An example showing the result of placing helper nodes
into a wireless network is shown in Fig. 1. The original
network, shown in Fig. 1(a), is a 100-node network created
as a random geometric graph [18]. This network requires 4
jammers to partition into 4 disconnected subnetworks with
fewer than 25 radios in each. After adding 10 helper nodes
with communication radius equal to the communication nodes
in the original network, the more robust network is shown
in Fig. 1(b), and requires 7 jammers to achieve the same
level of partitioning. If the 10 helper nodes have twice the
communication radius as the original communication nodes,
then 10 jammers are required to partition the network to the

same amount, as shown in Fig. 1(c).

III. HELPER NODE PLACEMENT ALGORITHMS

A. Evaluation of Network Robustness

We use n(G(E,V)) as a measure of network robustness
to a jamming attack aimed at partitioning the network. The
evaluation of 7(G(€,V)) can be divided into two phases:
1) finding a good edge separator £ of network G via a
computationally efficient method called multilevel balanced
graph cut, and 2) finding a jammer placement solution of
minimum cardinality that blocks communication along all
edges in Es.

The multilevel balanced cut [19] aims to find a minimum
edge separator £g that partitions the given graph into k
disconnected subgraphs with equal numbers of vertices. If the
number of vertices in the original graph is not divisible by k,
then the number of vertices in each subgraph may differ by



(a) Before placing helper nodes into the network, (b) New network routes are created after placing (c) If the helper nodes have twice the communi-
4 jammers placed at the right locations are able to 10 helper nodes into the network. It now requires cation range as the other nodes, after placing 10
partition the network into at least 4 disconnected 7 jammers to partition the network with same helper nodes, it requires 10 jammers to partition

subnetworks with order fewer than one fourth of objective.
the original network order.

Fig. 1.

the networks with the same objective.

Network robustness against jamming attack before and after placing helper nodes. Jammed area are mapped by yellow shaded circles and jammers

are placed at the center of each jammed area. A node is jammed if it is within the jammed area. Jammed nodes and network links are represented by
magenta round dots and dashed lines respectively. Nodes and links not affected by jammers are represented by colored dots in various shapes and solid lines

respectively.

one. Thus, the balanced k-way cut problem is

min |Eg]
V| Vil .
5. t. — <<= =1,....K
S.t {K < Vil < I i Yo
K
UV,L:V i=1,...,K
i=1
Viﬁvjzﬁ ’i,jE{l,...,KLi#j

Once an edge separator £g is found, the optimal jamming
set (OJS) for £ in G can be found by solving an Integer
Linear Program. Let Gg be the subgraph of G that is induced
by the edge set &, such that the vertex set of Gg is given by

Vs={veV|Jeecs,e=(w,z) 2 v=wUv==z},

and the edge set of Gg is £g. In our jamming model, each
jammer is placed at the location of one of the vertices in V. If
Ng, (v) denotes the neighbors of v in G 7, then communication
will be disrupted to all u € Ng, (v). For a vertex set U C V,
let Ng,(U) be the closed neighborhood of the nodes in U,
Ng,(U)={veV|veUorduelU>suve Ng,(u)}.

Let Gs denote the subgraph of G induced by the vertex set
Ng, (Vs). Then, the minimum number of jammers required is
the minimum cardinality subset Vo C Gg such that for every
edge in (u,v) € &g, at least one of u,v is dominated by a
vertex in Vo

Vo = arg min |V]
vcy
s.t. Ve € Eg,e = (w, x),
JveV s we Ng,(v) or x € Ng,(v).

We call Vo the optimal jamming set (OJS) for £s. The OJS
can be found using a small integer linear program (ILP), as
detailed in [12].

B. Search Placement Solutions

Once the robustness of the network can be quickly evalu-
ated, it is possible to use these inside meta-heuristic search
algorithms to search for optimal helper node placements. We
propose to apply Harmony Search (HS) [20] to find helper
node placement locations P for network G with obj(P) =
n(HOWV',E',G,P)), where P stands for candidate helper node
placement solution — also called harmony — which has been
introduced in Section II-B

The following terminology is used in the harmony search
algorithm:

« HMS: Harmony Memory Size

« HM: Harmony Memory

« HMCR: Harmony Memory Considering Rate

« PAR: Pitch Adjusting Rate

« BW: Pitch Bandwidth

« ITR: Total Number of Iteration

e SOI: Current Step of Iteration 1.

o PPbestiworst: Begt/worst harmony stored in HM currently

e P1e¥: New harmony “improvised” at current iteration
The steps of our HS can be summarized in Algorithm 1
and Algorithm 2. A series of random solutions/harmonies —
placement locations — are generated to fill the HM during
initialization. At iteration step ¢, a new harmony P/°% is
“improvised” by choosing some of its elements from HM, with
a probable pitch controlled by PAR and BW, while some other
elements are randomly generated with a probability controlled
by HMCR. The worst harmony PY°'' in HM is replaced if
Prev is better. Hence, HM will be a pool of good solution



candidates, and their elements are more likely to appear in the
new improvised harmony. HMCR, PAR and BW also added
controlled randomness in the new harmony, giving HS the
ability to jump away from local optima.

Data: G(V, &), HMS, ITR
Result: PPt obj(PPest), H(V', £, G, PPest)
begin
Initialize HM = [Py, Pa, ..
while ¢ < ITR do
Set P € HM with min obj(P) as P¥orst
New solution PV = Improvisation()
Calculate #H, obj(P™")
if obj(P™eV) > obj(P™°"s') then
| Replace P™orst with Prew
end
end
Set P € HM with max obj(P) as PPest
Calculate H(V', &', G, PP*t) and obj(PPest)

-, Prwms]

end
Algorithm 1: Harmony Search - Main

Data: G(V, &), HM, HMCR, PAR, BW

Result: Improvised solution P"¢%

begin

Initialize P"*" as an empty solution

while j < SL do

Generate random number ¢ ~ 4/(0,1)

if ¢ < HMCR then

Randomly pick P from HM

Randomly pick P; = (z;,y,) € P

Generate random number r ~ /(0, 1)

if 7 < PAR then
Relocate Pj at P(x; + Az, y; + Ay)
where Ax, Ay ~ U(—BW,BW)
Append P} to PreY

end

else
| Append P; to PV
end

end
else

| Append random location P}/ to P
end

end
Return Prev

end
Algorithm 2: Harmony Search - Improvisation

C. Select Random Location for Helper Node Placement

The way that the random locations for helper nodes are gen-
erated during initialization and improvisation in the Harmony
Search algorithm can significantly affect the performance and
convergence rate. The performance can be improved by gen-
erating the random locations using information on the current
jammer placement that uses the fewest jammers to achieve

Fig. 2. Probability density for choosing helper node placement locations
at the beginning of Harmony Search. Yellow (lighter) regions have zero
probability density; purple (darker) region have highest probability density.

the specified level of network partition. Under our jammer
model, network nodes located within the jamming radius of
a jammer will not be able to communicate, so placing helper
node in those regions have limited positive effect on improving
network robustness. Thus, when generating a random location,
P/ (Znew, Ynew ). that is a potential helper node placement, the
location is generated from a continuous random variable for
which the probability density at (z,y) is
o 0 if the distance between (x,y) and any jammer in OJS
is smaller than R;, and
« inversely proportional to its distance to the nearest jam-
mer in OJS.
An example probability density generated under these rules
with network and OIJS in Fig. 1(a) is shown in Fig. 2

IV. SIMULATION RESULTS

In this section, we evaluate the performance and running
time of the proposed helper node placement algorithms via
simulation of randomly generated networks. All simulations
are programmed in Python with network analysis module
NetworkX and integer linear programming solver provided in
GLPK library (connected through Python’s CVXOPT mod-
ule). The Multilevel network partition solver is provided in
Metis library (connected through Python’s PyMetis module).
The simulations were executed on computers with a 3.1GHz
Intel Core 17 CPU with 8MB cache and 16GB RAM running
Ubuntu 14.04 LTS. All figures show the performance averaged
over 100 different network topologies.

The simulation results are all for graphs generated using the
Random Geometric Graph (RGG):

G(V,€) = RGG(n, R.)

Y = {Uz(.’IJ’uyz) | T, Yi ~ U[O, /1_76_)

} )
E ={(u,v) |u,v € V,d(u,v) <R} CVxV.

(=)
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Fig. 3. Jammer placement objective function (number of jammers needed to
meet the partitioning objective) for networks with different orders vs. iterations
of the Harmony Search.

Each simulation topology is generated by randomly placing
nodes in the region [0, \/7%5) x [0, \/7h5) and then creating
edges for all pairs of vertices v and v if they are within the
communication radius, d(u,v) < R.. This graph models a
scenario in which:

« Radios are homogeneous with: identical spatial den-
sity, equal transmit power, omnidirectional antennas, and
equal noise figure.

o The channel obeys an exponential path-loss model.

o The jamming radius is equal to the communication radius
(Rj = R. =0.15).

For all simulations, HMS=20, HMCR=0.8, PAR=0.8 and
BW=0.05.

We first consider the tradeoff between performance and
execution time in the harmony search (HS). We ran HS on
networks with 20, 40, and 100 nodes with 100 different
topologies for each order. The number of helper nodes is 5%
of the network order for each topology. The communication
radius of the helpers nodes is the same as the network nodes’.
Fig. 3 is a violin plot' of the objective function (5, the
number of jammers in the OJS) at various iterations of the
HS algorithm. Here, iteration ¢ = 0 corresponds to no helper
nodes, and ¢ = 1 means the HM has just been initialized (the
placement is the P**** in 20 random solutions stored in HM).

Fig. 3 shows that for networks of 20 or 40 nodes, the
objective function of the HS is saturated by 10000 iterations.
For network with order 40, the average 7n(?) increased by
41.25% (from 3.20 to 4.52) in the first 10000 iterations, and
only achieved another 1.99% increment (from 4.52 to 4.61)
at one million iterations. For networks with 100 nodes, the
distribution continues to improve after 10000 iterations, but
the majority of the gain has been achieved by 10000 iterations.
Thus, in the following we consider HS with 100, 1000 and
10000 iterations. The average execution times increase linearly

A violin plot is similar to a box plot, except the boxes are replaced by
kernel-smoothed density estimates, where the width indicates the estimated
probability density.
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Fig. 4. Jammer placement objective function (1) at multiple iteration steps
caused by placing helper nodes with the same communication radius as the
original communication nodes.

with the number of iterations, and so are not shown.

The performance and running times of HS on various
network orders are shown in Figs. 4-6. We simulated the
placement of helper nodes into networks with order 20, 40, 80,
100, 150 and 200. The number of helper nodes is equal to 5%
of the network order, i.e., one helper node is used for networks
with 20 nodes, five helper nodes are used for networks with
100 nodes, etc. To test the effect of placing helper nodes with
different communication radii, we also have two scenarios:
helper nodes with the same radius as the network nodes and
helper nodes with twice the radius of the network nodes.

Fig. 4 is a violin plot that shows the density of the jammer
placement objective function (1) as a function of the network
order for multiple values of the number of iterations of the HS
algorithm. For these results, the helper nodes’ communication
radius is equal to that of the network nodes. The results
show that our proposed algorithm significantly increases (),
especially for the larger networks. For a 100-node network,
with helper nodes the average n(#) is increased by 55.35%
(from 5.42 to 8.42) at 10000 iterations. Although the solution
created during initialization increases 7, the Harmony Search
solver is able to create refined solutions by keeping the “good”
parts and removing “bad” parts in the HM and can escape local
optima by introducing controlled randomness.

When helper nodes with larger communication radii can be
deployed, the robustness of networks increases even further, as
shown by the results in Fig. 5. For a 100 node network with
no helper nodes, n = 5.42; for helper nodes with the same
communication radius (1x) as the network nodes, n = 8.42,
and for helper nodes with twice (2x) that communication
radius, n = 9.22. Similarly, for a 200-node network with no
helpers n = 7.38, whereas with helper nodes with 1x or 2x
communication radii, the average values of 7 increase to 12.36
and 13.83, respectively. We note that without helper nodes,
even a 500-node network does not achieve n > 12.

In Fig. 6, the average time complexities of HS on placing
helper nodes with communication radius identical to or twice
(2x) that of the network nodes are shown by blue and green
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Fig. 6. Time complexity for optimizing helper node locations with 1000

iteration steps versus network order and helper node communication radius.

lines, respectively. For helper nodes with the same communi-
cation radius as the original nodes, Fig. 6 shows that the HS
algorithm with 10000 iterations completes within 100 s (less
than 2 min) for almost all network topologies of 40 nodes or
fewer. For networks with order 100, HS algorithm with 10000
steps of iterations require about 1.4 x 10® s (approximately
23 minutes) on average and all simulations finished within
3.3 x 10® s (approximately 55 minutes). And for networks
with order 200, the average time requirements for 10000 HS
iterations are 5.2 x 10% s (approximately 1.5 hours). If an
average run time of less than 10 minutes is required, HS with
1000 iterations can be used with average run time 500 s, but
the average improvement in 7(?) is reduced to about 53%.
Note that the additional time complexity for the helper nodes
with larger communication radius is because the additional
connections result in larger integer linear programs.

V. CONCLUSION

In this paper, we considered the problem of helper node
placement to improve the robustness of wireless networks
to jamming attacks aimed at partitioning the network. We

propose techniques to optimize the placement of helper nodes
that make the topology more robust to such jamming attacks.
We use the meta-heuristic Harmony Search algorithm to search
for good locations to place the helper nodes. Our simulation
shows that by placing a number of helper nodes equal to 5%
of the network order, our approach can significantly increase
the network robustness, achieving an average robustness that
would only be seen in much larger random geometric graphs.
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